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Abstract

We consider the estimation of the slope function in functional linear regression, where
scalar responses are modeled in dependence of random functions. Cardot and Johannes
[2010] have shown that a thresholded projection estimator can attain up to a constant
minimax-rates of convergence in a general framework which allows to cover the prediction
problem with respect to the mean squared prediction error as well as the estimation of the
slope function and its derivatives. This estimation procedure, however, requires an optimal
choice of a tuning parameter with regard to certain characteristics of the slope function
and the covariance operator associated with the functional regressor. As this information
is usually inaccessible in practice, we investigate a fully data-driven choice of the tuning
parameter which combines model selection and Lepski’s method. It is inspired by the recent
work of Goldenshluger and Lepski [2011]. The tuning parameter is selected as minimizer
of a stochastic penalized contrast function imitating Lepski’s method among a random
collection of admissible values. This choice of the tuning parameter depends only on the
data and we show that within the general framework the resulting data-driven thresholded
projection estimator can attain minimax-rates up to a constant over a variety of classes of
slope functions and covariance operators. The results are illustrated considering different
configurations which cover in particular the prediction problem as well as the estimation
of the slope and its derivatives.
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1 Introduction

In functional linear regression the dependence of a real-valued response Y on the variation of a
random function X is studied. Typically the functional regressor X is assumed to be square-
integrable or more generally to take its values in a separable Hilbert space H with inner product
〈·, ·〉H and norm ‖·‖H. Furthermore, we suppose that Y and X are centered, which simplifies
the notations and that the dependence between Y and X is linear in the sense that

Y = 〈β,X〉H + σε, σ > 0, (1.1)

for some slope function β ∈ H and error term ε with mean zero and variance one. Assuming
an independent and identically distributed (iid.) sample of (Y,X), the objective of this paper
is the construction of a fully data driven estimation procedure of the slope function β which
still can attain minimax-optimal rates of convergence.
Functional linear models have become very important in a diverse range of disciplines, includ-
ing medicine, linguistics, chemometrics as well as econometrics (see for instance Ramsay and
Silverman [2005] and Ferraty and Vieu [2006], for several case studies, or more specific, Forni
and Reichlin [1998] and Preda and Saporta [2005] for applications in economics). The main
class of estimation procedures of the slope function studied in the statistical literature are based
on principal components regression (see e.g. Bosq [2000], Frank and Friedman [1993], Cardot
et al. [1999], Cardot et al. [2007] or Müller and Stadtmüller [2005] in the context of general-
ized linear models). The second important class of estimators relies on minimizing a penalized
least squares criterion which can be seen as generalization of the ridge regression (c.f. Marx
and Eilers [1999] and Cardot et al. [2003]). More recently an estimator based on dimension
reduction and threshold techniques has been proposed by Cardot and Johannes [2010] which
borrows ideas from the inverse problems community (Efromovich and Koltchinskii [2001] and
Hoffmann and Reiß [2008]). It is worth noting that all the proposed estimation procedures rely
on the choice of at least one tuning parameter, which in turn, crucially influences the attainable
accuracy of the constructed estimator.
It has been shown, for example in Cardot and Johannes [2010], that the attainable accuracy
of an estimator of the slope β is essentially determined by a priori conditions imposed on both
the slope function and the covariance operator Γ associated to the random function X (defined
below). These conditions are usually captured by suitably chosen classes F ⊂ H and G of slope
functions and covariance operators respectively. Typically, the class F characterizes the level
of smoothness of the slope function, while the class G specifies the decay of the sequence of
eigenvalues of Γ. For example, Hall and Horowitz [2007] and Crambes et al. [2009] consider
differentiable slope functions and a polynomial decay of the eigenvalues of Γ. Furthermore,
given a weighted norm ‖·‖ω and the completion Fω of H with respect to ‖·‖ω we shall measure
the performance of an estimator β̂ of β by its maximal Fω-risk over a class F ⊂ Fω of slope
functions and a class G of covariance operators, that is

Rω[β̂;F ,G] := sup
β∈F

sup
Γ∈G

E‖β̂ − β‖2ω.
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This general framework with appropriate choice of the weighted norm ‖·‖ω allows us to cover
the prediction problem with respect to the mean squared prediction error (see e.g. Cardot et al.
[2003] or Crambes et al. [2009]) and the estimation not only of the slope function (see e.g. Hall
and Horowitz [2007]) but also of its derivatives. For a detailed discussion, we refer to Cardot
and Johannes [2010]. Having these applications in mind the additional condition F ⊂ Fω
only means that the estimation of a derivative of the slope function necessitates its existence.
Assuming an iid. sample of (Y,X) of size n obeying model (1.1) Cardot and Johannes [2010]
have derived a lower bound of the maximal weighted risk, that is

R∗ω[n;F ,G] 6 C inf
β̂
Rω[β̂;F ,G]

for some finite positive constant C where the infimum is taken over all possible estimators β̂.
Moreover, they have shown that a thresholded projection estimator β̂m∗n in dependence of an
optimally chosen tuning parameterm∗n ∈ N can attain this lower bound up to a constant C > 0,

Rω[β̂m∗n ;F ,G] 6 C R∗ω[n;F ,G],

for a variety of classes F and G. In other words, R∗ω[n;F ,G] is the minimax rate of convergence
and β̂m∗n is minimax-optimal. The optimal choice m∗n of the tuning parameter, however, follows
from a classical squared-bias-variance compromise and requires an a-priori knowledge about the
classes F and G, which is usually inaccessible in practice.
In this paper we propose a fully data driven method to select a tuning parameter m̂ in such a
way that the resulting data-driven estimator β̂m̂ can still attain the minimax-rate R∗ω[n;F ,G]

up to a constant over a variety of classes F and G. It is interesting to note that, considering
a linear regression model with infinitely many regressors, Goldenshluger and Tsybakov [2001,
2003] propose an optimal data-driven prediction procedure allowing sharp oracle inequalities.
However, a straightforward application of their results is not obvious to us since they assume
a priori standardised regressors, which in turn, in functional linear regression necessitates the
covariance operator Γ to be fully known in advance. In contrast, given a jointly normally
distributed regressor and error term, Verzelen [2010] establishes sharp oracle inequalities for
the prediction problem in case the covariance operator is not known in advance. Although, it
is worth noting that considering the mean prediction error as risk eliminates the ill-posedness
of the underlying problem, which in turn leads to faster minimax rates of convergences of the
prediction error than, for examples, of the mean integrated squared error. On the other hand
covering both of these two risks within the general framework discussed above Comte and
Johannes [2010] consider functional linear regression with circular functional regressor which
results in a partial knowledge of the associated covariance operator, i.e. its eigenfunctions
are known in advance but the eigenvalues have to be estimated. In this situation Comte and
Johannes [2010] have applied successfully a model selection approach which is inspired by the
work of Barron et al. [1999] now extensively discussed in Massart [2007]. In the circular case, it
is possible to develop the unknown slope function in the eigenbasis of the covariance operator,
which in turn, allows to derive an orthogonal series estimator in dependence of a dimension
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parameter. This dimension parameter has been chosen fully data driven by a model selection
approach and it is shown that the resulting data-driven orthogonal series estimator can attain
minimax-optimal rates of convergence up to a constant. Although, the proof crucially relies on
the possibility to write the orthogonal series estimator as a minimizer of a contrast.
In this paper we do not impose an a priori knowledge of the eigenbasis and, hence the orthogonal
series estimator is no more accessible to us. Instead, we consider the thresholded projection
estimator β̂m as presented in Cardot and Johannes [2010] which we did not succeed to write
as a minimizer of a contrast. Therefore, our selection method combines model selection and
Lepski’s method (c.f. Lepski [1990] and its recent review in Mathé [2006]) which is inspired by
a bandwidth selection method in kernel density estimation proposed recently by Goldenshluger
and Lepski [2011]. Selecting the dimension parameter m̂ as minimizer of a stochastic penalized
contrast function imitating Lepski’s method among a random collection of admissible values
we show that the fully data-driven estimator β̂m̂ can attain the minimax-rate up to a constant
C > 0, that is

Rω[β̂m̂;F ,G] 6 C ·Rω[n;F ,G] (1.2)

for a variety of classes F and G. We shall emphasize that the proposed estimator can attain
minimax-optimal rates without specifying in advance neither that the slope function belongs
to a class of differentiable or analytic functions nor that the decay of the eigenvalues is poly-
nomial or exponential. The only price for this flexibility is in term of the constant C which is
asymptotically not equal to one, i.e. the oracle inequality (1.2) is not sharp.
The paper is organized as follows: in Section 2 we briefly introduce the thresholded projection
estimator β̂m as proposed in Cardot and Johannes [2010]. We present the data driven method
to select the tuning parameter and prove a first upper risk-bound for the fully data-driven esti-
mator β̂m̂ which emphasizes the key arguments. In section 3 we review the available minimax
theory as presented in Cardot and Johannes [2010]. Within this general framework we derive
upper risk-bounds for the fully-data driven estimator imposing additional assumptions on the
distribution of the functional regressor X and the error term ε. Namely, we suppose first that X
and ε are Gaussian random variables and second that they satisfy certain moment conditions.
In both cases the proof of the upper risk-bound employs the key arguments given in Section
2, while more technical aspects are deferred to the appendix. The results in this paper are
illustrated considering different configurations of classes F and G. We recall the minimax-rates
in this situations and show that up to a constant these rates are attained by the fully-data
driven estimator.

2 Methodology.

Consider the functional linear model (1.1) where the random function X and the error term ε

are independent. Let the centered random function X, i.e., E〈X,h〉H = 0 for all h ∈ H, have a
finite second moment, i.e., E‖X‖2H <∞. Multiplying both sides in (1.1) by 〈X,h〉H and taking

4



the expectation leads to the normal equation

〈g, h〉H := E[Y 〈X,h〉H] = E[〈β,X〉H〈X,h〉H] =: 〈Γβ, h〉H, for all h ∈ H, (2.1)

where g belongs to H and Γ denotes the covariance operator associated to the random function
X. Throughout the paper we shall assume that there exists a solution β ∈ H of equation (2.1)
and that the covariance operator Γ is strictly positive definite which ensures the identifiability
of the slope function β (c.f. Cardot et al. [2003]). However, due to the finite second moment
of X the associated covariance operator Γ has a finite trace, i.e. it is nuclear. Thereby, solving
equation (2.1) to reconstruct the slope function β is an ill-posed inverse problem with the
additional difficulty that Γ is unknown and has to be estimated (for a detailed discussion of
ill-posed inverse problems in general we refer to Engl et al. [2000]).

2.1 Thresholded projection estimator

In this paper, we follow Cardot and Johannes [2010] and consider a linear Galerkin approach
to derive an estimator of the slope function β. Here and subsequently, let {ψj , j ∈ N} be a pre-
specified orthornormal basis in H which in general does not correspond to the eigenbasis of the
operator Γ defined in (2.1). With respect to this basis, we consider for all h ∈ H the development
h =

∑∞
j=1[h]jψj where the sequence ([h]j)j>1 with generic elements [h]j := 〈h, ψj〉H is square-

summable, i.e., ‖h‖2H =
∑

j>1[h]2j < ∞. We will refer to any sequence (an)n∈N as a whole
by omitting its index as for example in «the sequence a». Furthermore, given m ∈ N denote
[h]m := ([h]1, . . . , [h]m)t (where xt denotes the transpose of x) and let Hm be the subspace of
H spanned by the first m basis functions {ψ1, . . . , ψm}. Obviously, if h ∈ Hm then the norm of
h equals the euclidean norm of its coefficient vector [h]m, i.e., ‖h‖H = ([h]tm[h]m)1/2 =: ‖[h]m‖
with a slight abuse of notations. An element βm ∈ Hm is called a Galerkin solution of equation
(2.1), if

‖g − Γβm‖H 6 ‖g − Γβ̆‖H, ∀β̆ ∈ Hm. (2.2)

Since the covariance operator Γ is strictly positive definite, it follows that the (m × m)-
dimensional covariance matrix [Γ]m := E([X]m[X]tm) associated with the m-dimensional ran-
dom vector [X]m is strictly positive definite too. Consequently, the Galerkin solution βm ∈ Hm

is uniquely determined by [βm]m = [Γ]−1
m [g]m and [βm]j = 0 for all j > m. However, the

Galerkin solution does generally not correspond to the orthogonal projection of the slope func-
tion onto the subspaceHm. Moreover, let (biasm)m>1 denote a sequence of approximation errors
given by biasm := supk>m‖βk−β‖ω, m > 1. It is important to note that in general without fur-
ther assumptions the sequence bias does not converge to zero. Here and subsequently, however,
we restrict ourselves to classes F and G of slope functions and covariance operators respectively
which ensure this convergence. Obviously, this is a minimal regularity condition for us since
we aim to estimate the Galerkin solution. Assuming a sample {(Yi, Xi)}ni=1 of (Y,X) of size n,
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it is natural to consider the estimators

ĝ :=
1

n

n∑
i=1

YiXi, and Γ̂ :=
1

n

n∑
i=1

〈·, Xi〉HXi

for g and Γ respectively. Moreover, let [Γ̂]m := 1
n

∑n
i=1[Xi]m[Xi]

t
m be the empirical (m ×

m)-dimensional covariance matrix and note that [ĝ]m = 1
n

∑n
i=1 Yi[Xi]m. Replacing in (2.2)

the unknown quantities by their empirical counterparts let β̃m ∈ Hm be a Galerkin solution
satisfying

‖ĝ − Γ̂β̃m‖H 6 ‖ĝ − Γ̂β̆‖H, ∀β̆ ∈ Hm.

