Old-fashioned Computer Go vs Monte-Carlo Go

Bruno Bouzy (Paris 5 University)

CIG07 Tutorial

April 1 2007
Outline

- Computer Go (CG) overview
 - Rules of the game
 - History and main obstacles
 - Best programs and competitions

- Classical approach: divide and conquer
 - Conceptual evaluation function
 - Global move generation
 - Combinatorial-game based

- New approach: Monte-Carlo Tree Search
 - Simple approach: depth-1 Monte-Carlo
 - MCTS, UCT
 - Results on 9x9 boards

- Enhancement assessment
 - 9x9 boards
 - Scaling up to 13x13 or 19x19 boards
 - Parallelisation

- Future of Computer Go
Rules overview through a game (opening 1)

- Black and White move alternately by putting one stone on an intersection of the board.
Black and White aims at surrounding large « zones »
A white stone is put into "atari": it has only one liberty (empty intersection) left.
White plays to connect the one-liberty stone yielding a four-stone white string with 5 liberties.
It is White’s turn. One black stone is atari.

![Go board with white stones and one black stone atari](image)
White plays on the last liberty of the black stone which is removed.
The game ends when the two players pass.
In such position, experienced players pass.
White contests the black « territory » by playing inside.
Black answers, aiming at capturing the invading stone.
Rules overview through a game (contestation 2)

- White contests black territory, but the 3-stone white string has one liberty left
Black has captured the 3-stone white string
White lacks liberties…
Black suppresses the last liberty of the 9-stone string
Consequently, the white string is removed
Contestation is going on on both sides. White has captured four black stones.
Rules overview through a game (concrete end of game)

- The board is covered with either stones or « eyes »
- The two players pass
History (1/2)

- First go program (Lefkovitz 1960)
- First machine learning work (Remus 1963)
- Zobrist hashing (Zobrist 1969)
- First two computer go PhD thesis
 - Potential function (Zobrist 1970)
 - Heuristic analysis of Go trees (Ryder 1970)
- First-program architectures: influence-function based
- Small boards (Thorpe & Walden 1964)
- Interim2 program (Wilcox 1979)
- G2 program (Fotland 1986)
- Life and death (Benson 1988)
- Pattern-based program: Goliath (Boon 1990)
History (2/2)

- **Combinatorial Game Theory (CGT)**
 - ONAG (Conway 1976),
 - Winning ways (Conway & al 1982)
 - Mathematical Go (Berlekamp 1991)
 - Go as a sum of local games (Muller 1995)

- **Machine learning**
 - Automatic acquisition of tactical rules (Cazenave 1996)
 - Neural network-based evaluation function (Enzenberger 1996)

- **Cognitive modelling**
 - (Bouzy 1995)
 - (Yoshikawa & al 1997)
Main obstacles (1/2)

- **CG witnesses AI improvements**
 - 1994: Chinook beat Marion Tinsley (Checkers)
 - 1997: Deep Blue beat Kasparov (Echecs)
 - 1998: Logistello >> best human (Othello)
 - (Schaeffer, van den Herik 2002)

- **Combinatorial complexity**
 - \(B\): branching factor,
 - \(L\): game length,
 - \(B^L\) estimation:
 - Go \((10^{400}) > Echecs(10^{123}) > Othello(10^{58}) > Checkers(10^{32})\)
Main obstacles (2/2)

- 2 main obstacles:
 - Global tree search: *impossible*
 - Non terminal position evaluation: *hard*

- Medium level (10th kyu) 😐

- Huge effort since 1990:
 - Evaluation function,
 - Break down the position into sub-positions (Conway, Berlekamp),
 - Local tree searches,
 - Pattern-matching, knowledge bases.
Kinds of programs

- Commercial programs
 - Haruka, Many Faces, Goemate, Go4++, KCC Igo,
 - Hidden descriptions.

- Free Programs
 - GNU Go, available sources.

- Academic programs
 - Go Intellect, GoLois, Explorer, Indigo, Magog,
 - CrazyStone, MoGo, NeuroGo,
 - Scientific descriptions.

