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Abstract. In this paper, we consider the multiplicative censoring model, given by Yi = XiUi
where (Xi) are i.i.d. with unknown density f on R, (Ui) are i.i.d. with uniform distribution
U([0, 1]) and (Ui) and (Xi) are independent sequences. Only the sample (Yi)1≤i≤n is observed.
Nonparametric estimators of both the density f and the corresponding survival function F̄ are
proposed and studied. First, classical kernels are used and the estimators are studied from
several points of view: pointwise risk bounds for the quadratic risk are given, upper and lower
bounds for the rates in this setting are provided. Then, an adaptive non asymptotic bandwidth
selection procedure in a global setting is proved to realize the bias-variance compromise in an
automatic way. When the Xi’s are nonnegative, using kernels fitted for R+-supported functions,
we propose new estimators of the survival function which are proved to be adaptive. Simulation
experiments allow us to check the good performances of the estimators and compare the two
strategies.

Keywords. Adaptive procedure. Bandwidth selection. Kernel estimators. Multiplicative cen-
soring model.
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1. Introduction

In this paper, we consider the model

(1) Yi = XiUi, i = 1, . . . , n

under the assumptions: the Ui, i = 1, . . . , n are independent and identically distributed (i.i.d.)
with uniform distribution on [0, 1]; the Xi, i = 1, . . . , n are real valued, i.i.d., with unknown
density f and cumulative distribution function (c.d.f.) F ; the sequences (Ui)1≤i≤n and (Xi)1≤i≤n
are independent. We intend to propose estimation methods for f and F (or F̄ = 1 − F ) when
observing a sample (Yi)1≤i≤n only.

Model (1) has been widely investigated mostly when the random variables Xi are nonnegative.
In this case, Model (1) is usually called the multiplicative censoring model and was introduced in
Vardi (1989), studied in more details in Vardi and Zhang (1992) and by Asgharian et al. (2012).
As explained in Vardi (1989), the multicative censoring model unifies several important statis-
tical problems (deconvolution of an exponential variable, estimation under decreasing density
constraint or some estimation problems in renewal processes). However in the above quoted pa-
pers, authors assume that observations are composed of two independent samples, one of direct
observations X with size m, in addition to the above Y n-sample. The statistical procedures
for estimating the c.d.f. F rely on the fact that m tends to infinity and cannot be applied for
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m = 0. Let us mention that van Es et al. (2000) studied a survival analysis model involving
both multiplicative censoring and length bias, in a parametric context.

The problem may be related to the moment problem: in Model (1), all moments of X can
easily be estimated from the observations Y , so the question of distribution reconstruction from
its moments as pointed out by Mnatsakanov (2006) can be addressed.

Another strategy is to take the logarithm of the squared model, as proposed in stochastic
volatility models (see van Es et al. (2005), Comte and Genon-Catalot (2006)), and to apply
deconvolution methods. In these papers, the Ui’s are supposed to be Gaussian. But then, the
estimated function is distorted and, in case of real random variables Xi, information about their
sign is lost, when proceeding so.

Series expansion methods have been proposed in Andersen and Hansen (2001): they consider
the problem as an inverse problem and apply Singular Value Decomposition in different bases
to provide estimators. They obtain rates comparable to ours though on different regularity
spaces, however their procedure is not adaptive and depends on the choice of a cutoff which
is only empirically studied. Later on, wavelet methods have been applied by Abbaszadeh et
al. (2012,2013) to estimate the density and its derivatives, considering a general Lp-risk, and in
presence of additional bias. Their estimators are adaptive and reach the same rates as ours up to
logarithmic terms (when p = 2). They do not provide lower bound, and consider neither global
estimation of the density (wavelets are compactly supported) nor survival function estimation.
Note that Chesneau (2013) studies the multiplicative censoring model when the sequence (Xi)i∈N
is α-mixing and the Ui’s can be a product of independent uniform random variables. The
dependence implies an important loss in the rate.

In this paper, we consider first the case where the Xi’s are real-valued, and we investigate the
pointwise nonparametric estimation on R of both f and the survival function F̄ (x) = 1− F (x).
All nonparametric methods (likelihood, projection, kernel, . . . ) rely on relationships between
the density fY and survival function F̄Y = 1− FY of Yi and those of Xi, given by

(2) ∀y ∈ R, fY (y) =

∫ +∞

y

f(x)

x
dx 1y≥0 +

∫ y

−∞

f(x)

|x|
dx 1y<0,

(3) ∀y ∈ R, F̄Y (y) + yfY (y) = F̄ (y),

which imply the following key property. Let t : R→ R be bounded, derivable, with t′ belonging
to L2(R), and assume that E|X| < +∞, then

(4) E(t(Y ) + Y t′(Y )) = Et(X).

This relation allows us to propose adequate correction of the observation Y in order to get
information about X, and yields simple kernel estimators of f and F̄ (see Formulae (7) and
(5)). We first study their pointwise L2-risks properties. Under regularity assumptions, we can
obtain rates of convergence for which lower bounds are provided. The study includes the classical
case of nonnegative Xi’s, for which pointwise kernel estimation of the density and the survival
function is new.

Then we study the global risk for f on R or for F̄ on R+ when the variables are nonnegative.
An adaptive choice of the bandwidths is proposed following the Goldenshluger and Lepski (2011)
theory and proved to lead to automatic bias-variance tradeoff for the resulting adaptive density
or survival function estimators.

Next, still considering nonnegative Xi’s, we use convolution power kernel estimators fitted
to nonparametric estimation of functions on R+, proposed in Comte and Genon-Catalot (2012)
for standard density estimation. We introduce estimators of f, F̄ (now on R+), different from
those based on classical kernels. The interest is to avoid boundary effects at 0. These kernels
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require the choice of an integer parameter m, for which a data driven procedure is proposed.
The resulting estimator is proved to be adaptive.

The paper is organized as follows. Standard kernel estimators are described and studied in
Section 2, and convolution power kernel method is explained in Section 3. Section 4 presents
a simulation study that allows us to compare the two strategies. Lastly, proofs are gathered in
Section 5.

2. Kernel estimation on the real line

2.1. Definition of kernel estimators. Let K : R→ R be a kernel i.e. an integrable function
with

∫
K(u)du = 1, which is also assumed to be square integrable. We set for h > 0, Kh(u) =

(1/h)K(u/h). Along the results hereafter, we possibly need additional conditions on K:
(A1) K is bounded.
(A2) K is an even function with limu→+∞K(u) = 0, K is derivable and K ′ is integrable.
(A3)

∫
[K ′(u)]2du < +∞.

(A4)
∫
|u|[K ′(u)]2du < +∞.

(A5)
∫

[uK ′(u)]2du < +∞.
The estimator of F̄ (x) is defined by:

ˆ̄Fh(x) =
1

nh

n∑
i=1

(∫
K

(
u− x
h

)
1IYi≥udu+ YiK

(
Yi − x
h

))

= Kh ?
ˆ̄FY (x) +

1

n

n∑
i=1

YiKh (Yi − x)(5)

where s ? t(x) =
∫
s(x− u)t(u)du denotes the convolution product and

(6) ˆ̄FY (x) =
1

n

n∑
i=1

1IYi≥x.

For K satisfying (A2), which implies (A1), we define the estimator of f(x) by:

f̂h(x) =
1

nh

n∑
i=1

{
Yi
h
K ′
(
Yi − x
h

)
+K

(
Yi − x
h

)}

=
1

n

n∑
i=1

{
YiK

′
h (Yi − x) +Kh (Yi − x)

}
.(7)

With simple computations, we can prove:

Proposition 2.1. Under (A2),

(i)

∫
f̂h(x)dx = 1, (ii) lim

x→−∞
ˆ̄Fh(x) = 1, (iii) lim

x→+∞
ˆ̄Fh(x) = 0, (iv) ( ˆ̄Fh)′(x) = −f̂h(x).