Observe that there exists always a solution β̃m, but it might not be unique. Obviously, if [Γ̂]m

is non singular then [β̃m]m = [Γ̂]−1
m [ĝ]m. We shall emphasize the multiplication with the inverse

of the random matrix [Γ̂]m which may result in an unstable estimator even in case [Γ]m is well
conditioned. Let 1{‖[Γ̂]−1

m ‖s6n} denote the indicator function which takes the value one if [Γ̂]m

is non-singular with spectral norm ‖[Γ̂]−1
m ‖s := sup‖z‖=1‖[Γ̂]−1

m z‖ of its inverse bounded by n,
and the value zero otherwise. The estimator β̂m of β proposed by Cardot and Johannes [2010]
consists in thresholding the estimated Galerkin solution, that is,

β̂m := β̃m 1{‖[Γ̂]−1
m ‖s6n} . (2.3)

In the next paragraph we introduce a data-driven method to select the dimension parameter
m ∈ N.

2.2 Data-driven selection of the dimension parameter

Our selection method combines model selection (c.f. Barron et al. [1999] and its discussion in
Massart [2007]) and Lepski’s method (c.f. Lepski [1990]) borrowing ideas from Goldenshluger
and Lepski [2011]. We select the dimension parameter as minimizer of a penalized contrast
function depending on the weighted norm ‖·‖ω which we formalize next. Let (ωj)j>1 be a strictly
positive sequence of weights. We define for h ∈ H the weighted norm by ‖h‖2ω :=

∑∞
j=1 ωj [h]2j .

Furthermore, for m > 1, [∇ω]m and [Id]m denotes respectively the m-dimensional diagonal
matrix with diagonal entries (ωj)16j6m and the identity matrix where for all h ∈ Hm we have
‖h‖2ω = [h]tm[∇ω]m[h]m = ‖[∇ω]

1/2
m [h]m‖2. Given a sequenceK := ([K]k)k>1 of matrices, denote

by

∆m(K) := max
16k6m

‖[∇ω]
1/2
k [K]−1

k [∇ω]
1/2
k ‖s and

δm(K) := m ∆m(K)
log(∆m(K) ∨ (m+ 2))

log(m+ 2)
. (2.4)

Take as an example, ∆ω
m := ∆m(K) with K = ([Id]m)m>1 which satisfies ∆ω

m = max16k6m ωk.
For n > 1, set Mω

n := max
{

1 6 m 6 bn1/4c : ∆ω
m 6 n

}
. The dimension parameter is selected

6



among a collection of admissible values {1, . . . , M̂} with random integer M̂ given by

M̂ := min

{
2 6 m 6Mω

n : m∆ω
m ‖[Γ̂]−1

m ‖s >
n

1 + log n

}
− 1, (2.5)

where we set M̂n := Mω
n if the min runs over an empty set and bac denotes as usual the integer

part of a. Furthermore we define a stochastic sequence of penalties (p̂enm)
16m6M̂n

which takes
its inspiration from Comte and Johannes [2010]. Let δ̂m := δm(K) with K = ([Γ̂]m)m>1 and

p̂enm := 14 κ σ̂2
m δ̂m n−1 with σ̂2

m := 2
( 1

n

n∑
i=1

Y 2
i + [ĝ]tm[Γ̂]−1

m [ĝ]m
)

(2.6)

where κ is a positive constant to be chosen below. The random integer M̂ and the stochastic
penalties (p̂enm)

16m6M̂n
are used to define the sequence (Ψ̂m)

16m6M̂n
of contrast by

Ψ̂m := max
m6k6M̂

{
‖β̂k − β̂m‖2ω − p̂enk

}
.

Setting arg minm∈A{am} := min{m : am 6 am′ , ∀m′ ∈ A} for a sequence (am)m>1 with
minimal value in A ⊂ N, we select the dimension parameter

m̂ := arg min
16m6M̂

{
Ψ̂m + p̂enm

}
. (2.7)

The estimator of β is now given by β̂m̂ and below we derive an upper bound for its risk. By
construction the choice of the dimension parameter and hence the estimator β̂m̂ do not rely on
the regularity assumptions on the slope and the operator which we formalize in Section 3.

2.3 Upper risk bound for the data-driven thresholded projection estimator

The next assertion states the key argument in the proof of the upper risk-bound.

Lemma 2.1. Let (biasm)m>1 be the sequence of approximation errors biasm = supm6k‖βk −
β‖ω. Consider an arbitrary sequence of penalties (penm)m>1, an upper bound M ∈ N, and
the sequence (Ψm)m>1 of contrasts given by Ψm := maxm6k6M

{
‖β̂k − β̂m‖2ω − penk

}
. If the

subsequence (pen1, . . . , penM ) is non-decreasing, then we have for the selected model m̃ :=

arg min16m6M {Ψm + penm} and for all 1 6 m 6M that

‖β̂m̃ − β‖2ω 6 7 penm +78 bias2
m +42 max

m6k6M

(
‖β̂k − βk‖2ω −

1

6
penk

)
+

(2.8)

where (a)+ = max(a, 0).

Proof of Lemma 2.1. From the definition of m̃ we deduce for all 1 6 m 6M that

‖β̂m̃ − β‖2ω 6 3
{
‖β̂m̃ − β̂m̃∧m‖2ω + ‖β̂m̃∧m − β̂m‖2ω + ‖β̂m − β‖2ω

}
6 3
{

Ψm + penm̃ +Ψm̃ + penm +‖β̂m − β‖2ω
}

6 6{Ψm + penm}+ 3‖β̂m − β‖2ω. (2.9)
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Since (pen1, . . . , penM ) is non-decreasing and 4 bias2
m > maxm6k6M‖βk − βm‖2ω, it is for all

1 6 m 6M easily verified that

Ψm 6 6 sup
m6k6M

(
‖β̂k − βk‖2ω −

1

6
penk

)
+

+ 12 bias2
m .

The last estimate allows us for all 1 6 m 6M to write

‖β̂m − β‖2ω 6
1

3
penm +2 bias2

m +2 sup
m6k6M

(
‖β̂k − βk‖2ω −

1

6
penk

)
+

.

From the last inequality and (2.9), we obtain the assertion (2.8), which completes the proof.

In addition to the last assertion the proof of the upper risk bound requires two assumptions
which we state next. For n > 1 and a positive sequence a := (am)m>1 denote

Mn(a) := min

{
2 6 m 6Mω

n : m∆ω
m am >

n

1 + log n

}
− 1 (2.10)

where we set Mn(a) := Mω
n if the set is empty. Observe that M̂ given in (2.5) satisfies M̂ =

Mn(a) with a = (‖[Γ̂]−1
m ‖s)m>1. Consider for m > 1, δΓ

m := δm(K) with K = (‖[Γ]−1
m ‖s)m>1

and

penm := κ σ2
m δΓ

m n−1 with σ2
m := 2

(
EY 2 + [g]tm[Γ]−1

m [g]m
)

(2.11)

which are obviously only theoretical counterparts of the random objects given in (2.6). In order
to control the third right hand side term in the upper bound (2.8), the remainder term, we
impose the following assumption, though we show in Section 3 under reasonable assumptions
on the distribution of ε and X that it holds true for a wide range of classes F and G.

Assumption 2.1. There exist sequences (m�n)n>1 and (M+
n )n>1, and a constant K1 such that

sup
β∈F

sup
Γ∈G

E

{
sup

m�n6k6M
+
n

(
‖β̂k − βk‖2ω −

1

6
penk

)
+

}
6 K1 n

−1 for all n > 1.

In the following we decompose the risk with respect to an event En where p̂en is comparable
to its theoretical counterpart pen and M̂ lies between m�n and M+

n given by Assumption 2.1,
and its complement Ecn. To be precise, we define the event

En :=
{
penk 6 p̂enk 6 72 penk, ∀m�n 6 k 6M+

n

}
∩
{
m�n 6 M̂ 6M

+
n

}
(2.12)

and consider the elementary identity

sup
β∈F

sup
Γ∈G

E‖β̂m̂ − β‖2ω = sup
β∈F

sup
Γ∈G

E
(
‖β̂m̂ − β‖2ω 1En

)
+ sup
β∈F

sup
Γ∈G

E
(
‖β̂m̂ − β‖2ω 1Ecn

)
(2.13)

The conditions on the distribution of ε and X presented in the next section are also sufficient
to show that the following assumption holds true.

8



Assumption 2.2. There exists a constant K2 > 0 such that

sup
β∈F

sup
Γ∈G

E
(
‖β̂m̂ − β‖2ω 1Ecn

)
6 K2 n

−1 for all n > 1.

The next assertion provides an upper bound for the maximal Fω-risk over the classes F
and G of the thresholded projection estimator β̂m̂ with data-driven choice m̂ given by (2.7).

Proposition 2.2. If Assumption 2.1 and 2.2 hold true, then we have

Rω[β̂m̂;F ,G] 6 504 sup
β∈F

sup
Γ∈G
{penm�n + bias2

m�n
}+ (504K1 +K2)n−1 for all n > 1.

Proof of Proposition 2.2. We make use of the elementary identity (2.13) and taking into
account Assumption 2.2 we derive for all n > 1

Rω[β̂m̂;F ,G] 6 sup
β∈F

sup
Γ∈G

E
(
‖β̂m̂ − β‖2ω 1En

)
+K2n

−1. (2.14)

We observe that the random subsequences (σ̂2
1, . . . , σ̂

2
M̂

) and hence (p̂en1, . . . , p̂enM̂ ) are by

construction monotonically non-decreasing. Indeed, for all 1 6 m 6 k 6 M̂ the identity
〈Γ̂(β̂k − β̂m), (β̂k − β̂m)〉H = [ĝ]tk[Γ̂]−1

k [ĝ]k − [ĝ]tm[Γ̂]−1
m [ĝ]m holds true. Therefore, by using

that Γ̂ is positive definite it follows that [ĝ]tm[Γ̂]−1
m [ĝ]m 6 [ĝ]tk[Γ̂]−1

k [ĝ]k, and hence σ̂2
m 6 σ̂2

k.
Consequently, Lemma 2.1 is applicable for all 1 6 m 6 M̂ and we obtain

‖β̂m̂ − β‖2ω 6 7 p̂enm +78 bias2
m +42 max

m6k6M̂

(
‖β̂k − βk‖2ω −

1

6
p̂enk

)
+

.

On the event En defined in (2.12) we deduce from the last bound that for all n > 1

‖β̂m̂ − β‖2ω 1En 6 504 penm�n +78 bias2
m�n

+42 sup
m�n6k6M

+
n

(
‖β̂k − βk‖2ω −

1

6
penk

)
+

which by taking into account Assumption 2.1 implies that

sup
β∈F

sup
Γ∈G

E
(
‖β̂m̂ − β‖2ω 1En

)
6 504 sup

β∈F
sup
Γ∈G
{penm�n + bias2

m�n
}+ 504K1 n

−1 for all n > 1.

We obtain the claim of the proposition by combination of the last bound and (2.14).

Remark 2.1. The upper risk-bound given in the last assertion is strongly reminiscent of a
variance/squared-biased decomposition of the Fω-risk associated with the estimator β̂m�n em-
ploying the dimension parameter m�n. Indeed, in many cases the penalty term penm is in the
same order as the variance of the estimator β̂m (c.f. Illustration 3.1 [P-P] and [E-P] below).
In this situation we obviously wish that the parameter m�n just realize the balance between
both the variance and the squared-biased term which in many cases can lead to an optimal
estimation procedure. However, the construction of the penalty term is more involved to ensure
that Assumption 2.1 and 2.2 can be satisfied (c.f. Illustration 3.1 [P-E]). �
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3 Minimax-optimality

In this section we recall first a general framework proposed by Cardot and Johannes [2010] which
allows to derive minimax-optimal rates for the maximal Fω-risk, supβ∈F supΓ∈G E‖β̂−β‖2ω, over
the classes F and G. Placing us into this framework, we can derive the main results of this paper
which state that the proposed data-driven procedure indeed can attain these minimax-rates.

