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The proofs of the results stated in the main article are gathered in Sec-
tion A. They hinge on technical lemmas presented and proved in Section B.
Two additional lemmas about the pathwise differentiability of two mappings
central to our analysis are recalled in Section C for completeness. A notation
index is given in Section D, to help the reader travel through the main ar-
ticle. Finally, a table and a figure summarizing the results of the simulation
study form Section E.

APPENDIX A: PROOFS

The notation a < b means that expression a is smaller than expression b
up to a universal multiplicative constant.

To alleviate notation, we introduce the indexing parameter ¢ € U,>1B,, x
G1 which stands for a couple (3, g). For every ¢ = (8,9) € Up>1B, X G,
pE€R and € € &, we set

(A1) Qveple) = expit (logit(Qy,p) + eHy(g))

and characterize Qy,¢ ,(€) o p given by

(A.2) Qy,c.p(€) o p(W) = Qy ¢ p(€)(p(W), W).
With ¢, = (8n, 9x) and (o = (B0, 90), We set
Q;’,Cn,rn = QY,(n,rn(en)a
Qviorn = Qvioral(€o(rn))
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where €y(ry,) is defined in (4.3) with p = r,. With both ¢ = (, and ¢ = (o,
we also introduce Q53 con OTn and d;c -, Blven by

(A3) Q;Cﬂ“n o Tn(W) = Q;,C,rn (Tn(W)v W),
HA =r,(W)}

(Ad) i, (0,2) = SN (v S Qe (4W)).

In particular, dy, . . = dy, previously defined in (4.13). Finally, we denote
QZM any ( € Q such that the marginal distribution of W under @ is the
empirical measure and Qy = Q;*,’CM.

Lemmas 3.1, 3.2 and 3.3 are proven in Section A.1. Proposition 4.1 and
Theorem 4.2 in Section A.2 and Propositions 5.2, 5.3 and 5.4 in Section A.3.
Technical lemmas are presented and proven in Section B.

A.1. Proofs of Lemmas 3.1, 3.2 and 3.3.

ProOOF OF LEMMA 3.1. The key to the proof is the following identity:
for each g € G, we have

(A5)  EQg(Qvo(A, W) = Eq,(Qvo(0, W) + Eq,(av.o(W)g(1[W)).

This is a straightforward consequence of the decomposition Qy,0(A4,W) =
Qv,0(0,W) + Agy,o(W). Moreover, (A.5) also holds when g takes its value
in [0, 1], hence for all treatment rules (TRs) as well.

Set n > 1. Applying (A.5) with g = r,, and g = rg yields

(A.6)  EqQyr,(Qvo(A,W))
(A7) EQor(Qyo(A,W))
)

Because Eq, r,(Qy,0(4, W)
(A.6) and (A.7) entails

Yo — EQor, (Qvo(A, W) = Eq, (gavo(W) x (ro(W) —rn(W)))
(A.8) < lrn —7olf1-

Eqo(Qy.0(0, W) + Eq, (gv0o(W)rn(W)),
EQo (Qy.0(0, W) + Eq, (qv.0(W)ro(W)).

= EqQ,(Qy,o(ro(W),W)) = 4o, subtracting

Q
Q

A

By definition of rg, the above LHS expression is non-negative, hence it co-
incides with A(ry,,79). This completes the proof of (3.6).
We now apply (A.5) with g = go to get

(A9)  EQyg(Qy0(A,W)) = Eq,(Qy0(0, W)) + Eq, (qv,o(W)go(1[W)).
Subtracting (A.9) and (A.7) yields the new equality

0 <o — EQy,g (QY,O(Aa W) = Eq, (QY,O(W) x (ro(W) = go(1[W))) .
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Based on (3.2), a case-by-case study depending on the sign of gy,o(W) finally
reveals that

(A.10) 0 < o= EQy.g0(Qy,0(A, W)) < loo Eqy (Igv,0(W)]) + oo < oo +Eco-

To obtain (3.7), we simply note that

0 < vo— EQyg,(Qyvo(4,W))
= Yo — EQy,g(Qv0(4,W))
+EQo,90 (QY,O(Av W)) — EqQo.g, (QY,O(Aa W))
< too + e + Algn, 90)

by (A.10) and (3.5). O

PRrROOF OF LEMMA 3.2. Set n > 1, p > 1 and n > 0. There exists o > 0
such that Pg,(0 < |qv,o(W)| < a) < P /2.

Note that |(r, — ro)(W)| € {0,1}. Moreover, |(r, — ro)(W)| = 1 implies
qv.3,qv,0(W) < 0. This justifies the first inequality below. The others easily
follow from the fact that |gy,0(W)| < 1 and a case-by-case study depending
on whether 0 < |gy,o(W)| < o or not:

lay,0(W)| x |(rn — o) (W)[P lavo(W)| x 1{ay,8,qv,0(W) < 0}

1{0 < |gv,o(W)| < o} + 1{|gv,o(W)[ = o}
xlgyvo(W)| x 1{|(qv,5, — qv,0)(W)| > a}
1{0 < |gy,o(W)| < a} + L{[gvo(W)| > a}
x|qyo(W)| x o |(gv,p, — avo) (W)

1{0 < |gy,o(W)| < a}

+a avo(W)IY? x [(av,s, — avi0)(W).

Taking the expectation under Qw oduw on both sides yields

VARVAY

IN

IN

lrn = rolly < Po (0 < lay,o(W)| < a)
+at / lavol'? x [(av.p., — av.0)|Quw.odpw
hence, by choice of o and the Cauchy-Schwartz inequality,

Irn = roll2 < 1P/2+ o Yav,g, — avoll2-

Therefore, ||ry, — ro|l, > n implies ||gy,5, — qvoll2 > an?/2. Consequently,
llav.s, — avoll2 = op(1) does yield |r, — 70l|, = op(1). This completes the
proof. O
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PROOF OF LEMMA 3.3. Setn>1,p>1,p=p/(p—1) (p=xifp=1)
and p’ = min(p, 2).
By (A.5) with g = g, and g = go, we obtain

A(gns 90) = [EQolav,o(W) X (gn (W) — go(1[W))]].

Applying successively the triangle inequality and Hoélder’s inequality yields

A(gn,g0) < Eq, (Iav,o(W)[ x [gn(1]W) — go(1[W)])
< lgn — g0llp,
which is the result first stated in the lemma.

Suppose now that n is large enough so that G, = G. Since G is
Coo-Lipschitz, it holds that

gy, 0(W)[ X [gn(1[W) — go(1[W)[P
= [gvo(W)| X [Goo(qv,5,(W)) — Geo(qy,o(W)) [P
S lavoW)| x a3, (W) — qyo(W)[P
< lavo(W)| x |av,s,(W) — ayo(W)I,

where the last inequality is due to the fact that |gy,s, —gv,0| < 1. Taking the
expectation under Qw,oduw gives the bound || gn—gollp < llav s, —QY,OHgl/p S
lav,s. — QY,0||§,/ P This completes the proof. O

A.2. Proofs of Proposition 4.1 and Theorem 4.2. Let us prove
Proposition 4.1.

PRrROOF OF PROPOSITION 4.1. The convergence ||qy,3, — qv,5,|| = op(1)
follows immediately from (4.1) and ||Qy,, — QY,BOHZPQO = op(1). This
convergence is a consequence of Lemma B.1 with © = Q;, ©,, = Q1,n, d the
distance induced on © by the norm || - |2, Py gret M,, and M, characterized
over © by M, (Qy) = Py, grer L(Qy) (which does not depend on n after all)
and My (Qy) = Pog™ L(Qy)/Z = n™" 3L, ¢ (A | Wi)L(Qy)(0y)/Z;.
Assumption A2 implies that (a) and (b) from Lemma B.1 are met (take
7w = Qy,5, and 7,; = Qy,g, ,)- It remains to prove that (¢) also holds or, in
other terms, that [|M, — M| g, , = op(1).

For any Qy € ©, characterize ¢(Qy) by setting

UQy)(0,2) = g™ (AIW)L(Qy)(0)/Z.

Then we can rewrite |[M, —M,||g,, as follows:

qref
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My, = MallQy, = [Pl = Poq gret L 01
= [I(Pn = Po.ga)tllQin = [P0 = Pognllecos .-

The separability of £(Q; ) follows from that of L(Q1 ). Let F}, be the enve-
lope function for L(Q1 ;) from A4. By construction of g, Z is bounded away
from 0, so there exists a constant ¢ > 0 such that cF;, is an envelope func-
tion for £(Q; ). Moreover, J.g, (1,4(Q1,,)) = O(JE, (1, L(Q1,,)) = o(y/n) by
A4. Therefore, Lemma B.3 applies and yields || P, — Pg, g, ll¢(0,,.) = opr(1)
by Markov’s inequality. Thus, we can apply Lemma B.1. It yields that
1Qv.5, — Ry 2Py grer = op(1), which is the desired result.

Assume now that A1 and A5 also hold and set arbitrarily ¢ > 0. Because

|rn, — 70| € {0,1}, we can upper-bound ||r, — rngpro’gref as follows:

PQo7gf°f1{‘QY,0| >t} X |y — 1o
+PQo,gref1{|(IY,0| < t} X |Tn — T‘0|
t_1PQ07gref|qY,0| X |7"n - T0| =+ PQo,gref (0 < |(IY,0| S t)

t= = roll3 + 7.

I =rol3 e, .

IZANYAN

Optimizing in t yields

2(1+
7 = Tolla,py e S I = o324 = 0p(1).

We obtain that

2(1+
90 = goll2.py et S llgn = 0ll3** 57 = 0p(1)

along the same lines as above. This completes the proof. O
We now turn to the first part of Theorem 4.2:

PROPOSITION A.1 (consistency of 1%). Suppose that A2, A3 and A4
are met. Then it holds that ¢}, — 1y, 0 = op(1).

PROOF OF PROPOSITION A.l1. This is a three-part proof.

Step one: studying €,. Let us show that €, — €y(r,) = op(1). We apply
Lemma B.2 with © = £, d the Euclidean distance, Z,, and Z,, characterized
over £ by Zy(€) = Pgy.90Dy,r (Qy.¢o,rn (€)5 90), and

Z,(€) = P, Dy, (Qv,carn(€),9n)9n/Z,

see (A.1), (4.2) and (2.15) for the definitions of Qy,¢,r,(€) and Qy.¢, r, (€)-
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From the differentiability of € — L¥(Qy, . (€)), validity of the dif-
ferentiation under the integral sign, and definition of ey(r,) (4.3) in A3,
we deduce that Z,(eo(rn)) = 0. By definition of €, (2.16), Z,(e,) = 0
too. Moreover, (d) from Lemma B.2 is met. Indeed, by differentiability of
e = Dy, (Qvorm(€), 90) and validity of the differentiation under the inte-
gral sign, Z,, : £ — R is differentiable on £ with a derivative given by

Qv,¢o,rn (€) ory x (1 — Qy.co,rn (€) omn)
0,90 go o Tn

Zy(e) = —Pq

where ggor,, is characterized by goor, (W) = go(r,(W)|W). By construction,
Qy,cr(€) and gg are bounded away from 0 and 1 uniformly in { € Up>1 B,
g1, p € R and € € £. Therefore, there exists a universal constant ¢ such that
|Z0(€)] > ¢ > 0 for all € € £. Consequently, by the mean value theorem, for
all e € &, |Z,(€)| > c|e — eg(ry)|. This entails condition (d).

