Induction on Decision Trees

Séance « IDT »

de l'UE « apprentissage automatique »

Bruno Bouzy

bruno.bouzy@parisdescartes.fr

www.mi.parisdescartes.fr/~bouzy

Outline

- Induction task
- ID3
- Entropy (disorder) minimization
- Noise
- Unknown attribute values
- Selection criterion

- Formalism:
 - objects with attributes
- Example:
 - objects = saturday mornings
 - attributes:
 - outlook {sunny, overcast, rain}
 - temperature {cool, mild, hot}
 - humidity {high, normal}
 - windy {true, false}

- One particular saturday:
 - Outlook = overcast
 - Temperature = cool
 - Humidity = normal
 - Windy = false
- Classes mutually exclusive, here 2 classes:
 - Positive (P)
 - Negative (N)

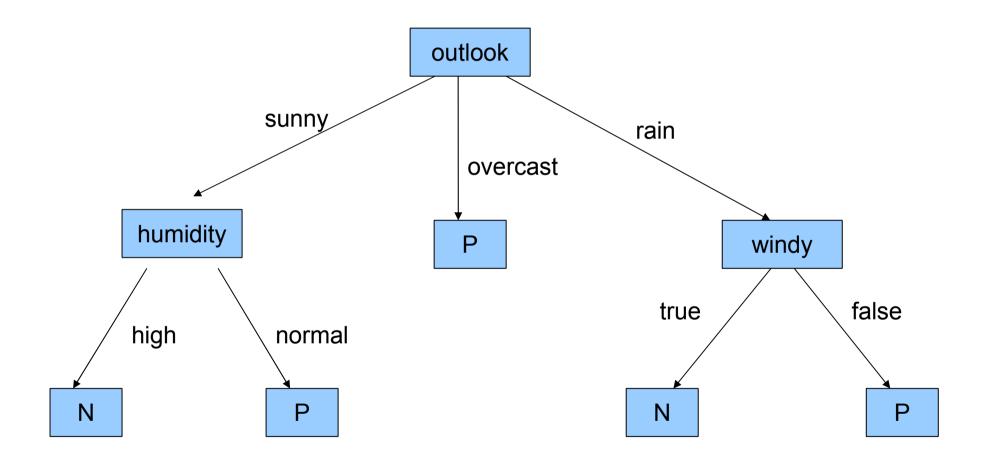
- Training set:
 - objects whose class is known

- Goal:
 - Develop a classification rule

A small training set

n	outlook	temperat.	humidity	windy	С
1	sunny	hot	high	false	Ν
2	sunny	hot	high	true	Ν
3	overcast	hot	high	false	Ρ
4	rain	mild	high	false	Ρ
5	rain	cool	normal	false	Ρ
6	rain	cool	normal	true	Ν
7	overcast	cool	normal	true	Ρ
8	sunny	mild	high	false	Ν
9	sunny	cool	normal	false	Ρ
10	rain	mild	normal	false	Ρ
11	sunny	mild	normal	true	Ρ
12	overcast	mild	high	true	Ρ
13	overcast	hot	normal	false	Ρ
14	rain	mild	high	true	Ν

A simple decision tree



Induction on Decision Trees

- If the attributes are adequate, it is possible to build a correct decision tree.
- Many correct decision trees are possible.
- Correctly classify unseen objects ? (it depends...)
- Between 2 correct decision trees, choose the simplest one.

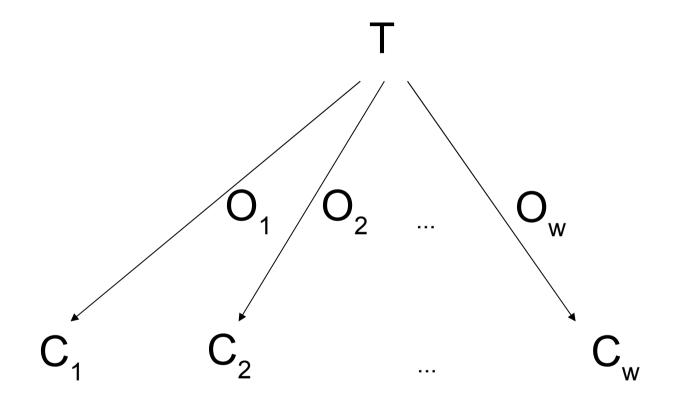
- Systematical approach:
 - Generate all decision trees and choose the simplest
 - Possible for small induction tasks only
- ID3 approach:
 - Many objects, many attributes.
 - A reasonably good decision tree is required.
 - Use the entropy minimization principle to select the « best » attribute

Induction on Decision Trees

- Result:
 - Correct decision trees are found.
 - Training sets of 30,000 examples
 - Examples with 50 attributes
 - No convergence garantee

- How to form a DT for a set C of objects ?
 - T = test of the value of a given attribute on an object
 - The possible values (outcomes) are:
 - O₁, O₂, ..., O_w.
 - Partition = $\{C_1, C_2, ..., C_w\}$ of C.
 - C_i contains objects of C whose value (outcome) is O_i.