3.1 Notations and basic assumptions

The additional regularity conditions β ∈ F and Γ ∈ G imposed on the slope function and
the covariance operator, respectively, are characterized by different weighted norms in H with
respect to the pre-specified orthonormal basis {ψj , j ∈ N} in H, which we formalize now. Given
a strictly positive sequence of weights b = (bj)j>1 and a radius r > 0, let Fb be the completion
of H with respect to the weighted norm ‖·‖b, then we consider in the following the ellipsoid
Frb :=

{
h ∈ Fb : ‖h‖2b 6 r

}
as class of possible slope functions. Furthermore, as usual in the

context of ill-posed inverse problems, we link the mapping properties of the covariance operator
Γ and the regularity condition β ∈ Frb . Therefore, consider the sequence (〈Γψj , ψj〉)j>1 which
sums up to E‖X‖2H, i.e. Γ is nuclear, and hence converges to zero. In what follows we impose
restrictions on the decay of this sequence. Denote by N the set of all strictly positive nuclear
operators defined on H. Given a strictly positive sequence of weights γ and a constant d > 1

define the class Gdγ ⊂ N of covariance operators by

Gdγ :=
{
T ∈ N : ‖f‖2γ2/d

2 6 ‖Tf‖2 6 d2 ‖f‖2γ2 , ∀f ∈ H
}

where arithmetic operations on sequences are defined element-wise, e.g. γ2 = (γ2
j )j>1. Let us

briefly discuss the last definition. If T ∈ Gdγ , then we have d−1 6 〈Tψj , ψj〉/γj 6 d, for all
j > 1. Consequently, the sequence γ is necessarily summable, because T is nuclear. Moreover,
if λ denotes the sequence of eigenvalues of T then d−1 6 λj/γj 6 d, for all j > 1. In other
words the sequence γ characterizes the decay of the eigenvalues of T ∈ Gdγ . We do not specify
the sequences of weights ω, b and γ, but impose from now on the following minimal regularity
conditions.

Assumption 3.1. Let (ωj)j>1, (bj)j>1, and (γj)j>1 be strictly positive sequences of weights with
b1 = 1, ω1 = 1, γ1 = 1, and

∑∞
j=1 γj < ∞ such that the sequences b−1, ωb−1, γ, and γ2ω−1

are monotonically non-increasing and converging to zero.

The last assumption is fairly mild. For example, assuming that ωb−1 is non-increasing,
ensures that Frb ⊂ Fω. Furthermore, it is shown in Cardot and Johannes [2010] that the
minimax rate R∗ω[n;Frb ,Gdγ ] is of order n−1 for all sequences γ and ω such that γ2ω−1 is non-
decreasing. We will illustrate all our results considering the following three configurations for
the sequences ω, b and γ.

Illustration 3.1. In all three cases, we take ωj = j2s, j > 1. Moreover, let
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[P-P] bj = j2p and γj = j−2a, j > 1, with p > 0, a > 1/2, and p > s > −2a;

[E-P] bj = exp(j2p − 1) and γj = j−2a, j > 1, with p > 0, a > 1/2, and s > −2a;

[P-E] bj = j2p and γj = exp(−j2a + 1), j > 1, with p > 0, a > 0, and p > s;

then Assumption 3.1 is satisfied in all cases. �

Remark 3.1. In the configurations [P-P] and [E-P], the case s = −a can be interpreted as
mean-prediction error (c.f. Cardot and Johannes [2010]). Moreover, if {ψj} is the trigonometric
basis and the value of s is an integer, then the weighted norm ‖h‖ω corresponds to the L2-norm
of the weak s-th derivative of h (c.f. Neubauer [1988]). In other words in this situation we
consider as risk the mean integrated squared error when estimating the s-th derivative of β.
Moreover, in the configurations [P-P] and [P-E], the additional condition p > s means that
the slope function has at least p > s+ 1 weak derivatives, while for a value p > 1 in [E-P], the
slope function is assumed to be an analytic function (c.f. Kawata [1972]). �

3.2 Minimax optimal estimation reviewed

Let us first recall a lower bound of the maximal Fω-risk over the classes Frb and Gdγ due to
Cardot and Johannes [2010]. Given an i.i.d. sample of (Y,X) of size n and sequences ω, b and
γ satisfying Assumption 3.1 define

m∗n := arg min
m>1

max

ωm
bm

,
m∑
j=1

ωj
nγj

 and R∗n := max

ωm∗n
bm∗n

,

m∗n∑
j=1

ωj
nγj

. (3.1)
If in addition ξ := infn>1{(R∗n)−1 min(ωm∗nb

−1
m∗n

,
∑m∗n

j=1 ωj(nγj)
−1)} > 0, then there exists a

constant C := C(σ, r, d, ξ) > 0 depending on σ, r, d and ξ only such that

inf
β̃
R∗ω[β̃;Frb ,Gdγ ] > C R∗n for all n > 1. (3.2)

On the other hand considering the dimension parameterm∗n given in (3.1) Cardot and Johannes
[2010] have shown that the maximal risk R∗ω[β̂m∗n ;Frb ,Gdγ ] of the estimator β̂m∗n defined in (2.3)
is bounded by R∗n up to constant for a wide range of sequences ω, b, and γ, provided the
random function X and the error ε satisfy certain additional moment conditions. In other
words R∗n = R∗ω[n;Frb ,Gdγ ] is the minimax-rate in this situation and the estimator β̂m∗n is
minimax optimal. Although, the definition of the dimension parameter m∗n necessitates an
a-priori knowledge of the sequences b and γ. In the remaining part of this paper we show that
the data-driven choice of the dimension parameter constructed in Section 2 can automatically
attain the minimax-rate R∗n for a variety of sequences ω, b, and γ. Before, let us briefly illustrate
the minimax result.

Illustration (continued) 3.2. Considering the three configurations (see Illustration 3.1),
it has been shown in Cardot and Johannes [2010] that the estimator β̂m∗n with m∗n as given
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below attains the rate R∗n up to a constant. We write for two strictly positive sequences (an)n>1

and (bn)n>1 that an ∼ bn, if (an/bn)n>1 is bounded away from 0 and infinity.

[P-P] It is easily seen thatm∗n ∼ n1/(2p+2a+1) if 2s+2a+1 > 0,m∗n ∼ n1/[2(p−s)] if 2s+2a+1 < 0

and m∗n ∼ (n/ log n)1/[2(p−s)] if 2a + 2s + 1 = 0, which in turn implies that R∗n ∼
max(n−(2p−2s)/(2a+2p+1), n−1), if 2s+ 2a+ 1 6= 0 (and R∗n ∼ log(n)/n if 2s+ 2a+ 1 = 0).
Observe that an increasing value of a leads to a slower minimax-rate R∗n. Therefore, the
parameter a is called degree of ill-posedness (c.f. Natterer [1984]).

[E-P] If 2a+2s+1 > 0, thenm∗n ∼ (log n−2a+1
2p log(log n))1/(2p) andR∗n ∼ n−1(log n)(2a+1+2s)/(2p).

Furthermore, if 2a+ 2s+ 1 < 0, then m∗n ∼ (log n+ (s/p) log(logn))1/(2p) and R∗n ∼ n−1,
while R∗n ∼ log(log n)/n if 2a+ 2s+ 1 = 0.

[P-E] We have m∗n ∼ (log n − 2p+(2a−1)+
2a log(log n))1/(2a). Thereby, R∗n ∼ (log n)−(p−s)/a. The

parameter a reflects again the degree of ill-posedness since an increasing value of a leads
also here to a slower minimax-rate R∗n. �

3.3 Minimax-optimality of the data-driven estimation procedure

Consider the thresholded projection estimator β̂m̂ with data-driven choice m̂ of the dimension
parameter. Supposing that the joint distribution of the random function X and the error term
ε satisfies certain additional conditions, we will prove below that the Assumptions 2.1 and
2.2 formulated in Section 2 hold true. These assumptions rely on the existence of sequences
(m�n)n>1 and (M+

n )n>1 which amongst others we define now referring only to the classes Frb
and Gdγ . Keep in mind the notations given in (2.4) and (2.10). For m > 1 and K = ([∇γ ]m)m>1

define ∆γ
m := ∆m(K) and δγm := δm(K) where ∆γ

m = max
16k6m

ωjγ
−1
j . Moreover, for n > 1 we

set M−n := Mn(a) with a = (16d3γ−1
m )m>1 and M+

n := Mn(a) with a = ([4dγm]−1)m>1. Taking
into account these notations we define for n > 1

m�n := arg min
16m6M−n

{
max

(
ωm
bm

,
δγm
n

)}
and R�n := max

(
ωm�n
bm�n

,
δγm�n
n

)

satisfying m�n 6M−n 6M+
n . Furthermore, let Σ := Σ(Gdγ) denote a finite constant such that

Σ >
∑
j>1

γj and Σ >
∑
m>1

∆γ
m exp

(
− 1

16(1 + log(d))

m log(∆γ
m ∨ (m+ 2))

log(m+ 2)

)
(3.3)

which by construction always exists and depends on the class Gdγ only. Let us illustrate the last
definition by revisiting the three configurations for the sequences ω, b, and γ (Illustration 3.1).

Illustration (continued) 3.3. In the following we state the order of M−n and δγm which in
turn are used to derive the order of m�n and R�n.

[P-P] M−n ∼
(

n
1+logn

)1+2a+(2s)+ , δγm ∼ m1+(2a+2s)+ , and for all p > (s)+ it follows m�n ∼
m1/[1+2p−2s+(2a+2s)+ and R�n ∼ n−2(p−s)/[1+2p−2s+(2a+2s)+];

12



[E-P] M−n ∼
(

n
1+logn

)1+2a+(2s)+ , δγm ∼ m1+(2a+2s)+ , and for all p > 0 it follows m�n ∼ (log n −
1+2(a+s)+−2s

2p log(log n))1/(2p) and R�n ∼ n−1(log n)[1+2(a+s)+]/(2p);

[P-E] M−n ∼ (log n− 1+2a+2(s)+
2a log(log n))1/(2a), δγm ∼ m1+2s+2a exp(m2a), and for all p > (s)+

it follows m�n ∼ (log n− 1+2a+2p
2a log(log n))1/(2a) and R�n ∼ (log n)−(p−s)/a. �

We proceed by formalizing the additional conditions on the joint distribution of ε and X
which in turn are used to prove that the Assumptions 2.1 and 2.2 hold true.

Imposing a joint normal distribution. Let us first assume that X is a centered Gaussian
H-valued random variable, that is, for all k > 1 and for all finite collections {h1, . . . , hk} ⊂ H the
joint distribution of the real valued random variables 〈X,h1〉H, . . . , 〈X,hk〉H is Gaussian with
zero mean vector and covariance matrix with generic elements E〈hj , X〉H〈X,hl〉H, 1 6 j, l 6 k.
Moreover, suppose that the error term is standard normally distributed. The next assumption
summarizes this situation.

Assumption 3.2. The joint distribution of the random function X and the error ε is normal.

The proof of the next assertion is more involved and hence deferred to Appendix C.

Proposition 3.1. Assume an iid. n-sample of (Y,X) obeying (1.1) and Assumption 3.2.
Consider sequences ω, b and γ satisfying Assumption 3.1 and in the definition (2.6) and (2.11)
of the penalty p̂en and pen respectively set κ = 96. For the classes Frb and Gdγ , there exist finite
constants C1 := C1(d) and C2 := C2(d) depending on d only such that the Assumptions 2.1 and
2.2 hold true, with K1 := C1 (σ2 + r) Σ and K2 := C2 (σ2 + r) Σ respectively.

By taking the value κ = 96 the random penalty p̂en and the random upper bound M̂ given
in (2.6) and (2.5) respectively depend indeed only on the data, and hence the choice m̂ of the
dimension parameter in (2.7) is fully data-driven. Moreover due to the last assertion we can
apply Proposition 2.2 which in turn provides the key argument to prove the following upper
risk-bound for the data-driven thresholded projection estimator β̂m̂ with m̂ given by (2.7).

Theorem 3.2. Let the assumptions of Proposition 3.1 be satisfied. There exists a finite constant
K := K(d) depending on d only such that

Rω[β̂m̂,Frb ,Gdγ ] 6 K (σ2 + r)
{
R�n + Σn−1

}
for all n > 1.

Proof of Theorem 3.2. We shall provide in the appendix among others, the two technical
Lemmas B.1 and B.2 which are used in the following. Moreover, denote by K := K(d) a
constant depending on d only which changes from line to line. Making use of Proposition 3.1,
i.e., Assumptions 2.1 and 2.2 are satisfied, we can apply Proposition 2.2, and hence for all n > 1

Rω[β̂m̂,Frb ,Gdγ ] 6 504 sup
β∈Frb

sup
Γ∈Gdγ
{penm�n + bias2

m�n
}+K (σ2 + r) Σn−1. (3.4)

Furthermore, if β ∈ Frb and Γ ∈ Gdγ then firstly from (B.4) in Lemma B.1 follows that bias2
m�n
6

34 d8 r ωm�n b
−1
m�n

because γ2ω−1 and ωb−1 are non increasing due to Assumption 3.1. Secondly,
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by combination of (i) and (iv) in Lemma B.2, it is easily verified that penm� 6 K (σ2+r)δγm�n
−1.

Consequently, supβ∈Frb
supΓ∈Gdγ{penm�n + bias2

m�n
} 6 K (σ2 +r)R�n for all n > 1 by combination

of the last two estimates and the definition of R�n which in turn together with the upper bound
(3.4) implies the assertion of the theorem.

