Fluid-kinetic modelling for respiratory aerosols with variable size and temperature

Bérénice GREC¹

in collaboration with L. BOUDIN, C. GRANDMONT, S. MARTIN, A. MECHERBET and F. NOËL

¹MAP5 – Université Paris Descartes / Université de Paris, France

Groupe de travail "EDP-biologie", Orsay, November 2019

MEMBRE DE

U^SPC Université Sorbonne Paris Cité

Outline of the talk

Introduction

- Context
- State of the art

2 Modelling

- PDE modelling
- Kinetic model for the aerosol
- PDE model for the air

3 Numerical solving

4 Numerical results

- Numerical data
- Numerical results

5 Conclusion and prospects

Introduction

Aerosol therapy

- Treat chronic pulmonary diseases (COPD)
- Difficulty of *in vivo* observation of drug delivery in the human airways
- Numerical simulations of the aerosol flow in the lung
- ► Accurate description of the deposition phenomenon (in part. its location)

Physical properties of the aerosol

- Very numerous particles
- ▶ Hygroscopic properties: water exchange with the bronchial (humid) air
- Strongly relying on thermal effects
- ► Size variation of the particles ~> influence on deposition (quantity, characteristic times, location, ...)

State of the art

Aerosol description in the air

- Two-phase models
 - Aerosol concentration in the air
 - Difficulty to determine the deposition areas
- Agent-based models
 - Difficulty to track the trajectories of numerous particles
- Sinetic models
 - Numerous particles in the aerosol with negligible volume compared to the airways

Taking into account the radius variation of the particles

- Need to take into account thermal effects
- ► [Longest, Hindle, 2011]: ODE model for the droplet radius and temperature, as well as air temperature and vapour mass fraction
- ► Take into account spatial heterogeneity: PDE model

Outline of the talk

Introduction

- Context
- State of the art

2 Modelling

- PDE modelling
- Kinetic model for the aerosol
- PDE model for the air
- 3 Numerical solving

4 Numerical results

- Numerical data
- Numerical results

5 Conclusion and prospects

PDE modelling

- ► variables: $t \ge 0$, $x \in \Omega$, $v \in \mathbb{R}^3$, r > 0, T > 0
- distribution function f(t, x, v, r, T)
- the particles remain spherical and do not interact with each other

► For the air

- ► Newtonian and incompressible (air mass density *Q*air constant)
- velocity u(t, x), pressure p(t, x)
- water vapour mass fraction in the air
 Y_{v,air}(t, x)
- air temperature $T_{air}(t, x)$

Kinetic model for the aerosol

Vlasov-type equation

$$\partial_t f + \mathbf{v} \cdot \nabla_x f + \operatorname{div}_{\mathbf{v}} \left[(\alpha(\mathbf{u} - \mathbf{v}) + g)f \right] + \partial_r(af) + \partial_T(bf) = 0$$

- ▶ g: gravitational field
- $\alpha(u v)$: drag acceleration undergone by the aerosol from the air
- ▶ function *a*: radius growth evolution of the particles
- ▶ function *b*: temperature growth evolution of the particles

Boundary conditions :

- Deposition: $f(t, \cdot, v, r, T) = 0$ on Γ^{wall} if $v \cdot n \leq 0$
- Entrance distribution $f(t, \cdot, v, r, T) = f^{\text{in}}$ on Γ^{in}

Description of the drag acceleration

Each droplet is comprised of active products (drug), excipient and water.

- ► $r_{\rm drug}$: radius s. th. $\frac{4}{3}\pi r_{\rm drug}^3 \rho_{\rm drug}$ is the drug mass inside the droplet
- ► *r*_{ex}: particle dry radius

The mass of the droplet is given by

$$m(\mathbf{r}) = \frac{4}{3}\pi \left[r_{\rm drug}^3 \varrho_{\rm drug} + (r_{\rm ex}^3 - r_{\rm drug}^3) \varrho_{\rm ex} + (\mathbf{r}^3 - r_{\rm ex}^3) \varrho_{\rm w} \right]$$

The drag force satisfies the Stokes law

$$\alpha(\mathbf{r}) = \frac{6\pi\eta\mathbf{r}}{m(\mathbf{r})}$$

where η is the (constant) air dynamic viscosity.

