Monte-Carlo Tree Search (MCTS) for Computer Go

Bruno Bouzy
bruno.bouzy@parisdescartes.fr
Université Paris Descartes

Séminaire BigMC
5 mai 2011
Outline

- The game of Go: a 9x9 game
- The « old » approach (*-2002)
- The Monte-Carlo approach (2002-2005)
- The MCTS approach (2006-today)
- Conclusion
The game of Go
The game of Go

- 4000 years
- Originated from China
- Developed by Japan (20th century)
- Best players in Korea, Japan, China
- 19x19: official board size
- 9x9: beginners' board size
A 9x9 game

- The board has 81 « intersections ». Initially, it is empty.
A 9x9 game

- Black moves first. A "stone" is played on an intersection.
A 9x9 game

- White moves second.
A 9x9 game

- Moves alternate between Black and White.
A 9x9 game

- Two adjacent stones of the same color builds a « string » with « liberties ».
- 4-adjacency
A 9x9 game

- Strings are created.
A 9x9 game

- A white stone is in « atari » (one liberty).
A 9x9 game

- The white string has five liberties.
A 9x9 game

• The black stone is « atari ».
A 9x9 game

- White « captures » the black stone.
A 9x9 game

- For human players, the game is over.
 - Hu?
 - Why?
A 9x9 game

- What happens if White contests black "territory"?
A 9x9 game

- White has invaded. Two strings are atari!
A 9x9 game

- Black captures!
A 9x9 game

- White insists but its string is atari...
A 9x9 game

- Black has proved is « territory ».
A 9x9 game

- Black may contest white territory too.
A 9x9 terminal position

- The game is over for computers.
 - Hu?
 - Who won?
A 9x9 game

- The game ends when both players pass.
- One black (resp. white) point for each black (resp. white) stone and each black (resp. white) « eye » on the board.
- One black (resp. white) eye = an empty intersection surrounded by black (resp. white) stones.
A 9x9 game

- Scoring:
 - Black = 44
 - White = 37
 - Komi = 7.5
 - Score = -0.5

- White wins!
Go ranking: "kyu" and "dan"

Pro ranking

Top professional players
Very strong players

Amateur ranking

9 dan
1 dan

Strong players
Average players
Beginners
Very beginners

9 dan
6 dan
1 dan
1 kyu
10 kyu
20 kyu
30 kyu

MCTS for Computer Go
Computer Go (old history)

- First go program (Lefkovitz 1960)
- Zobrist hashing (Zobrist 1969)
- Interim2 (Wilcox 1979)
- Life and death model (Benson 1988)
- Patterns: Goliath (Boon 1990)
- Mathematical Go (Berlekamp 1991)
- Handtalk (Chen 1995)
The old approach

- Evaluation of non terminal positions
 - Knowledge-based
 - Breaking-down of a position into sub-positions
- Fixed-depth global tree search
 - Depth = 0: action with the best value
 - Depth = 1: action leading to the position with the best evaluation
 - Depth > 1: alfa-beta or minmax
The old approach

- Bounded depth Tree search
- Evaluation of non terminal positions

MCTS for Computer Go

2 or 3

361

Huhu?

Terminal positions
Position evaluation

• Break-down
 – Whole game (win/loss or score)
 – Goal-oriented sub-game
 • String capture
 • Connections, dividers, eyes, life and death

• Local searches
 – Alpha-beta and enhancements
 – Proof-number search
A 19x19 middle-game position
A possible black break-down
A possible white break-down
Possible local evaluations (1)

Alive and territory

Not important

alive

unstable

alive

dead

MCTS for Computer Go
Possible local evaluations (2)

- alive
- unstable
- alive + big territory
- unstable
Position evaluation

• Local results
 – Obtained with local tree search
 – Result if white plays first (resp. black)
 – Combinatorial game theory (Conway)
 – Switches \{a|b\}, >, <, *, 0

• Global recomposition
 – move generation and evaluation
 – position evaluation
Position evaluation
Drawbacks (1/2)

- The break-down is not unique
- Performing a (wrong) local tree search on a (possibly irrelevant) local position
- Misevaluating the size of the local position
- Different kinds of local information
 - Symbolic (group: dead alive unstable)
 - Numerical (territory size, reduction, increase)
Drawbacks (2/2)

- Local positions interact
- Complicated
- Domain-dependent knowledge
- Need of human expertise
- Difficult to program and maintain
- Holes of knowledge
- Erratic behaviour
Upsides

- Feasible on 1990's computers
- Execution is fast
- Some specific local tree searches are accurate and fast
The old approach

Top professional players

Very strong players

Strong players

Average players

Beginners

Very beginners

Pro ranking

Amateur ranking

9 dan

1 dan

6 dan

1 dan

1 kyu

10 kyu

20 kyu

30 kyu

Old approach
End of part one!