2.2. Pointwise risk. Consider the Hölder ball:

ΣI(β,R) = {f : I → R, f (`)exists for ` = bβc, |f (`)(x)− f (`)(x′)| ≤ R|x− x′|β−`,∀x, x′ ∈ I}

where bβc is the largest integer strictly smaller than β. Recall that K is a kernel of order ` if:∫
|u|`|K(u)|du <∞ and

∫
ujK(u)du = 0 for j = 1, . . . , `.

The following proposition shows that the risk at x0 has a different rate for x0 6= 0 and for x0 = 0.
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Proposition 2.2. Assume that E(|X1|) < +∞.
Let x0 ∈ R. Assume that f belongs to ΣI(β,R) for I a neighborhood of x0. If the kernel K is of
order `+ 1 with ` = bβc and

∫
|u|β+1|K(u)|du < +∞, then under (A1),

(8) E[( ˆ̄Fh(x0)− F̄ (x0))2] ≤ C2
1h

2(β+1) +
C2

nh
+
C3

n
,

(9) E[( ˆ̄Fh(0)− F̄ (0))2] ≤ C2
1h

2(β+1) +
C4

n
,

with C1 = R
∫
|u|β+1|K(u)|du/(` + 1)!, C2 = 2E(|X1|)‖K‖2, C3 = 2‖K‖2 and C4 = 2‖K‖2 +∫

|u|K2(u)du.

If K is of order ` with ` = bβc and
∫
|u|β|K(u)|du < +∞, then under (A2)-(A3), for all

h ∈ (0, 1), we have

(10) E[(f̂h(x0)− f(x0))2] ≤ C2
5h

2β +
C6

nh3

with C5 = R
∫
|u|β|K(u)|du/`! and C6 = 2

(
E(|X1|)‖K ′‖2 + ‖K‖2∞

)
.

Under (A2)-(A4), for x0 = 0, we have

(11) E[(f̂h(0)− f(0))2] ≤ C2
5h

2β +
C ′6
nh2

,

where C ′6 = ‖K‖∞ +
∫
|u|[K ′(u)]2du.

Under (A2)-(A3) and (A2), if E(1/|X|) = ‖fY ‖∞ < +∞, ‖f‖∞ < +∞, and x0 = 0, we have

(12) E[(f̂h(0)− f(0))2] ≤ C5
2h

2β +
C ′′6
nh

,

where C ′′6 = ‖f‖∞‖K‖2 + ‖fY ‖∞
∫
u2[K ′(u)]2du.

For h of order n−1/(2β+3), the estimator of F̄ (x0) has rate O(n−2(β+1)/(2β+3)), except in 0, where

choosing h = n1/[2(β+1)], gives the parametric rate. This is due to the fact that P(X > 0) =
P(Y > 0) and thus F̄ (0) = F̄Y (0). For instance, n−1

∑n
i=0 1IYi≥0 is an estimator of F̄ (0) with

parametric rate.
For h of order n−1/(2β+3), the estimator of f(x0) has rate O(n−2β/(2β+3)) when x0 6= 0. The rate

is better at x0 = 0 and of order O(n−2β/(2β+2)) or O(n−2β/(2β+1)), provided that ‖fY ‖∞ < +∞.

The next theorem states that the rates obtained for points x0 6= 0 are optimal-minimax.

Theorem 2.1. Assume that x0 6= 0, x0 ∈ I and let β > 0.
There exists a constant c > 0 such that

(13) liminf
n→+∞

n2β/(2β+3) inf
f̂n

sup
f∈ΣI(β,R)

Ef
[
(f̂n(x0)− f(x0))2

]
≥ c

where inf f̂n denotes the infimum over all estimators of f based on (Yj)1≤j≤n.

Moreover, for β ≥ 1, there exists a constant c > 0 such that

(14) liminf
n→+∞

n2β/(2β+1) inf
ˆ̄Fn

sup
ˆ̄F∈ΣI(β,R)

Ef
[
( ˆ̄Fn(x0)− F̄ (x0))2

]
≥ c

where inf ˆ̄Fn
denotes the infimum over all estimators of F̄ based on (Yj)1≤j≤n.
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2.3. Global risk and bandwidth selection. We denote by ‖ψ‖ = (
∫
ψ2(x)dx)1/2 the L2-

norm and by ‖ψ‖1 =
∫
|ψ(x)|dx the L1-norm of a function ψ : R→ R.

Let fh(x) =
∫
f(u)K((x− u)/h)/hdu = f ? Kh(x) and F̄h(x) = F̄ ? Kh(x). We can prove:

Proposition 2.3. Assume that E(X2
1 ) < +∞.

If f belongs to L2(R) and (A2)-(A3) hold, then

(15) E(‖f̂h − f‖2) ≤ ‖f − fh‖2 +
‖K‖2

nh
+

E(Y 2
1 )‖K ′‖2

nh3
.

If X is nonnegative, F̄ belongs to L2(R+) and K has compact support [−1, 1], then, for all h ≤ 1,

(16) E(

∫
R+

( ˆ̄Fh(x)− F̄ (x))2dx) ≤
∫
R+

(F̄h(x)− F̄ (x))2dx+
2E(Y 2

1 )‖K‖2

nh
+

2E(Y1 + 1)‖K‖21
n

.

By considering Nikols’ki classes of functions (see Tsybakov (2009)) instead of Hölder classes, we
may evaluate the bias order and deduce rates of convergence. As the regularity is not known, we
rather propose a bandwidth selection strategy inspired from Goldenshluger and Lepski (2011),
which yields a nonasymptotic risk bound result. To that aim, let

f̂h,h′(x) = Kh′ ? f̂h(x), and ˆ̄Fh,h′ = Kh′ ?
ˆ̄Fh(x).

Note that, as the kernel is even, f̂h,h′ = f̂h′,h and ˆ̄Fh,h′ = ˆ̄Fh′,h. Let Hn be a finite set of
bandwidths. Then set

A(h) = sup
h′∈Hn

(
‖f̂h′ − f̂h,h′‖2 − V (h′)

)
+
, B(h) = sup

h′∈Hn

(
‖ ˆ̄Fh′ − ˆ̄Fh,h′‖2R+

−W (h′)
)

+
,

with

(17) V (h) = κ1‖K‖21
(
‖K‖2

nh
+

E(Y 2
1 )‖K ′‖2

nh3

)
, W (h) = κ2‖K‖21

E(Y 2
1 )‖K‖2

nh
,

where κ1 and κ2 are numerical constants.
For each estimator, the term A(h) (resp. B(h)) approximates the square bias term while V (h)

(resp. W (h)) is proportional to the variance term. Therefore, the data-driven bandwidths are
defined by:

(18) ĥ = arg min
h∈Hn

(A(h) + V (h)) , h? = arg min
h∈Hn

(B(h) +W (h)).

