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Abstract

We consider the model Zi = Xi + εi for i.i.d. Xi’s and εi’s and independent sequences
(Xi)i∈N and (εi)i∈N. The density of ε is assumed to be known whereas the one of X1 denoted
by g is unknown. Our aim is to study the estimation of linear functionals of g, 〈ψ, g〉 for a
known function ψ. We propose a general estimator of 〈ψ, g〉 and study the rate of convergence
of its quadratic risk in function of the smoothness of g, fε and ψ. Different dependency contexts
are also considered. An adaptive estimator is then proposed, following a method studied by
Laurent et al. [23] in another context. The quadratic risk of this estimator is studied. The
results are applied to adaptive pointwise deconvolution, in which context losses in the adaptive
rates are shown to be optimal in the minimax sense. They are also applied to pointwise Laplace
transform estimation in the standard context and in the context of the stochastic volatility
model. Estimation in the context of ARCH-type models lastly illustrates the method.
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1 Introduction

We consider the convolution model
Zi = Xi + εi. (1)

The sequences (Xi)i∈N and (εi)i∈N are independent. The Xi’s are i.i.d with unknown density
g, the εi’s are i.i.d. with known density fε, whose smoothness is described by the following
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assumption.

Suppose there exist nonnegative numbers κ0, κ
′
0, β, α, and ρ such that f∗ε satisfies

κ0(x2 + 1)−β/2 exp{−α|x|ρ} ≤ |f∗ε (x)| ≤ κ′0(x
2 + 1)−β/2 exp{−α|x|ρ}, (2)

with β > 1 when ρ = 0. Since fε is known, the constants α, ρ, κ0, κ
′
0 and β defined in (2)

are known. When ρ = 0 in (2), the errors are called “ordinary smooth” errors. When α > 0
and ρ > 0, they are called “super smooth”. The standard examples for super smooth densities
are Gaussian or Cauchy distributions (super smooth of order β = 0, ρ = 2 and β = 0, ρ = 1
respectively). An example of ordinary smooth density is the Laplace distribution (ρ = 0 = α
and β = 2).

In this context, many papers studied the so-called “deconvolution problem”. In other words,
many strategies have been developed in order to estimate the distribution g of the unobserved
Xi’s, when assuming that g belongs to some smoothness class defined by:

S(b, a, r, L) =
{
f such that

∫ +∞

−∞
|f∗(x)|2(x2 + 1)b exp{2a|x|r}dx ≤ 2πL

}
(3)

for b, a, r, L some unknown non-negative numbers, such that b > 1/2 when r = 0.
Kernel estimators were first widely studied (see Carroll and Hall [10], Stefanski and Car-

roll [29], Fan [17]), in the case of Sobolev balls (case r = 0 in (3)). Classically in this context,
the slowest rates of convergence for estimating g are obtained for super smooth error densities.
Then adaptive strategies have been examined, using wavelets (see Pensky and Vidakovic [27]),
or model selection methods (see Comte et al. [15]). These works, together with those of Bu-
tucea [5], Butucea and Tsybakov [7] and Lacour [22], studied cases r > 0, a > 0 in (3) involving
thus infinitely many times differentiable functions and lead to improved but non standard rates
whose optimality in the minimax sense was detailed in Fan [17], Butucea [5], Butucea and
Tsybakov [7].

In this paper, we are interested in the problem of estimating θ(g) = 〈ψ, g〉 = E(ψ(X1)) in
model (1), where ψ is a known integrable function.

For the sake of clarity, we first define the three types of estimators and associated rates
discussed in this paper: minimax, adaptive minimax and adaptive. Let Λ = [b, b] × [a, a] ×
[r, r]× [L,L] ⊂ [0,∞)× [0,∞)× (0, 2]× (0,∞) be a set of parameters λ = (b, a, r, L).

Definition 1.1 A sequence ϕn,λ which tends to 0 with n is a minimax rate of convergence over
the class of density functions S(λ) if there exists an estimator θ∗n of θ and a constant C > 0
such that

sup
g∈S(λ)

ϕ−2
n,λEg[|θ

∗
n − θ(g)|2] ≤ C, for n large enough,

and if for some c > 0 we have

inf
θn

sup
g∈S(λ)

ϕ−2
n,λEg[|θn − θ(g)|2] ≥ c, for n large enough,

where the infimum is taken over all estimators θn of θ.

Definition 1.2 An estimator θ̂n is adaptive minimax over the family of classes
⋃
λ∈Λ S(λ) if

there exists some constant C > 0 such that

sup
λ∈Λ

sup
g∈S(λ)

ϕ−2
n,λEg[|θ̂n − θ(g)|2] ≤ C, for n large enough,
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where ϕn,λ is the minimax rate of convergence of the pointwise risk (i.e. for fixed values of b,
a, r and L).

It is not always possible to attain the minimax rate uniformly over a set of parameters Λ. Most
often there is a loss in the rate due to adaptation.

Definition 1.3 We say that an estimator θ̂∗n is adaptive if it attains a rate of convergence ψn,λ
uniformly in λ over Λ, i.e. there exists a constant C > 0 such that

sup
λ∈Λ

sup
g∈S(λ)

ψ−2
n,λEg[|θ̂

∗
n − θ(g)|2] ≤ C, for n large enough.

and if the loss of rate with respect to the minimax rate is optimal, i.e. it satisfies the following
lower bounds

inf
θn

sup
λ∈Λ

sup
g∈S(λ)

ψ−2
n,λEg[|θn − θ(g)|2] ≥ c,

for n large enough, where the infimum is taken over all possible estimators θn.

Comte et al. [15] developed model selection techniques to provide an adaptive estimator of g.
Using the same collection of spaces Sm, we can build an estimator of θ(g) = 〈ψ, g〉 on a given
Sm, for which we can exhibit various rates of the mean square error. Then, in the spirit of
Laurent et al. [23], we build an adaptive procedure for automatic selection of the space Sm
in a collection (Sm)m∈Mn . The difficulty here lies in finding an adequate penalization of an
empirical error of the estimator. We adapt Laurent et al. [23]’s methodology by defining the
selection spaces in the frequency domain. Moreover, our setting is not gaussian.

To compute the rates, we have to take into account the regularity parameters of the function
ψ, which is thus assumed to satisfy, ∀x ∈ R,

|ψ∗(x)|2 ≤ Cψ(x2 + 1)−B exp(−2A|x|R). (4)

We also extend the result to different dependency contexts, in view of particular hidden markov
models or ARCH-type models.

Adaptive estimation of linear functionals has been widely studied in the context of the white
noise model and regression (direct observation), see e.g. Lepski [24], Tsybakov [30], Cai and
Low [9, 8], Artiles and Levit [3] Laurentet al. [23] and in the context of density models with direct
observations Lepski and Levit [25], Butucea [4], Artiles [2]. For the model of Gaussian sequences
Golubev and Levit [20] and Golubev [19] considered adaptive estimation of linear functionals in
both direct and inverse setup. Note also that in some particular inverse problems the pointwise
adaptive estimation was solved by Klemelä and Tsybakov [21] for the Riesz transform, by
Cavalier [11] for tomography problem. To our knowledge, we present the first work on model
selection based adaptation for density estimation in the convolution model (1).

Our findings are interesting, in term of rates and loss due to adaptation. We provide a
new adaptation procedure and when applying our general results to pointwise estimation of g,
we recover as a particular case, the upper bound rates obtained by Fan [17], Butucea [5] and
Butucea and Tsybakov [7], directly in a general context. Moreover, we prove the optimality in
the minimax sense of the loss due to adaptation for Sobolev smooth densities and supersmooth
densities in presence of ordinary smooth noise and for supersmooth densities in presence of
supersmooth noise with r ≥ ρ and 0 < ρ ≤ 1 (in the case r < ρ no loss occurs, while the case
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r ≥ ρ and 1 < ρ < 2 is still open). As a by-product we also prove in the last case that the rates
of our estimator (which requires knowledge of a, r) are optimal in the minimax sense, which
was not yet known in the literature.

We also apply the procedure to pointwise Laplace transform estimation, whenX1 is a positive
random variable, even when the Laplace transform of the noise is infinite. Lastly, we illustrate
our method with an application to the discrete stochastic volatility model, where derivatives
of the Laplace transform of the volatility can be estimated with good rates. All the upper
bounds given in the applications correspond to particular values for the parameters B,A,R of
the function ψ in (4). Lastly, we show how the methods can be applied in the context of general
ARCH-type models.

The plan of the paper is the following. Section 2 defines the estimators and studies their
rates with squared loss function, and the adaptive procedure is detailed in Section 3. Both
independent and β-mixing contexts are studied. In Section 4, several applications of our general
results are detailed. Section 4.1 is devoted to the application of the results to adaptive pointwise
deconvolution, upper bounds are deduced from Section 3 and the associated lower bounds are
proven when a loss occurs. Section 4.2 presents application to Laplace transform estimation, in
the standard context and 4.3 to the context of the stochastic volatility model. Lastly, Section
4.4 explains how the procedure applies to ARCH-type processes. Some proofs are gathered in
Section 5.

2 Study of strategies for estimation

Recall that we want to estimate θ(g) = 〈ψ, g〉 = E(ψ(X1)) where X1 follows model (1) and is
unobserved. Only the Zi’s, for i = 1, . . . , n are available.

We assume in all the following that:

fε belongs to L2(R) and is such that ∀x ∈ R, f∗ε (x) 6= 0. (5)

Note that the square integrability of fε requires that β > 1/2 when ρ = 0 in (2).
In the sequel, we denote by ? the convolution product of functions (u?v(x) =

∫
u(t)v(t−x)dt)

and by u∗ the Fourier Transform of u: u∗(x) =
∫
eitxu(t)dt.

2.1 Two strategies

Two ideas can be investigated.
The first one is to write 〈ψ, g〉 = (1/2π)〈ψ∗, g∗〉. As the density fZ of Z1 satisfies fZ = g ?fε,

we have f∗Z = g∗f∗ε . In other words, under (5), 〈ψ, g〉 = (1/2π)〈ψ∗, f∗Z/f∗ε 〉. Replacing f∗Z(t) by
its empirical version (1/n)

∑n
k=1 e

itZk , this leads to the estimator

θ̌ =
1

2πn

n∑
k=1

∫
eitZk

ψ∗(t)
f∗ε (t)

dt. (6)

This estimator is built directly and seems attractive. Unfortunately, the term f∗ε in the de-
nominator should make in many cases the integral divergent (think of a Gaussian noise ε for
instance). Thus, for the estimator to be well defined, it is wise to take as an estimator of θ(g),

θ̌m =
1

2πn

n∑
k=1

∫
|t|≤πm

eitZk
ψ∗(t)
f∗ε (t)

dt. (7)
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The second strategy is less direct but natural as well: we can use some estimator of g, ĝm
and set

θ̂m = θ(ĝm) = 〈ψ, ĝm〉. (8)

It happens that if ĝm is the projection estimator defined in Comte et al. [15], then θ̂m = θ̌m. To
see this, we need to recall the definition of ĝm.