Applying Lemma B.2 finally requires verifying that (e) is met, i.e., prov-
ing that [|Z,, — Zy|le = op(1). Introduce F,, = {fpe : p € 7(Qin), € € &}
with
H{A = p(W)}

Z

for each (p,€) € 7(Q1,n) x €. We start with the following derivation:

(A.11) fre(0,2) = (Y — Qv,cop(6) (A, W))

(A12)  [|Zn(e) — Zn(e)lle

= sup P, (f?"n,e + HA:ZTn(W)} (Qyi¢o,rn (€) — QY,gn,rn(ﬁ))>
= PQo,gn froe
< |[Pn = PQo.g. 7,
- sup Pnl{A:ZT”(W)} (Qv¢o,rn (€) — QY,Cn,Tn<€))‘ :

e Consider the first RHS term in (A.12). Set (p1,€1), (p2,€2) € 7(Q15) X

)

£. Since Z is bounded away from 0 and |Y — Qy,¢, p, (€2)(A, W)| < 1,
it holds that

1{A=p (W)}
7
X[ (Qy,co,p (€1) = Qy,co,po(€2)) (A, W)
+1{A = (W) = 1{A = po(W)}|
Y = Qvigop (€2) (A, W)
Z

|(fp1,61 - fpz,sz)(Ou Z)‘ <
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S Qv (€1) = Qyigo, (€2)) (A, W)
+[(Qv,¢o,01 (€2) — Qyco,p2(€2)) (A, W)
+p1(W) — p2(W).

Because expit is 1-Lipschitz, £ is bounded and gy is bounded away
from 0, this entails the bound

’(fm,q - fp2762)(07Z)| SJ |61 - 62’
+lea| x [(Hp, (90) — Hpy(90))(O))]
+pr(W) — p2(W))|
(A.13) S ler—e] + [p1(W) — p2 (W)

This upper-bound notably implies that F,, is separable because r(Qj ,,)
and € (seen as a class of constant functions) are separable. By A4,
Ji(1,7(Q1,0)) = o(y/n). Since £ is bounded, there exists a bounded
envelope function F' for £ seen as a class of (constant) functions and
Jr(1,€) is finite. Assume without loss of generality that F' is also
an envelope function for F,. By (A.13) and the trivial inequalities
(a+b)? < 2(a®>+v?) and Va+b < a + Vb (valid for all a,b >
0), Jr(1,F,) = o(y/n) (we will use repeatedly this argument in the
rest of the article, without mentioning its details). Therefore, we can
apply Lemma B.3 and conclude, with Markov’s inequality, that || P, —
Pgogall7, = or(1).

Consider next the second term in the RHS of (A.12). It is upper-
bounded by

An = Sug Pn|QY=<077‘n (6) - QYV,CnJ"n (€)|/Z
€c

Since expit is 1-Lipschitz, Qi , is bounded away from 0 and 1, and
logit is Lipschitz on any compact subset of 0, 1], it holds that A,, is
smaller than

Suan logit(Qy,s,) — logit(Qy,s,) + €(Hr, (9n) — Hr,, (90))] /Z
€c

S PulQy,s, — Qvipol/Z + Poll/gn — 1/90l/Z
= PQo,g.|Qv,8, — Qv50|/Z + Pgogall/9n — 1/90l/Z
+ (Pn = PQog.)|Qy,8, — Qv,p,l/Z
(A.14) + (Pn = Poog. )11/ gn — 1/ 901/ Z.

Using the fact that ¢! is bounded away from 0 and 1 and the Cauchy-
Schwarz inequality, we readily see that Py, g.|Qvs, — Qvsl/Z <
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PQoget|Qvin = Qvigol < 1Qv,5, = Qvioll2. e = 0P(1) by Propo-
sition 4.1, whose assumptions are met here. We control Py, g, |1/9n —
1/go|/Z similarly, using additionally that g, and go are uniformly
bounded away from 0 and 1 and that, for n large enough, G, = G
is coo-Lipschitz. Indeed, for n large enough, Pg ¢.|1/9n — 1/90|/Z <
Py, gretlgn — g0l < llgn — 90 and

2vPQthref

Hgn - gOH27PQOVgref = HGoo(QY,ﬁn) B GOO(QY’BO) 2’PQ0¢gref

5 quvﬁn - quBO ||27PQ07gref
<

(A.15) 1Qv,5, = Qvipolle,py er = 0P(1),

as recalled earlier. Thus, the sum of the two first terms in the RHS
expression of (A.14) is op(1).

We now turn to the third term of the RHS sum in (A.14). For any Qy €
Q1, introduce h1(Qy) characterized by h1(Qy)(0,Z) = |Qy (A, W) —
Qv,5,(A,W)|/Z. Obviously,

|(Pn = PQoga)|Qv,8, — Qvigol/Z] < [(Pn — Pgoga)hlloi,
= HPn - PQngthl(Ql,n)'

The separability of Qy , implies that of hi(Q1,,). Since Z is bounded
away from 0, it holds that h1(Q7) is uniformly bounded by a constant
¢ > 0 which can serve as a constant envelope function, and

Je(1,h1(Q1n)) = O(J1 (L, {|Qy — Qv,g, : Qy € Q1al}))
= O(J1(1, Qi,n)) = o(vn)

by A4. Therefore, Lemma B.3 applies and Markov’s inequality yields
1P — Pgognllhi(0i.,) = op(1). We control the last term similarly.
Let n be large enough so that G,, = G. For any Qy € Q;, intro-
duce hao(Qy) characterized by ha(Qy)(0,Z) = |1/Guc(qy (A, W)) —
1/Goo(qy 5, (A, W))|/Z. We have

[(Pn = PQoga) 1/ 9n — 1/90l/Z] < |[(Pn = PQog.)h2lla..
= ||Pn - PQOygthQ(Ql,n)'

The separability of Q; ,, implies that of ha(Q; ). Because Z is bounded
away from 0 and because G is coo-Lipschitz and bounded away from
0 and 1 too, it holds that ho(Q7) is uniformly bounded by a constant
¢’ > 0 which can serve as a constant envelope function, and
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Jor (1, h2(Q1n)) = O(N1(L {lay — av,g0| 1 Qv € Qin}))
= O(J1(17 {’QY - QY,50| : QY € Ql,n})) = O(Jl(lv Ql,n)) = O(\/ﬁ),

as we have seen before. Thus, || P, — P, g, [|h,(0,.,,) = or(1), hence the
sum of the tow last terms in the RHS expression of (A.14) is op(1).
We conclude that A,, = op(1).

Combining the results obtained on the first and second RHS terms in (A.12)
yields the desired convergence ||Z,, —Z|¢ = op(1). We are now in a position
to apply Lemma B.1, which implies the stated convergence €, — ey(r,) =
op(1).

Step two: studying Q;F’,Cn,rn' Let us now prove that

HQ;?CTL7TTL - Q*ch()ﬂ"n’ 27PQ0,gref = OP(]‘)

For this, we equip Q1 x G x £ — Q1 x G; x £ with a seminorm |||-||; such
that, for any two (Qy71,g1,61), (vag,gg,eg) € Q1 x Gy x 5,

(Qv,1,91,€1) — (Qv2, 92, €2)[l; = [|Qv1 — QY,2||2,PQO7gref
Hlor = gallz,py, et + 161 — €2

Proposition 4.1 and the first step of this proof imply that

H|(QY,/J’”7gTLy 671) - (QY,ﬁoagO7 EO(TR))‘|’1 - OP(1>-

We also equip the set QF — QF with a seminorm |||, characterized as
follows: for any two (Qy,),er, (Q%p)pen € Q7Y€,

‘H(QY,p)peR - (Qg/,p)PERH‘Z = 227% ”QYW - Q’i/',puzyPQo’gref'

Let f: Q1 x Gi x € — OF be given by f(Qv,g,¢) = (f,(Qv,9,€))per
where, for each p € R,

(A16)  f,(Qv.9,6)(0) = expit (logit(Qy (4, W) + eH,(9)(0))

Set (Qv,1,91,€1), (RQy2,92,€2) € Q1 X G x € and p € R. Because (i) expit
is 1-Lipschitz, (ii) Q1 is bounded away from 0 and 1, and logit is Lipschitz
on any compact subset of |0, 1], (44i) G; is uniformly bounded away from 0
and 1, (iv) € is a bounded set, it holds that

”fP(QY,l) g1, 61) - fP(QY,2> g2, 62)||2’PQ0,gr°f
< [[logit(Qy;1) — logit(Qy,2)

‘27PQovgref +lle2(1/g1 — 1/‘(}2)H2’J‘DQD,9rEf
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+ (e —€2)/g1llo,p, e

S@vi=@vallyp, o+l =2l p +le—e

re Qo 1grcf

(A'17) = ”|(QY,1,91,€1) - (QY,2,92,€2)|H1‘

Noting that the RHS expression does not depend on p then taking the
supremum in p € R to the left yields

I1f(Qy1,91,€1) — F(Qy2, 92, )l S I(Qy,1, 915 €1) — (Qv2, 92, €2)|;-

Therefore, the convergence [|(Qy;s,>gn en) — (Qvis: 90, o(ra))ll; = op(1)

implies the convergence || f(Qy,s,: gn,€n) — F(Qy,5,: 90; €0(n))lly = op(1).
In particular,

Hfrn (QYanvgna en) — frn (QYﬂO?gO’ EO(T”)) 2P0, gref
— ||Q*Y,Cn,"’n - Q;7C07T”‘|2’PQO,gref = OP(l))

as we claimed.

Step three: studying vy,. Let us first demonstrate that Fg,,, (Q;Co,rn
rn(W)) = 1y, 0, then that ¥, — 1, o = op(1). We have already shown that
Zn(€o(rn)) = 0. Equivalently, by conditioning first on (A, W) (second line)
then on W only (third line),

0 = Zn(eo(rn))

_ H{A=r,(W)} *
- Q0,90 <(A|VV)(Y - QY,g‘o,rn (A, W)))

A=nr, *
= EQu,g0 ol AﬁW }(QY,O(A, W) — QY,CO,?“n (A, W)))
= EQo,go (Q ) QY(:O Tn (TTL(W) W))
(A'18) - wm, - EQW,U (QY,CO,rn TH(W))

hence the claimed equality.
Let vy = EQy, (@Y, 0n(W)). By (A.18), the fact that g*! is bounded
away from 0 and 1 and the Cauchy-Schwarz inequality, it holds that

|¢; - 1/17»",0\

(A19) S Qv — @vicorn = op(1).

) Qo,gref



SUPPLEMENTAL ARTICLE 11

Therefore, it suffices to show that ) — 1" = op(1) too to conclude.
Since Q53 Corm OTn 18 2 function of W only, we can write

[ — ¥ | = (P — PRo.g ) Q¥ ¢, © | < 1Pn = Poog.ll 7,

where we define ), = {Qy¢p(€) op : ¢ € By X Gip,p € 7(Q1p),€ €
&}. By construction, F/ is uniformly bounded by 1 which can serve as an
envelope function. Moreover, for every (1 = (81,91),(2 = (82,92) € Bp X
Gin,p1,p2 € 7(Q1n),€1,62 € &, because (i) |(p1 — p2)(W)| € {0,1}, (it)
expit is 1-Lipschitz, (ii1) Q1 is bounded away from 0 and 1, logit is Lipschitz
on any compact subset of 0, 1[, and (7v) G; is uniformly bounded away from
0 and 1, the following inequalities hold pointwise:

’QY,CMH (€1) 0 p1 — QY,€2792 (€2) © p2
= Qv (€1) = Qvop(€2)) 0 p1
+ (Qvicaups (€2) 0 p1 — Qo p0(€2) © p2)]
< |(QY7C1701 (61) - QY,Cmpz (62)) © ;01}
+ o1 = pa| [ (Qy,carpn(€2) © p1 — Qv ca o (€2) © p2)]
S 1@y — Qv,) ool +ler/gi(prl) — e2/ga(p1l)| + o1 — p2l
S (Qv,g — Qvgy) o p1] + |g1(p1l-) — g2(p1]-)]
+ |e1 — €] + [p1 — po2
< |(Qyp — Qvp,) o p1l +1(Qy,p, — Qvipy) o (1 —p1))
+1g1(p1l-) = g2(p1[) + |91 (1 = p1|-) — g2(1 — p1-)]
+ [e1 — ea| + |p1 — p2|
(A20)  =1Qvp — Quval+1Qys — Qyp,l
+ 2|91 — g2| + |e1 — ea| + [p1 — pa

where, for every 5 € Up>1B5,, Q;ﬁ is given by

Qy (A, W) =Qyp(l—AW).