The above definitions depend on the unknown moment E(Y 2
1 ), which should be replaced by

n−1
∑n

i=1 Y
2
i . This substitution is possible both in theory and in practice. Note that ‖K‖1 ≥

1 =
∫
K. The following holds:

Theorem 2.2. Assume that f belongs to L2(R), E(X8
1 ) < +∞ and Hn is such that

(i) Card(Hn) ≤ n,
(ii) ∀a > 0, ∃Σ(a) > 0 such that

∑
h∈Hn h

−2 exp(−a/h) < Σ(a) <∞,

(iii) ∀h ∈ Hn, 1/(nh3) ≤ 1.
Then, under (A2)-(A3), there exists a numerical constant κ1 in V (h) defined by (17)such that

(19) E(‖f̂ĥ − f‖
2) ≤ c inf

h∈Hn

(
‖K‖21‖f − fh‖2 + V (h)

)
+
c′

n
,

where c is a numerical constant and c′ depends on K and fY .
If X is nonnegative, F̄ belongs to L2(R+), Hn satisfies (i) and (ii) and K is chosen with compact
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support [−1, 1], then there exists a numerical constant κ2 in W (h) defined by (17) such that,

(20) E(

∫
R+

( ˆ̄Fh?(x)− F̄ (x))2dx) ≤ c1 inf
h∈Hn

(
‖K‖21

∫
R+

(F̄h(x)− F̄ (x))2dx+W (h)

)
+
c′1
n
,

where c1 is a numerical constant and c′1 depends on K and fY .

The proof delivers numerical values for the constants κ1, κ2 which are too large. Finding the
minimal values is theoretically difficult. This is why it is standard to calibrate their value by
preliminary simulations (see Section 4).

For instance Hn = {1/k, k = 1, . . . , n} or Hn = {2−k, k = 1, . . . , log(n)/ log 2} fulfill (i)-(ii).

For (iii) the admissible values of k must be restricted to n1/3 or log(n)/(3 log 2). Actually, (iii)
can be replaced by 1/(nh3) ≤ C for a constant C.

3. Convolution power kernel estimation on R+

Now, we assume that the Xi’s are nonnegative. The properties of the kernel estimators of f
and the survival function F̄ of the previous section are still valid for x ≥ 0 by setting f(x) = 0
for x < 0. However, for estimating functions on R+, it is often better to use appropriate
kernels so as to avoid the boundaries effects near 0. The convolution power kernels (Comte and
Genon-Catalot (2012)) are well fitted to deal with this problem.

3.1. Definition of convolution power kernel estimators. For k a density on R+ with
expectation 1, we denote by km the density of (E1 + · · ·+Em)/m with Ei i.i.d. with density k,
i.e.

(21) km(u) = mk?m(mu), u ≥ 0

where k?m = k ? · · · ? k, m times and ? denotes the convolution product. For h integrable, we
denote by h∗(t) =

∫
eituh(u)du, t ∈ R its Fourier transform. The Fourier transform of km is

given by

k∗m(t) = (k∗(
t

m
))m, t ∈ R.

For α1, . . . , αL real numbers such that
∑L

j=1 αj = 1, k(1), . . . , k(L) densities on R+ with expec-

tation 1, we define the convolution power kernel (CPK) by

(22) Km =
L∑
j=1

αjk
(j)
m .

The following assumptions are required on the densities k(j), for j = 1, . . . , L.

(B1) For u ≥ 0, k(j)(u) ≥ 0, for u < 0, k(j)(u) = 0,
∫ +∞

0 k(j)(u)du = 1,
∫ +∞

0 (k(j))2(u)du < +∞,

limu→+∞ uk
(j)(u) = 0, and∫ +∞

0
uk(j)(u)du = 1, ∃γ ≥ 4, such that

∫ +∞

0
|u− 1|γk(j)(u)du < +∞

(B2) For m large enough,
∫ +∞

0 k
(j)
m (u)duu = 1 +O( 1

m).

(B3) There exists m0 ≥ 1 such that the function t[(k(j))∗(t)]m0 belongs to L1(R) ∩ L2(R).

Note that assumptions (B2) is not stringent as k
(j)
m (u)du tends to δ1 as m tends to infinity.
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Now, we define for x > 0, the estimator of F̄ (x) by:

(23) ˜̄Fm(x) =
1

x

∫ +∞

0
Km

(u
x

)
ˆ̄FY (u)du+

1

nx

n∑
i=1

YiKm

(
Yi
x

)
.

Under (B3), Km is derivable, so we can define, for estimating f(x) at x > 0,

(24) f̃m(x) =
1

nx

n∑
i=1

[
Km

(
Yi
x

)
+
Yi
x
K ′m

(
Yi
x

)]
.

Proposition 3.1. Under (B1), we have limx→0+
˜̄Fm(x) = 1, limx→+∞

˜̄Fm(x) = 0.

Under (B1)-(B3), we have

∫ +∞

0
f̃m(x)dx = 1 +O(

1

m
).

3.2. Examples of kernels yielding explicit formulae. Examples of densities k leading to
explicit formulae for km are the following.
Example 1. Uniform kernels and splines. Let k(x) = (1/2)1I[0,2](x) the uniform density on
[0, 2]. Then Formula (9) in Killmann and von Collani (2001) (see also Rényi (1970)) yields

km(x) =
m

(m− 1)!2m

bmx/2c∑
i=0

(−1)i
(
m
i

)
(mx− 2i)m−11I[0,2](x)

Here, k is not continuous on (0,+∞) and successive convolutions increase the regularity. Thus,
the exponent m plays clearly the role of regularity parameter. Assumptions (B1) and (B3) hold.

Example 2. Gamma kernels. For k the Gamma density G(a, a), a > 0, (B1)-(B3) hold and:

km(u) =
(am)am

Γ(am)
uam−1e−mau1u>0.

For m > 1/a,
∫ +∞

0 u−1km(u)du = (am)/(am− 1) = 1 +O(1/m).

Example 3. Inverse Gaussian kernels. The inverse Gaussian distribution IG(a, θ) a > 0, θ > 0,
is defined as the distribution of the hitting time Ta = inf{t ≥ 0, θt + Bt = a} where (Bt) is

a standard Brownian motion. The density of an IG(a, θ) is (a/
√

2πt3)eθae−(1/2)(θ2t+a2/t). For
a = θ, the expectation is 1 and the variance is v = 1/a2. For k the inverse Gaussian density
IG(a, a), (B1)-(B3) hold and km is the density of the law IG(a

√
m, a
√
m):

km(u) =
a
√
m√

2πu3
ema

2(1− 1
2

( 1
u

+u))1u>0,

∫ +∞

0
u−1km(u)du = 1 + 1/(a2m).

3.3. Pointwise risk. To evaluate the order of the bias term, we need to define the notion of
convolution power kernel of order `.

Definition 3.1. We say that Km =
∑L

j=1 αjk
(j)
m defines a convolution power kernel of order `

if, for j = 1, . . . , L, the density k(j) satisfies Assumptions (B1)-(B2), admits moments up to

order ` and the coefficients αj , j = 1, . . . , L are such that
∑L

j=1 αj = 1 and for 1 ≤ k ≤ ` and

all m (at least large enough)∫ +∞

0
(u− 1)kKm(u)du =

L∑
j=1

αj

∫ +∞

0
(u− 1)kk(j)

m (u)du = 0.
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These relations allow to compute the αj ’s as functions of the moments of the k(j)’s (see Comte
and Genon-Catalot (2012)). Note that a single convolution power kernel with L = 1 is of order
one.
Now, we can prove the following result.

Proposition 3.2. Let x0 > 0. Consider the estimator (23) built with a kernel (22) satisfying
(B1). Set

(25) |α|1 :=

L∑
i=1

|αi|, vj =

∫ +∞

0
(u− 1)2k(j)(u)du, j = 1, . . . L.