Let ϕ(x) = sin(πx)/(πx). For m ∈ N and j ∈ Z, set ϕm,j(x) =
√
mϕ(mx− j). The functions

{ϕm,j}j∈Z constitute an orthonormal system in L2(R) (see e.g. Meyer [26], p.22). Let us define

Sm = span{ϕm,j , j ∈ Z},m ∈ N.

The space Sm is exactly the subspace of L2(R) of functions having a Fourier transform with
compact support contained in [−πm, πm]. Here Condition (5) allows to define the following
contrast function: for t in Sm, let

γn(t) =
1
n

n∑
i=1

[
‖t‖2 − 2u∗t (Zi)

]
, with ut(x) =

1
2π

t∗(−x)
f∗ε (x)

. (9)

Then, for an arbitrary fixed integer m, an estimator of g belonging to Sm is defined by

ĝm = arg min
t∈Sm

γn(t). (10)

By using Parseval and inverse Fourier formulae we obtain that E [u∗t (Zi)] = 〈t, g〉, so that
E(γn(t)) = ‖t−g‖2−‖g‖2 is minimal when t = g. This explains why γn(t) is well-suited for the es-
timation of g. Note that the orthogonal projection of g on Sm is gm =

∑
j∈Z am,j(g)ϕm,j where am,j(g) =<

ϕm,j , g > and that

ĝm =
∑
j∈Z

âm,jϕm,j with âm,j =
1
n

n∑
i=1

u∗ϕm,j
(Zi), and E(âm,j) = am,j .

It is then easy to see that

θ̂m = 〈ĝm, ψ〉 =
∑
j∈Z

am,j〈ϕm,j , ψ〉 =
∑
j∈Z

1
n

n∑
k=1

∫
eiuZk

ϕ∗m,j(u)
f∗ε (u)

du
1
2π
〈ψ∗, ϕ∗m,j〉

=
1

2πn

n∑
k=1

∫
eiuZk

∑
j∈Z〈ψ∗, ϕ∗m,j〉ϕ∗m,j(u)

f∗ε (u)
du

= θ̌m,

because
∑

j∈Z〈ψ∗, ϕ∗m,j〉ϕ∗m,j(u) = ψ∗(u)1I|u|≤πm. We have proved that:

Proposition 2.1 Let θ̂m = θ(ĝm) be defined by (8) with ĝm defined by (9)-(10) and θ̌m defined
by (7), then θ̂m = θ̌m.

We can note that in practice ĝm involves an infinite sum which should be truncated. The
study of the impact of this truncation is in Comte et al [15]. For this reason, (7) may be a
better way to write the estimator.
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2.2 Risk bounds and rates for independent variables

The direct strategy has the advantage that m = +∞ can be chosen. If this is possible, then the
estimate is unbiased and its rate can reach the parametric rate. Indeed the variance is

Var(θ̌) = Var(θ̌∞) =
1

4π2n
Var

(∫
eiuZ1

ψ∗(u)
f∗ε (u)

du

)
=

1
4π2n

∫∫
(f∗Z(u− v)− f∗Z(u)f∗Z(−v))ψ

∗(u)ψ∗(−v)
f∗ε (u)f∗ε (−v)

dudv

≤ 1
4π2n

∫
|ψ∗(u)|2

|f∗ε (u)|2
du

∫
|f∗Z(x)|dx.

Another bound for the variance shall prove useful in the sequel:

Var(θ̌) ≤ 1
4π2n

E

(∣∣∣∣∫ eiuZ1
ψ∗(u)
f∗ε (u)

du

∣∣∣∣2
)
≤ 1

4π2n

(∫
|ψ∗(u)|
|f∗ε (u)|

du

)2

.

Finally,

Var(θ̌) ≤ 1
4π2n

min

{∫
|f∗Z |

∫
|ψ∗(u)|2

|f∗ε (u)|2
du,

(∫
|ψ∗(u)|
|f∗ε (u)|

du

)2
}
.

Thus if all integrals are finite, the estimator has a quadratic risk E(θ− θ̌)2 of order 1/n. As∫
|f∗Z(x)|dx ≤

∫
|f∗ε (x)|dx <∞ by (2), we have the following result:

Proposition 2.2 Assume that fε and ψ are such that
∫
|f∗ε (x)|dx < +∞ and∫

|ψ∗(x)/f∗ε (x)|2dx < +∞ or
∫
|ψ∗(x)/f∗ε (x)|dx <∞. (11)

Then θ̌ given by (6) is well defined. It is an unbiased estimator of θ(g) = 〈ψ, g〉, and E[(θ̌ −
θ(g))2] ≤ C/n.

Remark 2.1 Condition (11) is fulfilled if ψ∗ decreases faster than f∗ε near infinity, which cor-
responds to the intuitive idea that ψ is a smoother function than fε. For example, this happens
if ψ is supersmooth when ε is ordinary smooth.

In the general case, a bound for the squared bias can be found, using that E(θ − θ̂m)2 =
b2(θ̂m) + Var(θ̂m) with b(θ̂m) = θ−E(θ̂m). As E(θ̂m) = (1/(2π))

∫
|t|≤πm g

∗(t)ψ∗(t)dt, we obtain

b(θ̂m) =
1
2π

(∫
g∗(t)ψ∗(t)dt−

∫
|t|≤πm

g∗(t)ψ∗(t)dt

)
=

1
2π

∫
|t|≥πm

g∗(t)ψ∗(t)dt.

Therefore, the squared-bias variance decomposition is here

E(θ − θ̂m)2 ≤ b2(θ̂m) +
1

4π2n
min

{∫
|u|≤πm

|ψ∗(u)|2

|f∗ε (u)|2
du

∫
|f∗Z |,

(∫
u≤πm

|ψ∗(u)|
|f∗ε (u)|

du

)2
}
.

Thus we can study the rates that can be deduced from the previous upper bounds, in function
of the smoothness parameters of the three involved functions: g, ψ, fε.
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Proposition 2.3 Assume that Cε =
∫
|f∗ε (x)|dx < +∞, and let θ̂m be defined by (8) or (7).

Then

E(θ − θ̂m)2 ≤

(
1
2π

∫
|t|≥πm

|g∗(t)ψ∗(t)|dt

)2

+
1

4π2n
min

{
Cε

∫ πm

−πm

|ψ∗|2

|f∗ε |2
,

(∫ πm

−πm

|ψ∗|
|f∗ε |

)2
}
.

Let us assume thus that ψ satisfies (4), that g belongs to S(b, a, r, L) as defined by (3) and
that f∗ε fulfills (2). Then

b2(θ̂m) ≤

∣∣∣∣∣
∫
|x|≥πm

g∗(x)ψ∗(x)dx

∣∣∣∣∣
2

≤

∣∣∣∣∣
∫
|x|≥πm

|g∗(x)|(1 + x2)b/2 exp(a|x|r)(|ψ∗(x)|(1 + x2)−b/2 exp(−a|x|r))dx

∣∣∣∣∣
2

≤
∫
|x|≥πm

|g∗(x)|2(1 + x2)b exp(2a|x|r)dx
∫
|x|≥πm

|ψ∗(x)|2(1 + x2)−b exp(−2a|x|r)dx

≤ LC

∫
|x|≥πm

(1 + x2)−b−B exp(−2a|x|r − 2A|x|R)dx

≤ C1m
−2b−2B−max(r,R)+1 exp(−2a(πm)r − 2A(πm)R).

On the other hand, for the variance, we find:

Var(θ̂m) ≤



C′

n (case (I)),


if (ρ = R = 0, β < B − 1/2)
or (ρ = R > 0, α = A, β < B − 1/2)
or (ρ = R,α < A)
or (ρ < R)

C′ ln(m)
n (case (II)),

{
if (ρ = R > 0, α = A, β = B − 1/2)
or (ρ = R = 0, β = B − 1/2)

C′

n m
2β−2B+1, (case (III))

{
if (ρ = R > 0, α = A, β > B − 1/2)
or (ρ = R = 0, β > B − 1/2)

C′

n m
2β−2B+1−ρ+(1−ρ)+e2α(πm)ρ−2A(πm)R

if (ρ > R) or (ρ = R > 0, α > A).
(case (IV))

The term 1− ρ+ (1− ρ)+, where x+ = max{x, 0}, comes from comparisons of the two possible
variance orders as, e.g. for R = 0:∫

|u|≤πm

|ψ∗(u)|2

|f∗ε (u)|2
du ≤ C2m

2β−2B+1−ρ exp(2α(πm)ρ)

and ∫
|u|≤πm

|ψ∗(u)|
|f∗ε (u)|

du ≤ C3m
β−B+1−ρ exp(α(πm)ρ).
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Table 1: Upper bounds for the minimax rates of convergence

Parameters Rate
ρ < R n−1

ρ = R α < A n−1

(ρ = R = 0)
or
(ρ = R > 0, α = A)



β ≤ B − 1/2

β = B − 1/2
{

max{r,R} = 0
max{r,R} > 0

β > B − 1/2
{

max{r,R} > 0
max{r,R} = 0

n−1

(ln lnn)n−1

(lnn)n−1

(lnn)(2β−2B+1)/{r∨R}n−1

n−(b+B−1/2)/(b+B), (b > 1/2)

(ρ = R > 0, α > A) vn

ρ > R

max{r,R} > 0

max{r,R} = 0

vn

ln(n)−(2(b+B)−1)/ρ, (b > 1/2)

More generally, several cases can arise, detailed here and summarized in Table 1. Note that in
case (ρ = R > 0, α > A, min{r,R} > 0) or (ρ = R = 0, max r,R > 0 the rate is given by

vn = arg min
m

{
CBm

−2b−2B+1−r∨Re−2a(πm)r−2A(πm)R

+m2β−2B+1−ρ+(1−ρ)+e2α(πm)ρ−2A(πm)R 1
n

}
.

These rates are faster than (ln(n))−λ1 and slower than n−λ2 for any λ1, λ2 > 0.

Remark 2.2 Here, the smoothness of ψ seems to have no influence on the optimal choice for m.
Nevertheless, the dependence on the unknown parameters related to g of the different optimal
choices of m enhances the interest of an automatic selection of m.