- Other programs...
Indigo

- Indigo
 - www.math-info.univ-paris5.fr/~bouzy/INDIGO.html

- International competitions since 2003:
 - Computer Olympiads:
 - 2003: 9x9: 4/10, 19x19: 5/11
 - 2004: 9x9: 4/9, 19x19: 3/5 (bronze)
 - 2005: 9x9: 3/9 (bronze), 19x19: 4/7
 - 2006: 19x19: 3/6 (bronze)
 - Kiseido Go Server (KGS):
 - « open » and « formal » tournaments.
 - Gifu Challenge:
 - 2006: 19x19: 3/17
 - CGOS 9x9
Competitions

- Ing Cup (1987-2001)
- FOST Cup (1995-1999)
- Gifu Challenge (2001-)
- Computer Olympiads (1990;2000-)
- Monthly KGS tournaments (2005-)
- Computer Go ladder (Pettersen 1994-)
- Yearly continental tournaments
 - American
 - European
- CGOS (Computer Go Operating System 9x9)
Best 19x19 programs

- **Go++**
 - Ing, Gifu, FOST, Gifu, Olympiads
- **Handtalk (=Goemate)**
 - Ing, FOST, Olympiads
- **KCC Igo**
 - FOST, Gifu
- **Haruka**
 - ?
- **Many Faces of Go**
 - Ing
- **Go Intellect**
 - Ing, Olympiads
- **GNU Go**
 - Olympiads
Divide-and-conquer approach (start)

- **Break-down**
 - Whole game (win/loss; score)
 - Goal-oriented sub-games:
 - String capture (shicho)
 - Connections, Dividers, Eyes, Life and Death

- **Local searches**
 - Alfa-beta and enhancements
 - PN-search, Abstract Proof Search, lambda-search

- **Local results**
 - Combinatorial-Game-Theory-based
 - Main feature:
 - If Black plays first, if White plays first
 - (>, <, *, 0, {a|b}, ...)

- **Global Move choice**
 - Depth-0 global search:
 - Temperature-based: *, {a|b}
 - Shallow global search
A Go position
Basic concepts, local searches, and combinatorial games (1/2)

- Block capture
 - $|| 0$
 - First player wins
Basic concepts, local searches, and combinatorial games (2/2)

- **Connections:**
 - >0
 - $\parallel 0$

- **Dividers:**
 - $\parallel 0$
Influence function

- Based on dilation (and erosion)
Group building

- **Initialisation:**
 - Group = block

- **Influence function:**
 - Group = connected compound

- **Process:**
 - Groups are merged with connector >

- **Result:**
Group status

- Instable groups:

- Dead group:
Conceptual Evaluation Function pseudo-code

- While dead groups are being detected,
 - perform the inversion and aggregation processes

- Return the sum of
 - the “value” of each intersection of the board
 - (+1 for Black, and –1 for White)
A Go position conceptual evaluation
Local move generation

- Depend on the abstraction level
- Pattern-based
« Quiet » global move generation
« Fight-oriented » global move generation
Divide and conquer approach (end)

- **Upsides**
 - Feasible on current computers
 - Local search « precision »
 - Local result accuracy based on anticipation
 - Fast execution

- **Downsides**
 - The breakdown-stage is not proved to be correct
 - Based on domain-dependent knowledge
 - The sub-games are not independent
 - Heuristic-based move choice
 - Two-goal-oriented moves are hardly considered
 - Data structure updating complexity
Move choice

- Two strategies using the divide and conquer approach
 - Depth-0 strategy, global move evaluation
 - Local tree searches result based
 - Domain-dependent knowledge
 - No conceptual evaluation
 - GNU Go, Explorer
 - Shallow global tree search using a conceptual evaluation function
 - Many Faces of Go, Go Intellect,
 - Indigo2002.
Monte Carlo and Computer games (start)

- Games containing chance:
 - Backgammon (Tesauro 1989-),

- Games with hidden information:
 - Bridge (Ginsberg 2001),
 - Poker (Billings & al. 2002),
 - Scrabble (Sheppard 2002).
Monte Carlo and complete information games

- (Abramson 1990) general model of terminal node evaluation based on simulations
 - Applied to 6x6 Othello

- (Brügmann 1993) simulated annealing
 - Two move sequences (one used by Black, one used by White)
 - « all-moves-as-first » heuristic
 - Gobble
Monte-Carlo and Go