A structuring tree of C



Induction on Decision Trees

Choice of the test

• 2 assumptions:

(1) the test set is in the proportion of the training set:

p: number of positive (+) examples

n: number of negative (-) examples

 P_{+} : probability to be positive = p/(p+n)

P_: probability to be negative = n/(p+n)

(2) Information gain based on the entropy E(p, n):

 $E(p, n) = -P_{+}log(P_{+}) - P_{-}log(P_{-})$

(entropy ≈ disorder)

Induction on Decision Trees

Choice of the test

• A attribute with values in $\{A_1, A_2, ..., A_w\}$

•
$$C = \{C_1, C_2, ..., C_w\}$$

- objects in C_i have $A = A_i$.

- C_i has p_i objects in P and n_i objects in N.
- $E(p_i, n_i) = entropy of of C_i$.

Entropy function

A measure of disorder

For x in]0, 1[: $E(x) = -x\log(x) - (1-x)\log(1-x)$

•
$$E(0) = E(1) = 0$$

- No disorder

•

- E is a bell function
 - maximum for x=1/2 (maximal disorder)
 - Vertical in 0 and 1.
 - $E(1/2) = log(2) \approx 0.7$
 - (... approximate values: log(3) ≈ 1.1 log(4) ≈ 1.4 log(5) ≈ 1.6 log(7) ≈ 2)

Entropy function

• p positive objects and n negative objects...

- What is the entropy E(p|n) of the proportion (p|n) ?
 - E(p|n) = -p/(p+n)log(p/(p+n)) n/(p+n)log(n/(p+n))= log(p+n) - p/(p+n)log(p) - n/(p+n)log(n)

Choice of the test

« Entropy a priori » (Eap) of attribute A:

A measure of what could be the average entropy if we ask the value of attribute A A weighted sum of the entropies associated to each value of A

The weight of value Ai is in proportion of the number of objects with value Ai

$$Eap(A) = \sum_{i} E(p_{i}, n_{i})(p_{i}+n_{i})/(p+n)$$

Choose attribute $A^* = \operatorname{argmin}_{b} \operatorname{Eap}(b)$

(i.e. looking for the attribute that minimizes disorder...)

Choice of the test

- Example, the entropy « a priori » of each attribute
 - Eap(outlook) = 0.45
 - Eap(temperature) = 0.65
 - Eap(humidity) = 0.55
 - Eap(windy) = 0.65

ID3 chooses « outlook » as the DT root attribute.

- Complexity:
 - O (|C|.|A|.D)
 - |C| : size of the training set
 - |A| : number of attributes
 - D : depth of the decision tree

Noise

- Error in attribute values
 - Object 1 . outlook = overcast
 - 1 and 3 identical, but belong to different classes.
- Misclassification:
 - Object 3 corrupted to belong to N
 - The DT becomes complex (12 nodes)

Noise

• Two requirements:

- (R1) Being able to work with inadequate attributes
- (R2) Being able to decide that testing further attributes will not improve the predictive accuracy of the DT.

Noise

• What to do when an attribute is inadequate or irrelevant ?

- Create a leaf with which kind of value ?
 - Most numerous class: P or N
 - Probability of belonging to P

Unknown attribute values

• 2 questions:

– How to build the DT ?

- How to deal them during classification ?

Induction on Decision Trees

Unknown attribute values

• How to build the DT?

- Bayesian approach
- DT approach
- « most common value » approach
- « unknown » as a value
- the « proportion » approach ++

Unknown attribute values

- Assume the value of A is unkown for few objects (= '?') p_u number of objects in P with A unknown n_u number of objects in N with A unknown
- Objects with unknown values are distributed across the values of in proportion the relative frequency of these values in C
- $p_i := p_i + p_u r_i$ where $r_i = (p_i + n_i)/((p_i n_u))$
- (number of objects with value Ai: $p_i + n_i$)
- (Number of objects with A value known: $(p+n)-(p_u n_u)$)

Summary

- Induction task = find out DT for classification
- 2 classes, ~1000 attributes, ~50 values
- Choice of root test based on information theory
- Minimization of entropy
- Noise
- Unknown attribute values
- Approximate method

Reference

 J.R. Quinlan, « Induction on decision trees », Machine Learning (1986)