- Next: the Monte-Carlo approach...
The Monte-Carlo (MC) approach

- Games containing chance
 - Backgammon (Tesauro 1989)

- Games with hidden information
 - Bridge (Ginsberg 2001)
 - Poker (Billings & al. 2002)
 - Scrabble (Sheppard 2002)
The Monte-Carlo approach

- Games with complete information
 - A general model (Abramson 1990)

- Simulated annealing Go
 - (Brügmann 1993)
 - 2 sequences of moves
 - « all moves as first » heuristic
 - Gobble on 9x9
The Monte-Carlo approach

- Position evaluation:

 Launch \(N \) random games

 Evaluation = mean value of outcomes

- Depth-one MC algorithm:

 For each move \(m \) {

 Play \(m \) on the ref position

 Launch \(N \) random games

 Move value (\(m \)) = mean value

 }
Depth-one Monte-Carlo
Progressive pruning

Upper bound

- Optimism in face of uncertainty
 - Intestim (Kaelbling 1993),
 - UCB multi-armed bandit (Auer & al 2002)
All-moves-as-first heuristic (1/3)
All-moves-as-first heuristic (2/3)
All-moves-as-first heuristic (3/3)

Actual simulation

Virtual simulation = actual simulation assuming c is played « as first »
The Monte-Carlo approach

- Upsides
 - Robust evaluation
 - Global search
 - Move quality increases with computing power

- Way of playing
 - Good strategical sense but weak tactically

- Easy to program
 - Follow the rules of the game
 - No break-down problem
Monte-Carlo and knowledge

- Pseudo-random simulations using Go knowledge (Bouzy 2003)
 - Moves played with a probability depending on specific domain-dependent knowledge

- 2 basic concepts
 - string capture
 - 3x3 shapes
Monte-Carlo and knowledge

- Results are impressive
 - MC(random) << MC(pseudo random)
 - Size 9x9 13x13 19x19
 - % wins 68 93 98

- Other works on simulations
 - Patterns in MoGo, proximity rule (Wang & al 2006)
 - Simulation balancing (Silver & Tesauro 2009)
Monte-Carlo and knowledge

- Pseudo-random player
 - 3x3 pattern urgency table with 3^8 patterns
 - Few dizains of relevant patterns only
 - Patterns gathered by
 - Human expertise
 - Reinforcement Learning (Bouzy & Chaslot 2006)

- Warning
 - p_1 better than p_2 does not mean $\text{MC}(p_1)$ better than $\text{MC}(p_2)$
Monte-Carlo Tree Search (MCTS)

• How to integrate MC and TS?
• UCT = UCB for Trees
 – (Kocsis & Szepesvari 2006)
 – Superposition of UCB (Auer & al 2002)
• MCTS
 – Selection, expansion, updating (Chaslot & al) (Coulom 2006)
 – Simulation (Bouzy 2003) (Wang & Gelly 2006)
MCTS (1/2)

while (hasTime) {
 playOutTreeBasedGame()
 expandTree()
 outcome = playOutRandomGame()
 updateNodes(outcome)
}

then choose the node with...

... the best mean value

... the highest visit number
MCTS (2/2)

PlayOutTreeBasedGame() {
 node = getNode(position)
 while (node) {
 move = selectMove(node)
 play(move)
 node = getNode(position)
 }
}
UCT move selection

- Move selection rule to browse the tree:
 \[\text{move} = \text{argmax} (s \times \text{mean} + C \times \sqrt{\frac{\log(t)}{n}}) \]
- Mean value for exploitation
 - \(s (=\pm 1) \): color to move
- UCT bias for exploration
 - \(C \): constant term set up by experiments
 - \(t \): number of visits of the parent node
 - \(n \): number of visits of the current node
Example

- 1 iteration
Example

- 2 iterations
Example

- 3 iterations
Example

- 4 iterations

MCTS for Computer Go
Example

- 5 iterations
Example

- 6 iterations
Example

- 7 iterations
Example

- 8 iterations
Example

- 9 iterations
Example

- 10 iterations
Example

- 11 iterations
Example

- 12 iterations
Example

- Clarity
 - \(C = 0 \)