This entails that F), is separable because Q1 ., Gin,, £ (seen as a class of
constant functions with envelope function F” > 1) and r(Q; ) are separable
(the separability of G, follows straightforwardly from that of Qj,, the
definition of Gy, and continuity of G)). Let n be large enough so that
Gpn = Goo. Inequality (A.20) and the facts that (i) G1,, = {Gn(qy) : Qy €
Qint = {Gxl(qy) : Qy € Qin} with Goo coo-Lipschitz and (ii) |gy,, —
av,p:| < |Qvp — Qvgal + |Q;/”31 - Q;752| imply that

Jp(LF) S Je(1, Q1)+ Jr(1,G10) + I (L,E) + Jp(1,7(Q1,0))
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S Jr(1, Qi) + I (1,E) + Jp(1,7(Q1n)) = o(v/n)

by A4. Thus, Lemma B.3 applies and Markov’s inequality yields ||P, —
Pgo.g. |l7 = op(1) hence |4 — 77| = op(1). This completes the third step,
and the proof of Proposition A.1. O

The second part of Theorem 4.2 revolves around a consequence of the
following result.

PROPOSITION A.2 (first asymptotic linear expansion of v%). Suppose
that A2, A3, A4 and A4* are met. Then it holds that

(A21) ¢y =0 = (Po = PQog,)(dyg r, + Dwir, (QF, 1)) + 0P (1/v/).

The asymptotic linear expansion (A.21) is obtained from the exact linear
expansion stated in the next lemma.

LEMMA A.1 (exact linear expansion of ¢%). It follows from the definition
of 1y that

(A'22) w; - ¢rn,0 = _PQ0790DTn (an,rnvgo)
= (Pu— Pog,) iy + D (QF, )
+(Pn = Pgog.) ((d5¢, vy — Bcorn)
(A.23) HQV e rn — Q¥icora) ©Tn) -

PROOF OF LEMMA A.1. Equality (A.22) readily follows from the defini-

tions of Drn(QZﬁnM,go), Yy and Yy, 0.
We now turn to (A.23). Let us denote by P, g, the empirical distribution

of O,, weighted by g, (A;|W;)/g:(A;|W;). By construction of the fluctuation
(2.15) and definition of €, (2.16), it holds that Py g, Dy, (@Y., ., 9n) = 0.

,6nyT'n

Moreover, (2.17) can be rewritten as P, Dw,y, (Q7, ;. ) = 0. Therefore, (A.22)
is equivalent to

(A-24) 1/’: - meO - (Pn - PQo,go)DW,Tn(QZn,rn)
+ (Pn7g”DY7T" (Q;:Cnﬂ"n ’ gn) - PQ0790 DYJ’n (Q;,Cnﬂ“n ) 90)) :

Adding and subtracting (P, — FQ,,g0) Dw;r, (QF, ) to the first term in the
RHS expression of (A.24) implies
(Pn_PQ()ng )DWJ’»,L (anﬂ'n)
= (Pn - PQngO)DWﬂ"n (on,rn)
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+ (Pn — PQo.g0) (Dwir,, (an,rn) - DW,M(QZOM))
= (Pn — PQo,g0) Dwir, (on,rn)
+ (Pn = PQo.go) (Qy.¢nrn = @Vicora) © T
(A.25) = (Pn — PQy.g.) Dw,r, (Q, 1)
+ (P = Py (Q¥¢,rn = Qo) © T
where the last equality is valid because (P, — PQM,O) operates on functions

of W.
As for the second term in the RHS expression of (A.24), it equals

gn (A W) L{A; = (WD)} o, .
n Z <gz A; |W gn(AZ‘WZ) (E - QY,Cn,rn (Au Wz))

H{A=r,(W)} .
—PQo,gow(Y - QY,Cn,rn)>

I (YA = (W)Y o
o ; < gz(Az ‘ Wl) <Y; QY,Cn,'rn (Au Wz))

H{A=r,(W)} .
_PQ079igi(A—‘Vv)(Y — Qy,gn,rn)>

= (P — Pooga)dyc, .,
(A26) = (Pn - Pngn)d;,Co,rn + (Pﬂ - PQ07gn)(d;,<n,’r'n - dik’,CO,rn)‘

The equalities (A.24), (A.25) and (A.26) imply (A.23). O
We now build upon Lemma A.1 to prove Proposition A.2.

PROOF OF PROPOSITION A.2. By (A.23) in Lemma A.1, (A.21) follows
from

(A27) (P — Pgog.) ((d;,cn,rn —dy o) T ( Qv r — QVicyrn) © Tn)
= (Po — PQog.)(dyc, r, — dycor,)
+ (Pn = PQog)(QY ¢ — Vi) © Tn = 0p(1/V/n).
This is a consequence of Lemma B.4, as shown hereafter in three steps.

Step one: preliminary. We will use the following notation: for all 5 € B,
and € € &,

AQy,5(€) = fr(Qy.s) (R, Gnlay,8): €) — fr(Qy.5) (Qv,80> 90s €0(T(Qy,8))) »
Ady(€) = flay. ) (@v,8: Gnlay,8),€) = fr(qy. ) (Qvi80: 90, €0(r(Qy,5))) ,
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where f,(Qy,g,¢) and f,(Qy,g,¢) are respectively characterized in (A.16)
and by

H{A=p(W)}

(A.28) £p(Qy,9,€)(0,2) = Z

(Y = fo(Qy,9,€)(0)).

The two next steps mainly consist in controlling the uniform entropy inte-
grals of the two following sets:

Fn = {Adyg(e): B € Bp,e€ &},
F, = {AQygp(e)or(Qyg): B € By,e €&}

From now on, we assume that n is taken large enough to ensure 3y € B, and
Gp = Goo, Adyﬂo (60(7’0)) = AQyﬁo (60(7‘0)) =0 (recall that rg = T(Qy}go)).
Consequently, 0 € F,, and 0 € F,,.

Step two: studying the first RHS term in (A.27). Since Z is bounded away
from 0 and 1, the elements of F,, are uniformly bounded by a constant ¢
which can serve as an envelope function for F,,. We assume without loss of
generality that ¢ > max(1,sup.c¢ |€]). Obviously, (a) in Lemma B.4 is met
for F,, by the resulting (constant) sequence of (constant) envelope functions.
N[OI‘GOVGI"7 Ady’gn (en) — Adyﬂo (60(7‘0)) = Adyﬂn (Gn) = d;Cnﬂ”n — d§7<077"n
satisfies

|(Ady,p, (€n)=Ady,p,(€0(r0))) (O, Z)]

A=r, (W . )
N 1{Zr()} Q¥ (ATW) = QY ¢, (A, W)

5 ‘Q;(n,rn (A> W) - Q;/,Qo,rn (Av W)’

hence the convergence ||Adyg, (€n) — AdY”gO(60(T0))||27PQ07gref = op(1) fol-
lows from the second step of the proof of Proposition A.1, whose assumptions
are met.

It remains to prove that F, is separable and satisfies (b) in Lemma B.4.
Set arbitrarily (51, €1), (f2,€2) € B, x € and define g1 = Gunlqyp,), 92 =
Gn(ayv,), p1 =7r(Qy,p,) and ps = r(Qy,s,). First, we note that

(Adyg, (€1) = Ady,p,(€2))(0, Z)]

= [(MAZATD Ay s (en0) - A= A, @)(0)

S [H{A = (W) HARQy 5, (1)(0) = AQy, (€2)(0))
+1({A = p1(W)} = 1{A = p2(W)})AQy,(€2)(O)],
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which yields the pointwise inequality

(A.29) [ Ady,p, (1) — Adyis(€2)] S [AQy 5 (e1) — AQyis(e2) | + o1 — pal.
Second, we focus on the left RHS term in (A.29). It holds pointwise that

|AQy s, (1) — AQy,, (€2)]

<|fp (Qvip1s 915 €1) = fpi (Qvips g2, €2)]
+ [ fo1 (Qy,50: 905 €0(p1)) — fpi (Qv,80» 90, €0(p2))]
+ [fp1 (Qv,5y 925 €2) — [12(Qy,3,, 92, €2)]
+ 1 fo1 (Qy,580> 905 €0(p2)) — foa (Qy,50, 905 €0(p2))]-

For the same reasons as those which lead to (A.17) and because G, Coo-

Lipschitz implies [g1 —g2| S lqv,s —av,5:| < [Qyv,8 — Qviga | +1Qy 5, — Qy s, |
we derive the following pointwise inequalities from the previous one:

|AQY751 (61)*AQY752 (e2)]

(A.30) SlQyv,s — Qv + 191 — 92|

+ |e1 — €af + |eo(p1) — €o(p2)]

+ [Hp, (92) = Hp, (92)| + [Hp, (90) — Hp, (90)]

SIQvs — Q| + ‘Q}_fﬁl - Q}_f,ﬁg‘

+ |e1 — €af + |eo(p1) — €o(p2)]
(A.31) + [Hp, (92) = Hp, (92)| + [Hp, (90) — Hp, (90)]-
Consider the last term in the above RHS sum. Because G; is uniformly
bounded away from 0 and 1, we have |H), (g0)(O) — Hp,(90)(0)] < [1{A =
pi(W) — 1{A = po(W)}| = |p1(W) — p2(W)]| (we already used this argu-
ment to derive (A.13) in the first step of the proof of Proposition A.1).

The last but one term is dealt with similarly. It remains to control the
most delicate term, |eg(p1) — €o(p2)|. Let Z1,Z2 be characterized over &
by Zj(€) = PQo,g0Dvip;(Qv,co.p;(€),90) = PQogofose (7 = 1,2; see (A.11)
for the definition of f,.). For the same reasons as in the first step of
the proof of Proposition A.1 (substitute p; or py for r,), Zi(eo(p1)) =
Za(eo(p2)) = 0 and |e — eo(p2)| < |Z2(e)| for all € € €. Moreover, by
(A.13), |Z1(e) — Za(e)| S llp1 — p2ll2,p gret for all e € £, hence in particular

Qo
|Za(eo(p1))] < o1 — pQHQJDQ jrer+ Lhis entails the bound
0>

(A.32) leo(p1) = co(p2)| S llo1 = p2ll2py e
Consequently, (A.31) implies the pointwise inequality
[AQyp (e1) — AQyp(e2)] < [Qvip — Qvigl + 1@y 5, — Qy g,
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(A.33) Hlor = paol + llpr = p2llo.py e + 61 — €2].