Note that ψ(x) = x or ψ(x) = xp are not integrable on R so that the moments of X1 can not
be estimated in that way. But if ε1 admits moments of the same order, since they are known,
they can be used together with empirical moments of the Zi’s to obtain estimated moments of
X1.

2.3 Extension to mixing contexts

In view of applications, it is natural to study the robustness of the results with respect to
dependency in the variables, and in particular to β-mixing properties.

To be more precise, two dependency contexts are considered. First, we can assume:
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(D1) In Model (1), the sequences (Xi) and (εi) are independent and the εi’s are i.i.d. The
sequence (Xi) is strongly stationary and β-mixing, with β-mixing coefficients denoted by
(βk)k.

otherwise we assume:

(D2) In Model (1), the εi’s are i.i.d and for any given i, Xi and εi are independent (but the
sequences (Xi) and (εi) are not independent). The sequence (Zi, Xi)i∈Z is strongly sta-
tionary and β-mixing, with β-mixing coefficients denoted by (βk)k.

Context (D1) encompasses the case of particular Hidden Markov Models, when the noise
is additive and (Xi) is a β-mixing Markov process. As many Markov chain models or other
standard models can be proved to have such mixing properties (see Doukhan [16] for a large set
of examples and study of their mixing properties), this means that our results can be applied
to many classical models. In that case, we can prove the following result:

Proposition 2.4 Consider the model (1) under (D1) with moreover
∑

k≥0 βk < +∞. Assume
that Cε =

∫
|f∗ε (x)|dx < +∞. Let θ̂m be defined by (8) or (7). Then

E(θ − θ̂m)2 ≤

(
1
2π

∫
|t|≥πm

|g∗(t)ψ∗(t)|dt

)2

+
Cε

4π2n
min

{∫ πm

−πm

|ψ∗|2

|f∗ε |2
,

(∫ πm

−πm

|ψ∗|
|f∗ε |

)2
}

+
2(
∫
|t|≤πm |ψ

∗|(t)dt)2
∑

k≥0 βk

n
. (12)

In particular, if Kψ :=
∫
|ψ∗(t)|dt < +∞, then

E(θ − θ̂m)2 ≤
(

1
π

∫ +∞

πm
|g∗ψ∗|

)2

+
Cε

4π2n
min

{∫ πm

−πm

|ψ∗|2

|f∗ε |2
,

(∫ πm

−πm

|ψ∗|
|f∗ε |

)2
}

+
K

n
, (13)

where K = 2K2
ψ

∑
k βk.

Note that, in any case, we have in (12),∫
|t|≤πm

|ψ∗(t)|dt ≤ min

{
2π‖fε‖2

∫ πm

−πm

|ψ∗|2

|f∗ε |2
,

(∫ πm

−πm

|ψ∗|
|f∗ε |

)2
}
,

so that the last term is always less or equal than the variance term. It follows that the rates, in
the context of mixing Xk’s described by assumption (D1), remain the same as in the indepen-
dent setting.

We explain in Section 4.4, how context (D2) is linked with ARCH models. Let us for now
only state the result:

Proposition 2.5 Consider the model (1) under (D2) with moreover
∑

k≥0 βk < +∞. Assume
that Cε =

∫
|f∗ε (x)|dx < +∞. Let θ̂m be defined by (8) or (7). Then

E(θ − θ̂m)2 ≤

(
1
2π

∫
|t|≥πm

|g∗(t)ψ∗(t)|dt

)2

+
Cε

4π2n
min

{∫ πm

−πm

|ψ∗|2

|f∗ε |2
,

(∫ πm

−πm

|ψ∗|
|f∗ε |

)2
}

+
2
∑

k≥0 βk

n

(∫ πm

−πm
|ψ∗|

)(∫ πm

−πm

|ψ∗|
|f∗ε |

)
. (14)

9



In particular, if fε satisfies (2) and if ψ satisfies (4) and

|ψ∗(x)| ≥ C ′ψ(x2 + 1)−B exp(−2A|x|R), (15)

with β > max(B, 1) or (A > 0, ρ > 0), then

E(θ − θ̂m)2 ≤
(

1
π

∫ +∞

πm
|g∗ψ∗|

)2

+
K

4π2n
min

{∫ πm

−πm

|ψ∗|2

|f∗ε |2
,

(∫ πm

−πm

|ψ∗|
|f∗ε |

)2
}
, (16)

where K is a constant.

Note that condition (2) contains two inequalities analogous to (15) added to (4): they ensure
that the orders are exact and not only upper bounds. They are required to compare the order
of the additional mixing term to them.

It appears from Inequality (14) that

(
∫
|t|≤πm

|ψ∗|(t)dt)(
∫
|t|≤πm

|ψ∗/f∗ε |(t)dt) ≤ (
∫
|t|≤πm

|ψ∗/f∗ε |(t)dt)2

but the comparison with
∫
|t|≤πm |ψ

∗/f∗ε |2(t)dt requires a case study which explains the validity
conditions β > max(B, 1) or (A > 0, ρ > 0) given for (16). It follows from (16) that the rates
given in Table 1 are preserved whenever the εi’s are supersmooth.

3 Adaptive estimation

3.1 The adaptation problem for linear functionals

The problem of adaptation with linear functionals can be understood by comparison with what
happens for global estimation of g for instance. In this context, we can see that ‖g − ĝm‖2 =
‖g−gm‖2+‖gm−ĝm‖2 with Pythagoras theorem. Then to mimic and perform the squared-bias /
variance compromise, both terms must be approximated. But as gm is the orthogonal projection
of g on Sm, ‖g − gm‖2 = ‖g‖2 − ‖gm‖2. Then the squared bias can be reduced to −‖gm‖2, the
other term being a constant. A natural estimation of−‖gm‖2 is γn(ĝm) = −‖ĝm‖2. This explains
why model selection in that case is performed by setting m̂ = arg minm{γn(ĝm)+pen(m)} where
the penalty generally has roughly the order of the variance (E(‖ĝm − gm‖2)).

For linear functionals, let us describe the heuristics. As now only a standard square in in-
volved, (θ(g)−θ(gm))2 = θ2(g)−2θ(g)θ(gm)+θ2(gm), no simplification occurs in the cross prod-
uct. Therefore, the best approximation of the bias is obtained by replacing it by (θ(gj)−θ(gm))2

for j ≥ m, j great enough, and then by (θ(ĝj) − θ(ĝm))2 = (θ̂j − θ̂m)2. This approximation in
turn implies a bias which must be corrected. This explains why the theoretical criterion is

Crit(m) = sup
j≥m

(θ(gj)− θ(gm))2 + pen(m),

where pen(m) has the order of the variance, and its empirical version is

Ĉrit(m) = sup
j≥m,j∈M

[(θ(ĝm)− θ(ĝj))2 −H(j,m)] + pen(m),

10



where H(j,m) is an additional bias correction. We can then define

m̂ = inf
{
m ∈M, Ĉrit(m) ≤ inf

j∈M
Ĉrit(j) +

1
n

}
(17)

as the model selection procedure. It remains to find pen(·) and H(j,m) that make the procedure
work and give good rates for θ̂m̂.

3.2 Model selection

First, note that model selection has an interest only in the case
∫
|ψ∗/f∗ε | = +∞ and

∫
|ψ∗/f∗ε |2 =

+∞ since otherwise the variance is of order 1/n and the rate is parametric. As ψ and fε are
assumed to be known, these conditions can be explicitly checked.

Let Cε =
∫
|f∗ε (x)|dx. Let xm, be some positive weights to be chosen, and let a > 0, we

define:
pen(m) = 4(1 +

1
a
)(xmσ2

m + x2
mc

2
m) (18)

where σ2
m = σ2

0,m, cm = c0,m, with σ2
j,m and cj,m defined by

σ2
j,m =

1
2πn

min

Cε
∫
π(j∧m)≤|x|≤π(j∨m)

∣∣∣∣ψ∗(x)f∗ε (x)

∣∣∣∣2 dx,
(∫

π(j∧m)≤|x|≤π(j∨m)

|ψ∗(x)|
|f∗ε (x)|

dx

)2


and cj,m =
1

2πn

∫
π(j∧m)≤|x|≤π(j∨m)

∣∣∣∣ψ∗(x)f∗ε (x)

∣∣∣∣ dx.
Let also

H(j,m) = 4(1 +
1
a
)(xjσ2

j,m + x2
jc

2
j,m). (19)

We can prove the following Theorem:

Theorem 3.1 Consider model (1) for (Xi)1≤i≤n and (εi)1≤i≤n independent sequences of i.i.d.
random variables and assume that fε satisfies (5). Let θ̂m̂ be defined by (7) or (8) and (17)-(18)-
(19) when

∫
|ψ∗/f∗ε | = +∞ and

∫
|ψ∗/f∗ε |2 = +∞. Then there exists some positive constant

C(a) depending on a only, such that

E[(θ̂m̂ − θ)2] ≤ C(a) inf
m∈M


(∫

|x|≥πm
|ψ∗(x)g∗(x)|dx

)2

+ pen(m)

+ C(a)
∑
m∈M

e−xmω2
m +

1
n
,

where ω2
m = σ2

m ∨ cm + 2(σ2
m ∨ cm)2.

Theorem 3.1 states that θ̂m̂ leads to an automatic tradeoff between the squared bias term
(
∫
|x|≥πm |ψ

∗(x)g∗(x)|dx)2 and pen(m) if the residual
∑

m e
−xmω2

m is negligible, that is O(1/n).
In other words, xm is not free but chosen so that

∑
m e

−xmω2
m = O(1/n). In turn, as the

main term in pen(m) is clearly xmσ2
m and σ2

m is the variance of θ̂m, xm represents a loss in the
variance (not necessarily in the rate).

11



Now, let us discuss the possible choices for the xm’s in order to see what loss occurs, if any,
when using the adaptive procedure. The cases are discussed with respect to cases (II), (III)
and (IV) of the variance which contain only known parameters, under the assumption that fε
fulfills (2), ψ fulfills (4) and g belongs to the set defined by (3).

• Case (II). We take xm = 2 ln(m) and the rate become of order (ln ln(n))2/n instead of
ln ln(n)/n or of order ln2(n)/n instead of ln(n)/n.

• Case (III). We take xm = (2β−2B+3) ln(n), and the rate becomes of order ln ln(n) lnδ(n)/n
instead of lnδ(n)/n and of order (n/ ln(n))−[(b+B)−1/2]/(b+β) instead of n−[(b+B)−1/2]/(b+β).