Past history
- (Brugmann 1993),
- (Bouzy & Helmstetter 2003),
- Min-max and MC Go (Bouzy 2004),
- Knowledge and MC Go (Bouzy 2005),
- UCT (Kocsis & Szepesvari 2006),
- UCT-like (Coulom 2006),

Quantitative assessment:
- σ (9x9) \approx 35
- 1 point precision: $N \approx$ 1,000 (68%), 4,000 (95%)
- 5,000 up to 10,000 9x9 games / second (2 GHz)
- few MC evaluations / second
Monte Carlo and Computer Games (basic)

- **Evaluation:**
 - Launch N random games
 - Evaluation = mean of terminal position evaluations

- **Depth-one greedy algorithm:**
 - For each move,
 - Launch N random games starting with this move
 - Evaluation = mean of terminal position evaluations
 - Play the move with the best mean

- **Complexity:**
 - Monte Carlo: \(O(NBL)\)
 - Tree search: \(O(B^L)\)
Monte-Carlo and Computer Games (strategies)

- Greedy algorithm improvement: confidence interval update
 - \([m - R\sigma/N^{1/2}, m + R\sigma/N^{1/2}]\)
 - \(R\): parameter.

- Progressive pruning strategy:
 - First move choice: randomly,
 - Prune move inferior to the best move,

- Upper bound strategy:
 - First move choice: \(\arg\max (m + R\sigma/N^{1/2})\),
 - No pruning
 - IntEstim (Kaelbling 1993), UCB (Auer & al 2002)
Progressive Pruning strategy

- Are there unpromising moves?
 - Move 1
 - Move 2
 - Current best
 - Move 3
 - Move 4
 - Can be pruned
Upper bound strategy

- Which move to select?
 - Move 1
 - Move 2
 - Current best mean
 - Move 3
 - Current best upper bound
 - Move 4

Move value
Monte-Carlo and Computer Games (pruning strategy)

- Example

- The root is expanded

- Random games are launched on child nodes
Monte-Carlo and Computer Games (pruning strategy)

- Example

- After several games, some child nodes are pruned
Monte-Carlo and Computer Games (pruning strategy)

- Example

- After other random games, one move is left...
- And the algorithm stops.
Monte-Carlo and “complex” games (4)

- “Complex” games:
 - Go, Amazones, Clobber

- Results:
 - Move quality increases with computer power 😊
 - Robust evaluation 😊
 - Global (statistical) search 😊

- Way of playing:
 - Good global sense 😊,
 - local tactical weakness --

- Easy to program 😊
 - Rules of the games only,
 - No break down of the position into sub-positions,
 - No conceptual evaluation function.
Multi-Armed Bandit Problem (1/2)

- A player plays the Multi-armed bandit problem
 - He selects a arm to push
 - Stochastic reward depending on the selected arm
 - For each arm, the reward distribution is unknown
 - Goal: maximize the cumulated reward over time
 - Exploitation vs exploration dilemma

- Main algorithms
 - ε-greedy, Softmax,
 - IntEstim (Kaelbling 1993)
 - UCB (Auer & al 2002)
 - POKER (Vermorel 2005)
Multi-Armed Bandit Problem (2/2)

- Monte-Carlo games & MAB similarities
 - Action choice
 - Stochastic reward (0 1 or numerical)
 - Goal: choose the best action

- Monte-Carlo games & MAB: two main differences
 - **Online or offline** reward?
 - MAB: cumulated online reward
 - MCG: offline
 - Online rewards counts nothing
 - Reward provided later by the game outcome
 - MCG: **Superposition** of MAB problems
 - 1 MAB problem = 1 tree node
Monte-Carlo Tree Search (MCTS) (start)

- Goal: appropriate integration of MC and TS
 - TS: alfa-beta like algorithm, best-first algorithm
 - MC: uncertainty management

- UCT: UCB for Trees (Kocsis & Szepesvari 2006)
 - Spirit: superpositions of UCB (Auer & al 2002)
 - Downside: Tree growing left unspecified

- MCTS framework
 - Move selection (Chaslot & al) (Coulom 2006)
 - Backpropagation (Chaslot & al) (Coulom 2006)
 - Expansion (Chaslot & al) (Coulom 2006)
 - Simulation (Bouzy 2005) (Wang & Gelly 2007)
Move Selection