Combining (A.29) and (A.33) finally yields (with the same notation as in
(A.20))

|Ady,g, (e1) — Adyg, (e2)] S [Qv,p — Qvpl +[Qy s — Qyp,l
(A.34) v = p2l + o1 = pallo.py e + €1 = €2l.
Inequality (A.34) entails that F,, is separable because Qj ,, 7(Q1,,) and
& (seen as a class of constant functions with constant envelope function ')
are separable. Moreover, since the definition of the uniform entropy integral

involve a supremum over probability measures, (A.15) and (A.34) also imply
that, for each § > 0,

Jc(5a Jrn) 5 Jc(67 Ql,n) + Jc((S’ T(gl,n)) + Jc(67 5)

Consequently, A4* guarantees that (b) in Lemma B.4 is met. Thus, Lem-
ma B.4 applies and yields

V(P = Poog)(dyc, v, = icyr,) = VU Pr = PQo g, ) Ady,g, (€,) = op(1).

Step three: studying the second RHS term in (A.27). The elements of
F}, are uniformly bounded by 1 hence by a constant ¢ > max(1, sup.c¢ |€)
which can serve as an envelope function for F},. Obviously, (a) in Lemma B.4
is met for F,, by the resulting (constant) sequence of (constant) envelope
functions. Moreover, (A.20) implies that

AQy,p,(en) 0 1(Qy,8,)—AQy,z,(€0(r0)) © 1(Qy,8,)
= AQvypg, (en) 0 Tn
= (Qv¢urn(€n) = Qvico,ra (€0(Tn))) 010
= (Q?gn,rn - Qikf,co,rn) OTn

satisfies (with the same notational convention)

|AQy,p,(€n) o T(Qv,,) — AQy,p,(e0(r0)) 0 T(Qy,5, )|
S Qv — Qviel +1Qy 5, — Qy .| + 190 — gol + len — €o(r)]-

Because g*! is bounded away from 0 and 1, this yields

1AQy 8, (en) 0 7(Qy,8,) — AQy s, (€0(r0)) © T(QY,BO)HZPQO’grcf
S Qvip. = Qvipolla,ry e + 1190 = Gollo, Py cee + l€n = €o(rn)| = 0p(1)
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because each term in the above RHS sum is op(1) by Proposition 4.1, the
first step of the proof of Proposition A.1 and (A.15).

It remains to prove that F, is separable and satisfies (b) in Lemma B.4.
For this, set arbitrarily (51,€1),(f2,€2) € By x &, define g1 = Gr(qvs, ),
92 = Gn(qv,s,), p1 =1(Qyp ) and pa = 7(Qy,s,), then note that

|AQy g, (€1) 0 p1 — AQy,p,(€2) © p2
< |AQy,s, (€1) o p1 — AQy,p, (€1) © p2
+ [(AQy,p, (€1) — AQy s, (€2)) 0 p2|.

Consider the first term in the above RHS sum. Because (i) it equals zero
when p; and ps coincide, (i) |p1 — p2| € {0,1}, and (iii) |AQyp, (€1) —
AQy g, (1) < 2, we see that it is actually upper-bounded by 2|p; — p2|. We
now turn to the second term. By (A.33), it satisfies the following pointwise
inequalities:

[(AQyp (€1) — AQy,p,(€2)) 0 p2| S |Qv,p, — Qvipa| + @y 5, — Qy 5,
+lor = pal + llor = p2ll2,py et + 10 — 2.

We thus have

|AQy 5 (€1) 0 p1 — AQy,p,(€2) © p2| S [Qy,5 — Qv
+1Qy s, = Q| + o1 = p2| + llp1 = p2llap, o + 11 — €2

As argued in the previous step, the above pointwise inequality yields that
JF}, is separable and that, for each § > 0,

‘]C’(57 ‘7:':1) 5 JC/(57 Ql,n) =+ JC’ (67 r(g17n)) + JC’((sv 5)

Consequently, A4* guarantees that (b) in Lemma B.4 is met. Thus, Lem-
ma B.4 applies and implies /n(Py — P ) (@, . — @yepr) ©Tn =
V( Py, — Pgy g.)AQy g, (€n) 07(Qy,g,) = op(1). Combining the conclusions
of steps two and three shows that (A.27) holds, and therefore completes the
proof. O

Proposition A.2 has the following corollary. Proving it will complete the
proof of Theorem 4.2.

COROLLARY A.1 (second asymptotic linear expansion of ¢ and resulting
central limit theorem). Suppose that Al, A2, A3, A4, A4* and A5
are met. Then (/.15) holds. Moreover, ¥, = Yo + op(1) with X9 > 0 and
/1 En (V) — Yor,) converges in law to the standard normal distribution.
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PROOF OF COROLLARY A.1l. This is a four-part proof.
Step one: preliminary. Recall (4.9), (4.10), (4.12), (4.13), (A.3), (A.4) and
set

fo = d*W,O + EQW,O (Q§,Co,ro oro(W)) + d;,o - Q;,Coﬂ’o °To d;vo’
fn = d*W,TL + w’;kl + d?n = Q;:Cn,rn © rn + dik/m”
fom = Q;,CO:Tn o Ty + d;CoyTn'

A straightforward adaptation of the argument leading to (A.18) in step three
of the proof of Proposition A.1 also yields Eq,, (Q;‘, Coiro © ro(W)) = . It
is then apparent that P,(f, — ¥7) = Pgy,g(fo — %0) = 0. Now, note that
Yo, Xy, defined in (4.11) and (4.14) can be rewritten

Yo = PQo,go(fO - ¢0)2 = PQO»gofg - w%?

Y = Pn(fn - 1/}:1)2 = Pnfg - :227
and that Xy > 0 by A1l. Introduce also S, = Py, g, (fo — %0)>.

For each (f? C7T7¢) among (f07C07r070) or (f07C07T071/}0) or (fnaCnvrnao)
or (fn,Cn,Tn, ), it holds that

PQO:gn (f - 1/’)2
1 n
0 ZPQO,gi(f - 7/))2
i—1
= Pgog0 (Qycpor— ¥)? + 2(Qy.¢r 07 — 1) Dy, (QF 1, 90))

1 < 1{A =r(W)} )
+ = § Popg————— (Y — QY
n £ Qo,90 900 ( Y,(, )

= Pgy.g0 ((Q¥ e o — 1) +2(Qy.c, o7 — ) Dy (Qy.¢ 1 90))

M:—T(W)}(Y_Q;g )Qxlil

+ P,
Q0,90 % g,

and, similarly,

Fq.90 (f = 1/})2

= PQog0 ((Qycr 07 = 9)* +2(Q¥,c, 07 — ) Dyr(Q¥,¢ 15 90))
1{A = r(W)} 1

Py gy g )2
Qo,90 9 ( QY,C,'/‘) 9%

Since (Y — Q5. )% <1 and because go, g™ and all g;s (i > 1) are bounded
away from 0 and 1, applying the Cauchy-Schwarz inequality then yields

‘PQ()vgn(f - w)Q_PQovgo (f - w)z‘
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1{A =r(W)} . I<-1 1
PQo,gog—O(Y*Qy,g,r)2 ﬁzg s
i=1 7*

12”:1 1
ni9 90

n

%Z(gi — 90)

=1

(A'35) = PQo,go N

27PQ0’gref

Step two: studying ¥, and Xo. By Lemma A.2 (presented after this proof),
(A.35) teaches us that E(S,) = 3¢ + o(1) and S,, = ¥y + op(1) (take
(,) = (fo, o) in (A.35)).

Let us show now that 3,, = %¢+o0p(1) by proving 3, — S, + ()2 —3) =
Yn —Sn+op(l) =o0p(1). We use the following decomposition:

En_Sn"‘(w;Q_@Z’g) = Pnfg_PQo,gnfg
= (Pn_PQo,gn)fs_FPQo,gn(fEL_fg)
(A.36) = (Po— Poog)fi + Paogo(fi — 13) + op(1),

where the last equality holds because Py, g, % = Pgy.g0f> + 0p(1) for both

f=Jfoand f = f, by (A.35) (take (f, %) = (fo,0) and (f, %) = (fn,0)) and
Lemma A.2. Let us consider in turn the two RHS terms in (A.36).

e From now on, we assume that n is taken large enough to ensure G,, =
Goo. For all 8 € B, and € € &, let

dy,5(€) = fl(Qy 5 (Qv,8: Galay,), €)

where f, is defined in (A.28). Introduce

Fn = {Qy7c,p(e) op+dyg(e): B € By,
9==Gnlavp),¢ = (B,9),p=7(Qvp), e €E}.

In particular, f2 = (Qy,c,r (€n) © Tn + dy.g, (€n))? belongs to (F,)? =
{f%: f € F,.}. The following upper-bound motivates the definition of
Fn:

|(Pn - PQO7gn)f721’ S HPTL - PQngn||(.7:n)2'

If | Py — Poy.g. ()2 = op(1) then (P, — Pg,g,)fr = op(1) too. We
prove the former convergence by applying Lemma B.3 and Markov’s
inequality.

Since F,, is uniformly bounded, there exists a constant ¢ larger than
max(1,sup.c¢ |€]) which can serve as an envelope function to both
Fn and (F,)%. Set arbitrarily (B81,€1), (B2, €2) € By x &, define g =
Gnlav,p)s 92 = Gulav,g,) G = (Br.g1) , G2 = (B2, 92), p1 = r(Qy,s,),
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p2 =1(Qv,,), let fi = Qv p(€r) 0 p1+dyp (e1), f2 = Qvippmlea)
pa+dy g, (e2). Because | f2— f2| < |fi— f2|, it holds that J.(1, (F,)?) <
Je(1,F,) and the separability of F,, implies that of (F,)2. So, we now
focus on F,.

Obviously, | f1 — fa| < [Qy,ci.p (€1) 0 p1 — Qy ¢y 5 (€2) 0 p2| +|dy g, (€1) —
dy g, (€2)|. The first RHS is controlled in (A.20). We deal with the
second one in the same spirit as in step two of the proof of Proposi-
tion A.2. First,

’(dYﬁl (61) - dY,ﬁz (62)) (Ov Z)|

- 1{Azzpl(W)}(Y — foi (Qv,,91,€1)(0))
A=)

7 (Y - fPQ(QY,,B2792762)(O))

S [HA = pi(W)}(fo1 (Qvip15 915 €)(O) = F1 (R, 92, €2) (0))]
+ 1 (H{A=p (W)} = H{A = p2(W)}) £, (Qy, 3 92, €2)(O)]

which yields

|dy,g, (€1) —dy,g,(€2)| S |fp1 (Qy,815 91, €1) = [ (Qv,5,, 92, €2) [ +]p1 — p2l-

Second, the previous pointwise inequality implies

|dy g, (€1) —dy,p,(€2)| S Qv — Qv | + g1 — 92| + |e1 — €2 +[p1 — p2.

In summary,

(A37) |1 = fol S 1Qyis — Qyvigal + 1Ry 5, — Ry,
+ 191 — g2| + le1 — e2| + [p1 — pal.