• Case (IV). We take xm = 4α(πm)ρ, and there is no loss in case with logarithmic rate and
a loss of logarithmic order in case where the rate is such that powers of logarithms are
negligible with respect to it.

Remark 3.1 Comte et al. [15] provide a model selection procedure for selecting an optimal m
with respect to the L2 risk for the estimator ĝm; let g̃ be the resulting estimator. Then 〈ψ, g̃〉
is an estimator of θ(g) on a randomly selected space among the Sm’s. The inequality

E
[
(〈ψ, g̃〉 − 〈ψ, g〉)2

]
≤ ‖ψ‖2E(‖g̃ − g‖2)

explains why the rate of this estimator does not benefit of the improvement brought by the
known regularity of ψ and is therefore not optimal.

Moreover, if we want to extend the adaptive result to the mixing case, we can use the
Bernstein inequality given in Doukhan [16] or in Butucea and Neumann [6], provided that the
mixing is geometrical. We can prove the following Corollary of Theorem 3.1:

Corollary 3.1 Consider model (1) under (D1) or under (D2) with fε satisfying (2) and ψ
satisfying (4) and (15) with β > max(B, 1) or A, ρ > 0, and assume in both case that βk ≤ e−ck

for any k ∈ N. Then if fε satisfies (5), if
∫
|ψ∗(t)|dt < +∞ and

∫
|ψ∗/f∗ε | = +∞,

∫
|ψ∗/f∗ε |2 =

+∞ then the result of Theorem 3.1 for θ̂m̂ defined in the same way, holds with cm, cj,m replaced
by 2cm ln(n)/c, 2cj,m ln(n)/c and σ2

m, σ2
j,m multiplied by 2.

Clearly, the constant c appearing in the cm’s, cm,j ’s is unknown, but these terms have in general
negligible orders when compared to the σ2

m’s, σ2
j,m’s.

4 Applications

4.1 Pointwise estimation

For pointwise estimation of g, we can take ψ(x) = 1I{x0}(x) for any given x0, which implies
ψ∗(t) = eitx0 , |ψ∗(t)| = 1. Therefore, the rates of convergence are the same as usual in pointwise
deconvolution, as recalled in Table 2.

When r > 0, ρ > 0 the value of m̆ is not explicitly given. It is obtained as the solution of
the equation

m̆2b+2β+(1−ρ)+ exp{2α(πm̆)ρ + 2a(πm̆)r} = O(n). (20)

12



Consequently, the rate of ĝm̆ is not easy to give explicitly and depends on the ratio r/ρ. If r/ρ
or ρ/r belongs to ]k/(k + 1); (k + 1)/(k + 2)] with k integer, the rate of convergence can be
expressed as a function of k. For explicit formulae for the rates, see Lacour [22].

These rates are known to be optimal in the minimax sense as indicated in Table 2. The
case r = 0 is done in Fan [17], the case r > 0, ρ = 0 in Butucea [5]. The rate in the case
r > 0, ρ > 0, β = 0 is proven optimal in the minimax sense in Butucea and Tsybakov [7] for
r ≤ ρ and by using their construction we get by following the same proof near optimality (within
a log factor) in the case r > ρ.

For adaptive pointwise estimation, using |ψ∗(x)| = 1 again, we have cm ≤ σ2
m and x2

mc
2
m ≤

Cxmσ
2
m for all the choices of xm that will be found. Clearly, if fε is ordinary smooth, the choice

xm = (2β+3) ln(m) suits and if fε is supersmooth, we can choose xm = 4α(πm)ρ. These choices
coincide with the general case detailed above for b = 0. Then we have

∑
m∈M e−xmω2

m ≤ C/n.
This implies that

E[(θ̂m̂ − θ)2] ≤ C inf
m∈M

((∫ +∞

πm
|g∗|
)2

+
xm
n

min

{∫ πm

−πm
|f∗ε |

−2 ,

(∫ πm

−πm
|f∗ε |

−1

)2
})

+
C ′

n
.

Table 2: Choice of m̆ for pointwise deconvolution and corresponding rates under Assumptions (2) and (3). Adaptive
rates for comparison. Bm is abbreviated for m−2b+1−r exp(−2a(πm)r) and Vm for m2β+1−ρ+(1−ρ)+ exp(2α(πm)ρ)/n.

fε

ρ = 0 ρ > 0
ordinary smooth supersmooth

r = 0
Sob.(b)

πm̆ = n1/(2b+2β)

ϕ2
n = O(n−(2b−1)/(2b+2β))

minimax rate

πm̆ = [ln(n)/(2α+ 1)]1/ρ

ϕ2
n = O((ln(n))−(2b−1)/ρ)

minimax rate

ψ2
n = O((n/ ln(n))−(2b−1)/(2b+2β))

adaptive rate
ψ2

n = O((ln(n))−(2b−1)/ρ)
adaptive minimax rate (no loss)

r > 0
C∞

πm̆ = [ln(n)/2b]1/r

ϕ2
n = O

(
ln(n)(2β+1)/r

n

)
minimax rate

m̆ solution of (20)
= ln(n)− (ln ln(n))2

ϕ2
n = O(Bm̆) : minimax rate if r < ρ and b = 0

ϕ2
n = O(Vm̆) : minimax rate if r ≥ ρ, ρ ≤ 1 and b = 0

ψ2
n = O

(
ln ln(n) ln(n)(2β+1)/r

n

)
adaptive rate

ψ2
n = O

(
m̆ρI(r≥ρ)ϕ2

n

)
adaptive minimax rate if r < ρ and b = 0
adaptive rate if r ≥ ρ, ρ ≤ 1 and b = 0

The rates correspond to B = A = R = 0 in (4) and are the following (see also Table 2):

• Case ρ = r = 0, fε and g are ordinary smooth, xm = (2β+3) ln(m) ≤ (2β+3) ln(n), choose
m of order (n/ ln(n))1/(2b+2β), the rate of the adaptive estimator is (n/ ln(n))−(2b−1)/(2b+2β).
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• Case ρ = 0, r > 0, a > 0, fε is ordinary smooth and g is super-smooth, xm = (2β+3) ln(m),
the optimal m is of order (ln(n)/2a)1/r and the rate of the adaptive estimator is of order
ln(ln(n))[ln(n)](2β+1)/r/n, so that the loss is of order ln(ln(n)).

• Case ρ > 0, α > 0 and r = 0, i.e. fε is super-smooth and g is ordinary smooth. Then xm is
of order mρ, the optimal πm is (ln(n)/(2α+ 1))1/ρ and the rate of the adaptive estimator
is of order [ln(n)]−(2b−1)/ρ, i.e. there is no loss due to adaptation.

• Case ρ > 0, α > 0 and r > 0, a > 0, i.e. both fε and g are super-smooth. Here xm is of
order mρ, there is no loss if r < ρ, a loss of order [ln(n)]ρ/r for r > ρ for a rate faster than
any power of logarithm. If r = ρ the loss is logarithmic and the rate polynomial.

Now, we want to prove that the losses which occur are optimal in the minimax sense.
The previously defined estimator θ̂m̆ with m̆ defined in Table 2 is adaptive minimax in the

cases: (r = 0 and ρ > 0) and (r > 0, ρ > 0 and r < ρ).
As we already noticed, estimators θ̂m̂ which are free of parameters may attain a slower rate of
convergence ψn, i.e. it may happen that ϕn = o(ψn). Therefore, we check that the loss, when
it occurs, is unavoidable.

Theorem 4.1 The rates ψn defined in Table 2 are adaptive rates and whenever a loss with
respect to the minimax rate appears (compare in Table 2 ϕ2

n and ψ2
n) it is optimal in the sense

of Definition 1.3, under the additional hypothesis that the noise density is 3-times continuously
differentiable and

for polynomial noise |f ′ε(u)| ≤ C
1

|u|β+1
, as |u| → ∞ (21)

for exponential noise |f ′ε(u)| ≤ C|u|ρ−1 exp(−α|u|ρ), as |u| → ∞. (22)

Moreover, when r > 0, r ≥ ρ and 0 < ρ ≤ 1 the rate ϕ2
n is minimax rate of estimation.

Remark 4.1 Note that the adaptive property of θ̂m̂ in the case r ≥ ρ is proved only for ρ ≤ 1,
which is a technical restriction. Nevertheless, it is worth noticing that, still under the restriction
that ρ ≤ 1, we obtain as a by-product in Theorem 4.1 the minimaxity of the rate for r ≥ ρ.
This is a new result since the latest result on the subject was proving minimaxity in the case
r < ρ only (see Butucea and Tsybakov [7]).

Proof of Theorem 4.1. We describe first the general procedure for proving the theorem and
postpone details of constructions and proofs to Section 5.5. As the adaptation loss is different
according to whether r = 0 or r 6= 0, ρ = 0 or ρ 6= 0, explicit constructions are needed for each
of the following setups:

1. r = 0, ρ = 0;

2. b = 0, r > 0, ρ = 0;

3. b = 0, r > 0, 0 < ρ ≤ 1 and r ≥ ρ.

Classically, we take b = 0 without loss of generality.
Typically, we construct two probability densities g0 ∈ S(λ) and g1,n ∈ S(λ) where λ, λ ∈ Λ.

Moreover

g1,n(x) = g0(x) +G(x− x0,m), for m = mn →∞ with n and
∫
G(·,m) = 0, ∀m.
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Note that the likelihoods of the model become fZ0 = g0 ? fε under g0 and

fZ1,n(x) = [g1,n ? fε](x) = fZ0 (x) + [G(·,m) ? fε](x− x0)

under g1,n. Then

inf
θn

sup
λ∈Λ

sup
g∈S(λ)

ψ−2
n,λEg[|θn − θ(g)|2]

≥ inf
θn

max
{
ψ−2
n,λ

Eg0 [|θn − θ(g0)|2], ψ−2
n,λEg1,n [|θn − θ(g1,n)|2]

}
≥ inf

Tn

max
{
q2nEg0 [T 2

n ],Eg1,n [|Tn −G(0,m)/ψn,λ|2]
}
,

where qn = ψn,λ/ψn,λ → ∞ when n → ∞, with a proper choice of λ, λ and Tn = (θn −
θ(g0))/ψn,λ.

¿From now on we denote P0 = Pg0 , E0 = Eg0 and P1 = Pg1,n , E1 = Eg1,n . Following
Theorem 6 in Tsybakov [30] we can deduce that, if |G(0,m)/ψn,λ| ≥ c > 0 and if for some fixed
0 < ε < 1 and τ > 0

P1

(
dP0

dP1
≥ τ

)
≥ 1− ε (23)

then

inf
Tn

max
{
q2nE0[T 2

n ],E1[|Tn −G(0,m)/ψn,λ|2]
}
≥ τq2nε

2c4(1− ε)2

τq2nε
2c2 + (1− ε)2c2

. (24)

If we can choose τ = τn such that τnq2n →∞ with n, then the bound from below in (24) tends
to c2(1− ε)2 so it will be larger than c2(1− ε)4 > 0 for n large enough.