- **UCB (Auer & al 2002)**
 - Move eval = mean + $C \times \sqrt{\log(t)/s}$
 - = *Upper Confidence interval Bound*

- **OMC (Chaslot & al 2006)**
 - Move eval = probability to be better than best move

- **PPBM (Coulom 2006)**
 - Move eval = probability to be the best move
Backpropagation

- **Node evaluation:**
 - “Average” back-up = average over simulations going through this node
 - “Min-Max” back-up = Max (resp Min) evaluations over child nodes
 - “Robust max” = Max number of simulations going through this node

- **Good properties of MCTS:**
 - With “average” back-up, the root evaluation converges to the “min-max” evaluation when the number of simulations goes to infinity
 - “Average” back-up is used at every node
 - “Robust max” can be used at the end of the process to complete properly
Node expansion and management

- **Strategy**
 - Everytimes
 - One node per simulation
 - Few nodes per simulation according to domain dependent probabilities

- **Use of a Transposition Table (TT)**
 - When hash collision: link the nodes in a list
 - (different from TT in usual fixed depth alpha-beta tree search)
Monte-Carlo Tree Search (end)

- **MCTS()**:
 - While time,
 - PlayOutTreeBasedGame (list)
 - outcome = PlayOutRandomGame()
 - Update nodes (list, outcome)
 - Play the move with the best mean

- **PlayOutTreeBasedGame (list)**
 - node = getNode(position)
 - While node do
 - Add node to list.
 - M = Select move (node)
 - Play move (M)
 - node = getNode(position)
 - node = new Node()
 - Add node to list.
A first random game is launched, and its value is backed-up
A first child node is created.
The outcome of the random game is backed up.
Upper Confidence for Trees (UCT) (4)

- At the root, unexplored moves still exist.

- A second game is launched, starting with an unexplored move.
A second node is created and the outcome is backed-up to compute means.
All legal moves are explored, the corresponding nodes are created, and their means computed.
For the next iteration, a node is greedily selected with the UCT move selection rule:

\[
\text{Move eval} = \text{mean} + C \times \sqrt{\frac{\log(t)}{s}}
\]

(In the continuation of this example, for a simplicity reason, let us consider $C=0$).
Upper Confidence for Trees (UCT) (8)

A random game starts from this node.
A node is created.
Upper Confidence for Trees (UCT) (9)

The process repeats…
... several times ...
Upper Confidence for Trees (UCT) (11)

... several times ...
Upper Confidence for Trees (UCT) (12)

... in a best first manner ...
Upper Confidence for Trees (UCT) (13)

... until timeout.
Remark

- Moves cannot stay unvisited
 - Move eval = mean + C * sqrt(log(t)/s)
 - t is the number of simulations of the parent node
 - s is the number of simulations of the node
 - Move eval increases while move stays unvisited.
MCGo and knowledge (1)

- **Pseudo-random games:**
 - Instead of being generated with a uniform probability,
 - Moves are generated with a probability *depending on specific domain-dependent knowledge*
- Liberties of string in « atari »: Patterns 3x3:
 - Pseudo-random games look like go,
 - Computed means are more significant than before 😊
MCGo and knowledge (2)

- Indigo(pseudo alea + preselect) vs Indigo(preselect)
- (Nselect = 10)

<table>
<thead>
<tr>
<th>size</th>
<th>9x9</th>
<th>13x13</th>
<th>19x19</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>+8</td>
<td>+40</td>
<td>+100</td>
</tr>
<tr>
<td>% wins</td>
<td>68%</td>
<td>93%</td>
<td>97%</td>
</tr>
<tr>
<td>time</td>
<td>1’30</td>
<td>10’</td>
<td>1h30’</td>
</tr>
</tbody>
</table>
MCGo and knowledge (3)

- Features of a Pseudo-Random (PR) player
 - 3x3 pattern urgency table
 - 3^8 patterns (empty intersection at the center)
 - 25 dispositions with the edge
 - $\#\text{patterns} = 250,000$
 - Urgency « atari »

- « Manual » player
 - The PR player used in Indigo2004
 - Urgency table produced with a translation of an existing pattern database built « manually »
 - With a few dozens of 3x3 patterns

- « Automatic » player
Enhancing raw UCT up to a more sophisticated UCT

The enhancements are various...