- Notice
 - with \(C \neq 0 \) a node cannot stay unvisited
 - min or max rule according to the node depth
 - not visited children have an infinite mean

- Practice
 - Mean initialized optimistically
MCTS enhancements

- The raw version can be enhanced
 - Tuning UCT C value
 - Outcome = score or win loss info (+1/-1)
 - Doubling the simulation number
 - RAVE
 - Using Go knowledge
 - In the tree or in the simulations
 - Speed-up
 - Optimizing, pondering, parallelizing
Assessing an enhancement

● Self-play
 – The new version vs the reference version
 – % wins with few hundred games
 – 9x9 (or 19x19 boards)

● Against differently designed programs
 – GTP (Go Text Protocol)
 – CGOS (Computer Go Operating System)

● Competitions
Move selection formula tuning

- Using UCB
 - Best value for C?
 - 60-40%

- Using « UCB-tuned » (Auer & al 2002)
 - C replaced by \(\min(1/4, \text{variance}) \)
 - 55-45%
Exploration vs exploitation

- General idea: explore at the beginning and exploit in the end of thinking time
- Diminishing C linearly in the remaining time
 - (Vermorel & al 2005)
 - 55-45%
- At the end:
 - Argmax over the mean value or over the number of visits?
 - 55-45%
Kind of outcome

• 2 kinds of outcomes
 – Score (S) or win loss information (WLI) ?
 – Probability of winning or expected score ?
 – Combining both (S+WLI) (score +45 if win)

• Results
 – WLI vs S 65-35%
 – S+WLI vs S 65-35%
Doubling the number of simulations

- N = 100,000

- Results
 - 2N vs N 60-40%
 - 4N vs 2N 58-42%
Tree management

• Transposition tables
 – Tree -> Directed Acyclic Graph (DAG)
 – Different sequences of moves may lead to the same position
 – Interest for MC Go: merge the results
 – Result: 60-40%

• Keeping the tree from one move to the next
 – Result: 65-35%
RAVE (1/3)

- Rapid Action Value Estimation
 - Mogo 2007
 - Use the AMAF heuristic (Brugmann 1993)
 - There are « many » virtual sequences that are transposed from the actually played sequence

- Result:
 - 70-30%
RAVE (2/3)

- AMAF heuristic
- Which nodes to update?
- Actual
 - Sequence ACBD
 - Nodes
- Virtual
 - BCAD, ADBC, BDAC
 - Nodes
RAVE (3/3)

- 3 variables
 - Usual mean value M_u
 - AMAF mean value M_{amaf}
 - $M = \beta M_{amaf} + (1-\beta) M_u$
 - $\beta = \sqrt{k/(k+3N)}$
 - K set up experimentally
- M varies from M_{amaf} to M_u
Knowledge in the simulations

- High urgency for...
 - capture/escape 55-45%
 - 3x3 patterns 60-40%
 - Proximity rule 60-40%

- Mercy rule
 - Interrupt the game when the difference of captured stones is greater than a threshold (Hillis 2006)
 - 51-49%
Knowledge in the tree

- Virtual wins for good looking moves
- Automatic acquisition of patterns of pro games (Coulom 2007) (Bouzy & Chaslot 2005)
- Matching has a high cost
- Progressive widening (Chaslot & al 2008)
- Interesting under strong time constraints
- Result: 60-40%
Speeding up the simulations

- Fully random simulations (2007)
 - 50,000 game/second (Lew 2006)
 - 20,000 (commonly eared)
 - 10,000 (my program)

- Pseudo-random
 - 5,000 (my program in 2007)

- Rough optimization is worthwhile
Pondering

- Think on the opponent time
 - 55-45%
 - Possible doubling of thinking time
 - The move of the opponent may not be the planned move on which you think
 - Side effect: play quickly to think on the opponent time
Summing up the enhancements

- MCTS with all enhancements vs raw MCTS
 - Exploration and exploitation: 60-40%
 - Win/loss outcome: 65-35%
 - Rough optimization of simulations: 60-40%
 - Transposition table: 60-40%
 - RAVE: 70-30%
 - Knowledge in the simulations: 70-30%
 - Knowledge in the tree: 60-40%
 - Pondering: 55-45%
 - Parallelization: 70-30%