If F̄ belongs to ΣI(β,R) for I a neighborhood of x0, the kernel Km is order ` = bβc in the sense

of Definition 3.1 and for j = 1, . . . , L,
∫ +∞

0 |u−1|βk(j)(u)du < +∞, then for m, n large enough,

E[( ˜̄Fm(x0)− F̄ (x0))2] ≤ C1(β)
x2β

0

mβ
+ 4|α|1

L∑
j=1

|αj |√
2πvj

√
m

n
+ 2
|α|21
n

where C1(β) is a constant depending on R, β, the αj’s and the moments of the k(j)’s.
Assume moreover that (B2) and(B3) hold and f is bounded. Then,

E[(f̃m(x0)− f(x0))2] ≤ C1(β)
x2β

0

mβ
+

(
C ′2‖f‖∞

√
m

nx0
+ C ′′2

(
√
m)3

nx3
0

)
where C ′2 = 2

∑
1≤i,j≤L |αiαj |/

√
2π(vi + vj), C

′′
2 = 2

∑
1≤i,j≤L |αiαj |/

√
2π(vi + vj)3) and C1(β)

is the same as above.

3.4. Global risk and adaptation. We prove a global result for ˜̄Fm.

Proposition 3.3. Assume that (B1) holds and E(X1) < +∞. Then the integrated risk satisfies:

E
[∫ +∞

0

(
˜̄Fm(x)− F̄ (x)

)2
dx

]
≤
∫ +∞

0

(
E ˜̄Fm(x)− F̄ (x)

)2
dx+ C ′2

10
√
m E(Y1)

n

where C ′2 is defined in Proposition 3.2.

Below, we do not search to link the bias term with the regularity property of the function F̄ .
We rather focus on finding a data-driven value of m without knowing the regularity of F̄ on R+.
From Propositions 3.2 and 3.3,

√
m plays the role of the bandwidth.

For two functions s and t on (0,+∞), let us define, each time it exists on (0,+∞), the function

u→ s� t(u) =

∫ +∞

0
s(u/v)t(v)dv/v.

If U1, U2 are nonnegative independent random variables with densities k1, k2 respectively, then
the product U1U2 has density k1 � k2(u). Now, we define

(26) Mn = {m = k2, log(n) ≤ k ≤ n/ log(n)}

as the set of possible indexes m and consider Km =
∑L

j=1 αjk
(j)
m , where the densities k(j) satisfy

(B1). Set

(27) ˜̄Fm,m′(x) =
1

x

∫ +∞

0
Km′ �Km

(u
x

)
ˆ̄FY (u)du+

1

nx

n∑
i=1

YiKm′ �Km

(
Yi
x

)
.
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As Km �Km′ = Km′ �Km, we have ˜̄Fm,m′(x) = ˜̄Fm′,m(x). For κ a numerical constant and

(28) C(K) = 2|α|31(
L∑
i=1

|αi|/
√

2πvi),

we set

(29) Z(m) = κC(K)E(Y1)

√
m

n
, H(m) = sup

m′∈Mn

(
‖ ˜̄Fm′ − ˜̄Fm,m′‖2 − Z(m′)

)
+
.

Note that, as |α|1 ≥ 1, the constant C ′2 of Proposition 3.3 satisfies

(30) C ′2 ≤ 2|α|1
L∑
j=1

|αj |√
2πvj

≤ C(K).

The adaptive estimator is then ˜̄Fm̃ with

(31) m̃ = arg min
m∈Mn

(H(m) + Z(m)) .

As noted above, we should replace the unknown moment E(Y1) by its empirical counterpart.
This is no difficulty in the proofs. We can prove the following result:

Theorem 3.1. Assume that F̄ belongs to L2((0,+∞)). Assume that (B1) holds and E(X4
1 ) <

+∞, then there exists a numerical constant κ such that

E
[∫ +∞

0

(
˜̄Fm̃(x)− F̄ (x)

)2
dx

]
≤ C inf

m∈Mn

{∫ +∞

0

[
EF̄m(x))− F̄ (x)

]2
dx+ Z(m)

}
+
C ′

n
,

where C is a numerical constant and C ′ a constant depending on E(X4
1 ) and on K.

Inverse Gaussian kernels (Example 3) are well fitted for practical implementation. Indeed if
k is IG(1,1), then km � km′ has the following explicit density

(32) km � km′(u) =

√
mm′

πu3/2
exp(m+m′)K̃0

((
m2 + (m′)2 +mm′(u+

1

u
)

)1/2
)

where K̃0 is the modified Bessel function of second kind with index 0 (available in R, library
Bessel), see Proposition 3.6 in Comte and Genon-Catalot (2012).

4. Simulations

In this section, we implement our estimators on simulated data. We have selected the following
distributions:

Model 1: a Gaussian density, X ∼ N (2.5, 0.75),
Model 2: a mixture of Gaussian densities, X ∼ 0.5N (−2, 1) + 0.5N (2, 1),
Model 3: a Gamma distribution, X ∼ Γ(8, 4),
Model 4: a rescaled Beta distribution, X = 5X ′, X ′ ∼ β(3, 3),
Model 5: an Exponential distribution X ∼ exp(2),
Model 6: a mixture of Gamma distributions X ∼ 0.4Γ(1, 10) + 0.6Γ(40, 30).
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Model 1 Model 2 Model 3 Model 4
n = 200 500 200 500 200 500 200 500

Oracle
Mean 0.022 0.014 0.007 0.005 0.022 0.015 0.013 0.006
(std) (0.014) (0.011) (0.003) (0.002) (0.017) (0.011) (0.008) (0.003)

GL
Mean 0.090 0.033 0.018 0.014 0.073 0.026 0.138 0.037
(std) (0.131) (0.05) (0.031) (0.015) (0.184) (0.018) (0.723) (0.065)

Med. 0.045 0.009 0.014 0.009 0.036 0.021 0.020 0.011

CV
Mean 0.403 0.269 0.215 0.109 0.297 0.126 0.509 0.314
(std) (0.705) (0.378) (0.448) (0.222) (0.518) (0.182) (1.031) (0.386)

Med. 0.067 0.047 0.011 0.009 0.044 0.034 0.031 0.094

CV on X
Mean 0.015 0.006 0.007 0.004 0.018 0.009 0.006 0.004
(std) (0.012) (0.004) (0.004) (0.002) (0.012) (0.007) (0.010) (0.002)

Med. 0.013 0.005 0.007 0.004 0.015 0.008 0.009 0.004

Oracle on X
Mean 0.004 0.002 0.003 0.002 0.004 0.002 0.003 0.002
(std) (0.003) (0.001) (0.002) (0.001) (0.003) (0.001) (0.002) (0.001)

Table 1. Table of risks for density estimators and oracles.

4.1. Density estimation. We consider the estimator given by (7) for Models 1 to 4, where
K(x) is the standard Gaussian kernel. Bandwidths are selected between 0.1 and 1.5 in the set

Hn = {0.1 + 0.05 k, k = 0, 1, . . . , 28}.

For each sample, we compute:
- first, the oracle f̂or = f̂hor where hor = arg minh∈Hn ‖f̂h − f‖2,

- second, the Goldenshluger and Lepski estimator f̂ĥ with ĥ given by (18) and κ1 = 1.2,

- third, the estimator f̂hCV where hCV is selected by a cross validation criterion i.e. minimizing

CV (h) =

∫
f̂2
h(x)dx− 2

n

n∑
i=1

[Yif̂
′
h,[i](Yi) + f̂h,[i](Yi)],

where f̂h,[i] is the kernel estimator f̂h computed on the sample without Yi (leave-one-out),

- fourth, we compute the estimator of f based on the direct observations X1, . . . , Xn, f̂
(X)
hCV,X

where f̂
(X)
h is the standard kernel estimator of f and hCV,X is the bandwidth selected by usual

density cross-validation criterion (see e.g. Tsybakov (2009), Section 1.5),
- lastly, the oracle based on the direct observations X1, · · · , Xn, also using the standard kernel
estimator.