Note also that this Lemma may provide the exact asymptotic constant in case c → 1 and
P1(dP0/dP1 ≥ τn) → 1 as n→∞.

In order to deal with (23), we proceed as follows:

P1

(
dP0

dP1
≥ τ

)
= P1

(
n∏
i=1

g0 ? fε
g1,n ? fε

(Yi) ≥ τ

)

= P1

(
n∑
i=1

ln
(

1− G(· − x0) ? fε
g1,n ? fε

(Yi)
)
≥ ln(τ)

)

= P1

(∑n
i=1 Zi,n − nE1(Z1,n)
(nVar1(Z1,n))1/2

≥ ln(τ)− nE1(Z1,n)
(nVar1(Z1,n))1/2

)
,

where Zi,n = ln(1 − [G(· − x0) ? fε](Yi)/g1,n ? fε(Yi)) form a triangular array of independent
variables. Denote

Un :=
∑n

i=1 Zi,n − nE1(Z1,n)
(nV ar1(Z1,n))1/2

.

We shall prove, for each setup, Lyapounov’s central limit theorem for Un. Moreover, we give
an upper bound E1(Z1,n) ≥ −ceκn and a lower bound for Var1(Z1,n) ≤ cvκn, where κn is such
that

χ2(g0 ? fε, g1,n ? fε) :=
∫

(g1,n ? fε − g0 ? fε)2

g1,n ? fε
≤ κn
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as n→∞. Choose then τn → 0 such that

un :=
ln(τn) + cenκn

(cvnκn)1/2
→ −∞

with n, giving that P1(Un ≥ un) ≥ 1 − ε, for some 0 < ε < 1 and large enough n and thus
concluding the proof of the Theorem. 2

4.2 Pointwise Laplace Transform estimation

Let us denote for any positive real number λ the Laplace Transform of a function g by

Lg(λ) =
∫

R
e−λxg(x)dx.

In other words, Lg(λ) = E(e−λX1) = 〈ψλ, g〉 with ψλ(x) = e−λx, for any λ > 0.
If X1 is a nonnegative random variable, then its density g is a R+-supported density which

admits a finite Laplace Transform. In that case, we can write Lg(λ) = 〈g, ψλ〉 with ψλ(x) =
e−λx1I{x>0}, and

ψ∗λ(x) =
∫ +∞

0
eixue−λudu =

1
λ− ix

, |ψ∗λ(x)|2 =
1

λ2 + x2
. (25)

On the other hand, the noise ε is not necessarily positive random variable. If ε1 also admits
a Laplace Transform, then so does Z1 and the Laplace Transform of X1 can be estimated by
using the empirical version of the relation LfZ(λ) = Lg(λ)Lfε(λ). Thus, by setting

L̂g(λ) =

(
1
n

n∑
k=1

e−λZk

)
/Lfε(λ),

we get an unbiased estimate of Lg with quadratic risk of order 1/n.
Now, if ε does not admit a Laplace Transform (e.g. for fε(x) = 1/[π(1 + x2)], E(e−λε1) =

+∞), the method developed in this paper still allows a pointwise estimation of Lg. We can
define

L̂gm(λ) =
1

2πn

n∑
k=1

∫
|t|≤πm

eitZk
ψ∗λ(t)
f∗ε (t)

dt, (26)

with ψ∗λ given by (25). Then we know that L̂gm(λ) is a consistent estimator of Lg(λ), provided
that m is well chosen:

Proposition 4.1 Let X be a positive random variable, with a Laplace transform denoted by
Lg. For all λ > 0, the estimate of Lg defined by (26) is such that

E
[
L̂gm(λ)− Lg(λ)

]2
≤

(∫
|t|≥πm |g

∗(t)|dt
)2

4π4m2

+
1

4π2n
min

{∫
|f∗ε |

∫ πm

−πm

dt

(λ2 + t2)|f∗ε (t)|2
,

(∫ πm

−πm

dt√
λ2 + t2|f∗ε (t)|

)2
}
.
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Moreover, the adaptive procedure works for automatic selection of m. The rates are easily
computed by changing β into β − 1 (for b > 1) and b into b+ 1 in Table 2 or by setting B = 1
in Table 1. We have

Proposition 4.2 Let X be a nonnegative random variable with Laplace transform denoted by
Lg and estimated by L̂gm given by (26). Let m̂ be defined by (17), pen(m) by (18) and H(j,m)
by (19), with |ψ∗(x)| = |ψ∗λ(x)| = 1/

√
λ2 + x2. Then, for all λ > 0,

E
[
L̂gm̂(λ)− Lg(λ)

]2
≤ C(a) inf

m∈Mn


(∫

|t|≥πm |g
∗(t)|dt

)2

4π4m2
+ pen(m)

+
C(a)
n

.

In the same way, we can estimate the symmetrized version of the Laplace Transform namely
SLg(λ) = E(e−λ|X1|). In that case, ψλ(x) = e−λ|x| and ψ∗(x) = 2λ

λ2+x2 . The rates are obtained
by changing β into β− 2 (for b > 2) and b into b+ 2 in Tables 2 or by setting B = 2 in Table 1.

4.3 Stochastic volatility model

Let us consider the discrete time stochastic volatility model:

Ui =
√
Viηi, i = 1, . . . , n, (27)

where ηi is an i.i.d. centered noise process while Vi is a volatility process of interest. More-
over, (Vi) and (ηi) are independent and (Vi) is a stationary β-mixing process with β-mixing
coefficients denoted by (βk). When this model is obtained as the discretization of a set of con-
tinuous time stochastic differential equations, Vi is in fact an integrated volatility process, it is
geometrically β-mixing, and ηi follows aN (0, 1) distribution, see Comte and Genon-Catalot [14].

Now, Model (27) is considered in this form by van Es et al. [31] among others, under the
additional assumption ηi ∼ N (0, 1). Setting

Zi = ln(U2
i ), Xi = ln(Vi) and εi = ln(η2

i )

allows to recover model (1). Then, we note that if η1 ∼ N (0, 1), then

f∗ε (x) =
2ix√
π

Γ(1 + ix), and |f∗ε (x)| ∼|x|→+∞
√

2/ee−π|x|/2, (28)

by using that Γ(z) ∼|z|→+∞
√

2πzz−1/2e−z, see Abramowitz and Stegun [1].
Applying the results of Section 4.1 in the mixing context (D1) (see Proposition 2.4 and

Corollary 3.1), we deduce that, if V is geometrically β-mixing, we have a pointwise estimator
of g,

ĝm(x) =
1

2πn

∫
|t|≤πm

eit(x+Zk)

f∗ε (t)
dt

for which we can propose an automatic selection of m which reaches the adaptive or adaptive
minimax rate. The resulting rate is of order a negative power of ln(n) if g is in a Sobolev
space but it is much faster if g is supersmooth (a case which is easy to meet, see Comte and
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Genon-Catalot [14]). Therefore, we recover as a particular case, and substantially improve the
result of van Es et al. [31], who propose a non adaptive kernel estimator of g, assuming that g
is known to be twice continuously differentiable.

Now, extensions of the class of discrete time stochastic volatility models have been stud-
ied (see Genon-Catalot and Kessler [18], or Chaleyat-Maurel and Genon-Catalot [12]) and in
particular, it is natural to consider more general types of distributions for η. For instance, we
suppose now that η2 follows a Gamma distribution, i.e. that fη2

1
(x) = (e−xxp−1/Γ(p))1Ix>0. In

that case, we find

f∗ε (x) =
Γ(ix+ p)

Γ(p)
, and |f∗ε (x)| ∼|x|→+∞

√
2πe−p

Γ(p)
|x|p−1/2e−π|x|/2, (29)

that is ε is super-smooth with β = p− 1/2, α = π/2 and ρ = 1. The Gaussian case corresponds
to p = 1/2. In this context, let π denotes the density of V1, and consider that we are interested
in estimating its Laplace transform. In fact, our general method provides an estimator of
h(λ) = −(Lπ)′(λ) = E(V1e

−λV1), the opposite of the derivative of the Laplace Transform of π.
In other words, we can estimate h(λ) = 〈ψλ, g〉 = E(V1e

−λV1) = E(eX1−λeX1 ). Actually we have,
for λ > 0,

h(λ) = 〈ψλ, g〉, with ψλ(x) = ex−λe
x
,

and

ψ∗λ(x) = λ−1−ixΓ(1 + ix) ∼|x|→+∞

√
2π
eλ

√
|x|e−π|x|/2, (30)

(i.e. B = 1/2, A = π/2 and R = 1). Let us define

ĥm(λ) =
1

2πn

n∑
k=1

∫
|t|≤πm

eitZk
ψ∗λ(t)
f∗ε (t)

dt (31)

with f∗ε and ψ∗λ given by (29) and (30). Then, taking into account the orders of f∗ε and ψ∗λ, we
obtain, by applying Inequality (13) of Proposition 2.4 and if p 6= 3/2:

E[(ĥm(λ)− h(λ))2] ≤ Kme−π
2m +

K ′m(3−2p)∨0

n
+
K”

∑
k≥0 βk

n
,

where K, K ′ and K” are positive constants, K” = 2(
∫
|ψ∗|)2. If p = 3/2 the variance term has

order ln(m)/n. Then, as (D1) is satisfied in our model, we get

Proposition 4.3 Consider model (27) with (D1), (29) and (30). Assume that (Xk) = (ln(Vk))
is β-mixing with

∑
k βk < +∞, then ĥm defined by (31) satisfies, for λ > 0,

E[(ĥm(λ)− h(λ))2] ≤ Kme−π
2m +

K ′(m(3−2p)∨01Ip6=3/2 + ln(m)1Ip=3/2)
n

+
K”

∑
k βk

n
,

where K, K ′ and K” are positive constants.

In other words, applying the orders detailed in Table 1 to the model (27), we obtain a rate of
order [ln(n)](3−2p)∨1/n (i.e. always less than ln3(n)/n), whatever the smoothness of g.