Description of the radius growth evolution

Following [Longest, Hindle, 2011]

• Water mass flux $N_{\rm d}$ at the droplet surface

$$egin{aligned} egin{aligned} egi$$

• This flux $N_{\rm d}$ depends on r, T through the mass fraction $Y_{\rm v,surf}$ of water vapour at the droplet surface

$$N_{\rm d}(r, T, Y_{\rm v,air}(t, x)) = \varrho_{\rm air} \frac{\operatorname{Sh} D_{\rm v} C_m}{2r} \frac{Y_{\rm v,surf}(r, T) - Y_{\rm v,air}(t, x)}{1 - Y_{\rm v,surf}(r, T)},$$

Highly nonlinear expression of $Y_{v,surf}(r, T)$

$$Y_{\rm v,surf}(r, T) = \frac{S(r)K(r, T)P_{\rm v,sat}(T)}{\varrho_{\rm d}(r)R_{\rm v}T}$$

- ► S(r): water activity coefficient
- K(r, T): influence of the Kelvin effect on the droplet surface concentration of water vapor
- $P_{v,sat}(T)$: water vapour saturation pressure
- $\rho_{\rm d}(\mathbf{r})$: mass density of the particle

Description of the temperature growth evolution

Following [Longest, Hindle, 2011]

► Contributions of both the convective heat flux between the air and the droplets Q_d and the evaporating one L_vN_d, with L_v the latent heat of water vaporisation

$$b(\mathbf{r}, \mathbf{T}, \mathbf{Y}_{v, air}(t, x), \mathbf{T}_{air}(t, x)) = \frac{-3Q_d(\mathbf{r}, \mathbf{T}, \mathbf{T}_{air}(t, x)) - 3L_v N_d(\mathbf{r}, \mathbf{T}, \mathbf{Y}_{v, air}(t, x))}{\varrho_d(\mathbf{r}) c_{\mathbf{P}_d} \mathbf{r}}$$

 \blacktriangleright The convective flux ${\it Q}_{\rm d}$ is given by

$$Q_{\rm d}(\mathbf{r}, \mathbf{T}, \mathbf{T}_{\rm air}(\mathbf{t}, \mathbf{x})) = \frac{\mathsf{Nu}\,\kappa_{\rm air}\,\mathcal{C}_{\mathbf{T}}}{2\mathbf{r}}(\mathbf{T} - \mathbf{T}_{\rm air}(\mathbf{t}, \mathbf{x}))$$

- Nu: droplet Nusselt number
- \blacktriangleright $\kappa_{air}:$ thermal conductivity of the air as a gaseous mixture
- C_T : Knudsen correlation

These terms ensure that $r \ge r_{ex}$ and $T \ge T_{min}$.

PDE model for the air (1)

Incompressible Navier-Stokes equations

$$\begin{cases} \varrho_{\text{air}} \Big[\partial_t u + (u \cdot \nabla_x u) \Big] - \eta \Delta_x u + \nabla_x p = F \\ \operatorname{div}_x u = 0 \end{cases}$$

Aerosol retroaction F on the air

$$F(t,x) = -\iiint_{\mathbb{R}^3 \times \mathbb{R}_+ \times \mathbb{R}} m(r) \alpha(r) (u(t,x) - v) f(t,x,v,r,T) \, \mathrm{d}v \, \mathrm{d}r \, \mathrm{d}T$$

- Dirichlet boundary conditions on *u* on Γⁱⁿ
- Homogeneous Dirichlet boundary conditions on *u* on Γ^{wall}
- Free flow boundary conditions on the stress tensor on Γ^{out}

PDE model for the air (2)

• Advection-diffusion equation for $Y_{v,air}$

$$\varrho_{\mathrm{air}} \Big[\partial_t Y_{\mathrm{v,air}} + (u \cdot \nabla_x) Y_{\mathrm{v,air}} \Big] - \mathsf{div}_x \left(D_{\mathrm{v}} \nabla_x Y_{\mathrm{v,air}} \right) = S_Y$$

- \blacktriangleright Dirichlet boundary conditions on $Y_{v,\mathrm{air}}$ on Γ^{in} (fresh air) and Γ^{wall} (humid air)
- Neumann boundary conditions on $Y_{v,air}$ on Γ^{out}
- ► Source term S_Y: water mass exchanges between the bronchial air and the aerosol

$$S_{\mathbf{Y}}(t,x) = \varrho_{\mathbf{w}} \iiint_{\mathbb{R}^{3} \times \mathbb{R}^{*}_{+} \times \mathbb{R}^{*}_{+}} 4\pi r^{2} N_{\mathrm{d}}(r,T,Y_{\mathrm{v,air}}(t,x)) f(t,x,v,r,T) \,\mathrm{d}v \,\mathrm{d}r \,\mathrm{d}T$$

Ensures the physical conservation of the water vapour mass!