We investigate two sample sizes n = 200, 500, and 50 repetitions. Table 1 gives the estimated
L2-risks of all estimators, together with medians and standard deviations except for the oracles.
As expected, the oracle on direct observations performs better than the one with censored data.
The comparison between the GL method and the oracle on censored data shows that the GL
method is stable and that the loss with respect to the oracle is stable. We stress that the GL
method gives smaller risks than the CV method, much smaller for means, and still smaller for
medians. Indeed, looking at both medians and standard deviations for the CV method, we can
see that it is very unstable. This is the reason why we also experimented the CV method on
the direct sample, but in this case, it behaves smartlier. We conclude that the estimator f̂ĥ
proposed in our paper works well. As an illustration, in Figure 1, we plot the oracle, the GL
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Figure 1. True density (solid black), oracle f̂or (green) and estimators f̂ĥ (blue

dash-dotted), f̂hCV (red dashed), f̂
(X)
hCV,X

(magenta long-dashed). n = 200 in (a)

and (b), n = 1000 in (c).

Model 3 Model 4 Model 5 Model 6

GL
Mean 0.025 0.043 0.006 0.013
(std) (0.028) (0.038) (0.004) (0.012)

Med. 0.015 0.027 0.005 0.012

Oracle GL
Mean 0.010 0.014 0.004 0.009
(std) (0.009) (0.012) (0.009) (0.007)

Med. 0.007 0.012 0.004 0.007

CPK
Mean 0.021 0.034 0.005 0.017
(std) (0.015) (0.023) (0.005) (0.009)

Med. 0.018 0.028 0.004 0.014

Oracle CPK
Mean 0.013 0.021 0.004 0.011
(std) (0.011) (0.016) (0.003) (0.008)

Med. 0.009 0.016 0.003 0.009

Table 2. Table of risks, n = 100 for survival function estimators and oracles.

estimator, the CV estimator on censored data and the CV estimator on direct data, for Model
3 with n = 200 (Figure 1 (a)-(b)), n = 1000 (Figure 1 (c)). When CV method works, it can
be very competitive compared with GL method (see Figure 1 (a)), unfortunately, it sometimes
completely fails as shown in Figure 1 (b). We can see on Figure 1 (c) that increasing n improves
the estimators.

4.2. Survival function estimation. For survival function estimation, we investigate for Mod-
els 3 to 6 two couples of estimators:

- the Goldenshluger and Lepski-type kernel estimator ˆ̄Fh? given by (5) with h? given by (18)

with κ2 = 1, and the associated oracle ˆ̄F
(GL)
hor

, the bandwidths are selected among 30 equispaced
values between 0.01 and 0.9.
- the convolution power estimator ˜̄Fm̃ given by (23) with κ = 0.5 and (31) with the inverse Gauss-
ian kernel IG(1,1) of Example 3 (see also Formula (32), function ‘besselK(x, 0)’ of the R-package
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Model 3 Model 4 Model 5 Model 6

Oracle GL
Mean 0.004 0.005 0.001 0.003
(std) (0.003) (0.004) (0.001) (0.002)

Med. 0.003 0.004 0.001 0.002

Oracle CPK
Mean 0.005 0.008 0.001 0.004
(std) (0.003) (0.005) (0.001) (0.002)

Med. 0.004 0.007 0.001 0.004

Table 3. Table of risks (n = 500)

Bessel), and its associated oracle ˜̄Fmor . The values of m are chosen among {5+3k, k = 0, . . . , 10}.
This is not exactly consistent with the theoretical constraint but computationally more tractable,
with good results.

0.0 0.5 1.0 1.5 2.0

0
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.4
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0
.0

0
.4

0
.8

Figure 2. True survival function (solid black) and 10 estimators in dotted blue,
ˆ̄Fh? left (GL method), and ˜̄Fm̃ right (CPK method), for Model 5 and n = 500.

Table 2 gives the L2-risks for sample size n = 100 and 50 repetitions. Comparing L2-risks of
the GL and the CPK estimators, we find that the methods behave similarly and are stable over
the four models. The difference between estimators and oracles is less important for survival
function estimators (Table 2) than for density estimators (Table 1). For both methods, the loss
between estimators and oracles is very small for Models 5, 6. The oracle of the GL method is
much better than the estimator itself for Models 3, 4. This is less true for the CPK method.

For n = 500 and 100 repetitions, the L2-risks of oracles are comparable (Table 3). In Figure
2, ten estimators of both methods for n = 500 are plotted together with the true function
(bold), corresponding to Model 5. The GL method is on the left and the CPK on the right.
Both methods yield convincing results and monotonic estimators. Although the CPK method
is computationally slower, it provides better estimators, especially near zero (Figure 2).

Figure 3 concerns Model 6, with still 10 estimators and n = 500. On top left and right, the
GL and CPK estimators. As they are not always monotonic, we have used (bottom left and
right) the monotonic transformation of estimators defined by (see Chernozhukov et al. (2009),
R-package ’quantreg’):

Ḡ 7→ ˇ̄G(y) = inf{z;
∫

1Ḡ(u)≥zdu ≤ y}.
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One can prove that the risk of the monotonic version of any estimator on a bounded interval
is smaller than the risk of the unmodified estimator. Finally, as the monotonic transformation
leads to a step function, curves were smoothed using a method preserving monotonicity (R-
function ’spline.fun’ of the method “monoH.FC” from Fritsch and Carlson (1980)). Clearly, the
monotonic transformation improves the curves. The CPK method is better near zero, and the
GL method seems better for large abscissa.
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Figure 3. True survival function (solid black) and 10 estimators in dotted blue

for Model 6 and n = 500. Top left: ˆ̄Fh? (GL method). Top right ˜̄Fm̃ (CPK
method). Bottom left: GL with monotonic transformation and smoothing. Bot-
tom right: CPK with monotonic transformation and smoothing.

5. Proofs

We state a property used in proofs:

Lemma 5.1. Let ϕ belong to L2(R), E(Y 2ϕ2(Y )) ≤ E|X|‖ϕ‖2.

5.1. Proof of Equations (2)-(4) and of Lemma 5.1. Equality (2) is elementary. For y ≥ 0,

F̄Y (y) =

∫ +∞

y
fY (z)dz =

∫ +∞

y

∫ +∞

z

f(x)

x
dxdz =

∫
(

∫ x

y
dz)

f(x)

x
1Iy≤xdx

=

∫ +∞

y
(x− y)

f(x)

x
dx =

∫ +∞

y
f(x)dx− y

∫ +∞

y

f(x)

x
dx = F̄ (y)− yfY (y).
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For y ≤ 0,

FY (y) =

∫ y

−∞
fY (z)dz =

∫ y

−∞
dz

∫ z

−∞

f(x)

|x|
dx =

∫
(

∫ y

x
dz)

f(x)

|x|
1Ix≤ydx

=

∫ y

−∞
(y − x)

f(x)

|x|
dx = yfY (y) + F (y)

Thus, F̄Y (y) = F̄ (y)− yfY (y), which is (3).
For (4), by (2), yfY (y) tends to 0 as both y tends to +∞ and −∞. By (3), EY 2(t′(Y ))2 is

finite. Integrating by parts yields∫
R
fY (y)(t(y) + yt′(y))dy = −

∫
R
yt(y)(fY (y))′dy = −[

∫ +∞

0
yt(y)(−f(y)

y
)dy +

∫ 0

−∞
yt(y)

f(y)

|y|
dy]

=

∫ +∞

−∞
t(y)f(y)dy.