Since Qj , hence Gy, (already proven), r(Q; ) and £ (seen as a class
of constant functions with constant envelope c¢) are separable, (A.37)
implies that F,, is separable. Moreover, (A.37) also implies

Je(1, Fn) S Je(1, Qun) + Je(1,7(Qun)) + Je(1, )

(see the argument following (A.20)) which by A4 yields in turn that
Jo(1,F,) = o(y/n). Thus, (F,)? is separable, J.(1,(F,)?) = o(y/n),
Lemma B.3 applies and teaches us that E(|| P, — Pg, g, ll(7,)2) = o(1),
and finally Markov’s inequality implies || P, — P, g, /(5.2 = or(1).
This completes the study of the first term in the RHS of (A.36).
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e To rely more easily on all the results obtained so far, we first note that

|PQ0,go(fr2L - f()z)‘ < ‘PQ(),go(fg - fg,n)| + ‘PQ0790(f02,n - fg)|
2 2 2 2
< PQOyQO’fn_fO,n +PQ0=90‘f0,n_f0’
S PQo,golfn_fO,n’+PQ07go‘f0,n_f0‘
< ||fn - f07n||27PQ07grcf + ”fO,n - f0||27PQ0’grcf7

where the last upper-bound follows from the Cauchy-Schwarz inequal-
ity and the fact that gy and ¢"f are bounded away from 0 and 1.
Now,

||fn - annH27PQ07gref S ||(Q§/,Cnﬂ“n - Q;,CO,TW,) © 7an||27PQO7gref

+ ”d;,n - d*Y,Co,Tn ||2’PQ()ygref

and we already proved that [[(Qy. , — Q% . )© ran’onygref

op(1) (see step two of the proof of Proposition A.1) and |dy,, —

d;,CO,Tn‘|27PQ07gref = ||Adyvﬁn(en)||27PQO7gref = OP(]‘) (See Step tWO Of

proof of Proposition A.2). Therefore, || f,, — fon 2Py ret = op(1) and
0

it suffices to show that || fo.n — nggpr gret = op(1) too to obtain the
0>

desired convergence Pg, 4, (f2 — f2) = op(1).
As previously, we first note that

[ fon = fo

27PQ0,gref S ||Q;7C077”n © Tn - Q;,C()ﬂ“() o T0H27PQ07gref

+ Hd;,CO,Tn - d;,goﬂ"o ‘27PQ0)gref'

By (A.20) and (A.32) in step two of the proof of Proposition A.2, it
holds that

||Q3k/7¢0,rn O Tn — Q?gwo SR |2,PQ07gref S lleo(rn) — 60(r0)||27PQ07gref

+||Tn - r0H27PQoygrcf
5 H/r.n - TOH27PQO7gref
with ||r, — 7“0H27onygref = op(1) by Proposition 4.1, whose assumptions
are met. Once again, we control the last remaining term in the same

spirit as in step two of the proof of Proposition A.2: from the upper-
bound

(¢ = :,70) (0> Z))
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(A.38) S HA = ra(W)HQy ¢, = @Vico.0)) (A W)
+[1{A=r(W)} - 1{A = ro(W)}|
(A.39) S leo(rn) = €o(ro)| + [rn (W) — ro(W)]

we deduce that

Hd*Y)COyrn B d;7<0,T0H27PQoygref S Hrn - 7ﬂOH2aP(;)07gref = 0P<1)

In summary, || fo.n — fo \gva et = op(1), and this completes the study
0
of the second term in the RHS of (A.36).
By combining the results of the above two-step study of the RHS sum in
(A.36) and (A.36) itself we finally get the stated convergence ¥, = ¥ +
op(1), thus completing step two of the current proof.

Step three: deriving (4.15) from (A.21). The asymptotic linear expansion
(A.21) rewrites as

MZ*QZJM,O = (Pn*PQo,gn)fO,n+0P(1/\/ﬁ)
= (Pn— Pgog.)fo+ (Pn — Pgog,)(fom — fo) +op(1/v/n),

hence (4.15) follows from the convergence

(Pn — Pgo.g,)(fon — fo) = op(1/+/n),

which is a consequence of Lemma B.4.
For each n > 1, introduce the class

Fr={Qv oo p+dye , — forp €r(Quin)}-

In particular, fo,— fo € F,, (take p = r,,), and we have already proven in the
previous step of the current proof that || fo.n, — foll2, oy gret = © p(1). The class
F}, is uniformly bounded, so there exists a constant ¢ > 1 which can serve
as an envelope function to both F, and r(Qj,). Obviously, the resulting
(constant) sequence of (constant) envelope functions satisfies condition (a)
in Lemma B.4. Set arbitrarily p1, p2 € 7(Q1,,). We have

qref

|(Q*Y,C07P1 °p1+ d?Co,Pl B fO) - (Q*Y,Co,m °p2+ d;,Cowz - fO)’
< |Q§’7Co,p1 °p1— Q;,Coapl °© p2| + |d*Y,C0,ﬂ1 - d§7C0792|‘

By (A.20), (A.32) in step two of the proof of Proposition A.2 and (A.39)
with (p1, p2) substituted for (r,,rg), this inequality yields
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|(Q§4C07p1 °p1+ d;Co,Pl — fo) — (Q?Co,m °p2+ dik/y(O?/)Q = Jo)l
S leo(p1) = eo(p2)[ + 11 = p2| S llp1 = p2ll2.py, e + 101 = P2

Consequently, F;, is separable because 7(Q1 ,,) is separable. Moreover, since
the definition of the uniform entropy integral involve a supremum over prob-
ability measures, the above pointwise inequality entails that, for each § > 0,
Jo (0, F)) S Jo(0,7(Q1.)), so that condition (b) in Lemma B.4 is met by
A4*. Applying Lemma B.4 then gives (P, — Pg, g.)(fon — fo) = op(1//n),
hence the validity of (4.15).

Step four: deducing the limiting normal distribution from (/.15). We first
argue that (4.15) implies the converges in law to the standard normal dis-
tribution of \/n/Xo (1) — 1p). This is a consequence of [5, Theorem 3.3.7]
because (i) S, /E(Sp) —1 = 0p( ), and (i) for each o > 0, E(P, f31{f3 >
a*nE(S,)}) = o(E(S,)) trivially holds since fy is bounded and E(S,) =
Yo+o0(1) with g > 0. Then Slutsky’s lemma and ¥,, = ¥p+op(1) yield the
convergence in law of \/n/%, (¢} — 1) to the same limiting distribution.
This completes the proof. ]

LEMMA A.2.  The convergence ||gn = op(1) implies that

Qo gref

In=t 30 (9 — g0)ll2, Py, gret COTVETGES to 0 both in probability and in L.

ProOOF OF LEMMA A.2. Since G is uniformly bounded, the convergence
llgn — gngvaO’gref = op(1) implies E(||g, — go||27PQ07gref) = o(1). Now, by
convexity then Cesaro’s lemma,

n

LS - )

=1

E

ZE (|| —90)ll2,p, ref> =o(1).

27PQO7gref

This convergence in L' implies the convergence in probability because G is
uniformly bounded. O

A.3. Proofs of Propositions 4.2, 5.2, 5.3 and 5.4.

PROOF OF PROPOSITION 4.2. Set a probability measure [ on the mea-
sured space A x W. Denote i the marginal probability measure induced by
foon W. Let {0, }n>1 be a sequence of positive numbers such that d,, = o(1)
and set € > 0.

Since 7(Q1 ) is a subset of a fixed VC-class of functions taking values in
[0, 1], there exists a constant ¢ > 0 such that, for all 0 < e < 1,

logsup N (e[| 12, 7(Qu1m), || - ll2,) S log(e™) + ¢
m
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[7, Theorem 2.6.7], where 1 serves as a fixed (and constant) envelope function
for r(Q1,,) and the supremum is taken over all probability measures £ on
W. Tt follows easily that Ji(dp,7(Q1n)) S fo log(e=1) + cde = o(1). In
particular, the choice 6, = 1//n yields J1(1 r(Qin)) = o(\/ﬁ).

We now turn to Q. Let {f; : 1 < j < N(&,F | - [l2,5)} and {f; :
1<j<N(e,F,|||l2,z)} be two collections of functions from W to R such
that the unions of the L?(ji)-balls of radius ¢ centered at f;or f; + cover F~
or Ft, respectively. Choose arbitrarily Qyz € Q1 n, w1th 8= ( =, f") €
By,. We may assume without loss of generality that || f~ — f; ||,z < € and
1+ = fifll2p < e. Introduce By = (f], fi7) and Qyp, defined as in (4.7)
with S; substituted for g (the fact that $; may fall outside B, is not a
concern). Now, observe that

Qvs — Qval> < (1f~ = fil+ 1t =D <2(f = P+ 1 = P

hence

1Qv,s — Qv ll2a < V2 (IlF~ = fi ll2
This entails that

N(S, Ql,nv ” ) ||2,ﬂ) < N(5/2\/§7 F, H ’ ||27/1) X N(E/Q\/E?F+’ H :

an+IIFH = fifllag) < 2V2.

27/7')

Since ||1lj2,z = 1, ||2]|2,z = 2 and because ||1|25 = 1 where 1 serves as a
(constant) envelope function to Qg ,, (4.5), (4.6) and the previous bound
imply the existence of o € [0,1) (independent of ji) such that

1 6%
(4.40) s NEllog @l 12) % (£)

3

Taking the supremum over all probability measures i on the measured space
A x W and integrating wrt e then yield Ji(0p, Q1) = o(1). In particular,
the choice 6, = 1/y/n gives Ji(1, Q1) = o(v/n).

We now turn to L'(Qj ,,), which admits 1 as a (constant) envelope func-
tion. Simply observe that

|L(Qy,5)(0)=L(Qy,s)(0)]
= [(Y = Qyp(4,W))* = (Y = Qy,3, (4, W))?|
= [2Y — Qv,3(0) — Qv,5,(0)] X [Qy,5(0) — Qy,5,(0)]
S Qvs(0) — Qy,s (0)],

which entails Jy(1, L*(Q1,)) = O(J1(1, Q1)) = o(1). This completes the
proof. O
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PROOF OF PROPOSITION 5.2. Arbitrarily set ¢ > 0. By the LHS equality
in (A.8), shown while proving Lemma 3.1, we first get

0<tho—thr,0 < Eg (lgvo(W)| X |ra(W) —ro(W)])
EqQy (layo(W)| x L{rn(W) # ro(W)})
(
X

EQy (lav.o(W)| x L{rn(W) # ro(W)}
(Hlavo(W)[ = ¢} + L{avo(W)[ < 1})).

Recall that ry, (W) # ro(W) is equivalent to gy,g,qys,(W) < 0 and therefore

implies |(qy,5, — av,0)(W)| > |qv,0(W)|. Thus, the above inequality entails

that 0 < g — 1y, o is smaller than

(AA4L)  Eq, (I(gv,3, — avo) (W) x H{(av,3, — av.0)(W)[ = lavo(W)| = t})
+ By (lavoW)1Y2 x l(av,s, — av0) (W) x 1{]avo(W)| < })

First, we note that the first term in (A.41) is bounded by

Eq, (I(av,3, — av,0) (W) x 1{[(qv,8, — av,0)(W)| > |qvo(W)| > t})

lavo(W)| _ (av,s, — avo)*(W) _
< Eq, ( X =1"llav5, — avoll3.

Second, Hoélder’s inequality and A5* yield that second term in (A.41) is
bounded by

2/3 2/3
gy, — avolls’ x Pgo (0 < layo(W)| < )*% < 22/3|lqy.5, — avoll3’*.

In summary, we have proven that

_ 2/3
0 < o — Yoo St 2Mavis, — avoll + 27 |lav,5, —avolly”.