PDE model for the air (3)

• Advection-diffusion equation for T_{air}

$$\varrho_{\mathrm{air}} c_{\mathcal{P}_{\mathrm{air}}} [\partial_t T_{\mathrm{air}} + (u \cdot \nabla_x) T_{\mathrm{air}}] - \kappa_{\mathrm{air}} \Delta_x T_{\mathrm{air}} = S_T$$

- ► Dirichlet boundary conditions on T_{air} on Γⁱⁿ (room temperature) and Γ^{wall} (body temperature)
- Neumann boundary conditions on T_{air} on Γ^{out}
- ► Source term S_T: heat transfer between the air and the aerosol through the water vapour

$$S_{\mathcal{T}}(t,x) = \iiint_{\mathbb{R}^3 \times \mathbb{R}^*_+ \times \mathbb{R}^*_+} 4\pi r^2 Q_{\mathrm{d}}(r,\mathcal{T},\mathcal{T}_{\mathrm{air}}(t,x)) f(t,x,v,r,\mathcal{T}) \,\mathrm{d}v \,\mathrm{d}r \,\mathrm{d}\mathcal{T}$$

Ensures the physical conservation of the thermal energy associated to water transfers!

Outline of the talk

Introduction

- Context
- State of the art

2 Modelling

- PDE modelling
- Kinetic model for the aerosol
- PDE model for the air

3 Numerical solving

A Numerical results

- Numerical data
- Numerical results

5 Conclusion and prospects

Numerical method (1)

▶ 2D computations, use of FreeFem++

Time marching scheme uncoupling the fluid and aerosol equations

- Solve the fluid equations with explicit source terms (using the aerosols quantities)
- Solve the kinetic equation with updated fluid quantities

9 Standard weak formulations and function spaces for the fluid equations

- \mathbb{P}_2 functions for u, \mathbb{P}_1 functions for p, $Y_{v,air}$, T_{air}
- Convective terms treated with the characteristics method (convect command)
- Neglect the retroaction of the particles on the fluid (F = 0)
- Particle method for the Vlasov equation
 - Discretization of the distribution function f as a weighted sum of Dirac masses in x, v, r, T variables
 - $\blacktriangleright~\textit{N}_{\rm num}$ numerical particles, each having representativity ω

$$f(t, x, v, r, T) \simeq \omega \sum_{p=1}^{N_{\text{num}}} \delta_{x_p(t)} \otimes \delta_{v_p(t)} \otimes \delta_{r_p(t)} \otimes \delta_{T_p(t)}(x, v, r, T)$$

٢

Numerical method (2)

The particle coordinates satisfy the differential system

$$\begin{aligned} \left(\dot{x}_{p}(t) &= v_{p}(t) \\ \dot{v}_{p}(t) &= \alpha(r_{p}(t)) \left(u(t, x_{p}(t)) - v_{p}(t) \right) + (1 - \frac{\varrho_{\text{air}}}{\varrho_{\text{d}}}) g \\ \dot{r}_{p}(t) &= a \left(r_{p}(t), T_{p}(t), Y_{\text{v,air}}(t, x_{p}(t)) \right) \\ \dot{T}_{p}(t) &= b \left(r_{p}(t), T_{p}(t), Y_{\text{v,air}}(t, x_{p}(t)), T_{\text{air}}(t, x_{p}(t)) \right) \end{aligned}$$

- High precision for the ODE on r_p : use of a RK4 scheme
- Semi-implicit Euler scheme for v_p and T_p
- Position x_p updated using the new velocity v_p
- Allows to update the fluid source terms S_Y and S_T

Numerical method (3)

Deposition or exiting the domain

- Computation of the distance of the particle to $\Gamma^{\rm wall}$ or $\Gamma^{\rm out} \rightsquigarrow$ deposition on the wall or exiting the domain through the outlet
- If the distance to the boundary is smaller than r_p , also deposition or exit

Time subcycling for the particles

- Prevent the aerosol particles to go across various cells during one single fluid time step
- ► Important in particular because of the stiff ODE on the temperature

Outline of the talk

Introduction

- Context
- State of the art

2 Modelling

- PDE modelling
- Kinetic model for the aerosol
- PDE model for the air

3 Numerical solving

4 Numerical results

- Numerical data
- Numerical results

Conclusion and prospects

Numerical data (1)

- ▶ Domain: trachea and first bifurcation in the human airways
- ▶ 3D-2D correction: $D_0 = 1.80$ cm, $\ell_0 = 7.52$ cm
- ► Entrance velocity: Poiseuille law, order of magnitude 1 m.s⁻¹
- $T_{\text{air}}|_{t=0} = 37^{\circ}\text{C}, \ T_{\text{air}}^{\text{in}} = 24^{\circ}\text{C}, \ T_{\text{wall}} = 37^{\circ}\text{C}$
- \blacktriangleright Initial and boundary values of $Y_{\rm v,air}$ computed from the relative humidities in the airways
- Stationary state for the fluid

Numerical data (2)