Lemma 5.1 is immediate noting that EY 2ϕ2(Y ) ≤ EX2ϕ2(UX). 2

5.2. Proof of proposition 2.1. For (i), we use
∫
K ′(u)du = 0 as K ′ is integrable and K is even,

and
∫
K(u)du = 1. For (ii) and (iii), we write

∫
Kh(u−x)1IYi≥udu =

∫
K(z)1Iz≤(Yi−x)/hdz for the

first term and use that limu→+∞K(u) = 0 for the second term. Lastly (iv) is straightforward.
2

5.3. Proof of Proposition 2.2. First we study f̂h. Noting that

(yK(
y − x
h

))′y = K(
y − x
h

) +
y

h
K(

y − x
h

),

Equation (4) yields E(f̂h(x)) = fh(x) = f ? Kh(x). Thus, for all x,

E[(f̂h(x)− f(x))2] = (f(x)− fh(x))2 + Var
[
f̂h(x)

]
.

As K is of order ` = bβc, the assumption on f gives, at point x0,(f(x0) − fh(x0))2 ≤ C2
2h

2β

with C2 = R
∫
|u|β|K(u)|du/`! (see Tsybakov (2009) Proposition 2.1).

Next, we have

Var(f̂h(x0)) ≤ 1

nh2
E

{[
Y1

h
K ′
(
Y1 − x0

h

)
+K

(
Y1 − x0

h

)]2
}

=
1

nh2

{
E

[
Y 2

1

h2

(
K ′
(
Y1 − x0

h

))2
]

+ E
[
K2

(
X1 − x0

h

)]}
(33)

where the last equality follows from Equation (4). Then

(34) E
[
K2

(
X1 − x0

h

)]
≤ min(h‖f‖∞‖K‖2, ‖K‖2∞).

By Lemma 5.1 ,

E

[
Y 2

1

(
K ′
(
Y1 − x0

h

))2
]
≤ E(|X1|)

∫
(K ′(

u− x
h

))2du = hE(|X1|)
∫

(K ′)2.

Therefore, Var(f̂h(x)) ≤ (nh3)−1E(|X1|)
∫

(K ′)2 + (nh2)−1‖K‖2∞. This yields (10).
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The special value x0 = 0 leads to other bounds. As,∀z ∈ R, |zfY (z)| ≤ 1,

E

[
Y 2

1

(
K ′
(
Y1 − x0

h

))2
]

=

∫
(x0 + uh)2[K ′(u)]2fY (x0 + uh)hdu ≤

∫
|x0 + uh|[K ′(u)]2hdu.

Therefore, for x0 = 0, we have

(35) E

[
Y 2

1

(
K ′
(
Y1

h

))2
]
≤ h2

∫
|u|[K ′(u)]2du.

Consequently,

Var(f̂h(0)) ≤
‖K‖∞ +

∫
|u|[K ′(u)]2du

nh2
:=

C ′6
nh2

.

If now fY is bounded and
∫
u2[K ′(u)]2du < +∞, we get for x0 = 0,

(36) E

[
Y 2

1

(
K ′
(
Y1

h

))2
]
≤ h3‖fY ‖∞

∫
u2[K ′(u)]2du.

Thus if moreover ‖f‖∞ < +∞, using (34),

Var(f̂h(0)) ≤
‖f‖∞‖K‖2 + ‖fY ‖∞

∫
u2[K ′(u)]2du

nh
:=

C ′′6
nh

.

This gives inequalities (11) and (12).

Now we study ˆ̄Fh to prove (8). First we have E( ˆ̄Fh(x)) = F̄ ? Kh(x) so that the bias term
can be studied using Proposition 2.1 in Tsybakov (2009). Hence the bias order at x0. Next

Var( ˆ̄Fh(x)) ≤ 2

nh2

{
E
[∫

K

(
u− x
h

)
1IY1≥udu

]2

+ E
[
Y 2

1 K
2

(
Y1 − x
h

)]}
.(37)

We have

E
[∫

K

(
u− x
h

)
1IY1≥udu

]2

≤
[∫ ∣∣∣∣K (u− xh

)∣∣∣∣ du]2

= h2

(∫
|K(v)|dv

)2

and

E
[
Y 2

1 K
2

(
Y1 − x
h

)]
≤ hE|X1|‖K‖2.

Gathering terms gives (8).
Lastly, if x0 = 0, inequality (35) applies with K ′ replaced by K and gives the result (9) and
thus ends the proof of Proposition 2.2. 2

5.4. Proof of Theorem 2.1. Proof of (13). To obtain lower bounds, we follow the reduction
scheme described in Tsybakov (2009), chapter 2. We have to find two densities f0,n, f1,n such
that

(i) fj,n ∈ ΣI(β,R), j = 0, 1,
(ii) (f1,n(x0)− f0,n(x0))2 ≥ cγ2

n where γ2
n is the desired rate,

(iii) χ2 = χ2(Pf1,n,Y , Pf0,n,Y ) ≤ c/n, where Pf,Y is the law of Y when X has density f .
We only prove the result for x0 ∈ (0, 1) = I. Let hn be small enough to have [x0−hn, x0 +hn] (
(0, 1). We take f0,n(x) = 1I[0,1](x) and

f1,n(x) = f0,n(x) + cγnL(
x− x0

hn
)
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where L(v) = L(v)1I[−1,1](v), L ∈ ΣR(β,R), L(0) 6= 0 and
∫ 1
−1 L(v)dv = 0. We set γn =

n−β/(2β+3) and hn = n−1/(2β+3). We have
∫
f1,n =

∫
f0,n = 1 and we can choose c such that

f1,n(x) ≥ 0, ∀x ∈ [0, 1], so that f1,n and f0,n are [0, 1]-supported densities.

(i) The functions fj,n, j = 0, 1 are in ΣI(β,R) with I = (0, 1) as γn/h
β
n = 1.

(ii) (f1,n − f0,n)2(x0) = c2γ2
nL2(0) is of order n−2β/(2β+3) = γ2

n, the expected rate.

(iii) Then we must prove that χ2 =

∫ 1

0

(g1 − g0)2(x)

g0(x)
dx ≤ c/n where gi(x) =

∫ 1
x (fi,n(u)/u)du,

for i = 0, 1. We have

χ2 = c2γ2
n

∫ 1

0

(∫ x
1

L(
u−x0
hn

)

u 1I[x0−hn,x0+hn]du

)2

| log(x)|
dx := c2γ2

n(I1 + I2),

with I1 =

∫ x0−hn

0

(∫ x0+hn
x0−hn

L(
u−x0
hn

)

u du

)2

| log(x)|
dx, I2 =

∫ x0+hn

x0−hn

(∫ x0+hn
x

L(
u−x0
hn

)

u du

)2

| log(x)|
dx.

Using that
∫ 1
−1 L(v)dv = 0, we write

I1 =

∫ x0−hn

0

(∫ 1
−1

L(v)
x0+vhn

hndv
)2

| log(x)|
dx = h2

n

∫ x0−hn

0

(∫ 1
−1

L(v)
x0

(
1

1+vhn/x0
− 1
)
dv
)2

| log(x)|
dx

and thus we get

I1 ≤ h4

x2
0| log(x0)|

∫ x0−h

0

(∫ 1

−1
L(v)

v/x0

1 + vh/x0
dv

)2

dx

≤ h4

x2
0(x0 − h)2| log(x0)|

∫ x0−h

0

(∫ 1

−1
|L(v)|dv

)2

dx =

(∫ 1
−1 |L(v)|dv

)2

x2
0(x0 − h)| log(x0)|

h4.