Imposing moment conditions. We dismiss now the Assumption 3.2 and formalize in place
conditions on the moments of the random function X and the error term ε. In particular we
use that for all h ∈ H with 〈Γh, h〉 = 1, the random variable 〈h,X〉 is standardized, i.e. has
mean zero and variance one.

Assumption 3.3. There exist a finite integer k > 16 and a finite constant η > 1 such that
E|ε|4k 6 η4k and that for all h ∈ H with 〈Γh, h〉 = 1 the standardized random variable 〈h,X〉
satisfies E|〈h,X〉|4k 6 η4k.

It is worth noting that for any Gaussian random function X with finite second moment
Assumption 3.3 holds true, since for all h ∈ H with 〈Γh, h〉 = 1 the random variable 〈h,X〉 is
standard normally distributed and hence E|〈h,X〉|2k = (2k−1)·. . .·5·3·1. The proof of the next
assertion is again rather involved and deferred to Appendix D. It follows, however, along the
general lines of the proof of Proposition 2.2 though it is not a straightforward extension. Take
as an example the concentration inequality for the random variable ‖[Γ]

1/2
m ([ĝ]m− [Γ̂]m[βm]m)‖

in Lemma C.3 in Appendix C which due to Assumption 3.2 is shown by employing elementary
inequalities for Gaussian random variables. In contrast, the proof of an analogous result under
Assumption 3.3 given in Lemma D.3 in Appendix D is based on an inequality due to Talagrand
[1996] (Proposition D.1 in the appendix states a version as presented in Klein and Rio [2005]).

Proposition 3.3. Assume an iid. n-sample of (Y,X) obeying (1.1) and Assumption 3.3.
Consider sequences ω, b and γ satisfying Assumption 3.1 and in the definition (2.6) and (2.11)
of the penalty p̂en and pen respectively, set κ = 288. For the classes Frb and Gdγ , there exist
finite constants C1 := C1(σ, η,Frb ,Gdγ) depending on σ, η and the classes Frb and Gdγ only,
and C2 := C2(d) depending on d only, such that Assumptions 2.1 and 2.2 hold true with
K1 := C1 η

64 (σ2 + r) Σ and K2 := C2 η
64 (σ2 + r) Σ respectively.

We remark a change only in the constants when comparing the last proposition with Propo-
sition 3.1. Note further that we need a larger value for the constant κ than in Proposition 3.1
although it is still a numerical constant and hence the choice m̂ given by (2.7) is again fully
data-driven. Moreover, both values for the constant κ, though convenient for deriving the the-
ory, may be far too large in practice and instead be determined by means of a simulation study
as in Comte et al. [2006], for example. The next assertion provides an upper risk-bound for the
data-driven thresholded projection estimator β̂m̂ when imposing moment conditions.

Theorem 3.4. Let the assumptions of Proposition 3.3 be satisfied. There exist finite constants
K := K(d) depending on d only and K ′ := K ′(σ, η,Frb ,Gdγ) depending on σ, η and the classes
Frb and Gdγ only such that

Rω[β̂m̂,Frb ,Gdγ ] 6 K (σ2 + r)
{
R�n +K ′ η64 Σn−1

}
for all n > 1.
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Proof of Theorem 3.4. Taking into account Proposition 3.3 rather than Proposition 3.1 we
follow line by line the proof of Theorem 3.2 and hence we omit the details.

Minimax-optimality. A comparison of the upper bounds in both Theorem 3.2 and Theorem
3.4 with the lower bound displayed in (3.2) shows that the data-driven estimator β̂m̂ attains
up to a constant the minimax-rate R∗n = min16m<∞

{
max

(
ωm
bm
,
∑m

j=1
ωj
nγj

)}
only if R�n =

min16m6M−n

{
max

(
ωm
bm
, δ

γ
m
n

)}
has the same order as R∗n. Note that, by construction, δγm >∑m

j=1
ωj
γj

for all m > 1. The next assertion is an immediate consequence of Theorem 3.2 and
Theorem 3.4 and we omit its proof.

Corollary 3.5. Let the assumptions of either Theorem 3.2 or Theorem 3.4 be satisfied. If in
addition ξ� := supn>1{R�n/R∗n} <∞ holds true, then we have for all n > 1

Rω[β̂m̂;Frb ,Gdγ ] 6 C · inf
β̃
Rω[β̃;Frb ,Gdγ ]

where the infimum is taken over all possible estimators β̃ and C is a finite positive constant.

Remark 3.2. In the last assertion ξ� = supn>1{R�n/R∗n} < ∞ is for example satisfied if
the following two conditions hold simultaneously true: (i) m∗n 6 M−n for all n > 1 and (ii)
∆γ
m = max16j6m ωjγ

−1
j 6 Cm−1

∑m
j=1 ωjγ

−1
j and log(∆γ

m ∨ (m + 2)) 6 C log(m + 2) for all
m > 1. Observe that (ii) which implies δγm 6 C

∑m
j=1

ωj
γj

is satisfied in case ∆γ
m is in the order

of a power of m (e.g. Illustration 3.2 [P-P] and [E-P]). If this term has an exponential order
with respect to m (e.g. Illustration 3.2 [P-E]), then a deterioration of the term δγm compared
to the variance term

∑m
j=1

ωj
γj

is possible. However, no loss in terms of the rate may occur,
i.e., ξ� < ∞, when the squared-bias term ωm�nb

−1
m�n

dominates the variance term n−1δγm�n (for a
detailed discussion in a deconvolution context we refer to Butucea and Tsybakov [2007a,b]).�

Let us illustrate the performance of the data-driven thresholded projection estimator β̂m̂
considering the three configurations for the sequences ω, b, and γ (see Illustration 3.1 above).

Proposition 3.6. Assume an iid. n-sample of (Y,X) satisfying (1.1) and let either Assump-
tion 3.2 or Assumption 3.3 hold true where we set respectively κ = 96 or κ = 288 in (2.6).
The fully data-driven estimator β̂m̂ attains the minimax-rates R∗n (see Illustration 3.2), up to a
constant, in the three cases introduced in the Illustration 3.1, if we additionally assume a+s > 0

in the cases [P-P] and [E-P].

Proof of Proposition 3.6. Under the stated conditions it is easily verified that the assump-
tions of either Theorem 3.2 or Theorem 3.4 are satisfied. Moreover, the rates R∗n (Illustration
3.2) and R�n (Illustration 3.3) are of the same order if we additionally assume a+ s > 0 in the
cases [P-P] and [E-P]. Therefore we can apply Corollary 3.5 which implies the assertion.

Appendix

This section gathers preliminary technical results and the proofs of Proposition 3.1 and 3.3.
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A Notations

We begin by defining and recalling notations to be used in all proofs. Given m > 1, Hm

denotes the subspace of H spanned by the functions {ψ1, . . . , ψm}. Πm and Π⊥m denote the
orthogonal projections on Hm and its orthogonal complement H⊥m, respectively. If K is an
operator mapping H to itself and if we restrict ΠmKΠm to an operator from Hm to itself,
then it can be represented by a matrix [K]m with generic entries 〈ψj ,Kψl〉H =: [K]j,l for
1 6 j, l 6 m. The spectral norm of [K]m is denoted by ‖[K]m‖s and the inverse matrix of [K]m

by [K]−1
m . Furthermore, keeping in mind the notations given in (2.4) and (2.10) we use for all

m > 1 and n > 1

∆ω
m = ∆m([∇ω]), ∆Γ

m = ∆m([Γ]), ΛΓ
m :=

log(∆Γ
m ∨ (m+ 2))

log(m+ 2)
, δΓ

m = m∆Γ
mΛΓ

m = δm([Γ]),

∆γ
m = max

16k6m
ωjγ

−1
j = ∆m([∇γ ]), Λγm :=

log(∆γ
m ∨ (m+ 2))

log(m+ 2)
, δγm = m∆γ

mΛγm = δm([∇γ ]),

∆̂m = ∆m([Γ̂]), Λ̂m :=
log(∆̂m ∨ (m+ 2))

log(m+ 2)
, δ̂m := m∆̂mΛ̂m = δm([Γ̂]),

M̂ = Mn

(
(‖[Γ̂]−1

m ‖s)m>1

)
, M−n = Mn(16d3γ−1), M+

n = Mn([4dγ]−1),

penm = κσ2
mm∆Γ

mΛΓ
mn
−1 and p̂enm = 14κσ̂2

mm∆̂mΛ̂mn
−1. (A.1)

Recall that [Γ̂]m = 1
n

∑n
i=1[Xi]m[Xi]

t
m and [ĝ]m = 1

n

∑n
i=1 Yi[Xi]m where [Γ]m = E[X]m[X]tm

and [g]m = EY [X]m. Given a Galerkin solution βm ∈ Hm, m > 1, of equation (1.2), let
Zm := Y −〈βm, X〉H = σε+〈β−βm, X〉H, and denote ρ2

m := EZ2
m = σ2+〈Γ(β−βm), (β−βm)〉H,

σ2
Y := EY 2 = σ2 + 〈Γβ, β〉H and σ2

m = 2
(
σ2
Y + [g]tm[Γ]−1

m [g]m
)
where we used that ε and X are

uncorrelated. Define the random matrix [Ξ]m and random vector [W ]m respectively by

[Ξ]m := [Γ]−1/2
m [Γ̂]m[Γ]−1/2

m − [Id]m, and [W ]m := [ĝ]m − [Γ̂]m[βm]m,

where E[Ξ]m = 0, because E[Γ̂]m = [Γ]m, and E[W ]m = [Γ(β − βm)]m = 0. Define further
σ̂2
Y := n−1

∑n
i=1 Y

2
i , the events

Ωm,n := {‖[Γ̂]−1
m ‖s 6 n}, fm,n := {8‖[Ξ]m‖s 6 1},

An := {1/2 6 σ̂2
Y /σ

2
Y 6 3/2}, Bn := {‖[Ξ]k‖s 6 1/8, ∀1 6 k 6Mω

n },

Cn := {[W ]tk[Γ]−1
k [W ]k 6

1

8
([g]tk[Γ]−1

k [g]k + σ2
Y ), ∀1 6 k 6Mω

n }, (A.2)

and their complements Ωc
m,n, fcm,n, Acn, Bcn, and Ccn, respectively. Furthermore, we will denote

by C universal numerical constants and by C(·) constants depending only on the arguments.
In both cases, the values of the constants may change from line to line.

B Preliminary results

This section gathers preliminary results where we only exploit that the sequences ω, b and γ
satisfy Assumption 3.1. The proof of the next lemma can be found in Johannes and Schenk
[2010].
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Lemma B.1. Let Γ ∈ Gdγ where the sequence γ satisfies Assumption 3.1, then we have

sup
m∈N

{
γm‖[Γ]−1

m ‖s
}
6 4d3, (B.1)

sup
m∈N
‖[∇γ ]1/2m [Γ]−1

m [∇γ ]1/2m ‖s 6 4d3, (B.2)

sup
m∈N
‖[∇γ ]−1/2

m [Γ]m[∇γ ]−1/2
m ‖s 6 d. (B.3)

Let in addition β ∈ Frb with sequence b satisfying Assumption 3.1. If βm denotes a Galerkin
solution of g = Γβ then for each strictly positive sequence w := (wj)j>1 such that w/b is non
increasing we obtain for all m ∈ N

‖β − βm‖2w 6 34 d8 r
wm
bm

max

(
1,
γ2
m

wm
max

16j6m

wj
γ2
j

)
, (B.4)

‖βm‖2b 6 34 d8 r and ‖Γ1/2(β − βm)‖2H 6 34 d9 r γmb
−1
m . (B.5)

Lemma B.2. Let D := (4d3) and let Assumption 3.1 be satisfied. If Γ ∈ Gdγ then it holds

(i) d−1 6 γm‖[Γ]−1
m ‖s 6 D, d−1 6 ∆Γ

m/∆
γ
m 6 D, (1 + log d)−1 6 ΛΓ

m/Λ
γ
m 6 (1 + logD), and

d−1(1 + log d)−1 6 δΓ
m/δ

γ
m 6 D(1 + logD) for all m > 1,

(ii) δγ
M+
n
6 n4D(1 + logD) and δΓ

M+
n
6 n4D2(1 + 2 logD) for all n > 1,

(iii) n > 2 max16m6M+
n
‖[Γ]−1

m ‖ if n > 2D and ∆ω
M+
n
M+
n (1 + log n) > 8D2.

If in addition β ∈ Frb then we have for all m > 1

(iv) ρ2
m 6 σ

2
m 6 2(σ2 + 35d9r)

Proof of Lemma B.2. Proof of (i). Due to (B.1) and (B.3) in Lemma B.1, we have for all
Γ ∈ Gdγ and for all m > 1 that ‖[Γ]−1

m ‖s 6 4d3γ−1
m and γ−1

m 6 d‖[Γ]−1
m ‖s. Thus, given D = (4d3)

for all m > 1 we have d−1 6 ‖[Γ]−1
m ‖sγm 6 D. Moreover, the monotonicity of γ implies

d−1 6 γM max16m6M‖[Γ]−1
m ‖s 6 D. From these estimates we obtain (i).