No adaptation is required if p > 3/2. If p ≤ 3/2, the risk of the adaptive estimator is
obtained by applying Corollary 3.1 and by choosing xm = 4 ln(m):
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Proposition 4.4 Consider the stochastic volatility model (27) with (D1), (29) and (30). As-
sume that (Xi) is geometrically β-mixing and consider ĥm defined by (31), with m̂ defined by
(17). For any λ > 0, and p ≤ 3/2

E[(ĥm̂(λ)− h(λ))2] ≤ K inf
m∈M

(∫
|u|≥πm

|g∗(u)ψ∗λ(u)|du

)2

+
(m3−2p1Ip<3/2 + ln(m)1Ip=3/2) ln(m)

n

]
+K ′ ln(n)

n
.

This corresponds to the case where a loss of order ln(ln(n)) occurs with respect to the non-
adaptive rate.

Remark 4.2 The Gaussian case, for p = 1/2 is not especially studied here because another
strategy is available then. Indeed for η ∼ N (0, 1),

E(ei
√

2λU1) = E
[
E
(
ei
√

2λV1η1 |V1

)]
= E

(
e−λV1

)
.

Therefore the Laplace transform of π, Lπ(λ) can be directly estimated by an empirical mean of
the exp(i

√
2λUk)’s, which is an unbiased estimator reaching the parametric rate 1/n. The rate

would be the same for estimating h, as by differentiating,

h(λ) = E(V1e
−λV1) = (−i/

√
2λ)E(U1e

i
√

2λU1).

The method above reaches for p = 1/2, the rate lnw(n) ln(ln(n))/n, where 1 ≤ w ≤ 2. Therefore,
it is not optimal for any p.

4.4 ARCH models

General ARCH models can be formulated as follows. Let (ηi) be an i.i.d. noise sequence.

Yi = σiηi with σi = F (ηi−1, ηi−2, . . . ), (32)

for some measurable functions F , or

Yi = σiηi with σi = F (σi−1, ηi−1) and σ0 independent of (ηi)i≥0. (33)

Many examples can be found in the literature, and conditions can be given under which the
process (Yi, σi)i∈Z is geometrically β-mixing, we refer to Comte et al. [13] for a review of the
examples and to the references therein. Clearly then, Zi = ln(Y 2

i ), Xi = ln(σ2
i ) and εi = ln(η2

i )
follow Model (1) and satisfy conditions given by (D2).

Therefore, taking ψ(t) = 1I{x0}(t) for any x0, as in Section 4.1, allows to provide a pointwise
density estimator and to recover the results obtained by the kernel estimator of van Es et al. [31].
Our results are more general since van Es et al. [31] only consider Gaussian noise ηt (implying
super-smooth εi’s, see Section 4.3), and do not study adaptation (which is not useful in their
particular case).

Other functionals 〈ψ, g〉 may be estimated with our procedure.
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5 Proofs

5.1 Proof of Theorem 3.1.

We insert here general weights xj,m such that

H(j,m) = 4(1 +
1
a
)(xj,mσ2

j,m + x2
j,mc

2
j,m).

We define
Γ(m) = [θ(gm)− θ(g)]2 + σ2

m + sup
j≤m

xj,mσ
2
j,m.

and

mopt = inf
{
m ∈M, / Crit(m) ≤ inf

l∈M
Crit(l) +

1
n

}
.

Then we prove the following Theorem:

Theorem 5.1 There exists some positive constant C(a) depending on a only, such that

E[(θ̂m̂ − θ)2] ≤ C(a)(Crit(mopt) + Γ(mopt))

+C(a)

∑
m∈M

e−xmω2
m +

∑
j≥mopt

e−xj,moptω2
j,m +

1
n

 ,

where ω2
m = σ2

m ∨ cm + 2(σ2
m ∨ cm)2 and ω2

j,m = σ2
j,mopt

∨ cj,m + 2(σ2
j,mopt

∨ cj,m)2.

First, note that Theorem 5.1 implies the result. Indeed we observe that for j ≥ m, σ2
m,j ≤ σ2

j

and cm,j ≤ cj , so that choosing xm,j = xj implies that∑
j≥mopt

e−xj,moptω2
j,m ≤

∑
m∈M

e−xmω2
m.

Moreover Crit(m) ≤
(∫

|x|≥πm |ψ
∗(x)g∗(x)|dx

)2
+pen(m) and Γ(m) ≤

(∫
|x|≥πm |ψ

∗(x)g∗(x)|dx
)2

+
2pen(m). This implies Theorem 3.1.

Now we establish the following Lemma.

Lemma 5.1 For all m ∈ {1, . . . ,mn} := M, for all x > 0,

P
(
Ĉrit(m) > (1 + a)Crit(m) + 4(1 +

1
a
)(x+ x2)

)
≤

∑
j≥m,j∈M

e−xj,me−x/(σ
2
j,m∨cj,m).

Proof of Lemma 5.1. We use Bernstein inequality which, for i.i.d. Yk’s such that var(Y1) ≤ v2,
‖Y1‖∞ ≤ 1/a, gives, for Sn =

∑n
k=1 Yk

P

(
Sn − E(Sn)

n
≥
√

2uv2

n
+

u

an

)
≤ exp(−u).
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We take, for j ≥ m,

Yk = Yk(j,m) =
1
2π

∫
πm≤|t|≤πj

eitZk
ψ∗(t)
f∗ε (t)

dt. (34)

Then Sn/n = θ̂j − θ̂m and E(Sn/n) = E(θ̂j − θ̂m) = θ(gj) − θ(gm). Moreover, we obtain that
v2/n ≤ σ2

j,m and 1/(an) = cj,m. It follows that

P
{

[(θ̂j − θ̂m)− (θ(gj)− θ(gm))]2 ≥
(
σj,m

√
2u+ cj,mu

)2
}
≤ 2e−u.

Now, we use that (A+B)2 ≤ 2(A2 +B2) and that (x+ y)2 ≤ (1 + 1/a)x2 + (1 + a)y2 gives, by
setting u = y and v = x+ y, that (v − u)2 ≥ (1/(1 + 1/a))v2 − (1 + a)/(1 + 1/a)u2. We obtain

P{(θ̂j − θ̂m)2 ≥ (1 + a)(θj − θm)2 + 2(1 + 1/a)(2σ2
j,mu+ c2j,mu

2)} ≤ 2e−u.

Now we set u = xj,m + x/(σ2
j,m ∨ cj,m) and we find

P{(θ̂j − θ̂m)2 −H(j,m) ≥ (1 + a)(θj − θm)2 + 4(1 +
1
a
)(x+ x2)} ≤ 2e−xj,me−x/(σ

2
j,m∨cj,m).

To conclude we write

P
(
Ĉrit(m) < (1 + a)Crit(m) + 4(1 +

1
a
)(x+ x2)

)
≤ P

{
∃j ≥ m, j ∈M, (θ̂j − θ̂m)2 −H(j,m) ≥ (1 + a)(θj − θm)2 + 4(1 +

1
a
)(x+ x2)

}
≤ 2

∑
j≥m,j∈M

e−xj,me−x/(σ
2
j,m∨cj,m).

This ends the proof of Lemma 5.1. 2

Now we follow the steps of the proof of Laurent et al. [23].
• We first consider the case where m̂ ≤ mopt. The proof is exactly the same and we obtain

P

(
1
2
(θ̂m̂ − θ(g))2 > (1 + a)Crit(mopt) + 4

(
1 +

1
a

)
(x+ x2) + sup

j≤mopt

H(mopt, j)

+(θ(ĝmopt)− θ(g))2 +
1
n
∩ {m̂ ≤ mopt}

)
≤

∑
j≥mopt

e−xj,mopte−x/(σ
2j,mopt∨cj,mopt ). (35)

• Now we consider the case m̂ > mopt. We apply Bernstein Inequality to

Ỹk = Ỹk(m) =
1
2π

∫
|t|≤πm

eitZk
ψ∗(t)
f∗ε (t)

dt,

in the same way as in Lemma 1. We obtain, for all m ∈M,

P
(

(θ(ĝm)− θ(g))2 ≥ (1 + a)(θ(gm)− θ(g))2 + 4(1 +
1
a
)(x+ x2) + pen(m)

)
≤ 2e−xme−x/(σ

2
m∨cm).
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This implies that

P
(

(θ(ĝm̂)− θ(g))2 ≥ (1 + a)(θ(gm̂)− θ(g))2 + 4(1 +
1
a
)(x+ x2) + pen(m̂)

)
≤

∑
m∈M

2e−xme−x/(σ
2
m∨cm).

As supj≥m[(θ̂m − θ̂j)2 − H(j,m)] ≥ (θ̂m − θ̂m)2 − H(m,m) = 0, we have Ĉrit(m) ≥ pen(m).
Using the inequalities, pen(m) ≤ Ĉrit(m̂) ≤ Ĉrit(mopt) + 1/n, we obtain

P
(

(θ(ĝm̂)− θ(g))2 ≥ (1 + a)(θ(gm̂)− θ(g))2 + 4(1 +
1
a
)(x+ x2) + Ĉrit(mopt) +

1
n

)
≤

∑
m∈M

2e−xme−x/(σ
2
m∨cm).

If m̂ > mopt, then (θ̂m− θ(g))2 ≤ supj≥mopt
(θj − θ(g))2 and we apply Lemma 1 with m = mopt.

This yields

P

(
(θ(ĝm̂)− θ(g))2 ≥ (1 + a)( sup

j≥mopt

(θ(gj)− θ(g))2 + 4(1 +
1
a
)(x+ x2)

+(1 + a)Crit(mopt) +
1
n
∩ {m̂ > mopt}

)
≤

∑
m∈M

2e−xme−x/(σ
2
m∨cm) +

∑
j≥mopt

2e−xj,mopte
−x/(σ2

j,mopt
∨cj,mopt ). (36)

Let

Cmopt = 3(1 + a)Crit(mopt) + 2 sup
j≤mopt

H(mopt, j) + (1 + a) sup
j≥mopt

(θj − θ(g))2 +
3
n

and X = (θ̂m̂ − θ(g))2, Y = 2(θ̂mopt − θ(g))2. It follows from (35) and (36) that, for all x > 0,

P
(
X − Y > Cmopt + 24(1 +

1
a
)(x ∨ x2)

)
≤

∑
m∈M

2e−xme−x/(σ
2
m∨cm)

+
∑

j≥mopt

2e−xj,mopte
−x/(σ2

j,mopt
∨cj,mopt ).