Next

I2 = h2

∫ x0+h

x0−h

1

| log(x)|

(∫ 1

(x−x0)/h

L(v)

x0 + vh
dv

)2

dx ≤
2
(∫ 1
−1 |L(v)|dv

)2

(x0 − h)2| log(x0 + h)|
h3.

Therefore χ2 ≤ c(x0)γ2
nh

3 = c(x0)/n which is the desired result. 2

Proof of (14). We seek a rate τ2
n = n−2β/(2β+1). We build S0,n(x) = (1 − x) for x ∈ [0, 1], the

survival function associated to f0,n and

S1,n(x) = S0,n(x) + cτnL
(
x− x0

hn

)
for x ∈ [0, 1],

with L′ = −L, L(x) =
∫ 1
x L(v)dv and L as above and L(0) 6= 0. We take here τn = n−β/(2β+1)

and hn = n−1/(2β+1). Note that S1,n is the survival function associated to f̃1,n(x) = f0,n(x) +

c(τn/hn)L((x − x0)/hn). Indeed τn/hn = n−(β−1)/(2β+1) is O(1) for β ≥ 1 so that c can be

chosen small enough to have f̃1,n ≥ 0.
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(i) The functions S0,n and S1,n are survival functions belonging to ΣI(β,R) with I = (0, 1) as

τn/h
β
n = 1.

(ii) (S0,n(x0)− S1,n(x0))2 = c2τ2
nL2(0).

(iii) For the χ2 distance between the observations laws, it follows the same lines as previously

and yields an order (τ2
n/h

2
n)× h3

n, i.e. τ2
nhn = n−2β/(2β+1) × n−1/(2β+1) = n−1.

5.5. Proof of Proposition 2.3. The integrated mean-square risk is decomposed as the inte-
grate of the squared bias plus the integrate of the variance. We integrate equation (33) and
easily obtain bound (15).

Now we turn to (16). We start from (37) and get∫
R+

Var( ˆ̄Fh(x)dx ≤ 2

n

∫
R+

E
[∫

(Kh (u− x) 1IY1≥udu

]2

+
2

nh
‖K‖2E

[
Y 2

1

]
.

Now we write∫
R+

E
[∫

(Kh (u− x) 1IY1≥udu

]2

dx = E

{∫
R+

[∫
(Kh (u− x) 1IY1≥u1Iu≥−1du

]2

dx

}
by interchanging expectation and integral and using that as K has support [−1, 1], u ∈ [x −
h, x+ h] ⊂ [−1,+∞) for x ≥ 0 and h ≤ 1. Therefore∫

R+

E
[∫

(Kh (u− x) 1IY1≥udu

]2

dx = E
{
‖Kh ? gY1‖2

}
where gY1(u) = 1IY1≥u1Iu≥−1. Applying the Young Inequality (55) for p = 1, r = q = 2, yields
‖Kh ? gY1‖2 ≤ ‖Kh‖21‖gY1‖2 = ‖K‖21(Y1 + 1). This implies∫

R+

Var( ˆ̄Fh(x)dx ≤ 2

n
‖K‖21E(Y1 + 1) +

2

nh
‖K‖2E

[
Y 2

1

]
,

and thus Inequality (16). 2

5.6. Proof of Theorem 2.2. We start by proving (19). By using the definitions of A(h), V (h)

and ĥ, we note that

∀h, h′ ∈ Hn, ‖f̂h,h′ − fh′‖2 ≤ A(h) + V (h′),

and
∀h ∈ Hn, A(ĥ) + V (ĥ) ≤ A(h) + V (h).

Therefore, for all h ∈ Hn,

‖f̂ĥ − f‖
2 ≤ 3‖f̂ĥ − f̂h,ĥ‖

2 + 3‖f̂h,ĥ − f̂h‖
2 + 3‖f̂h − f‖2

≤ 3(A(h) + V (ĥ)) + 3(A(ĥ) + V (h)) + 3‖f̂h − f‖2

≤ 6A(h) + 6V (h) + 3‖f̂h − f‖2.

The term E(‖f̂h−f‖2) is ruled by Inequality (15) and we only need to study E(A(h)). Recall that

f̂h,h′ = Kh′ ∗ f̂h, and denote fh(x) = E[f̂h(x)], fh,h′(x) = E[f̂h,h′(x)]. We split f̂h := f̂
(1)
h + f̂

(2)
h ,

fh := f
(1)
h + f

(2)
h with

f̂
(1)
h (x) =

1

nh

n∑
i=1

[YiK
′
h(Yi − x) +Kh(Yi − x)]1I|Yi|≤cn , f

(1)
h (x) = E[f̂

(1)
h (x)],
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and analogously for f̂h,h′ and fh,h′ . Then using the definition of A(h) we get

A(h) ≤ 5 sup
h′∈Hn

{
‖f̂ (1)
h′ − f

(1)
h′ ‖

2 − V (h′)/10
}

+
+ 5 sup

h′∈Hn

{
‖f̂ (1)
h,h′ − f

(1)
h,h′‖

2 − V (h′)/10
}

+

+ 5 sup
h′∈Hn

‖f̂ (2)
h′ − f

(2)
h′ ‖

2 + 5 sup
h′∈Hn

‖f̂ (2)
h,h′ − f

(2)
h,h′‖

2 + 5 sup
h′∈Hn

‖fh′ − fh,h′‖2

:= 5(T1 + T2 + T3 + T4 + T5).

Using (55) with p = 1, q = r = 2, and ‖Kh′‖1 = ‖K‖1, we obtain

T5 = ‖fh′ − fh,h′‖2 = ‖Kh′ ? (f −Kh ? f)‖2 ≤ (‖K‖1)2‖f −Kh ? f‖2.

For T1, we write

T1 = sup
h′∈Hn

{
‖f̂ (1)
h′ − f

(1)
h′ ‖

2 − V (h′)/10
}

+
≤
∑
h∈Hn

{
‖f̂ (1)
h − f

(1)
h ‖

2 − V (h)/10
}

+
,

and note that

(38) ‖f̂ (1)
h − f

(1)
h ‖

2 = sup
t∈L2(R),‖t‖=1

〈f̂ (1)
h − f

(1)
h , t〉2 = sup

t∈B(1)
〈f̂ (1)
h − f

(1)
h , t〉2,

where B(1) denotes a countable dense subset of {t ∈ L2(R), ‖t‖ = 1}.
Now we introduce the centered empirical process

νn,h(ψt) = 〈f̂ (1)
h − f

(1)
h , t〉 =

1

n

n∑
i=1

[ψt(Yi)− E(ψt(Yi))],

ψt(y) :=

∫ {
y

h2
K ′
(
y − x
h

)
+

1

h
K

(
y − x
h

)}
1I|y|≤cnt(x)dx

=
[
yK ′h ? t(y) +Kh ? t(y)

]
1I|y|≤cn .

Therefore,

E[T1] ≤
∑
h∈Hn

E

[{
sup
t∈B(1)

ν2
n,h(ψt)− V (h)/10

}
+

]
.

We bound the above expectation using the Talagrand inequality (see Appendix). To apply it,
we compute H,M and v. Clearly, H2 = V (h)/κ1 suits. Next, we get

sup
t∈B(1)

sup
u∈R
|ψt(u)| ≤

√
2

h
sup
u∈R

[∫
c2
n

h2
(K ′)2

(
u− x
h

)
+K2

(
u− x
h

)
dx

]1/2

≤
√

2

h

[
c2
n

h
‖K ′‖2 + h‖K‖2

]1/2

≤ C(K)
cn

h3/2
:= M.

Lastly, we search for v.

sup
t∈B(1)

Var (ψt(Y1)) ≤ sup
t∈B(1)

E
(
ψ2
t (Y1)

)
.