Proof of (ii). Observe that ∆γ

M+
n
6 ∆ω

M+
n
γ−1

M+
n
. In case M+

n = 1 the assertion is trivial,

since ∆ω
1 γ
−1
1 = 1 due to Assumption 3.1. Thus, consider Mω

n > M+
n > 1, which implies

min16j6M+
n
{γj(j∆ω

j )−1} > (1+log n)(4Dn)−1, and henceM+
n ∆γ

M+
n
6 4Dn(1+log n)−1, Λγ

M+
n
6

(1 + logD)(1 + log n), M+
n ∆Γ

M+
n
6 4D2n(1 + log n)−1 and ΛΓ

M+
n
6 (1 + 2 logD)(1 + log n). The

assertion (ii) follows now by combination of these estimates.
Proof of (iii). By employing that Dγ−1

M+
n
> max16m6M+

n
‖[Γ]−1

m ‖, the assertion (iii) follows in

case M+
n = 1 from γ1 = 1, while in case M+

n > 1, we use M+
n ∆ω

M+
n
γ−1

M+
n
6 4Dn(1 + log n)−1.

Proof of (iv). Since ε and X are centered it follows from [βm]m = [Γ]−1
m [g]m that ρ2

m 6

2
(
EY 2 + E|〈βm, X〉H|2

)
= 2

(
σ2
Y + [g]tm[Γ]−1

m [g]m
)

= σ2
m. Moreover, by employing successively

the inequality of Heinz [1951], i.e. ‖Γ1/2β‖2 6 d‖β‖2γ , and Assumption 3.1, i.e., γ and b−1 are
non-increasing, the identity σ2

Y = σ2 + 〈Γβ, β〉H implies

σ2
Y 6 σ

2 + d‖β‖2γ 6 σ2 + dr. (B.6)
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Furthermore, from (B.3) and (B.5) in Lemma B.1 we obtain

[g]tm[Γ]−1
m [g]m 6 d‖βm‖2γ 6 34d9r. (B.7)

The assertion (iv) follows now from (B.6) and (B.7), which completes the proof.

Lemma B.3. For all n,m > 1 we have{
1

4
<
‖[Γ̂]−1

m ‖s
‖[Γ]−1

m ‖s
6 4, ∀ 1 6 m 6Mω

n

}
⊂
{
M−n 6 M̂ 6M

+
n

}
.

Proof of Lemma B.3. Let τ̂m = ‖[Γ̂]−1
m ‖−1

s and recall that 1 6 M̂ 6Mω
n with

{
M̂ = M

}
=



{
τ̂M+1

(M+1)∆ω
M+1

< 1+logn
n

}
, M = 1,{

min
26m6M

τ̂m
m∆ω

m
> 1+logn

n

} ⋂ {
τ̂M+1

(M+1)∆ω
M+1

< 1+logn
n

}
, 1 < M < Mω

n ,{
min

26m6M

τ̂m
m∆ω

m
> 1+logn

n

}
, M = Mω

n .

Given τm := ‖[Γ]−1
m ‖−1

s we have D−1 6 τm/γm 6 d, m > 1 due to (i) in Lemma B.2 which we
use to prove the following two assertions{

M̂ < M−n

}
⊂
{

min
16m6Mω

n

:
τ̂m
τm

<
1

4

}
, (B.8){

M̂ > M+
n

}
⊂
{

max
16m6Mω

n

τ̂m
τm
> 4

}
. (B.9)

Obviously, the assertion of Lemma B.3 follows now by combination of (B.8) and (B.9).
Consider (B.8) which is trivial in case M−n = 1. If M−n > 1 we have min

16m6M−n

γm
mω+

m
> 4D(1+logn)

n

and, hence min
16m6M−n

τm
m∆ω

m
> 4(1+logn)

n . By exploiting the last estimate we obtain

{
M̂ < Mω

n

}
∩
{
M̂ < M−n

}
=

M−n −1⋃
M=1

{
M̂ = M

}

⊂
M−n −1⋃
M=1

{
τ̂M+1

(M + 1)∆ω
M+1

<
1 + log n

n

}
=

{
min

26m6M−n

τ̂m
m∆ω

m

<
1 + log n

n

}
⊂
{

min
16m6M−n

τ̂m
τm

< 1/4

}

while trivially
{
M̂ = Mω

n

}
∩
{
M̂ < M−n

}
= ∅, which proves (B.8) because M−n 6Mω

n .

Consider (B.9) which is trivial in caseM+
n = Mω

n . IfM+
n < Mω

n , then
τ
M+
n +1

(M+
n +1)∆ω

M+
n +1

< (1+logn)
4n ,
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and hence

{
M̂ > 1

}
∩
{
M̂ > M+

n

}
=

Mω
n⋃

M=M+
n +1

{
M̂ = M

}

⊂
Mω
n⋃

M=M+
n +1

{
min

26m6M

τ̂m
m∆ω

m

>
1 + log n

n

}
=

{
min

26m6(M+
n +1)

τ̂m
m∆ω

m

>
1 + log n

n

}

⊂

{
τ̂M+

n +1

τM+
n +1

> 4

}

while trivially {M̂ = 1} ∩ {M̂ > M+
n } = ∅ which shows (B.9) and completes the proof.

Lemma B.4. Let An, Bn and Cn as in (A.2). For all n > 1 it holds true that
An ∩ Bn ∩ Cn ⊂ {penk 6 p̂enk 6 72 penk, 1 6 k 6M

ω
n } ∩ {M−n 6 M̂ 6M+

n }.

Proof of Lemma B.4. Let Mω
n > k > 1. If ‖[Ξ]k‖s 6 1/8, i.e. on the event Bn, it is easily

verified that ‖([Id]k + [Ξ]k)
−1 − [Id]k‖s 6 1/7 which we exploit to conclude

6/7‖[∇ω]
1/2
k [Γ]−1

k [∇ω]
1/2
k ‖s 6 ‖[∇ω]

1/2
k [Γ̂]−1

k [∇ω]
1/2
k ‖s 6 8/7‖[∇ω]

1/2
k [Γ]−1

k [∇ω]
1/2
k ‖s,

6/7‖[Γ]−1
k ‖s 6 ‖[Γ̂]−1

k ‖s 6 8/7‖[Γ]−1
k ‖s and

6/7xt[Γ]−1
k x 6 xt[Γ̂]−1

k x 6 8/7xt[Γ]−1
k x, for all x ∈ Rk, (B.10)

and, consequently

(6/7)[ĝ]tk[Γ]−1
k [ĝ]k 6 [ĝ]tk[Γ̂]−1

k [ĝ]k 6 (8/7)[ĝ]tk[Γ]−1
k [ĝ]k. (B.11)

Moreover, from ‖[Ξ]k‖s 6 1/8 we obtain after some algebra,

[g]tk[Γ]−1
k [g]k 6

1

16
[g]tk[Γ]−1

k [g]k + 4[W ]k[Γ]−1
k [W ]k + 2[ĝ]tk[Γ]−1

k [ĝ]k,

[ĝ]tk[Γ]−1
k [ĝ]k 6

33

16
[g]tk[Γ]−1

k [g]k + 4[W ]k[Γ]−1
k [W ]k.

Combining each of these estimates with (B.11) yields

(15/16)[g]tk[Γ]−1
k [g]k 6 4[W ]k[Γ]−1

k [W ]k + (7/3)[ĝ]tk[Γ̂]−1
k [ĝ]k,

(7/8)[ĝ]tk[Γ̂]−1
k [ĝ]k 6 (33/16)[g]tk[Γ]−1

k [g]k + 4[W ]k[Γ]−1
k [W ]k.

If in addition [W ]tk[Γ]−1
k [W ]k 6

1
8([g]tk[Γ]−1

k [g]k + σ2
Y ), i.e., on the event Cn, then the last two

estimates imply respectively

(7/16)([g]tk[Γ]−1
k [g]k + σ2

Y ) 6 (15/16)σ2
Y + (7/3)[ĝ]tk[Γ̂]−1

k [ĝ]k,

(7/8)[ĝ]tk[Γ̂]−1
k [ĝ]k 6 (41/16)[g]tk[Γ]−1

k [g]k + (1/2)σ2
Y ,
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and hence in case 1/2 6 σ̂2
Y /σ

2
Y 6 3/2, i.e., on the event An, we obtain

(7/16)([g]tk[Γ]−1
k [g]k + σ2

Y ) 6 (15/8)σ̂2
Y + (7/3)[ĝ]tk[Γ̂]−1

k [ĝ]k,

(7/8)([ĝ]tk[Γ̂]−1
k [ĝ]k + σ̂2

Y ) 6 (41/16)[g]tk[Γ]−1
k [g]k + (29/16)σ2

Y .

Combining the last two estimates we have

1

6
(2[g]tk[Γ]−1

k [g]k + 2σ2
Y ) 6 (2[ĝ]tk[Γ̂]−1

k [ĝ]k + 2σ̂2
Y ) 6 3(2[g]tk[Γ]−1

k [g]k + 2σ2
Y ).

Since on the event An∩Bn∩Cn the last estimate and (B.10) hold for all 1 6 k 6Mω
n it follows

An ∩Bn ∩ Cn ⊂
{

(1/6)σ2
m 6 σ̂

2
m 6 3σ2

m and (6/7)∆Γ
m 6 ∆̂m 6 (8/7)∆Γ

m, ∀1 6 m 6Mω
n

}
.

From Λ̂m = log(∆̂m∨(m+2))
log(m+2) it is easily seen that (6/7) 6 ∆̂m/∆

Γ
m 6 (8/7) implies

1/2 6 (1 + log(7/6))−1 6 Λ̂m/Λ
Γ
m 6 (1 + log(8/7)) 6 3/2.

Taking into account the last estimates and the definitions penm = κσ2
mm∆Γ

mΛΓ
mn
−1 and p̂enm =

14κσ̂2
mm∆̂mΛ̂mn

−1 we obtain

An ∩ Bn ∩ Cn ⊂ {penm 6 p̂enm 6 72 penm, ∀1 6 m 6Mω
n }. (B.12)

On the other hand, by exploiting successively (B.10) and Lemma B.3 we have

An ∩ Bn ∩ Cn ⊂

{
6

7
6
‖[Γ̂]−1

m ‖s
‖[Γ]−1

m ‖s
6

8

7
, ∀1 6 m 6Mω

n

}
⊂
{
M−n 6 M̂ 6M

+
n

}
. (B.13)

From (B.12) and (B.13) follows the assertion of the lemma, which completes the proof.

Lemma B.5. For all m,n > 1 with n > (8/7)‖[Γ]−1
m ‖s we have fm,n ⊂ Ωm,n.

Proof of Lemma B.5. Taking into account the identity [Γ̂]m = [Γ]
1/2
m {[Id]m+[Ξ]m}[Γ]

1/2
m we

observe that ‖[Ξ]m‖s 6 1/8 implies ‖[Γ̂]−1
m ‖s 6 (8/7)‖[Γ]−1

m ‖s due to the usual Neumann series
argument. If n > (8/7)‖[Γ]−1

m ‖s, then the last assertion implies fm,n ⊂ Ωm,n, which proves the
lemma.

C Proof of Proposition 3.1

We will suppose throughout this section that the conditions of Proposition 3.1 are satisfied and
thus Assumption 3.1 particularly holds true which allows us to employ the Lemmas B.1-B.5
stated in Section B. Moreover, we show first technical assertions (Lemma C.1- C.5) where we
exploit Assumption 3.2, i.e. X and ε are jointly normally distributed. They are used below to
prove that the Assumptions 2.1 and 2.2 are satisfied (Proposition C.6 and C.7 respectively),
which is the claim of Proposition 3.1.
We begin by recalling elementary properties due to the Assumption 3.2 which are frequently
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used in this section. Given f ∈ H the random variable 〈f,X〉H is normally distributed with
mean zero and variance 〈Γf, f〉H. Consider the Galerkin solution βm and h ∈ Hm then the
random variables 〈β−βm, X〉H and 〈h,X〉H are independent. Thereby, Zm = Y −〈βm, X〉H =

σε + 〈β − βm, X〉H and [X]m are independent, normally distributed with mean zero, and,
respectively, variance ρ2

m and covariance matrix [Γ]m. Consequently, (ρ−1
m Zm, [X]tm[Γ]

−1/2
m ) is

a (m + 1)-dimensional vector of iid. standard normally distributed random variables. Let us
further state elementary inequalities for Gaussian random variables.