- Result: 99-1%
Parallelization

- Computer Chess: Deep Blue
- Multi-core computer
 - Symmetric MultiProcessor (SMP)
 - one thread per processor
 - shared memory, low latency
 - mutual exclusion (mutex) mechanism
- Cluster of computers
 - Message Passing Information (MPI)
Parallelization

```java
while (hasTime) {
    playOutTreeBasedGame()
    expandTree()
    outcome = playOutRandomGame()
    updateNodes(outcome)
}
```
Leaf parallelization
Leaf parallelization

- (Cazenave Jouandeau 2007)
- Easy to program
- Drawbacks
 - Wait for the longest simulation
 - When part of the simulation outcomes is a loss, performing the remaining may not be a relevant strategy.
Root parallelization
Root parallelization

- (Cazenave Jouandeau 2007)
- Easy to program
- No communication
- At completion, merge the trees
- 4 MCTS for 1sec > 1 MCTS for 4 sec
- Good way for low time settings and a small number of threads
Tree parallelization – global mutex
Tree parallelization – local mutex
Tree parallelization

- One shared tree, several threads
- Mutex
 - Global: the whole tree has a mutex
 - Local: each node has a mutex
- « Virtual loss »
 - Given to a node browsed by a thread
 - Removed at update stage
 - Preventing threads from similar simulations
Computer-computer results

Computer Olympiads

<table>
<thead>
<tr>
<th>Year</th>
<th>19x19 Players</th>
<th>9x9 Players</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Erica, Zen, MFGo</td>
<td>MyGoFriend</td>
</tr>
<tr>
<td>2009</td>
<td>Zen, Fuego, Mogo</td>
<td>Fuego</td>
</tr>
<tr>
<td>2008</td>
<td>MFGo, Mogo, Leela</td>
<td>MFGo</td>
</tr>
<tr>
<td>2007</td>
<td>Mogo, CrazyStone, GNU Go</td>
<td>Steenvreter</td>
</tr>
<tr>
<td>2006</td>
<td>GNU Go, Go Intellect, Indigo</td>
<td>CrazyStone</td>
</tr>
<tr>
<td>2005</td>
<td>Handtalk, Go Intellect, Aya</td>
<td>Go Intellect</td>
</tr>
<tr>
<td>2004</td>
<td>Go Intellect, MFGo, Indigo</td>
<td>Go Intellect</td>
</tr>
</tbody>
</table>
Human-computer results

- 9x9
 - 2009: Mogo won a pro with black
 - 2009: Fuego won a pro with white

- 19x19:
 - 2008: Mogo won a pro with 9 stones
 - Crazy Stone won a pro with 8 stones
 - Crazy Stone won a pro with 7 stones
 - 2009: Mogo won a pro with 6 stones
MCTS and the old approach

- **Top professional players**
 - 9 dan
 - 1 dan

- **Very strong players**
 - 9x9 go

- **Strong players**
 - 1 dan
 - 1 kyu

- **Average players**
 - 6 dan
 - 10 kyu

- **Beginners**
 - 19x19 go
 - 20 kyu

- **Very beginners**
 - 30 kyu

MCTS for Computer Go
Computer Go (MC history)

- Monte-Carlo Go (Brugmann 1993)
- MCGo devel. (Bouzy & Helmstetter 2003)
- MC+knowledge (Bouzy 2003)
- UCT (Kocsis & Szepesvari 2006)
- Crazy Stone (Coulom 2006)
- Mogo (Wang & Gelly 2006)
Conclusion

- **Monte-Carlo brought a Big improvement in Computer Go over the last decade!**
 - No old approach based program anymore!
 - All go programs are MCTS based!
 - Professional level on 9x9!
 - Dan level on 19x19!

- **Unbelievable 10 years ago!**
Some references

- PhD, MCTS and Go (Chaslot 2010)
- PhD, Reinf. Learning and Go (Silver 2010)
- PhD, R. Learning: applic. to Go (Gelly 2007)
- UCT (Kocsis & Szepesvari 2006)
- 1st MCTS go program (Coulom 2006)
Web links

- http://www.grappa.univ-lille3.fr/icga/
- http://cgos.boardspace.net/
- http://www.gokgs.com/
- http://www.lri.fr/~gelly/MoGo.htm
- http://remi.coulom.free.fr/CrazyStone/
- http://fuego.sourceforge.net/
- ...

MCTS for Computer Go
Thank you for your attention!