- \blacktriangleright 5 injections of 100 numerical particles, with $\omega=10^4$
- Periodic releases between t = 0 and t = 0.25 s, final time t = 1 s
- ▶ Initial radii $r_p(0) = 2.25 \ 10^{-5} \text{ cm}$ (no excipient)
- Initial temperatures equal to the entrance air temperature
- ▶ Initial positions uniform in $[-D_0/4, D_0/4] \rightsquigarrow$ maximizes the deposition
- ► Averaged computations over 10 initial randomly chosen particle distributions

Validation

- Mass conservation in the water vapour exchange between air and aerosol
- Thermal energy balance

Comparison of different models

- Full model (A)
- No variation of T_{air} , T (B)
- No variation of T_{air} , T nor $Y_{v,air}$, r (C)

Local influence of the particles on the air temperature

- Local air temperature increasing at the location of the particles
- Comes from the water vapour mass exchange between the humidified air and the droplets

Radius and temperature evolution of a particular droplet

- Droplet going out through the left branch in the full model
- ► Comparison between the different models (A), (B), (C)

Radius evolution

- Except for the first release, the aerosol evolves in a cooled air
- Larger size growth with model (B) than with (A)
- In model (A), part of the radius variation has a temperature effect
- \blacktriangleright \rightsquigarrow More deposition with model (B), and shorter mean deposition time

Radius and temperature evolution of a particular droplet

- Droplet going out through the left branch in the full model
- ► Comparison between the different models (A), (B), (C)

Temperature evolution

- Only in model (A)
- Temperature jump when the particles go into the branches of the bifurcation (smaller diameter)
- \blacktriangleright Stronger wall effect in the branches \rightsquigarrow higher temperature increase

Outline of the talk

Introduction

- Context
- State of the art

2 Modelling

- PDE modelling
- Kinetic model for the aerosol
- PDE model for the air
- 3 Numerical solving

4 Numerical results

- Numerical data
- Numerical results

5 Conclusion and prospects

Conclusion and prospects

Conclusion

- Fluid-kinetic model for respiratory aerosols, taking into account size variation of the droplets
- Importance of taking into account both humidity and temperature (for the droplets and the air) to properly describe the hygroscopic effects on aerosols

Prospects

- Taking into account excipients (different hygroscopic properties)
- Other geometrical domains
- Expiration (problem for boundary conditions)
- 3D computations (PhD of David Michel)

HH

Thank you for your attention!

Bérénice GREC

Book Plan is

Physical conservation of the water vapour mass exchange Assume that u = 0, $\nabla_x Y_{v,air} \cdot n = 0$ and f = 0 on on $\partial\Omega$. Then we have

$$\frac{\mathrm{d}}{\mathrm{d}t}\left[\int_{\Omega}\left(\varrho_{\mathrm{air}}Y_{\mathrm{v,air}}(t,x)+\iint_{\mathbb{R}^{3}\times\mathbb{R}^{*}_{+}\times\mathbb{R}^{*}_{+}}m(r)f(t,x,v,r,T)\,\mathrm{d}v\,\mathrm{d}r\,\mathrm{d}T\right)\,\mathrm{d}x\right]=0.$$

Proof.

- ► Multiply the Vlasov equation by m(r), integrate w. r. t. x, v, r, T, and eliminate the conservative terms through integrations by parts
- ► Integrate equation for $Y_{v,air}$ on Ω , use the definitions of the terms *a* and S_Y

Physical conservation of thermal energy associated to water transfers Assume that u = 0, $\nabla_x Y_{v,air} \cdot n = 0$ and f = 0 on on $\partial\Omega$. Then we have $\frac{d}{dt} \left[\int_{\Omega} \left(\varrho_{air} c_{P_{air}} T_{air}(t, x) + \iiint_{\mathbb{R}^3 \times \mathbb{R}^*_+ \times \mathbb{R}^*_+} m(r) c_{P_d} T f(t, x, v, r, T) dv dr dT \right) dx \right]$ $= - \int_{\Omega \mathbb{R}^3 \times \mathbb{R}^*_+ \times \mathbb{R}^*_+} 4\pi r^2 (L_v + c_{P_d} T) N_d(r, T, Y_{v,air}(t, x)) f(t, x, v, r, T) dv dr dT dx.$

Proof.

- Integrate equation for T_{air} over Ω
- ▶ Multiply the Vlasov equation by $m(r)c_{P_d}T$, integrate w. r. t. x, v, r, T
- \blacktriangleright Sum both equalities, the term involving ${\it Q}_{\rm d}$ vanishes
- It remains two terms involving $N_{\rm d}$:
 - one with L_v to take the change of physical state into account
 - one with the added thermal energy in the aerosol due to the mass exchange.