Lemma C.1. Let {Ui, Vij , 1 6 i 6 n, 1 6 j 6 m} be independent and standard normally
distributed random variables. Then we have for all η > 0 and ζ > 4m/n

P

(
n−1/2

n∑
i=1

(U2
i − 1) > η

)
6 exp

(
− 1

8

η2

1 + η n−1/2

)
; (C.1)

P

(
n−1

∣∣∣∣∣
n∑
i=1

UiVi1

∣∣∣∣∣ > η
)
6
ηn1/2 + 1

ηn1/2
exp

(
− n

4
min

{
η2, 1/4

})
; (C.2)

P

n−2
m∑
j=1

∣∣∣∣∣
n∑
i=1

UiVij

∣∣∣∣∣
2

> ζ

 6 exp
(−n

16

)
+ exp

(−ζn
64

)
; (C.3)

and for all c > 1 and a1, . . . , am > 0 that

E

(
n∑
i=1

U2
i − 2 c n

)
+

6 16 exp
(−c n

16

)
(C.4)

E

 m∑
j=1

∣∣∣∣∣n−1/2
n∑
i=1

UiVij

∣∣∣∣∣
2

− 4 cm


+

6 16 exp
(−cm

16

)
+ 32

cm

n
exp

(−n
16

)
(C.5)

E

 m∑
j=1

aj

∣∣∣∣∣
n∑
i=1

UiVij

∣∣∣∣∣
2
2

= n(n+ 2)

( m∑
j=1

a2
j +

( m∑
j=1

aj)
2

)
(C.6)

Proof of Lemma C.1. Define W :=
∑n

i=1 U
2
i and Zj := (

∑n
i=1 U

2
i )−1/2

∑n
i=1 UiVij . Obvi-

ously, W has χ2
n distribution with n degrees of freedom and Z1, . . . , Zm given U1, . . . , Un are

independent and standard normally distributed, which we use below without further reference.
From the estimate (C.1) given in Dahlhaus and Polonik [2006] (Proposition A.1) follows

P

n−2

∣∣∣∣∣
n∑
i=1

UiVi1

∣∣∣∣∣
2

> η2

 6 P (n−1W > 2) + E
[
P
(
2n−1|Z1|2 > η2

∣∣U1, . . . , Un
)]

6 exp

(
− n

16

)
+

1√
πη2n

exp

(
− η2n

4

)
,

which implies (C.2). The estimate (C.3) follows analogously and we omit the details. By
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employing (C.1), 2c− 1 > c and n−1(cn+ t) > 1 we obtain (C.4). Indeed,

E

(
n∑
i=1

U2
i − 2 c n

)
+

=

∫ ∞
0

P

(
n−1/2

n∑
i=1

(U2
i − 1) > n−1/2(cn+ t)

)
dt

6
∫ ∞

0
exp

(
− 1

8

n−1(cn+ t)2

1 + n−1(cn+ t)

)
dt 6

∫ ∞
0

exp

(
− 1

16
(cn+ t)

)
dt

= exp

(
− cn

16

)∫ ∞
0

exp

(
− t

16

)
dt = 16 exp

(
− cn

16

)
From the last estimate and (C.1) follows (C.5), because

E

 m∑
j=1

∣∣∣∣∣n−1/2
n∑
i=1

UiVij

∣∣∣∣∣
2

− 4 cm


+

6 E

n−1WE

 m∑
j=1

|Zj |2 − 2 cm


+

∣∣∣∣U1, . . . , Un

+ 2 cmn−1(W − 2n)+


6 16 exp

(
− cm

16

)
E[n−1W ] + 32

cm

n
exp

(
− n

16

)
.

It remains to prove (C.6) which can be realized as follows (keep in mind that E[W 2] = n(n+2))

E

 m∑
j=1

aj

∣∣∣∣∣
n∑
i=1

UiVij

∣∣∣∣∣
2
2

= E

W 2E

( m∑
j=1

aj |Zj |2
)2∣∣∣∣U1, . . . , Un


= E[W 2]

( m∑
j=1

a2
j +

( m∑
j=1

aj)
2

)
.

Lemma C.2. For all n,m > 1 we have

n2ρ−4
m E‖[W ]m‖4 6 6 (E‖X‖2)2. (C.7)

Furthermore, there exist a numerical constant C > 0 such that for all n > 1

n8 max
16m6bn1/4c

P

(
[W ]tm[Γ]−1

m [W ]m

ρ2
m

>
1

16

)
6 C; (C.8)

n8 max
16m6bn1/4c

P
(
‖[Ξ]m‖s > 1/8

)
6 C; (C.9)

n7P
(
{1/2 6 σ̂2

Y /σ
2
Y 6 3/2}c

)
6 C. (C.10)

Proof of Lemma C.2. Let n,m > 1 be fixed, denote by (λj , ej)16j6m an eigenvalue decom-
position of [Γ]m. Define Ui := (σεi + 〈β − βm, Xi〉H)/ρm and Vij := (λ

−1/2
j etj [Xi]m), 1 6 i 6 n,

1 6 j 6 m, where U1, . . . , Un, V11, . . . , Vnm are independent and standard normally distributed
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random variables.
Proof of (C.7) and (C.8). Taking into account

∑m
j=1 λj 6 E‖X‖2H and the identities n4ρ−4

m ‖[W ]m‖4

= (
∑m

j=1 λj(
∑n

i=1 UiVij)
2)2 and ([W ]tm[Γ]−1

m [W ]m)/ρ2
m = n−2

∑m
j=1(

∑n
i=1 UiVij)

2 the asser-
tions (C.7) and (C.8) follow, respectively, from (C.6) and (C.3) in Lemma C.1 (with aj = λj).
Proof of (C.9). Since n‖[Ξ]m‖s 6 mmax16j,l6m |

∑n
i=1(VijVil − δjl)| we obtain due to (C.1)

and (C.2) in Lemma C.1 that for all η > 0

P (‖[Ξ]m‖s > η) 6
∑

16j,l6m

P (|n−1
n∑
i=1

(VijVil − δjl)| > η/m)

6 m2 max

{
P (|n−1

n∑
i=1

Vi1Vi2| > η/m), P (|n−1/2
n∑
i=1

(V 2
i1 − 1)| > n1/2η/m)

}

6 m2 max

{
(1 +

m

ηn1/2
) exp

(
− n

4
min

{
η2/m2, 1/4

})
, 2 exp

(
− 1

8

nη2/m2

1 + η/m

)}
.

Moreover, for all η 6 m/2 the last bound simplifies to

P (‖[Ξ]m‖s > η) 6 m2 max

{
1 +

2m

ηn1/2
, 2

}
exp

(
− 1

12

nη2

m2

)
.

and it is easily seen that the last bound implies (C.9).
Proof of (C.10). Since Y1/σY , . . . , Yn/σY are independent and standard normally distributed,
by exploiting that {1/2 6 σ̂2

Y /σ
2
Y 6 3/2}c ⊂ {|n−1

∑n
i=1 Y

2
i /σ

2
Y − 1| > 1/2}, (C.10) follows

from (C.1) in Lemma C.1, which completes the proof.

Lemma C.3. We have for all c > 1 and n,m > 1

E

(
n[W ]tm[Γ]−1

m [W ]m

ρ2
m

− 4 cm

)
+

6 16 exp
(−cm

16

)
+ 32

cm

n
exp

(−n
16

)
.

Proof of Lemma C.3. The assertion follows from (C.5) in Lemma C.1 and the identity
n‖[Γ]

−1/2
m [W ]m‖2ρ−2

m =
∑m

j=1(n−1/2
∑n

i=1 UiVij)
2 derived in the proof of Lemma C.2.

Lemma C.4. There exists a constant C(d) only depending on d such that for all n > 1

sup
β∈Frb

sup
Γ∈Gdγ

M+
n∑

k=m�n

∆Γ
k E
(

[W ]tk[Γ]−1
k [W ]k − 4σ2

k

kΛΓ
k

n

)
+

6 C(d)(σ2 + r)Σn−1.

Proof of Lemma C.4. The key argument of the proof is the estimate given in Lemma C.3
with c = ΛΓ

k . Taking into account this upper bound and that for all β ∈ Frβ and Γ ∈ Gdγ
the estimates ∆Γ

k 6 4d3∆γ
k , (1 + log d)−1Λγk 6 ΛΓ

k , δ
Γ
M+
n
6 nCd6(1 + log d) (recall that δΓ

m =

m∆Γ
mΛΓ

m) and ρ2
k 6 σ2

k 6 2(σ2 + 35d6r) (Lemma B.2 (i), (ii) and (iv) respectively) hold true,
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we obtain

M+
n∑

k=m�n

∆Γ
k E
(

[W ]tk[Γ]−1
k [W ]k − 4σ2

k

kΛΓ
k

n

)
+

6
M+
n∑

k=1

σ2
k∆

Γ
k

n
E

(
n[W ]tk[Γ]−1

k [W ]k

ρ2
k

− 4 kΛΓ
k

)
+

6 C(d)(σ2 + r) n−1


M+
n∑

k=1

∆γ
k exp

(
−

kΛγk
16(1 + log d)

)
+M+

n exp
(
−n/16

).
Finally, exploiting that the constant Σ satisfies (3.3) and that M+

n exp
(
−n/16

)
6 C for all

n > 1 we obtain the assertion of the lemma, which completes the proof.

Lemma C.5. There exist a numerical constant C and a constant C(d) only depending on d

such that for all n > 1 we have

sup
β∈Frb

sup
Γ∈Gdγ

{
n6(M+

n )2 max
16m6M+

n

P
(
fcm,n

)}
6 C; (C.11)

sup
β∈Frb

sup
Γ∈Gdγ

{
nM+

n max
16m6M+

n

P
(
Ωc
m,n

)}
6 C(d); (C.12)

sup
β∈Frb

sup
Γ∈Gdγ

{
n7P (Ecn)

}
6 C. (C.13)

Proof of Lemma C.5. SinceM+
n 6 bn1/4c and fcm,n =

{
‖[Ξ]m‖ > 1/8

}
the assertion (C.11)

follows from (C.8) in Lemma C.2. Consider (C.12). Let no := no(d) := exp(128d6) > 8d3,
and consequently ∆ω

M+
n

(M+
n log n) > 128d6 for all n > no. We distinguish in the follow-

ing the cases n < no and n > no. First, consider 1 6 n 6 no. Obviously, we have
M+
n max16m6M+

n
P (Ωc

m,n) 6M+
n 6 n

−1n
5/4
o 6 C(d)n−1 since M+

n 6 n
1/4 and no depends on d

only. On the other hand, if n > no then from Lemma B.2 (iii) follows n > 2 max16m6M+
n
‖[Γ]−1

m ‖,
and hence fm,n ⊂ Ωm,n for all 1 6 m 6 M+

n by employing Lemma B.5. From (C.11) we con-
clude M+

n max16m6M+
n
P (Ωc

m,n) 6 M+
n max16m6M+

n
P (fcm,n) 6 Cn−3. By combination of the

two cases we obtain (C.12). It remains to show (C.13). Consider the events An, Bn and Cn
defined in (A.2), where An∩Bn∩Cn ⊂ En due to Lemma B.4. Moreover we have n7P (Acn) 6 C,
n7P (Bcn) 6 C, and n7P (Ccn) 6 C, due to (C.10), (C.9) and (C.8) in Lemma C.2 respectively
(keep in mind that bn1/4c > Mω

n and 2(σ2
Y + [g]tk[Γ]−1

k [g]k) = σ2
k > ρ2

k). Combining these
estimates we obtain (C.13), which completes the proof.

Proposition C.6. Let κ = 96 in the definition of the penalty pen given in (2.11). There exists
a constant C(d) such that for all n > 1 we have

sup
β∈Frb

sup
Γ∈Gdγ

E

{
sup

m�n6k6M
+
n

(
‖β̂k − βk‖2ω −

1

6
penk

)
+

}
6 C(d)(σ2 + r)Σ n−1.
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Proof of Proposition C.6. We use the identity [β̂k − βk]k = [Γ̂]−1
k [W ]k 1Ωk,n −[βk]k 1Ωck,n

,
and obtain

‖β̂k − βk‖2ω = ‖[∇ω]
1/2
k [Γ̂]−1

k [W ]k‖2 1Ωk,n +‖βk‖2ω 1Ωck,n
. (C.14)

Exploiting further ‖([Id]k + [Ξ]k)
−1‖s 1fk,n 6 2, the identity [Γ̂]k = [Γ]

1/2
k {[Id]k + [Ξ]k}[Γ]

1/2
k

and the definition of ∆Γ
k it follows that ‖[∇ω]

1/2
k [Γ̂]−1

k [W ]k‖2 1fk,n 6 4∆Γ
k‖[Γ]

−1/2
k [W ]k‖2. On

the other hand, we have ‖[∇ω]
1/2
k [Γ̂]−1

k [W ]k‖2 1Ωk,n 6 ∆ω
kn

2‖[W ]k‖2. From these estimates and
‖βk‖ω 6 ‖βk‖b (ωb−1 is non-increasing due to Assumption 3.1) we deduce for all k > 1

‖β̂k − βk‖2ω 6 4∆Γ
k‖[Γ]

−1/2
k [W ]k‖2 + ∆ω

k n
2‖[W ]k‖2 1fck,n +‖βk‖2b 1Ωck,n

.