- UCT formula tuning (C tuning, “UCB-tuned”)
- Exploration-exploitation balance
- Outcome = Territory score or win-loss information?
- Doubling the random game number
- Transposition Table
 - Have or not have, Keep or not keep
 - Update nodes of transposed sequences
- Use grand-parent information
- Simulated games
 - Capture, 3x3 patterns, Last-move heuristic,
 - Move number, «Mercy» rule
- Speeding up
 - Optimizing the random games
 - Pondering
 - Multi-processor computers
 - Distribution over a (local) network
Assessing an enhancement

- Self-play
 - Ups and downs
 - First and easy test
 - Few hundred games per night
 - % of wins

- Against one differently designed program
 - GNU Go 3.6
 - Open source with GTP (Go Text Protocol)
 - Few hundred games per night
 - % of wins

- Against several differently designed programs
 - CGOS (Computer Go Operating System)
 - Real test
 - ELO rating improvement
 - 9x9
 - Slow process
CGOS rankings on 9x9

- ELO ratings on 6 march 2007
 - MoGo 3.2 2320
 - MoGo 3.4 10k 2150
 - Lazarus 2090
 - Zen 2050
 - AntiGo 2030
 - Valkyria 2020
 - MoGo 3.4 3k 2000
 - Irene (=Indigo) 1970
 - MonteGnu 1950
 - firstGo 1920
 - NeuroGo 1860
 - GnuGo 1850
 - Aya 1820
 - Raw UCT 1600?
 - ...
 - AnchorMan 1500
 - Raw MC 1200?
 - ...
 - ReadyToGo 1000?
 - ...
Move selection formula tuning

- Using UCB
 - Move eval = mean + $C \times \sqrt{\log(t)/s}$
 - What is the best value of C?
 - Result: 60-40%

- Using “UCB-tuned” (Auer & al 2002)
 - The formula uses the variance V:
 - Move eval = mean + $\sqrt{\log(t) \times \min(1/4,V)/s}$
 - Result: “substantially better” (Wang & Gelly 2006)
 - No need to tune C
Exploration vs exploitation

- **General idea**
 - Explore at the beginning of the process
 - Exploit near the end

- **Argmax over the child nodes with their...**
 - Mean value
 - Number of random games performed (i.e. « robust-max »)
 - Result: Mean value vs robust-max = +5%

- **Diminishing C linearly in the remaining time**
 - Inspired by (Vermorel & al 2005)
 - +5%
Which kind of outcome?

- 2 kinds of outcomes
 - Win-Loss Information (WLI): 0 or 1
 - Territory Score: integer between -81 and +81
 - Combination of Both TS + Bonus*WLI

- Resulting statistical information
 - WLI: probability of winning ++
 - TS: territory expectation

- Results
 - Against GNU-Go
 - TS: 0%
 - WLI: +15%
 - TS+WLI: +17% (with bonus = 45)
The diminishing return experiment

- Doubling the number of simulations
 - $N = 100,000$

- Results:
 - $2N$ vs N: 60-40%
 - $4N$ vs $2N$: 58-42%
Transposition table (1)

- Have or not have?
 - Zobrist number
 - TT access time \ll random simulation time
 - HashTable collision solved with a linked list or records
 - Interest: merging two node information for the same position
 - Union of samples
 - Mean value refined
 - Result: 60-40%

- Keep or not keep TT info from one move to the next?
 - Result: 70-30%
Transposition table (2a)

- Update nodes of transposed sequences
 - If no capture occurs in a sequence of moves, then
 - Black moves could have been played in a twist order
 - White moves as well
 - There are « many » sequences that are transposed from the sequence actually played out
 - Up: one simulation updates much more nodes that the nodes the actual sequence gets through
 - Down: most of these « transposed » nodes do not exist
 - If you create them: memory explosion occurs
 - If you don't: the effect is lowered.
 - Result: 65-35%
Transposition table (2b)

- Which nodes to update?
- Actual
 - Sequence: ACBD
 - Nodes:
- Virtual
 - Sequences: BCAD, ADBC, BDAC
 - Nodes:
Grand-parent information (1/2)

- Mentioned by (Wang & Gelly 2006)
- A move is associated to an intersection
 - Use statistical information available in nodes associated to the same intersection
 - For...
 - Initializing mean values
 - Ordering the node expansion
 - Result: 52-48%
Given its ancestors, estimate the value of a new node?