We write that E(X) = E(X1IX≥Y+Cmopt
) + E(X1IX≤Y+Cmopt

) ≤ E[(X − Y − Cmopt)+] + E(Y +
Cmopt). Then, setting Ca = 24(1 + 1/a) and Z = X − Y − Cmopt

E[Z+] =
∫ +∞

0
P(Z > t)dt = Ca

(∫ 1

0
P(Z > Cau)du+

∫ ∞

1
P(Z > Cau)du

)
= Ca

(∫ 1

0
P(Z > Ca(u ∨ u2))du+ 2

∫ ∞

1
P(Z > Cav

2)vdv
)

= Ca

(∫ 1

0
P(Z > Ca(u ∨ u2))du+ 2

∫ ∞

1
P(Z > Ca(v ∨ v2))vdv

)
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E[(X − Y − Cmopt)+] ≤ Ca

∑
m∈M

2e−xm(σ2
m ∨ cm + 2(σ2

m ∨ cm)2)

+Ca

∑
j≥mopt

2e−xj,mopt (σ2
j,mopt

∨ cj,mopt + 2(σ2
j,mopt

∨ cj,mopt)
2)

= Ca

∑
m∈M

2e−xmω2
m +

∑
j≥mopt

2e−xj,moptω2
j,mopt

 .

The end of the proof is the same as in Laurent et al. [23]. 2

5.2 Proof of Proposition 2.4.

The decomposition of the risk is the same and the bound for the bias also. Only the variance
has to be re-examined. The basic idea is that, for k 6= `,

cov(eitZk , eisZ`) = f∗ε (t)f
∗
ε (−s)cov(eitXk , eisX`)

by conditioning on (Xk, X`). The additional trick is the standard covariance inequality for
β-mixing variables (see e.g. Doukhan [16]) which implies that

|cov(eitXk , eisX`)| ≤ β|k−`|.

Var(θ̆m) =
1

4π2n2
Var

(
n∑
k=1

∫
|t|≤πm

eitZk
ψ∗(t)
f∗ε (t)

dt

)

=
1

4π2n2

n∑
k=1

n∑
`=1

∫∫
|t|≤πm,|s|≤πm

cov(eitZk , eisZ`)
ψ∗(t)
f∗ε (t)

ψ∗(−s)
f∗ε (−s)

dsdt

=
1

4π2n2

n∑
k,`=1,k 6=`

∫∫
|t|≤πm,|s|≤πm

cov(eitXk , eisX`)ψ∗(t)ψ∗(−s)dsdt

+
1

4π2n2

n∑
k=1

∫∫
|t|≤πm,|s|≤πm

cov(eitZk , eisZk)
ψ∗(t)
f∗ε (t)

ψ∗(−s)
f∗ε (−s)

dsdt. (37)

The last term is the standard variance term of the independent case. The first one is bounded
in modulus by

2
4π2n2

n∑
1≤k<`≤n

∫∫
|t| ≤ πm,
|s| ≤ πm

|cov(eitX1 , eisX`−k)||ψ∗(t)ψ∗(−s)|dsdt

≤ 1
2πn

n∑
k=1

βk

(∫
|t|≤πm

|ψ∗(t)|dt

)2

.

This gives the result. 2
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5.3 Proof of Proposition 2.5.

Under (D2), we only obtain tha for k < `,

cov(eitZk , eisZ`) = f∗ε (−s)cov(eitZk , eisX`)

by conditioning on (X`). The covariance inequality for β-mixing variables (see e.g. Doukhan [16])
still applies (but to the variables (Xk, Zk) and (X`, Z`) and implies that

|cov(eitZk , eisX`)| ≤ β|k−`|.

Then (37) remains true but leads for the bound of the modulus of the last term, to:

2
4π2n2

n∑
1≤k<`≤n

∫∫
|t| ≤ πm,
|s| ≤ πm

|cov(eitZ1 , eisX`−k)||ψ
∗(t)
f∗ε (t)

ψ∗(−s)|dsdt

≤ 1
2πn

n∑
k=1

βk

(∫
|t|≤πm

|ψ∗(t)|dt

)(∫
|t|≤πm

∣∣∣∣ψ∗(t)f∗ε (t)

∣∣∣∣ dt
)
.

This gives Inequality (14).
For the proof of (16), the result follows from the fact that the new mixing term is always
negligible with respect to the independent variance term if ε is super-smooth (case A, ρ > 0). If
ε is ordinary smooth, then we only have to study when m(−B+1)++β−B+1 is less than m2β−2B+1,
which occurs if β > max(B, 1). 2

5.4 Proof of Corollary 3.1

The main difference with respect to the proof of Theorem 5.1 lies in the Bernstein inequality
which must be written in the mixing context. For geometrically mixing variables (and q = qn =
2 ln(n)/c if βk ≤ e−ck), we get from Theorem 4 p.36 in Doukhan [16], that

P

(
Sn − E(Sn)

n
≥
√

2uṽ2

n
+

2 ln(n)u
can

)
≤ e−u +

2
n2
,

with ‖Y1‖∞ ≤ 1/a and
1
q
Var

(
q∑

k=1

Yk

)
≤ ṽ2.

In all cases, |M| ≤ n, so that summing up the residuals of order 1/n2 will give negligible terms
of order 1/n. Next, the variables are still given by (34) and we can see from the bound that the
upper bound being multiplied by 2 ln(n)/c in the Bernstein Inequality, all cj,m’s and cm’s are the
same as previously multiplied by 2 ln(n)/c, this gives c̃j,m = 2c ln(n)cj,m and c̃m = 2c ln(n)cm.
Lastly, it follows from the above computation of Var(θ̆m) that the new variance terms denoted
by σ̃2

j,m, σ̃2
m can be bounded under (D1) by

σ̃2
j,m ≤ σ2

j,m +
1
πn

∑
k≥1

βk

(∫
π(m∧j)≤|t|≤π(m∨j)

|ψ∗(t)|dt

)2

,

and analogously for σ̃2
m. It follows from our set of assumptions that σ̃2

j,m ≤ σ2
j,m + c/n ≤ 2σ2

j,m

and σ̃2
m ≤ 2σ2

m. The case (D2) is analogous under the more restrictive assumptions given. The
result of Corollary 3.1 follows. 2
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5.5 Proof of Theorem 4.1

1) Case r = 0, ρ = 0 and Λ = [b, b]× [L,L] ⊂ (1/2,∞)× (0,∞).
Let us choose g0 in the class S(b, L/2) such that g0 > 0 and g0(x) ≥ c|x|−2 as |x| → ∞. We

choose next the function G such that G(x,m) = m−b+1/2G(mx) and with G∗ at least 3-times
continuously differentiable having the property

I(1/2 ≤ |u| ≤ 3/4)
c(1 + u2b)

≤ G∗(u) ≤ I(1/4 ≤ |u| ≤ 1)
c(1 + u2b)

.

Here, m = (c0 ln(n)/n)−1/(2b+2β). Note that G∗(0) =
∫
G = 0. Firstly, g1,n is a positive function

with integral equal to 1 and belongs to S(b, L). Indeed, for each fixed x we have G(x,m) → 0
when n→∞ and as G∗ is 3 times continuously differentiable that means |G(x,m)| ≤ O(|x|−3) =
o(g0(x)) as |x| → ∞, giving that g1,n ≥ 0 for n large enough. Moreover,

(
∫
|g∗1,n(u)|2|u|2bdu)1/2

≤ (
∫
|g∗0(u)|2|u|2bdu)1/2 +m−b−1/2(

∫
1/4≤|u|/m≤1

|G∗(u/m)|2|u|2bdu)1/2

≤
√

2πL/2 +
C

c
(
∫ 1

1/4

|u|2b

(1 + u2b)2
du)1/2 ≤ (2πL)1/2,

for c > 0 large enough. Secondly,∣∣∣∣G(0,m)
ψn,b

∣∣∣∣ = (ψn,b)−1m−b+1/2 1
2π

∫
G∗(u)du ≥ c

−b+1/2
0

2π

∫ 3/4

1/2
du ≥ c1 · c−b+1/2

0 > 0.

We shall prove that (23) holds with

τ = n
− 2β+1

2b+2β

and together with the fact that

τq2n = τ
ψ2
n,b

ψ2
n,b

= τ

(
ln(n)
n

)− (2β+1)(b−b)

(2b+2β)(2b+2β)

= (ln(n))
− (2β+1)(b−b)

(2b+2β)(2b+2β)n
2β+1
2b+2β

b+β

b+β

tends to infinity, with n, the proof of (24) and hence of the Theorem is finished.
We can prove that for each x0

sup
x

|[G(m(· − x0)) ? fε](x)|
fZ0 (x)

= o(1), as n→∞, (38)

therefore fZ1,n(x) = fZ0 (x)(1 + o(1)), where o(1) → 0, n→∞ uniformly in x. As we chose g > 0
then fZ0 > 0 and together with the previous statement it means that for any M > 0 we can find
a constant c2 > 0 such that fZ1,n ≥ 1/c2 on [−M,M ]. Moreover, for some M > 0 large enough,
see Butucea and Tsybakov [7],

fZ0 (x) = g0 ? fε(x) ≥
C2

x2
, as |x| ≥M.
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Therefore, for large enough M > 0, fZ1,n(x) ≥ 1/(c3|x|2), for some constant c3 > 0 and for
|x| ≥M . Finally, we deal with

χ2(fZ0 , f
Z
1,n) = m−2b+1

∫
[G(m(· − x0)) ? fε]2(x)

fZ1,n(x)
dx

≤ m−2b+1

(
c2

∫
|x|≤M

[G(m(· − x0)) ? fε]2(x)dx+ c3

∫
|x|>M

|x|2[G(m(· − x0)) ? fε]2(x)dx

)
,

say T1 and T2, for some fixed, large M > 0. Then

T1 ≤ m−2b−1 c2
2π

∫
|G∗( u

m
)f∗ε (u)|2du

≤ c4m
−2b−1

∫ m

m/4

1
|u|2β

du ≤ c5m
−2b−2β ≤ c6

c0 ln(n)
n

. (39)

For T2 we follow the similar proof in Butucea and Tsybakov [7] and use condition (21) to get

T2 ≤ m−2b+1 c3
2π

∫ ∣∣∣∣ ∂∂u
(

1
m
G∗
( u
m

)
f∗ε (u)

)∣∣∣∣2 du
≤ c6m

−2b−1m−2β = o(T1), n→∞. (40)

Therefore, from (39) and (40) we have χ2(fZ0 , f
Z
1,n) ≤ κn, with κn = cχc0 ln(n)/n. We use

the fact that −u(1 + u) ≤ ln(1 − u) ≤ −u for all u ∈ [0, 1/2] and that (38) implies that
|u| = |[G(m(· − x0)) ? fε](x)|/fZ1,n(x) ≤ 1/2 for n large enough to get

E1Z1,n =
∫

ln

(
1− [G(·,m) ? fε](x− x0)

fZ1,n(x)

)
fZ1,n(x)dx

≥ −
∫

[G(·,m) ? fε](x− x0)dx−
∫

[G(·,m) ? fε]2(x− x0)
fZ1,n(x)

dx

≥ −χ2(fZ0 , f
Z
1,n) ≥ −κn,

for n large enough. Indeed, note that
∫
G(·,m) = 0 and therefore∫

[G(·,m) ? fε](x− x0)dx = 0.