Taking into account this upper bound, the notations ∆Γ
k and ΛΓ

k given in (A.1), and the
definition penk = 96σ2

kk∆Γ
kΛΓ

kn
−1 we obtain for all β ∈ Frb and Γ ∈ Gdγ that

E

{
sup

m�n6k6M
+
n

(
‖β̂k − βk‖2ω −

1

6
penk

)
+

}
6 4

M+
n∑

k=m�n

∆Γ
k E
(
‖[Γ]

−1/2
k [W ]k‖2 − 4σ2

k

kΛΓ
k

n

)
+

+

M+
n∑

k=m�n

n3
(
E‖[W ]k‖4

)1/2(
P (fck,n)

)1/2
+

M+
n∑

k=m�n

‖βk‖2bP (Ωc
k,n)

Consider the second and third right hand side term. By exploiting, respectively, (C.7) in
Lemma C.2 and (B.5) in Lemma B.1 together with ρ2

m 6 2(σ2 +35d6r) (Lemma B.2 (iv)) these
two terms are bounded by

6(σ2 + 35d6r)E‖X‖2n2M+
n max
m�n6k6M

+
n

(
P (fck,n)

)1/2
+ 34d8rM+

n max
m�n6k6M

+
n

P (Ωc
k,n).

Combining this upper bound, the property E‖X‖2 6 d
∑

j>1 γj 6 dΣ and the estimates given
in Lemma C.5 we deduce for all β ∈ Frb and Γ ∈ Gdγ that

sup
β∈Frb

sup
Γ∈Gdγ

E

{
sup

m�n6k6M
+
n

(
‖β̂k − βk‖2ω −

1

6
penk

)
+

}
6 C(d)(σ2 + r)Σ n−1+

4 sup
β∈Frb

sup
Γ∈Gdγ

M+
n∑

k=m�n

∆Γ
k E
(
‖[Γ]

−1/2
k [W ]k‖2 − 4σ2

k

kΛΓ
k

n

)
+

The result of the proposition follows now by replacing the last right hand side term by its upper
bound given in Lemma C.4, which completes the proof.

Proposition C.7. Let κ = 96 in the definition of pen and p̂en given in (2.11) and (2.6)
respectively. There exists a constant C(d) such that for all n > 1 we have

sup
β∈Frb

sup
Γ∈Gdγ

E(‖β̂m̂ − β‖2ω 1Ecn) 6 C(d)(σ2 + r)Σ n−1.
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Proof of Proposition C.7. Taking into account the decomposition (C.14) and the estimate
‖[∇ω]

1/2
k [Γ̂]−1

k [W ]k‖2 1Ωk,n 6 ∆ω
kn

2‖[W ]k‖2 given in the proof of Proposition C.6 we conclude

‖β̂k − β‖2ω 6 2∆ω
kn

2‖[W ]k‖2 + 2‖βk‖2ω + 2‖β‖2ω, for all k > 1.

By exploiting (B.5) in Lemma B.1 together with ‖βk‖ω 6 ‖βk‖b (ωb−1 is non-increasing due
to Assumption 3.1) we obtain for all β ∈ Frb and Γ ∈ Gdγ and for all k > 1 that

‖β̂k − β‖2ω 6 2∆ω
kn

2‖[W ]k‖2 + 2(34d8r + r).

Since 1 6 m̂ 6Mω
n and max16k6Mω

n
∆ω
k 6 n it follows for all β ∈ Frb and Γ ∈ Gdγ that

E(‖β̂m̂ − β‖2ω 1Ecn) 6 2n3Mω
n max

16k6Mω
n

(
E‖[W ]k‖4

)1/2|P (Ecn)|1/2 + 2(34d8r + r)Mω
nP (Ecn).

From (C.7) in Lemma C.2 together with ρ2
m 6 2(σ2 + 35d6r) (Lemma B.2) and E‖X‖2 6 dΣ

we conclude for all β ∈ Frb and Γ ∈ Gdγ that

E(‖β̂m̂ − β‖2ω 1Ecn) 6 12(σ2 + 35d6r)dΣn2Mω
n |P (Ecn)|1/2 + 2(34d8r + r)Mω

nP (Ecn).

The result of the proposition follows now from Mω
n 6 bn1/4c and by replacing the probability

P (Ecn) by its upper bound Cn−7 given in Lemma C.5, which completes the proof.

Proof of Proposition 3.1. The assertion follows from Proposition C.6 and Proposition C.7
and we omit the details.

D Proof of Proposition 3.3

We assume throughout this section that the conditions of Proposition 3.3 are satisfied which
allows us to employ the Lemma B.1-B.5 stated in Section B. We formulate first preliminary
results (Proposition D.1 and Lemma D.2- D.5) which rely on the moment conditions imposed
through Assumption 3.3. They are used below to prove that the Assumptions 2.1 and 2.2 are
satisfied (Proposition D.6 and D.7 respectively), which is the claim of Proposition 3.3. We
begin by gathering elementary bounds due to Assumption 3.3. Let k be given by Assumption
3.3 then for all m > 1 we have

E|Zm|4k 6 ρ2
mη

4k, E|Y |4k 6 σ4k
Y η

4k, max
16j6m

E|([Γ]−1/2
m [X]m)j |4k 6 η4k,

E
∣∣〈β − βm, X〉H∣∣4k 6 ‖Γ1/2(βm − β)‖4kH η4k, E

∣∣[X]tm[Γ]−1
m [X]m

∣∣2k 6 m2kη4k.

Moreover, if V is a non negative random variable with EV k <∞ then the elementary inequality
EV 1{V >t} 6 t−k+1EV k holds true for all t > 0. Taking into account this estimate we obtain
under Assumption 3.3, that for all m,n > 1

Eε2
1{|ε|>n1/6} 6 η

32n−5,

E
∣∣〈β − βm, X〉H∣∣2 1{|〈β−βm,X〉H|>‖Γ1/2(βm−β)‖Hn1/6} 6 η

32‖Γ1/2(βm − β)‖2Hn−5,

E|[X]tm[Γ]−1
m [X]m|2 1{[X]tm[Γ]−1

m [X]m>mn1/3} 6 η32m2n−14/3 (D.1)
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and by employing Markov’s inequality

P (|ε| > n1/6) 6 n−16/3η32, P (|〈β−βm, X〉H| > ‖Γ1/2(βm−β)‖Hn1/6) 6 n−16/3η32. (D.2)

We exploit these bounds in the following proofs. Moreover, the key argument used in the proof
of Lemma D.3 is the following inequality due to Talagrand [1996] (see e.g. Klein and Rio
[2005]).

Proposition D.1 (Talagrand’s Inequality). Let T1, . . . , Tn be independent T -valued random
variables and ν∗s = (1/n)

∑n
i=1

[
νs(Ti) − E[νs(Ti)]

]
, for νs belonging to a countable class {νs :

s ∈ S} of measurable functions. Then, for ε > 0,

E
(

sup
s∈S
|ν∗s |2 − 2(1 + 2ε)H2

)
+

6 C

(
v

n
exp(−K1ε

nH2

v
) +

h2

n2C2(ε)
exp(−K2C(ε)

√
ε
nH

h
)

)
with K1 = 1/6, K2 = 1/(21

√
2), C(ε) =

√
1 + ε− 1 and C a universal constant and where

sup
s∈S

sup
t∈T
|νs(t)| 6 h, E

[
sup
s∈S
|ν∗s |
]
6 H, sup

s∈S

1

n

n∑
i=1

Var(νs(Ti)) 6 v.

Lemma D.2. There exist a numerical constant C > 0 such that for all n > 1

n2 sup
m>1

ρ−4
m E‖[W ]m‖4 6 Cη8(E‖X‖2H)2; (D.3)

n8 max
16m6bn1/4c

P

(
[W ]tm[Γ]−1

m [W ]m

ρ2
m

>
1

16

)
6 Cη64; (D.4)

n8 max
16m6bn1/4c

P
(
‖[Ξ]m‖s > 1/8

)
6 C(η); (D.5)

n7P
(
{1/2 6 σ̂2

Y /σ
2
Y 6 3/2}c

)
6 Cη64. (D.6)

Proof of Lemma D.2. Let n,m > 1 be fixed, denote by (λj , ej)16j6m an eigenvalue decom-
position of [Γ]m. Define Ui := (σεi + 〈β − βm, Xi〉H)/ρm and Vij := (λ

−1/2
j etj [Xi]m), 1 6 i 6 n,

1 6 j 6 m. Keep in mind that E|Ui|4k 6 η4k, E|Vij |4k 6 η4k and E|UiVij |2k 6 η4k for some
k > 16 due to Assumption 3.3 and U1V1j , . . . , UnVnj are independent and centered random
variables for all 1 6 j 6 m.
Proof of (D.3) and (D.4). Consider the identities n4ρ−4

m ‖[W ]m‖4 = (
∑m

j=1 λj(
∑n

i=1 UiVij)
2)2

and ([W ]tm[Γ]−1
m [W ]m)/ρ2

m = n−2
∑m

j=1(
∑n

i=1 UiVij)
2. We apply successively Minkowski’s (re-
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spectively Jensen’s) inequality and Theorem 2.10 in Petrov [1995], which leads to

n2ρ−4
m E‖[W ]m‖4 = n−2E

∣∣∣∣ m∑
j=1

λj(

n∑
i=1

UiVij)
2

∣∣∣∣2 6 n−2

[ m∑
j=1

λj

(
E
∣∣ n∑
i=1

UiVij
∣∣4)1/2]2

6 C

[ m∑
j=1

λj max
16i6n

(
E
∣∣UiVij∣∣4)1/2]2

6 Cη8

[ m∑
j=1

λj

]2

;

m−knkρ−2k
m E‖[Γ]−1/2

m [W ]m‖2k = n−kE
∣∣∣∣m−1

m∑
j=1

(
n∑
i=1

UiVij)
2

∣∣∣∣k 6 n−km−1
m∑
j=1

E
∣∣ n∑
i=1

UiVij
∣∣2k

6 C(k)m−1
m∑
j=1

max
16i6n

E
∣∣UiVij∣∣2k 6 C(k)η4k.

The first estimate implies (D.3) since
∑m

j=1 λj 6 E‖X‖2H. By employing Markov’s inequality
the second estimate with k = 16 implies (D.4), that is

max
16m6bn1/4c

P

(
[W ]tm[Γ]−1

m [W ]m

ρ2
m

>
1

16

)
6 Cn−16η64 max

16m6bn1/4c
m16 6 Cn−12η64.

Proof of (D.5). Since V1jV1l − δjl, . . . , VnjVnl − δjl are independent and centered random vari-
ables with E|VijVil − δjl|2k 6 Cη4k for all 1 6 j, l 6 m it follows from Theorem 2.10 in
Petrov [1995] that nkE

∣∣n−1
∑n

i=1(VijVil − δjl)
∣∣2k 6 C(k)η4k. By employing the elementary

inequality ‖[Ξ]m‖2s 6
∑

16j,l6m |VijVil− δjl|2, Jensen’s inequality and the last bound we obtain
m−2knkE‖[Ξ]m‖2ks 6 C(k)η4k. Applying Markov’s inequality and the last bound with k = 16

we conclude

max
16m6bn1/4c

P

(
‖[Ξ]m‖s >

1

8

)
6 Cn−16η64 max

16m6bn1/4c
m32 6 Cn−8η64

which proves the assertion (D.5).
Proof of (D.6). Since Y 2

1 /σ
2
Y − 1, . . . , Y 2

n /σY − 1 are independent and and centered random
variables with E

∣∣Y 2
i /σ

2
Y − 1

∣∣2k 6 C(k)η4k it follows from Theorem 2.10 in Petrov [1995]
that E

∣∣n−1
∑n

i=1 Y
2
i /σ

2
Y − 1

∣∣2k 6 C(k)n−kη4k. Employing Markov’s inequality and the last
bound with k = 16 we deduce P

(
|n−1

∑n
i=1 Y

2
i /σ

2
Y − 1| > 1/2

)
6 Cn−16η64. Thereby, the

assertion (C.10) follows from the last bound by exploiting that {1/2 6 σ̂2
Y /σ

2
Y 6 3/2}c ⊂

{|n−1
∑n

i=1 Y
2
i /σ

2
Y − 1| > 1/2}, which completes the proof.

Lemma D.3. Let ςm := σ + η2‖Γ1/2(βm − β)‖H, m > 1. There exists a numerical constant C
such that for all bn1/4c > m > 1 we have

E
(
‖[Γ]−1/2

m [Wn]m‖2 − 12ς2
m

mΛΓ
m

n

)
+

6 C
ς2
m

n

{
exp
(
−mΛΓ

m

6

)
+ exp

(
−n

1/6

100

)
+
η32

n2

}
.

Proof. Let 1 6 m 6 n be fixed and Sm := {z ∈ Rm : ztz 6 1}. Define the subsets
En := {e ∈ R : |e| 6 n1/6}, X1n := {x ∈ H : |〈β − βm, x〉H| 6 ‖Γ1/2(β − βm)‖Hn1/6},
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X2n := {x ∈ H : [x]tm[Γ]−1
m [x]m 6 mn1/3} and Xn := X1n∩X2n. Given e ∈ R, x ∈ H and s ∈ Sm

we set

νs(e, x) := (σe+ 〈β − βm, x〉H)st[Γ]−1/2
m [x]m 1{e∈En,x∈Xn},

Rs(e, x) := (σe+ 〈β − βm, x〉H)st[Γ]−1/2
m [x]m(1− 1{e∈En,x∈Xn}).