Optimizing in ¢ finally yields (5.1). In conclusion, |lqy,3, —qv,0ll2 = op(1/n3)

does imply 1o — 1y, 0 = op(1/y/n) because 2(1 + v2)/(3 + 72) x y3 = 1/2.
The claim on the confidence interval readily follows from Proposition 5.1
and the property 1o — ¢y, 0 = op(1/y/n). This completes the proof. O

PROOF OF PROPOSITION 5.3. Since ¢} and n~ 1> " | Y; are known qu-
antities, we focus on

(A.42) \/’EQ;%J = \/ﬁ (’(ﬁ; +&n — % Z E) = \/ﬁ (¢:7, - PnQY,O o Tn) :
i=1
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By definition of v, ¢ (4.4) and (4.15), it holds that

\/ﬁQi = \/ﬁ(qb; - %n,o) - \/E(Pn - PQO7gTL)QY,0 OTn
= \/H(Pn - PQngn)(d§/,0 + d%,o —Qypo T0)
V(P — Pgy.g,)Qv0 0 (T —10) + op(1).

Arguments similar to those developed in Section A.2 to prove Corollary A.1
successively yield ¥ = 3§ +0p(1), /(P — Pgy g, )Qv.00 (Tn—10) = op(1),

(A.43) \/ﬁQi = vn(P, — PQo,gn)(d;,o + QT/V,CO,TO —Qvporo) +op(l)

and the convergence in distribution of \/n/Y£Q¢ to the standard normal
distribution. This justifies the validity of the proposed asymptotic confidence
interval. O

PROOF OF PROPOSITION 5.4. This is a three-step proof.

Step one: preliminary. Let us assume for the time being that we also
observe the variables Uy, ...,U, in addition to Oi,...,0,. The resulting
counterpart to Oy, is denoted O,, = ((O1,U1), ..., (Oy, Uy)) with convention
Qg = (). Likewise, the resulting counterpart to the empirical measure P, is
IP,,. Since the sequence {U,, },>1 consists of i.i.d. variables independent from
{On}n>1, a distribution Pg 4, € M for (O, Z) yields univocally a distribution
Pg 4 for (O, Z,U). For a measurable function f : O x [0,1] x U — R%, we
denote P, f = n~' Y1) f(O4, Z;, U;) and Pg o f = Ep, ,(f(0, Z,U)).

Neglecting this new source of information, we carry out the exact same
statistical procedure as developed and studied in Sections 2, 3, 4, 5.1 and
5.2. If we write

PQ079if = EPQO,gi [f(olv Z’ia Ui)‘(@i—l]v

1 n
Pog.f = EZPQO»gi-f
=1

for the counterparts to Pg, 4, f and Pg, g, f (eachi=1,...,n), then (A.42)
reads

(A.44) Vi, = V(Y] = PuQyo o)
and (A.43) still holds and reads

(A.45)  /nQt = /n(P, — PQo.g. ) (dy0 + Qiv.cyrg — @vio ©70) + 0p(1).
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Step two: inferring in the causal world. For p = rg and p = r,, we set
Qv 0 p(W,U) = Qyo(p(W),W,U). Since ¢} and n=1>"" | 'Y; are known

quantities, we focus on
1 n
Vil = vn <¢;+en — n2m> = Vi (¥, —PpQyoory).
i=1

By (A.44), (A.45), and because (5.6) implies Pg, g, (Qy,o — Qvo) 0 7 =
Pgo.00(Qvio — Qyo) o 7, = 0, it holds that

VnQ,
= VY, = ViPu(Qy 07 — Qy0 0 70)
= \/E(Pn - PQO,gn)( *Y,o + Q))I;V,Co,ro —Qyoo0 T0)
—Vn(Pn = Pg,g,)(Qyo — Qvo) 01 + 0p(1)
= \/E(Pn - PQO,gn)( *Y,o + Q))I;V,Co,’ro —Qypo0 7o)
— Vn(Pn — Py g,)(Qv,0 — Qv,0) © 70
— V(P = Pgyg,) (Qvo — Qyo) o — (Qvio — Qy,) 0 70) + op(1).

Define fo = dyq + Qjy¢y .o — (@v,0 270 — %0), X0 = (Qv,0 — Qv,0) 0 70, and
Eg =Pg, . (fo— X0)?. Arguments similar to those developed in Section A.2
to prove Corollary A.1 successively yield

V(P —Pgyg,)((Qvo — Qv) 0T — x0) = op(1),
VnQy = /(P — Pg, g, )(fo — x0) + op(1)

and the convergence in distribution of 1/n/35Q¢ to the standard normal
distribution.

Step three: inferring in the real world. At this stage, there is still one
issue to solve: it is not possible to infer 3§ because, contrary to fy which is
a function of O, xo is a function of (O,U) and we actually do not observe
Ui,...,U,. Fortunately, it holds that

e & &
(A.46) X5 = Pngofg - PQo,goxg =X — PQO,QOX?J < g,

the inequality justifying our claim on the proposed asymptotic confidence
interval.

It only remains to prove the LHS equality in (A.46), which is equivalent
t0 P90 f0X0 = PQg.g0X3- First, we note that

PQo,g0 fox0 = PQo,g0 (Q*W,Co,ro - (QY,O orp — QbO)) Xo + PQo,godikf,OXU
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By the tower rule and (5.6), the first RHS term in this sum equals

EPQoygo [(Q*W,Co,ro (W) - (QY,O o TO(W) — ¢0))
X EPQ()’go (QY@(T’()(W), W7 U) - QY,O(TO(W), W) ‘W):| = 0.

Thus, proving the LHS equality in (A.46) boils down to showing that the
second term equals Pg, 4, x3. By definitions of dy (4.10) and of Y in the
causal model, the tower rule and (5.6) imply that the second term equals

B o | SEA=10 (y oo (W), W, 1) = Qucn(r), W)

X Frg, , (Y = Qbo(ro(W), W) A, W, U)]

= Brgy | A2 W), W,0) — Qoo (1), W)

X (Qy,o(ro(W), W,U) — Qy-o(ro(W), W))]

EPQMO -]_{A_ZTO(VV)}(QY,O(TO(W)v VVa U) - QY,O(TO(W)7 W))2:|

' H{A=r(W)

Qy,o(ro(W), W) — Qyo(ro(W), W))

X Epg, o0 (Qvo(ro(W), W,U) = Qyo(ro(W), W)|W)

= EPQO,QO |:(QY,O(TO(W)7 W> U) - QY,O(TO(W)7 W))2

p(HA= RO )

= Epq_ {(QY,O(TO(W% W,U) — Qvo(ro(W), W))z} = Pqqg0 X5

This completes the proof. O

APPENDIX B: TECHNICAL LEMMAS

B.1. Lemmas for M- and Z-estimation. The first lemma is a simple
adaptation of [7, Corollary 3.2.3].
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LEMMA B.1. Let M,, and M,, be two real-valued stochastic processes
indezed by a metric space (©,d). Consider a sequence of subsets ©, C O
and the following assumptions:

(a) For each n > 1, there exists T, € © such that, for all e > 0,

H;fl inf{M,(0) — M, (1) : 0 € ©,d(0,7,) > e} > 0.

(b) For eachn > 1, there exists T;; € ©,, such that My, (7,}) = infpce, M, (6).
Moreover, M, (7,) — My, (1) = op(1).
(¢) It holds that |M,, — M,|le, = op(1).

Under (a), (b), and (c), if 0, € ©,, satisfies M,,(0,,) — My (7,5) <0 for all
n > 1, then d(6,, ™) = op(1).

The corollary below will prove useful.

LEMMA B.2. Let Z,, and Z, be two real-valued stochastic processes in-
dezed by a metric space (©,d). Consider the following assumptions:

(d) For each n > 1, there exists T, € © such that Zy(7,) = 0 and, for all
e >0,
inf inf{|Z,(0)|: 0 € ©,d(0,7,) > e} > 0.

n>1
(e) It holds that ||Z,, — Zy]le = op(1).

Under (d) and (e), if 0, € O satisfies Zy(0,) = 0 for all n > 1, then
d(0y, ) = op(1).

PrROOF OF LEMMA B.1. Set n > 1. By (a), it holds that

(Mn(en) - Mn(en)) + (Mn(en) - Mn(t:L))
+ (Mn(t:;) - Mn(t:;)) + (Mn(t;) - Mn(tn)) :

The above first and third RHS terms are both upper-bounded by ||M,, —
M, ||e,, - The second RHS term is non-positive by definition of 6,,. The fourth
RHS terms is op(1) by (b). Thus, it actually holds that 0 < M, (6,) —
Mo(tn) < 2M,, — Mallo, +0p(1) = 0p(1) by (c).

Set ¢ > 0. By (a), there exists a positive random variable A which is
independent of n and such that d(6,,t,) > ¢ implies M,,(6,,) — M, (t,) > A
or, equivalently, A71[M,,(0,) — M, (t,)] > 1. Now, by Slutsky’s lemma [6,
Lemma 2.8], M, (0,) — M, (t,) = op(1) entails A~ [M,,(6,) — Mn(t,)] =
op(1). Therefore, we conclude that d(6,,t,) = op(1) too. O
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ProOOF oF LEMMA B.2. Foralln > 1and f € ©, define ©,, = ©,t; =t,,
M, (0) = |Z,(0)] and M,,(0) = |Z,(0)|. We note that (a) in Lemma B.1
follows from (d), that (b) in Lemma B.1 trivially holds, and finally that (¢)
in Lemma B.1 is a consequence of (e) and the reverse triangle inequality.
Now, for each n > 1, Z,,(6,) = 0 rewrites M,,(6,) — M, (¢}) < 0. Applying
Lemma B.1 yields the result. O

B.2. Maximal inequalities and convergence of empirical pro-
cesses. The following two results are the cornerstones of our theoretical
study.

LEMMA B.3 (maximal inequality). Let F be a separable class of mea-
surable, real-valued functions, with envelope function F. Set n > 1. It holds
that

B1)  E(alPu— Pougl7) S Jr(LF) x [Flar, .

LEMMA B.4 (convergence of empirical processes indexed by estimated
functions). For each n > 1, let F, = {fo, : 0 € ©,n € T,,} be a sepa-
rable class of measurable, real-valued functions, with envelope function F,.
Suppose the following holds:

(a) The sequence {Fy,},>1 satisfies the Lindeberg condition: ||Fn|]2,pQ
O(1) and, for every § >0, ||F,1{F, > d\/n} 2Py gret = o(1).
(b) If 6, = o(1), then it holds that Jg, (6n, Fn) = o(1).

0’grcf =

If n, € T, is such that supgeg || fo., — fe,noHZPQO,gref = op(1) for some
10 € Np>1 Unzp Ty, then suppeg [vVn(Pn — PQog, ) (fom, — fom)l = op(1).

The proof of Lemma B.4 notably relies on the lemma below. Its proof, a
straightforward adaptation of that of [8, Lemma 12], is omitted.

LEMMA B.5. For each n > 1, let F, be a class of measurable, real-
valued functions with envelope function F, such that 6, = o(1) implies
JE, (0n, Fn) = o(1). Then (i) Jg, (3, Fn) = O(1) for every § > 0, and (ii) for
every € > 0, there exist § > 0 and ny > 1 such that Jg, (0, F,) < € for all
n>ni.