Moreover,

V1(Z1,n) ≤ E1(Z2
1,n) =

∫
ln2

(
1− [G(·,m) ? fε](x− x0)

fZ1,n(x)

)
fZ1,n(x)dx

≤
∫

[G(·,m) ? fε]2(x− x0)
fZ1,n(x)2

(
1 +

[G(·,m) ? fε]2(x− x0)
fZ1,n(x)

)2

fZ1,n(x)dx

≤ cvχ
2(fZ0 , f

Z
1,n) ≤ cvκn,
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as by (38): supx |fZ0 (x)/fZ1,n(x)| is bounded from above by some constant depending only on g0
and fε. By similar calculations, we also check that

V1(Z1,n) ≥ 1
2

E1(Z2
1,n) =

1
2

∫
ln2

(
1− [G(·,m) ? fε](x− x0)

fZ1,n(x)

)
fZ1,n(x)dx

≥ 1
2

∫
[G(·,m) ? fε]2(x− x0)

fZ1,n(x)
dx ≥ 1

2‖fZ1,n‖∞

∫
[G(·,m) ? fε]2(x− x0)dx

≥ c′vκn,

and that

n∑
i=1

E1

∣∣∣∣∣Zi,n − E1(Zi,n)√
n · V1(Z1,n)

∣∣∣∣∣
4

≤ nE1|Z1,n|4

(c′v)2n2κ2
n

≤
n
∫

[G(·,m) ? fε]4(x− x0)dx(1 + o(1))
(c′v)2 ln2(n)

≤
nc
∫
|G∗(u,m)f∗ε (u)|2du(

∫
|G∗(u,m)f∗ε (u)|du)2

(c′v)2 ln2(n)

≤ c
ln(n) ·m−2b−2β+1

ln2(n)
= o(1),

as n → ∞ and since b > 1/2. Next we apply Lyapounov’s central limit theorem for triangular
arrays, see Petrov [28], to get P1(Un ≥ un) ≥ 1− ε, as

0 ≥ un =
ln(τ) + κn√

cvκn
=
− 2β+1

2b+2β + cχc0
√
cvcχc0

√
ln(n) → −∞,

with n.
2) Case α, r > 0 and ρ = 0. Without loss of generality we consider b = 0.
In this case, take some a ∈ [a, a] and g0 belonging to S(a, r, L/2) such that g0 > 0 and

g0(x) ≥ c|x|−2 as |x| → ∞. Let us consider a function G as for the case 1 such that G∗ is
3-times continuously differentiable having the property

I(π/2 ≤ |u| ≤ 3π/4)
c(1 + u4)

≤ G∗(u) ≤ I(π/4 ≤ |u| ≤ π)
c(1 + u4)

.

Next,

g1,n(x) = g0(x) +

√
c0

ln lnn
n

mβ+1/2G(m(x− x0)),

where m is such that
c0

ln lnn
n

m2β+r−1 exp (2a(πm)r) ≤ 2πL/2. (41)

Note that this gives a first order approximation of m = (log n/(2a))1/r. Then, similarly to the
case 1, g1,n is a proper density function as soon as n is large enough and for some M > 0 we
have fZ1,n(x) = g1,n ∗ fε(x) ≥ C|x|−2 for all |x| ≥M .

By using (41), we get that g1,n belongs to S(a, r, L) for any a ≥ a.
Next,

|g1,n(x0)− g0(x0)|
ψn,a,r

= c0|G(0)| > 0
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and we get, by the same procedure as for the case 1,

χ2(fZ0 , f
Z
1,n) = c0

ln lnn
n

m2β+1

∫
[G(m(· − x0)) ? fε]2(x)

fZ1,n(x)
dx

≤ c0
ln lnn
n

m2β+1c1

∫
[G(m(· − x0)) ? fε]2(x)dx(1 + o(1))

≤ c0cχ
ln lnn
n

=: κn.

Let us choose c0 small such that c0cχ < (r − r)(2β + 1)/(rr) and let ξ and τ be defined by

c0cχ < ξ <
r − r

rr
(2β + 1) and τ = ln(n)−ξ.

On the one hand, this implies τq2n → ∞ with n. On the other hand, after checking again that
Lyapounov’s central limit theorem holds in this case we get

P1

(
dP0

dP1
≥ τ

)
≥ P1(Un ≥ un) ≥ 1− ε,

as un = (− ln(τ) + nκn)(cvnκn)−1/2 = (−ξ + c0cχ)(cvc0cχ)−1/2
√

ln ln(n) → −∞.
3) Case r > 0, 0 < ρ ≤ 1 and r ∈ [r, r] such that r ≥ ρ. Without loss of generality we

consider b = 0.
As in the second case, take some a ∈ [a, a] and g0 belonging to S(a, r, L/2) such that g0 > 0

and g0(x) ≥ c|x|−2 as |x| → ∞. Let also G be a function such that G∗ is 3-times continuously
differentiable with a bounded first derivative and having the property

I(π/2 ≤ |u| ≤ 3π/4) ≤ G∗(u) ≤ I(π/4 ≤ |u| ≤ π).

Next, define g1,n via its Fourier transform

g∗1,n(u) = g∗0(u) + c0
e−α(πm)ρ

√
n

mρ−1/2e2α|u|
ρ
G∗ (|u|ρ − (πm)ρ) eiux0 ,

where m is solution of the equation

2a(πm)r + 2α(πm)ρ = log n− (log log n)2. (42)

We stress the fact that m is no longer a scaling parameter of the function G in this construction.
Again, as previously, we can check that g1,n is a proper probability density, as soon as n is

large enough, and that for some M > 0 we have fZ1,n(x) ≥ C|x|−2 for all |x| ≥M .
Let us check that g1,n belongs to S(a, r, L). It is enough to bound from above

1
2π

∫
c20
e−2α(πm)ρ

n
m2ρ−1e4α|u|

ρ |G∗ (|u|ρ − (πm)ρ) |2e2a|u|rdu

≤ c20m
2ρ−1 e

−2α(πm)ρ

2πn

∫
π/4≤|u|ρ−(πm)ρ≤3π/4

e4α|u|
ρ+2a|u|rdu

≤ c20c1m
2ρ−1 e

−2α(πm)ρ

2πn
(πm)1−re4α(πm)ρ+2a(πm)r

≤ c20c2n
−1m2ρ−re2a(πm)r+2α(πm)ρ
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which tends to 0 when m is defined by (42).
Next,

|g1,n(x0)− g0(x0)| =
1
2π

∣∣∣∣∣
∫
c0
e−α(πm)ρ

√
n

mρ−1/2e2α|u|
ρ
G∗ (|u|ρ − (πm)ρ) du

∣∣∣∣∣
≥ c0m

ρ−1/2 e
−α(πm)ρ

2π
√
n

∫
π/2≤|u|ρ−(πm)ρ≤π

e2α|u|
ρ
du

≥ c0c3m
1/2 e

α(πm)ρ

2π
√
n

and we can check similarly to Butucea and Tsybakov [7] that for m solution of (42) this sequence
is equivalent to ψn,a,r when n→∞.

Finally

χ2(fZ0 , f
Z
1,n) = c20

∫
[(g1,n − g0) ? fε]2(x)

fZ1,n(x)
dx

≤ c20

{∫
|x|≤M

[(g1,n − g0) ? fε]2(x)dx+
∫
|x|>M

x2[(g1,n − g0) ? fε]2(x)dx

}
,

say T1 + T2. Then

T1 ≤ c20c4
e−2α(πm)ρ

n
m2ρ−1

∫
|G∗(|u|ρ − (πm)ρ)f∗ε (u)|2du

≤ c20c5
e−2α(πm)ρ

n
m2ρ−1

∫
π/4≤|u|ρ−(πm)ρ≤3π/4

e2α|u|
ρ
du

= c20c6
(πm)ρ

n
.

Moreover, under the additionnal assumption (22) that |∂f∗ε (u)/∂u| ≤ O(1)|u|ρ−1 exp(−α|u|ρ)
as |u| → ∞,

T2 ≤ c20c7
e−2α(πm)ρ

n
m2ρ−1

∫ ∣∣∣∣ ∂∂u [G∗(|u|ρ − (πm)ρ)f∗ε (u)]
∣∣∣∣2 du

≤ c8
e−2α(πm)ρ

n
m2ρ−1

∫
π/4≤|u|ρ−(πm)ρ≤3π/4

|u|2(ρ−1)e2α|u|
ρ
du

≤ c9
(πm)3ρ−2

n
= o(T1),

for ρ ≤ 1 and n large enough. Thus

χ2(fZ0 , f
Z
1,n) ≤ c20cχ

(πm)ρ

n
=: κn.

Let c0 be small such that c20cχ < 2α and let ξ and τ be defined by

c20cχ < ξ < 2α and τ = e−ξ(π ln(n)/(2a))ρ/r
.
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We have

τψ2
n,a,r/ψ

2
n,a,r ≥ (ln(n))A exp

(
(−ξ + 2α)

(
ln(n)
2a

)ρ/r
+B(ln(n))C

)
→∞

for some real numbers A, B C, as C < ρ/r and ξ < 2α. We check that Lyapounov’s theorem
holds and that

un =
− ln(τ) + nκn√

cvnκn
=
−ξ(π ln(n)/(2a))ρ/r + c20cχ(πm)ρ

c0
√
cvcχ(πm)ρ/2

→ −∞

with n, as m defined by (42) is larger than (ln(n)/(2a))1/r.

The proof that ϕn is the minimax rate of estimation in this case repeats the proof of 3 with
modified choice of g1,n via its Fourier transform

g∗1,n(u) = g∗0(u) + c0
e−α(πm)ρ

√
n

m(ρ−1)/2e2α|u|
ρ
G∗ (|u|ρ − (πm)ρ) eiux0 ,

where m is solution of the equation (42). This gives the rate

|g1,n(x0)− g0(x0)| ≥ c0c3m
−(ρ−1)/2 e

α(πm)r

√
n

,

which is equivalent to Vm̆ for n large enough and

nχ2(fZ0 , f
Z
1,n) ≤ c20c6 + c9m

2ρ−2 ≤ c20cχ.

Thus, the rate ϕn is a minimax rate of convergence for r ≥ ρ, ρ ≤ 1. 2
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