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Induction on Decision Trees

Outline

• Induction task

• ID3

• Entropy (disorder) minimization

• Noise

• Unknown attribute values

• Selection criterion
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The induction task

• Formalism: 
– objects with attributes

• Example: 
– objects = saturday mornings

– attributes:
• outlook {sunny, overcast, rain}

• temperature {cool, mild, hot}

• humidity {high, normal}

• windy {true, false}
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The induction task

• One particular saturday:
– Outlook = overcast

– Temperature = cool

– Humidity = normal

– Windy = false

• Classes mutually exclusive, here 2 classes: 
– Positive (P)

– Negative (N)
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The induction task

• Training set: 
– objects whose class is known

• Goal:
– Develop a classification rule
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A small training set
n outlook temperat. humidity windy C

1 sunny hot high false N

2 sunny hot high true N

3 overcast hot high false P

4 rain mild high false P

5 rain cool normal false P

6 rain cool normal true N

7 overcast cool normal true P

8 sunny mild high false N

9 sunny cool normal false P

10 rain mild normal false P

11 sunny mild normal true P

12 overcast mild high true P

13 overcast hot normal false P

14 rain mild high true N
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A simple decision tree
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The induction task

• If the attributes are adequate, it is possible to 
build a correct decision tree.

• Many correct decision trees are possible.

• Correctly classify unseen objects ? (it depends...)

• Between 2 correct decision trees, choose the 
simplest one.
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ID3
• Systematical approach:

– Generate all decision trees and choose the 
simplest

– Possible for small induction tasks only

• ID3 approach:
– Many objects, many attributes.

– A reasonably good decision tree is required.

– Use the entropy minimization principle to select 
the « best » attribute
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ID3

• Result:
– Correct decision trees are found.

– Training sets of 30,000 examples

– Examples with 50 atttributes

– No convergence garantee
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ID3

• How to form a DT for a set C of objects ?
– T = test of the value of a given attribute on an object

– The possible values (outcomes) are:

                  O
1
, O

2
, ..., O

w
.

– Partition =  {C
1
, C

2
, ..., C

w
} of C.

– C
i
 contains objects of C whose value (outcome) is O

i
.
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A structuring tree of C
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Choice of the test

• 2 assumptions:

(1) the test set is in the proportion of the training set:
          p: number of positive (+) examples

          n: number of negative (-) examples

          P
+
: probability to be positive = p/(p+n)

          P
-
: probability to be negative = n/(p+n)

(2) Information gain based on the entropy E(p, n):

                 E(p, n) = - P
+
log(P

+
) - P

-
log(P

-
)

                       (entropy ≈ disorder)
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Choice of the test

• A attribute with values in {A
1
, A

2
, ..., A

w
} 

• C = {C
1
, C

2
, ..., C

w
} 

– objects in C
i 
have A = A

i
.

• C
i
 has p

i 
objects in P and n

i 
objects in N.

• E(p
i
, n

i
) = entropy of of C

i
.
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Entropy function

A measure of disorder

      For x in ]0, 1[ :    E(x) = -xlog(x) – (1-x)log(1-x)

• E(0) = E(1) = 0
– No disorder

• E is a bell function
– maximum for x=1/2 (maximal disorder)

– Vertical in 0 and 1.

– E(1/2) = log(2) ≈ 0.7

• ( ... approximate values:  log(3) ≈ 1.1 log(4) ≈ 1.4 log(5) ≈ 1.6 log(7) ≈ 2)
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Entropy function

• p positive objects and n negative objects...

• What is the entropy E(p|n) of the proportion 
(p|n) ?

• E(p|n) = - p/(p+n)log(p/(p+n)) - n/(p+n)log(n/(p+n))

          = log(p+n) - p/(p+n)log(p) - n/(p+n)log(n)
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Choice of the test

  « Entropy a priori » (Eap) of attribute A:
   A measure of what could be the average entropy if we ask the value of attribute A

   A weighted sum of the entropies associated to each value of A

   The weight of value Ai is in proportion of the number of objects with value Ai

          Eap(A) = Σ
i
 E(p

i
, n

i
)(p

i
+n

i
)/(p+n)

  Choose attribute A* = argmin
b
 Eap(b)

    (i.e. looking for the attribute that minimizes disorder...)



Induction on Decision Trees

Choice of the test

• Example, the entropy « a priori » of each 
attribute

– Eap(outlook) = 0.45

– Eap(temperature) = 0.65

– Eap(humidity) = 0.55

– Eap(windy) = 0.65

• ID3 chooses « outlook » as the DT root attribute.
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ID3

• Complexity:
– O (|C|.|A|.D)

– |C| : size of the training set

– |A| : number of attributes

– D   : depth of the decision tree
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Noise

• Error in attribute values
– Object 1 . outlook = overcast

– 1 and 3 identical, but belong to different 
classes.

• Misclassification:
– Object 3 corrupted to belong to N

– The DT becomes complex (12 nodes)
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Noise

• Two requirements:

– (R1) Being able to work with inadequate 
attributes

– (R2) Being able to decide that testing further 
attributes will not improve the predictive 
accuracy of the DT.
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Noise

• What to do when an attribute is inadequate or 
irrelevant ?

• Create a leaf with which kind of value ?
– Most numerous class: P or N

– Probability of belonging to P
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Unknown attribute values

• 2 questions:

– How to build the DT ?

– How to deal them during classification ?
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Unknown attribute values

• How to build the DT ?

– Bayesian approach                          -

– DT approach                                    -

– « most common value » approach   -

– « unknown » as a value                   - -

– the « proportion »  approach          ++
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Unknown attribute values

Assume the value of A is unkown for few objects (= '?')

       p
u 
number of objects in P with A unknown

n
u
 number of objects in N with A unknown

• Objects with unknown values are distributed across 
the values of in proportion the relative frequency of 
these values in C

• p
i
 := p

i
 + p

u
r

i
 where r

i
 = (p

i
+n

i
)/((p+n)-(p

u
- n

u
))

• (number of objects with value Ai: p
i
+n

i
)

• (Number of objects with A value known: (p+n)-(p
u
- n

u
))
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Summary

• Induction task = find out DT for classification

• 2 classes, ~1000 attributes, ~50 values

• Choice of root test based on information theory

• Minimization of entropy

• Noise

• Unknown attribute values

• Approximate method
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