PrOOF OF LEMMAS B.3 AND B.4. The proofs of Lemmas B.3 and B.4
are best presented jointly.
Let us prove (B.1) from Lemma B.3 in three steps.
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Step one: decoupling. By [2, Proposition 6.1.5 and Remark 6.1.6], it is
possible to enlarge the probability space and to define three sequences of
random variables {e,}n>1, {(O%, Z)}n>1, {(OEL,ZFL)}nzl and a o-field G
such that

o {en}n>1 is a sequence of independent Rademacher random variables,
a sequence that is moreover independent of the three {(Oy, Zy)}n>1,
{(OEN Zfz)}nZla {(OEL, Zg)}nZl?

e the distributions of (0%, Z%) and (O?, Z?) coincide with that of (Oy, Z1)
and, for every n > 2, the conditional distributions of (O?, Z%) and
(OE“ZEL) given G coincide with that of (O, Z,) given (O1, Z1),...,
(On—h Zn—l);

e conditionally on G, the two sequences {(O?, Z°)}n>1, {(O%, Zg)}nzl
are independent and each with mutually independent elements.

The new sequences {(0, Z°)},>1 and {(OE17 ZE)}nzl are said “decoupled
sequences” to {(Op, Zp) tn>1.

We denote Eg the conditional expectation given G and E'(’J the conditional
expectation given G and {(O”, Z?)},>1. We also characterize P Pg?o,gn and
P® by setting, for each f : O x [0,1] — R, P2f = n~' 30" f(O2, 22),
PQo,gnf =n"' YL Eglf(0},2})), PP f = ”_1 Zz:l eif (Ozb Z)).

Step two: symmetrizing. Let ® be a non-decreasing, convex function map-
ping R, to R. Set n > 1. By construction of the decoupled sequences, it holds
that E[®(n|| P, — Pg, g, || 7)] = E(Eg[®(n| P, — Qo,gan)])' We now focus
on Eg[®(n||P) — PR, 4 Il 7)].

Note that

nl|B) — Py g llr = Zfob Z?) — Eg(f(0%, Z%))

Zf (02, 28) — E5(f(O%, Z%)

IN

fObe F(O8, 78 ]
].'

)

so that Jensen’s inequality yields

n

ST 108,22 — £(05, Z2)

=1

@ (nl| P, — Pl g,ll7) < B

f
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By taking outer (conditional) expectation, we obtain

(B.2)

Eg [‘1’ (nHPﬁ - P&g,gnH}')} < Eg|®
Observe now that, for every n-tuple (eq,...,e,) € {—1,1}",
( ]-‘)]

< }‘)]

n
N el £(0),22) — f(O5, Z2)
=1
since, for each 1 < i < n, (02, Z?) and (OE, Zf) are independent and equal
in law (conditional on G). Consequently, (B.2) yields
]:)]

(15

where the expectation Eg to the right now also concerns the (condition-
ally and unconditionally on G) independent (e1,...,&,). By the triangle
inequality and convexity of ®, we see that the RHS expression of (B.3) is

itself upper-bounded by
F F
( ]:) ]

(s )]

In conclusion, we derive the symmetrization inequality

2, 70) — f(OF, ZF)

)

Zf (03, 22) — f(OF, Z%)

(B3) Eg |® (n|[P) ~ Ph,g,llr)]

< Eg |® F(O2, 72) — f(OF, Z%)

,Eg

Zsz Ou Zu

Zezf 0%, 7%

+Eg

hence

Eg [@ (n P — Phyg,ll5)| < Eg |@

(B.4) E[® (n]| Py — Poyg.ll7)] < E[@(2n] PY||7)].
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Step three: chaining. Taking ® given by ®(z) = x (all z > 0) in (B.4)
readily yields

(B.5) E (V| Py — Py g, | 7) < 2E(Val|PY||7).

Set now ®(x) = exp(x?)—1 (all z > 0) and let || -||¢ be the corresponding
®-Orlicz norm [7, page 95]. Conditionally on (O?, Z?), e (OEL, Zk;b), the pro-
cess v/nPY is sub-Gaussian for the L?(P?)-seminorm || - Han by Hoeffding’s
inequality [7, Lemma 2.2.7]. The number s’, = SUpfer ||f||gn upper-bounds
the radius of FU{0} wrt || - ||5n Thus, by [7, Theorem 2.2.4] (a maximal in-
equality whose proof essentially relies on a chaining argument) and a change
of variable, it holds that

sh
IVarle s [ \1+ 108N F 2P

IN

, sn/IFII5 .
17150 | U+ log N[l .. F, L2(P2))de.
By definition of the uniform entropy integral, we therefore obtain

b b b b
VAP o S IF 3,0 TF, (50 | Fll 00 F),

a result which holds conditionally on (0%, Z%),..., (0%, Z%). Finally, we take
the expectation wrt to (0%, 2°), ..., (0", Z%) and note that (a) s, < ||F||b2n,
() E(1F15,) < |IF|

2Py, et In view of (B.5) this does yield

B (VallPo = Payg,ll7) = E (VAP = P, g,l%)

(B.6) S E(I1F s % J5 (55/ 1 F 00 F))
< T (LF) % [l
which completes the proof of (B.1).
We now show Lemma B./. The proof follows closely that of [1, Part III,
Theorem 6.16]. It has four steps.

Step one: preliminary. Introduce the classes 70 (random) and F0 (deter-
ministic) given by

FO={fom, — fomy : 0 €O} CFY = {fon — fouo:0€0,n €T}

Lemma B.4 states that /n||P, — Pgy.g, ||z = op(1).
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For an arbitrarily fixed § > 0, define

~
(=]
—
(=2
~—
I

2 2
{T] € T’I’L : Sup ||f0777 - f9ﬂ70 ‘27P ref S 6 } ’
06 09

FUS) = {fom— fom :0 € OmeTIO)} C F,
Fo(5)? {h? :h e F2(8)}, and
20) = SWreRe) I, I1PallFos)

11+ 2R3, 11+ 2Fall3,,

The classes F0, F0(8) and F° admit H, = 1+ 2F, as an envelope function.
Because its definition involves P?, s° () is random. Moreover, HHann > 1

and Supje 7o s ||h||gn < HZFnHZn yield that
B7) 0 <min (1 suwp [Al}, ) = min (1 1Py )
ReFI(5) ’ "

By (B.6) and the Cauchy-Schwarz inequality, we have

(B8) [E(VallPu — Pavellre)]”
< [ (1812,  Ta (50, 7o) )|

< B (| Hall) % B (T, (53(0), F2(6))?)
Step two: studying s°,(5). We now show that there exists an integer n;(8)
such that E(s”(5)) < min(1,02) for all n > n1(8). The proof is based on
(B.7) and the decomposition F2(5)? = f271(5)2 U ]:272(6)2 for
FI6)? = {r*1{2F, < pvn/2} : h € F2(5)},
Fro(8)? = {h*1{2F, > pv/n/2} : h € F)(5)}

where the constant p > 0 will be determined later.
Obviously, py/n/2 x 2F, = py/nF, is an envelope function for F ,(6)*.
By (B.6), we thus have

B.9) E(ValP, = Py gz 52)
S i (LFLL(8)2) % [ pv/nF

|2’PQ0,gref :
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But Jp\/ﬁFn(l,f70L71(5)2) easily compares to Jg (1,F,). Indeed, whichever
are ¢ > 0, h,h' € .7-'2(5), and m a discrete probability measure such that
0 < mF,, it holds that

m(h? — W) 1{2F, < pv/n/2} < (4F) m(h — 1')? < (pv/n)*m(h — I)?,

hence
N (e[| pv/nFplm,2, F 1(6)%) < N (|| Fullm,2, Fn)

from which we deduce that J, s (1, Fp1(0)?) < Jg,(1,F,). This bound
and (B.9) yield

B10) B (1P = Pyl o2) S pTm, (1, Fa) X ||l

2’PQ0,gref °

Furthermore, because (i) 2F,, is an envelope function for ) 5(6)* and (ii)

the design g, attached to the sequence {(O?, Z2)}n>1 is bounded away from
0 and 1, it holds that

E (1P = Py, 5o 002) S pI5, (L Fa) X | Fal{Fu > pv/n/2Hl2.ry,

Since F2()? is the union of ]:3’1(6)2 and ]:2’2(5)2, the previous inequality
combined with (B.10) then yields

E (1P = Py g, 7002
S pdr, (1, Fp) % HFnHQ,PQO’gref
+ pJE, (1, Fo) X | Eu1{F, > pv/n/2}

|2’PQ0,gref :

By (a) in Lemma B.4, it holds that ||Fn”27pQ jref = O(1) and ||F,1{F), >
0>
pv/n/2} 2P et = o(1). By Lemma B.5, Jg, (1, F,) = O(1). Therefore, it
0
is possible to choose p > 0 and find n;(d) > 1 such that, for all n > ny(6),

(B.11) E (”pg - Pgmgn”fg(é)z) < 52,

Now, the definition of F0(§) and the above remark (4) about the design
g, yield the additional inequality, valid for all sample size:

(B.12) B (1| g, ll7p052) S 0%
By the triangle inequality, (B.7), (B.11) and (B.12) imply

E(s5,(8)) < min (1, B (P2 7g(ay2 ) )  min(1, 6)
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for all n > nq(0). Markov’s inequality then yields that, for all £ > 0 and
n > ni(9),

(B.13) P (sm) > 5) < ¢ Lmin(1, 82).

This completes the study of s?, ().

Step three: fine-tuning. Set arbitrarily o, > 0. Note that the above re-
mark (i) about the design g, and assumption (a) in Lemma B.4 imply the
existence of a constant C'; > 0 such that the following bounds hold on the
leftmost factor of the RHS expression in (B.8):

b
(B.14) B (I1Hal) S 1Fall3 py, . < CF.

By assumption (b) in Lemma B.4 and Lemma B.5, there exist 0 < £ < 1,
Co > 0 and ng > 1 such that Jy, (&, F,) < ag/Cy and Jy, (1, F,)? < CF for
all n > na. Let g > 0 be such that dy < aey/3£/C1Cs. By assumption on
N in Lemma B.4, we know that there exists n3(dp) > 1 such that P(n, ¢
T9(89)) < € for all n > n3(dp)-

Step four: wrapping up. Let n be larger than max(nq(dg), n2,n3(dp)). It
holds that

A=P <sup APy — Poyg) o — Joms)| = a)

0cO
= P (VnllP = Poyg, | 7 > @)
< P (10 # T3(00)) + P (1 € T2(00), V7ll Pa — Paygallz = @)
< e+ P (VnlPo — Poogall 7o) = @) -
By Markov’s inequality, (B.8), (B.14) and (B.13), we obtain the inequalities

A < cranB(1E0R)" x B (1, (50). Foa?)

n

< o x (P(4(00) 2 €) % i, (L Fo)? + T, (§,fn)2>1/ ’

< e+a 101 x (€' min(1,63) x C3 + (Cy 'ae)?) < 3e.

Since « and € were arbitrarily chosen, this completes the proof of Lemma B.4.
O

APPENDIX C: PATHWISE DIFFERENTIABILITY

The next two lemmas are summaries of results stated and shown in [3, 4].
We state them for the sake of completeness.
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LEMMA C.1. Setpe R, aknown TR. Let ¥, : M — [0, 1] be given by

(C.1) U, (Fo.g) = Eq (Qy (p(W), W)).

The mapping ¥, : M — [0,1] is pathwise differentiable at every Pg, €
M with respect to (wrt) the mazimal tangent space. Its efficient influence
curve at Pg 4 is D,(Q,g) which satisfies D,(Q,9)(0) = Dw,,(Q,9)(W) +
Dy, ,(Q, 9)(O) with

Dwp(Q(W) = Qy(p(W). W) — U,(Poy).
Dy ,(Q.9)(0) = ww-@ym,w».

The variance Varp, , Dy(Q, 9)(O) is a Cramér-Rao lower bound for the
asymptotic variance of any reqular and asymptotically linear estimator of
VU, (Pg,g) when sampling independently from Pg 4.