Let ν∗s := (1/n)
∑n

i=1{νs(εi, Xi)−Eνs(εi, Xi)} and R∗s := (1/n)
∑n

i=1{Rs(εi, Xi)−ERs(εi, Xi)},
then it is easily seen that ‖[Γ]

−1/2
m [Wn]m‖2 = sups∈Sm |ν∗s +R∗s|2 and hence

E
(
‖[Γ]−1/2

m [Wn]m‖2 − 12ς2
m

mΛΓ
m

n

)
+

6 2E
(

sup
s∈Sm

|ν∗s |2 − 6ς2
m

mΛΓ
m

n

)
+

+ 2E sup
s∈Sm

|R∗s|2 =: 2{T1 + T2}, (D.7)

where we bound the terms T1 and T2 on the right hand side separately.
Consider first T1 which we estimate by employing Talagrand’s inequality. Obviously, we have

sup
e∈R,x∈H

sup
s∈Sm

|νs(e, x)|2 = sup
e∈R,x∈H

(σe+ 〈β − βm, x〉H)2[x]tm[Γ]−1
m [x]m 1{e∈En,x∈Xn}

6 (σ + ‖Γ1/2(βm − β)‖H)2n2/3m 6 ς2
mn

2/3m =: h2 (D.8)

By employing the independence of ε and X it is easily seen that

nE sup
s∈Sm

|ν∗s |2 6 σ2m+ E|〈β − βm, X〉H|2[X]tm[Γ]−1
m [X]m,

sup
s∈Sm

1

n

n∑
i=1

Var(νs(εi, Xi)) 6 σ
2 + sup

s∈Sm
E|〈β − βm, X〉H|2|st[Γ]−1/2

m [X]m|2.

By applying the Cauchy-Schwarz inequality together with E‖[Γ]
−1/2
m [X]m‖4 6 m2η4 and E

∣∣〈β−
βm, X〉H

∣∣4 6 ‖Γ1/2(βm − β)‖4Hη4 we obtain

E sup
s∈Sm

|ν∗s |2 6
m

n
(σ2 + ‖Γ1/2(β − βm)‖2Hη4) 6 ς2

m

mΛΓ
m

n
=: H2, (D.9)

and taking in addition into account that E|st[Γ]
−1/2
m [X]m|4 6 η4 for all s ∈ Sm we obtain

sup
s∈Sm

1

n

n∑
i=1

Var(νs(εi, Xi)) 6 σ
2 + ‖Γ1/2(βm − β)‖2Hη4 6 ς2

m =: v. (D.10)

Combining (D.8), (D.9), (D.10) due to Talagrand’s inequality (Lemma D.1 with ε = 1) follows

E
(

sup
s∈Sm

|ν∗s |2 − 6ς2
m

mΛΓ
m

n

)
+

6 C
{ ς2

m

n
exp
(
−mΛΓ

m

6

)
+
ς2
mm

n4/3
exp
(
−n

1/6

100

)}
6 C

ς2
m

n

{
exp
(
−mΛΓ

m

6

)
+ exp

(
−n

1/6

100

)}
(D.11)
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where we used that m 6 bn1/4c.
Consider T2 on the right hand side of (D.7). By employing [X]m[Γ]−1

m [X]m 1{X∈X2,n} 6 mn
1/3

and Xn = X1n ∩ X2n we have

nE sup
s∈Sm

|R∗s|2 6 E(σε+ 〈β − βm, X〉H)2[X]m[Γ]−1
m [X]m(1− 1{ε∈En,X∈Xn})

6 E(σε+ 〈β − βm, X〉H)2[X]m[Γ]−1
m [X]m 1{X 6∈X2,n}

+mn1/3E(σε+ 〈β − βm, X〉H)2(1{ε6∈En}+1{X 6∈X1n}).

Taking into account that E(σε + 〈β − βm, X〉H)4 6 (σ2 + ‖Γ1/2(β − βm)‖2H)2η4, Eε2 = 1 and
E|〈β − βm, X〉H|2 = ‖Γ1/2(β − βm)‖2H from the independence between ε and X follows

nE sup
s∈Sm

|R∗s|2 6 (σ2 + ‖Γ1/2(β − βm)‖2H)η2

(
E|[X]m[Γ]−1

m [X]m|2 1{X 6∈X2,n}

)1/2

+mn1/3
{
σ2Eε2

1{ε6∈En}+‖Γ1/2(β − βm)‖2HP (ε 6∈ En)

+ σ2P (X 6∈ X1n) + E|〈β − βm, X〉H|2 1{X 6∈X1n}

}
.

We exploit now the estimates given in (D.1) and (D.2). Thereby, we obtain

nE sup
s∈Sm

|R∗s|2 6 C(σ2 + ‖Γ1/2(β − βm)‖2H)η32mn−7/3 6 Cς2
mη

32n−2

where we used that m 6 bn1/4c. Keeping in mind the decomposition (D.7) the last bound and
(D.11) imply together the claim of Lemma D.3 which completes the proof.

Lemma D.4. There exists a constant K := K(σ, η,Frb ,Gdγ) depending on σ, η and the classes
Frb and Gdγ only such that for all n > 1 we have

sup
βFrb

sup
Γ∈Gdγ

M+
n∑

m=m�n

∆Γ
mE
(
‖[Γ]−1/2

m [Wn]m‖2 − 12σ2
m

mΛΓ
m

n

)
+

6 K η32 (σ2 + r) Σn−1.

Proof. We begin our proof with the observation that there exists an integer no := no(σ, η,Frb ,Gdγ)

depending on σ, η and the classes Frb and Gdγ only such that for all n > no and for all m > m�n
we have ς2

m 6 2(σ2 +‖Γ1/2β‖2H+[g]tm[Γ]−1
m [g]m) = 2(σ2

Y +[g]tm[Γ]−1
m [g]m) = σ2

m. Indeed, we have
1/m�n = o(1) as n→∞ and |ς2

m − σ2| = o(1) as m→∞ because ςm = σ + η2‖Γ1/2(βm − β)‖H
and ‖Γ1/2(βm − β)‖2H 6 34 d9 r γmb

−1
m due to (B.5) in Lemma B.1. We distinguish in the fol-

lowing the cases n < no and n > no. First, consider n < no. Due to (D.3) in Lemma D.2 and
ρ2
m 6 2(σ2 + 35d6r) (Lemma B.2 (iv)) we have for all m > 1

E
(
‖[Γ]−1/2

m [Wn]m‖2 − 12σ2
m

mΛΓ
m

n

)
+

6 E‖[Γ]−1/2
m [Wn]m‖2 6 C

m

n
η4(σ2 + d6r).

Hence, M+
n 6 bn1/4c and m∆Γ

m 6 δ
Γ
M+
n
6 nC(d) for all 1 6 m 6M+

n (Lemma B.2 (ii)) imply

sup
βFrb

sup
Γ∈Gdγ

M+
n∑

m=m�n

∆Γ
mE
(
‖[Γ]−1/2

m [Wn]m‖2 − 12σ2
m

mΛΓ
m

n

)
+

6 n−1C(d)n5/4
o η4(σ2 + r).
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The last bound implies the assertion of the lemma for all 1 6 n < no because no depends on
σ, η and the classes Frb and Gdγ only. Consider now n > no where we have ς2

m 6 σ2
m for all

m > m�n. Thereby, we can apply Lemma D.3, which gives

sup
βFrb

sup
Γ∈Gdγ

M+
n∑

m=m�n

∆Γ
mE
(
‖[Γ]−1/2

m [Wn]m‖2 − 12σ2
m

mΛΓ
m

n

)
+

6 C sup
βFrb

sup
Γ∈Gdγ

M+
n∑

m=m�n

ς2
m∆Γ

m

n

{
exp
(
−mΛΓ

m

6

)
+ exp

(
−n

1/6

100

)
+
η32

n2

}
.

Taking into account the estimates ∆Γ
k 6 4d3∆γ

k , ΛΓ
k > (1 + log d)−1Λγk , M

+
n ∆Γ

M+
n
6 δΓ

M+
n
6

nCd6(1 + log d) and ς2
k 6 σ

2
k 6 2(σ2 + 35d6r) (Lemma B.2 (i), (ii) and (iv) respectively) follows

sup
βFrb

sup
Γ∈Gdγ

M+
n∑

m=m�n

∆Γ
mE
(
‖[Γ]−1/2

m [Wn]m‖2 − 12σ2
m

mΛΓ
m

n

)
+

6 C(d)(σ2 + r)n−1

× sup
βFrb

sup
Γ∈Gdγ


M+
n∑

m=m�n

∆γ
m exp

(
− mΛγm

6(1 + log d)

)
+ n exp

(
− n1/6

100

)
+
η32

n

.
Finally, exploit that Σ = Σ(Gdγ) satisfies (3.3) and n exp

(
−n1/6/100

)
6 C which in turn implies

the claim of the lemma for all n > no, i.e.,

sup
βFrb

sup
Γ∈Gdγ

M+
n∑

m=m�n

∆Γ
mE
(
‖[Γ]−1/2

m [Wn]m‖2 − 12σ2
m

mΛΓ
m

n

)
+

6 C(d)η32(σ2 + r) Σn−1.

Combining the cases n < no and n > no completes the proof.

Lemma D.5. There exist a numerical constant C and a constant C(d) only depending on d

such that for all n > 1 we have

sup
β∈Frb

sup
Γ∈Gdγ

{
n6(M+

n )2 max
16m6M+

n

P
(
fcm,n

)}
6 Cη64;

sup
β∈Frb

sup
Γ∈Gdγ

{
nM+

n max
16m6M+

n

P
(
Ωc
m,n

)}
6 C(d)η64;

sup
β∈Frb

sup
Γ∈Gdγ

{
n7P (Ecn)

}
6 Cη64.

Proof of Lemma D.5. By employing Lemma D.2 rather than Lemma C.2 the proof of the
lemma follows along the lines of the proof of Lemma C.5, and we omit the details.

Proposition D.6. Let κ = 288 in the definition of the penalty pen given in (2.11). There
exists a constant K := K(σ, η,Frb ,Gdγ) depending on σ, η and the classes Frb and Gdγ only such
that for all n > 1 we have

sup
β∈Frb

sup
Γ∈Gdγ

E

{
sup

m�n6k6M
+
n

(
‖β̂k − βk‖2ω −

1

6
penk

)
+

}
6 K η64 (σ2 + r) Σ n−1.
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Proof of Proposition D.6. We follow line by line the proof of Proposition C.6 . Keeping
in mind that penk = 288σ2

kk∆Γ
kΛΓ

kn
−1 we obtain

E

{
sup

m�n6k6M
+
n

(
‖β̂k − βk‖2ω −

1

6
penk

)
+

}
6 4

M+
n∑

k=m�n

∆Γ
kE
(
‖[Γ]

−1/2
k [W ]k‖2 − 12σ2

k

kΛΓ
k

n

)
+

+

M+
n∑

k=m�n

n3
(
E‖[W ]k‖4

)1/2(
P (fck,n)

)1/2
+

M+
n∑

k=m�n

‖βk‖2ωP (Ωc
k,n).

The second and third right hand side term we bound due to Lemma D.2 and D.5, i.e.,

sup
β∈Frb

sup
Γ∈Gdγ

E

{
sup

m�n6k6M
+
n

(
‖β̂k − βk‖2ω −

1

6
penk

)
+

}
6 C(d)η64 (σ2 + r)Σ n−1

+ 4 sup
β∈Frb

sup
Γ∈Gdγ

M+
n∑

k=m�n

∆Γ
kE
(
‖[Γ]

−1/2
k [W ]k‖2 − 12σ2

k

kΛΓ
k

n

)
+

,

and hence by employing the bound given in Lemma D.4 we complete the proof.

Proposition D.7. Let κ = 288 in the definition of pen and p̂en given in (2.11) and (2.6)
respectively. There exists a constant C(d) such that for all n > 1 we have

sup
β∈Frb

sup
Γ∈Gdγ

E(‖β̂m̂ − β‖2ω 1Ecn) 6 C(d) η64 (σ2 + r) Σ n−1.

Proof of Proposition D.7. Taking into account (D.3) in Lemma D.2 rather than (C.7) in
Lemma C.2 we follow line by line the proof of Proposition C.7 and conclude that

sup
β∈Frb

sup
Γ∈Gdγ

E(‖β̂m̂ − β‖2ω 1Ec) 6 C(d)(σ2 + r)η8Σn5/2 sup
β∈Frb

sup
Γ∈Gdγ

|P (Ecn)|1/2.

The assertion follows now with help of Lemma D.5, which completes the proof.

Proof of Proposition 3.3. The assertion follows from Proposition D.6 and Proposition D.7
and we omit the details.
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