Idea:
- move B’ is similar to move B because of their identical location
- new.value = this.value + uncle.value – grandFather.value
Simulated games improvement

- High urgency for...
 - Capturing-escaping Result: 55-45%
 - Moves advised by 3x3 patterns Result: 60-40%
 - Moves located near the last move (in the 3x3 neighbourhood)
 - (Wang & Gelly 2006)
 - Result: 60-40%

- The « mercy » rule (Hillis 2006)
 - Interrupt the game when the difference of captured stones is greater than a threshold
 - Up: random games are shortened with some confidence
 - Result: 51-49%
Speeding up the random games (1)

- Full random on current desktop computer
 - 50,000 rgps (Lukas Lew 2006) an exception!
 - 20,000 rgps (commonly eared)
 - 10,000 rgps (my program!)

- Pseudo-random (with patterns and few knowledge)
 - 5,000 rgps (my program)

- Optimizing performance with profiling
 - Rough optimization is worthwhile
Speeding up the random games (2)

- Pondering
 - Think on the opponent time
 - Result: 55-45%

- Parallelization on a multi-processor computer
 - Shared memory: UCT tree = TT
 - TT locked with a semaphore
 - Result: 2 proc vs 1 proc: 58-42%

- Parallelization over a network of computers
 - Like the Chessbrain project (Frayn & Justiniano)
 - One server manages the UCT tree
 - N clients perform random games
 - Communication with messages
 - Result: not yet available!
Parallelizing MCTS

- While time do,
 - PlayOutTreeBasedGame (list)
 - outcome = PlayOutRandomGame()
 - Update nodes (list, outcome)
- Play the move with the best mean

Light processes using TT

Heavy and stand-alone
process using board information and not the TT
Scaling up to 19x19 boards

- Knowledge-based move generation
 - At every nodes in the tree

- Local MC-searches
 - Restrict the random game to a « zone »
 - How to define zones?
 - Statically with domain-dependent knowledge
 - Result: 30-70%
 - Statistically: proper approach, but how?
 - Warning: avoid the difficulties of the breaking-down approach

- Parallelization
 - The promising approach
Summing up the enhancements

- **Details**
 - UCT formula tuning 60-40
 - Exploration-exploitation balance 55-45
 - Proba of winning vs territory expect. 65-45
 - Transposition Table
 - Have or not have 60-40
 - Keep or not keep 70-30
 - Update nodes of transposed sequences 65-35
 - Use grand-parent information 52-48
 - Simulated games
 - Capture, 3x3 patterns 60-40
 - Last-move 60-40
 - « Mercy » rule 51-49
 - Speeding up
 - Optimizing the random games 60-40
 - Pondering 51-49
 - Multi-processor computers 58-42
 - Distribution over a network ?

- Total 99-1 ?
Current results

- **9x9 Go**: the best programs are MCTS based
 - MoGo (Wang & Gelly), CrazyStone (Coulom),
 - Valkyria (Persson), AntGo (Hillis), Indigo (Bouzy)
 - NeuroGo (Enzenberger) is the exception
 - CGOS, KGS

- **13x13 Go**: medium interest
 - MoGo, GNU Go
 - Old-fashioned programs does not play

- **19x19 Go**: the best programs are still old-fashioned
 - Old-fashioned go programs, GNU Go
 - MoGo is catching up (regular successes on KGS)
Perspectives on 19x19

- To what extent MCTS programs may surpass old-fashioned program?
 - Are old-fashioned go programs all old-fashioned?
 - Go++ is one of the best program
 - Is Go++ Old-fashioned or MCTS based?
 - Can old-fashioned programs improve in the near future?
 - Is MoGo strength mainly due to MCTS approach or to the skill of their authors?
 - 9x9 CGOS: MoGo is far ahead the other MCTS programs
 - Is the break-down approach mandatory for scaling up MCTS up to 19x19?
 - The parallelization question: may we easily distribute MCTS over a network?
Thank you for your attention...