In addition, if g = ¢', then Eq 4(D,(Q',¢')(0)) = 0 implies ¥ ,(Pg o) =
Uy(PQ,q)-

The notation Dyy,,(Q) conveys the notion that the first component of
D,(Q,g) does not depend on g. This is true because ¥,(FPg4) does not
depend on g either.

LEMMA C.2. The mapping ¥ : M — [0,1] is pathwise differentiable
at every Py, € M wrt the mazimal tangent space. Its efficient influence
curve at Pg 4 is D(Q,g) which satisfies D(Q,g)(0O) = Dw(Q,g9)(W) +
Dy(Q,.9)(0) with

Dw(@F) = Qulr(@v)(W), W)~ ¥(Pay)
Dy(@0) = M - gy am).

The wvariance Varp, , D(Q,9)(O) is a Cramér-Rao lower bound for the
asymptotic variance of any regular and asymptotically linear estimator of
U(Pg,4) when sampling independently from Pg 4.

In addition, if g = ¢, then Eg 4(D(Q’,¢')(0O)) = 0 implies

U(Pyy) = Eq (Qy (r(Qy) (W), W)) .

In particular, if 7(Qy) = r(Qy) and g = ¢, then Eg 4(D(Pgy 4)(0)) =0
implies W(Pg g) = V(Pg,4).
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APPENDIX D: NOTATION INDEX

This notation index covers the entirety of the main article and gives the
bare minimum to skim through the pages of the supplemental article.
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equal, by definition, to

supremum norm

L?(p)-norm

L?(Pyg, gret)-n0rm

seminorm of f: W — R given by

1£112 = Eoy (lavo(W)] x | F(W)IP)

the supremum of |(P, — Pgye,)f| in f € F, with F a

separable set of measurable functions over O

see Qy,p, Qv,8,.01 Q80> Qv

generically denoted ¢y, a function describing the ex-
pected difference in reward under a “blip” in treatment,
conditional on baseline covariates

counterfactual cumulative pseudo-regret at sample size n,
see (5.5)

a measure of discrepancy between g, and g, see (3.5)

a measure of discrepancy between 1, and rg, see (3.3)
two components of the influence function in the asymp-
totic linear expansion (4.15) of ¥ — ), o, see (4.9) and
(1.10)

empirical counterparts to djy, and di, see (4.12) and
(1.13)

efficient influence curve of W, at Pgj 4., see Lemma C.1
optimal fluctuation parameter along

{Qv,80,g0,p(€) 1 € € E}, see (4.3) and A3

empirically optimal fluctuation parameter along
{Qv,8,,gn,mn (€) 1 € € E}, see (2.15) and (2.16)

empirical cumulative pseudo-regret at sample size n, see
(5.2)

envelope functions

positive constants involved in the statement of A5, A5*
and A5**

generic stochastic TR such that, under g, the conditional
distribution of A given W is the Bernoulli law with pa-
rameter g(1|W) =1 — g(0|W) € (0,1)
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balanced stochastic TR, given by g*(1|W) = ¢ (0|W) =
1/2

stochastic TR bounded away from 0 and 1 serving as a
reference

stochastic TR defined as an approximation to rg, see (3.1)

data-adaptive stochastic TRs used to assign treatment to
the ith and nth patients, see (2.11)

ordered vector g, = (g1,...,9n) of the n first data-
adaptive stochastic TRs

non-decreasing, c¢,-Lipschitz approximation to z
1{xz > 0} on [—1,1] taking values in [t,,1 — t,] C [0,1]
and such that ¢, | too > 0 and ¢, T coo < 00 see (2.5)

semiparametric collection of all gs

the subsets of G defined as G1,, = {Gn(qv) : Qy € Qi.n}
and G1 = Up>1G1.n
clever covariate associated with TR p € R and stochastic

TR g € G, see (2.14): Hy(g)(0) = %; it is used

to fluctuate an initial estimator of Qy,

the uniform entropy integral at § of F wrt an envelope
function F, i.e., f06 \/Iogsup“ N (e||F|l2,us Fo |l - l2,0)de,
with a supremum taken over all probability measures p
for which || F||2,, > 0, a measure of complexity of F

loss functions for the estimation of QJy,o, where the quasi
negative-log-likelihood and least-square loss functions LX!
and L' are given by (2.6) and (2.7)

given a loss function L, the set {L(Qyg) : Qy,g € Qin}
semiparametric model M ={Pg,:Q € Q,g9 € G}
d-covering number of F wrt | - [|2,,

bounded space O = W x {0,1} x (0,1) where a generic
observed data-structure takes its values

ordered vector O, = (O, ..., Oy) of the n first observed
data-structures O; = (W;, A;,Y;)

the empirical distribution of O(n)

shorthand notation for n=* Y% | f(0;, Z;)
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distribution of O = (W, A,Y’) obtained by drawing W
from its marginal distribution encoded in @, then A from
the Bernoulli distribution with parameter g(1|W), then
Y from its conditional distribution given (A, W) encoded
in

shorthand notation for Eq 4(f(O, 2))

same as Pp 4 with Q = Qo and g = g;, the conditional
distribution of O; given O(i — 1)

shorthand notation for Eq,, 4,[f(O0;, Z;)|O(i — 1)]
shorthand notation for n=1 Y7 | Pg 4. f
mean reward of the optimal TR under @, see (2.3)

a data-adaptive parameter, the mean reward of empirical
TR r, under Qo, see (4.4)

targeted minimum loss estimator (TMLE) of ¢, at
sample size n, see (2.17)

mapping from M to [0,1] given by (2.4), such that
U(Pg,q) is the mean reward of the optimal TR under @

mapping from M to [0,1] given by (4.16), such that
U, (Pg,g) is the mean reward of TR ry under @ (note
that 7o may differ from r(Qy))

generic and true infinite-dimensional parameters fully de-
scribing the marginal distribution of W and conditional
distribution of Y given A, W

infinite-dimensional parameter such that W has the same
marginal distribution under Qf as under @y and the con-
ditional distribution of Y given A, W under Qg is Q’{/,o

(generic and true) conditional expectations of Y given

A, W under QQ and Qg

shorthand notation for Qy g, go.r (€0(70)), a conditional
expectation of Y given A, W defined as the optimal fluc-
tuation of Qy,g, 4, in the direction of H,,(go), see (4.8);
such that Eq,(Qy-o(ro(W), W)) equals 1o

generic element of Q7

projections of Qy,p onto Q1 ,, and Q1, see A2
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Qv,s, Qv,s,

Qv,8,9,0(€)

QY,BO,QO,P(G)
QY,Bnagn,rn (6)

*
Q)/vﬁn sgnTn

*

Y)c’n 7r’n
Qy,cp(€)
Qv ple)op

qy, qy,0

qv.p

ay,B;> 9Y,Bn

9, Oy
Qin, Q1

7(Qy)

r(Qy,) or 7o

Ti, T'n
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estimators of QQy,o defined as solutions to the minimiza-
tion of the weighted empirical risk over Qq; and Q;,, at
sample sizes i and n, see (2.8)

generic fluctuation, indexed by ¢, of Qy 3 in the direction
of Hy(g), see (2.15):

Qy,,9,0(€) = expit (logit(Qy,g) + €H,(g))

= expit (10git(Qy’ﬂ) + 6%)
generic fluctuation, indexed by €, of Q)y g, in the direction
of Hy(go), see (4.2)
fluctuation, indexed by €, of the initial estimator Qy g,
of Qyp in the direction of H, (gn), see (2.15)

targeted, empirically optimal fluctuation Qy,gs, g, (€n)
of the initial estimator Q)y,3, of Qy,0 in the direction of

H;, (gn)

shorthand notation for Q’{,’ B G (used in the supple-
mentary article only)

shorthand notation for Qy,3 4,,(€), see (A.1) (used in the
supplementary article only)

shorthand notation defined in (A.2) (used in the supple-
mentary article only)

(generic and true) blip functions under @ and Qy, given
by gv (W) = Qyv(1,W) — Qv(0,W) and gyo(W) =
Qy,0(1, W) — Qy,0(0, W)

blip function associated with Qy,g, given by qyg(W) =
QY,,B(L W) - QY,,B(Oa W)

estimators of gy, defined as the blip functions associated
with Qys,, Qv,3,, see (2.9)

semiparametric collections of all @s and all Qys

nth working model Q1, = {Qyp : 8 € By} C Qy and
their union Q1 = Up,>191,

optimal TR under @, see (2.2)

optimal TR under Qq, given by 7(Qy,)(W) = ro(W) =
Hayo(W) = 0}

estimators of ry defined as the TRs associated with gy,
and gy g, at sample sizes i and n, see (2.10)
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generic TR p e R
set of all TRs
the subset of R defined as

r(Qin) ={r(Qy) : Qy € Qin}

asymptotic variance of /n(v} — ¢, o) and an explicit
estimator used to derive confidence intervals for v, o and
1o, see (4.11) and (4.14)

asymptotic variance of \/n(¢+&,—n"1 Y7 | V;) and an
explicit estimator used to derive lower confidence bounds
for €, and C,, see (5.3) and (5.4)

individualized treatment strategy in which treatment as-
signment for a patient is determined randomly from a
conditional distribution given her measured baseline co-
variates; generically denoted g

fine-tune parameter used in the definition of G,

individualized treatment strategy in which treatment as-
signment for a patient is determined deterministically
based on her measured baseline covariates; generically
denoted p, a function of baseline covariates prescribing
deterministically which treatment to assign; can be seen
as a degenerate stochastic TR

abbreviation of “treatment rule”
fine-tune parameter used in the definition of G,

shorthand notation used for a generic indexing parameter

C = (ﬂag)a CO = (/80,90) and CTL = (ﬁnagn) (used in the
supplemental article only)

given a known g € G and O drawn from FPg,,, Z =
g(A|W) is a weight associated with O; since Z is deter-
ministically determined given g and O, we can augment
O with Z, i.e., substitute (O, Z) for O and still say that
(0, Z) is drawn from Pg, 4

Z;i = gi(4;|W;) and Z,, = gn(A,|W,,) are weights asso-
ciated with O; and O,; we can substitute (O;, Z;) and
(On, Zy) for O; and O, and still say that (O;, Z;) and
(On, Zy,) are drawn from Pg, 4, and P, 4, conditionally
on O(i — 1) and O(n — 1)
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APPENDIX E: A TABLE AND A FIGURE SUMMARIZING THE
SIMULATION STUDY
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FiGURE 2. Illustrating the data-adaptive inference of the optimal treatment
rule, its mean reward and the related pseudo-regrets through the representa-
tion of the conditional mean Qy,0, blip function gy,0 and their estimators (see
also Figure 1). Top left plot. The solid curves represent U — Qy,o(1, (U,v)) forv=1 (in
blue, minimum reached at U = 1), v = 2 (in pink, minimum reached at U = 1/2) andv = 3
(in green, minimum reached at U = 1/3). The dashed curves represent U — Qy,0(0, (U, v))
for v =1 (in blue, mazimum reached at U = 1/6), v = 2 (in pink, mazimum reached at

= 1/3) and v = 3 (in green, minimum reached at U = 1/2). Bottom left plot. The
curves represent U — qy,0(U,v) for v =1 (in blue, minimum reached close to 1/9), v =2
(in pink, minimum reached close to 1/2) and v = 3 (in green, minimum reached close to
1/3). Right plots. Counterparts to the left plots, where Qvy,0 and qy,0 are replaced with
Qv,s, and qy,s, for n =1000, the final sample size.
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