Remark that

ψ2
t (y) =

{
y2(K ′h ? t)

2(y) +
[
y(Kh ? t)

2(y)
]′}

1I|y|≤cn .

Thus by Equation (4),

E(ψ2
t (Y1)) ≤ E

[
Y 2

1 (K ′h ? t)
2(Y1)

]
+ E

[
(Kh ? t)

2(X1)
]

:= S1 + S2.
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Next, by Lemma 5.1, Young’s Inequality (55) and as ‖t‖ = 1, we get

S1 ≤ E(|X1|)‖K ′h ? t‖2 ≤ E(|X1|)‖K ′h‖21‖t‖2 = E(|X1|)
‖K ′‖21
h2

.

For S2, we write, applying twice the Young Inequality for r = +∞, p = q = 2 and p = 1,
q = r = 2

S2 = E[(Kh ? t)
2(X1)] =

∫
(Kh ? t)

2(x)f(x)dx ≤ ‖Kh ? t‖∞‖Kh ? t‖‖f‖

≤ ‖Kh‖‖t‖ ‖K‖1‖t‖ ‖f‖ =
‖K‖‖K‖1√

h
‖f‖.

Thus we get v = c(K, f)/h2 where c(K, f) = ‖K ′‖21E(|X1|)+‖K‖1‖K‖‖f‖. Then, for κ1/10 = 3
(ε = 1/2), we get

E

[{
sup
t∈B(1)

ν2
n,h(ψt)− V (h)/10

}
+

]
≤ C1

n

(
1

h2
exp (−C2/h) +

c2
n

nh3
exp

(
−C3

√
n

cn

))
.

By the definition of Hn, we have 1/(nh3) ≤ 1,
∑

h∈Hn h
−2 exp(−C2/h) < Σ(C2) < ∞, and

Card(Hn) ≤ n. So, choosing

cn = C3

√
n/(4 log(n)),

we obtain E[T1] ≤ c/n. The term T2 is studied analogously, with additional factors ‖K‖21 due
to an additional application of Young’s Inequality.

For the terms T3, T4, rough bounds are used together with the definition of Hn, in particular
1/(nh3) ≤ 1 to get T3 ≤ C(K)nE(|Y1|2+p/cpn) for all p > 0, where C(K) is a constant depending
on the kernel. Thus, with the definition of cn we obtain an order 1/n by choosing p = 6 with
constraint E(|Y1|8) < +∞. Hence we get (19).

Now we turn to the proof of (20). The study follows the same line as previously, so we mainly

give a sketch of proof. Here we can split in three parts ˆ̄Fh = ˆ̄F
(1)
h + ˆ̄F

(2)
h + ˆ̄F

(3)
h with

ˆ̄F
(1)
h (x) =

1

nh

n∑
i=1

Yi1IYi<cnK

(
Yi − x
h

)
, ˆ̄F

(2)
h (x) =

1

nh

n∑
i=1

Yi1IYi≥cnK

(
Yi − x
h

)
,

ˆ̄F
(3)
h (x) =

∫
Kh(u− x) ˆ̄FY (u)du,

with F̄
(i)
h = E[ ˆ̄F

(i)
h ] for i = 1, 2, 3, and analogously for ˆ̄F

(i)
h,h′ , i = 1, 2, 3.

The first two terms are studied as previously T1, T2, T3, T4. There is also a term analogous to

T5. Let GY (u) = ( ˆ̄FY (u)− F̄Y (u))1I−1≤u. The additional new terms are

T6 := E
(

sup
h′∈Hn

∫ +∞

0
[ ˆ̄F

(3)
h′ (x)− F̄ (3)

h′ (x)]2dx

)
= E

(
sup
h′∈Hn

∫
R+

[Kh′ ? GY (x)]2dx

)
and its twin in h, h′. Thus using Inequality (55) as previously, we get

T6 ≤ E
(

sup
h′∈Hn

‖Kh′‖21‖GY ‖2
)
≤ ‖K‖21E

(∫
( ˆ̄FY (u)− F̄Y (u))21I−1≤udu

)
=
‖K‖21
n

∫
Var(1IY1≥u)1Iu≥−1)du ≤ ‖K‖

2
1E(Y1 + 1)

n
.

This ends the proof. 2
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5.7. Proof of Proposition 3.1. For sake of simplicity, we assume that L = 1 and k(1) = k.
By (B1),

1

x

∫ +∞

0
km(

u

x
)1IYi≥udu =

∫ Yi/x

0
km(v)dv ≤

∫ +∞

0
km(v)dv = 1,

so that ˜̄Fm is well defined. Moreover, it is obvious from the formula above that

lim
x→+∞

1

x

∫ +∞

0
km(

u

x
) ˆ̄FY (u)du = 0, lim

x→0+

1

x

∫ +∞

0
km(

u

x
) ˆ̄FY (u)du = 1.

From Young’s Inequality (see (55) with r = +∞, p = q = 2) and (B1), ‖k ? k‖∞ ≤ ‖k‖2 so that
for all m ≥ 2, ‖km‖∞ <∞. Consequently,

lim
x→+∞

1

x
km(

Yi
x

) = 0.

As uk(u) → 0 when u → +∞, by induction we easily prove that ukm(u) → 0 when u → +∞.
Therefore,

lim
x→0

1

x
km(

Yi
x

) = 0.

In summary, we proved that, under (B1), limx→+∞
˜̄Fm(x) = 0 and limx→0+

˜̄Fm(x) = 1.
Without loss of generality, we assume that (B3) holds for m0 = 1 and write that

k(x) =
1

2π

∫
R
e−itxk∗(t)dt, k′(x) =

−i
2π

∫
R
e−itxtk∗(t)dt.

This implies that k and k′ are continuous, tend to zero at +∞, and k(0) = k′(0) = 0. As
km(y) =

∫ y
0 k(y − z)km−1(z)dz for m > 1, we have km(0) = 0, limy→+∞ km(y) = 0 and km is

continuously derivable, with

(39) (k′m)∗(t) = −itk∗m(t).

Using (B2) and
∫ +∞

0 k′m(v)dv = [km(v)]+∞0 = 0 yields∫ +∞

0
f̃m(x)dx =

∫ +∞

0
km(v)

dv

v
+

∫ +∞

0
k′m(v)dv = 1 +O(

1

m
).

5.8. Proof of Proposition 3.2.

Lemma 5.2. Let k, k(1), k(2) satisfying (B1), then for v, v1, v2 their variances(i.e. v =
∫ +∞

0 (u−
1)2k(u)du), we have

(40) ‖km‖2 =

∫ +∞

0
k2
m(u)du =

√
m(1/2

√
πv(1 + o(1)), ‖km‖∞ ≤

√
m(1/

√
2πv(1 + o(1)),

(41) 〈k(1)
m , k(2)

m 〉 =

∫ +∞

0
k(1)
m (u)k(2)

m (u)du =
√
m(1/

√
2π(v1 + v2)(1 + o(1)).

Let k, k(1), k(2) satisfying (B1) and (B3), then

(42) ‖k′m‖2 =
1

4
√
π

(m
v

)3/2
(1 + o(1)), 〈(k(1)

m )′, (k(2)
m )′〉 =

1√
2π

(
m

v1 + v2

)3/2

(1 + o(1)).
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Proof of Lemma 5.2. Equalities (40) and (41) are proved in Lemma A.1. of Comte and
Genon-Catalot (2012).

Thus we turn to (42). Under (B1) and (B3) with m0 = 1, as (k′m)∗(t) = −itk∗m(t),

‖k′m‖2 =

∫ +∞

0
(k′m(y))2dy =

1

2π

∫
R
t2|k∗m(t)|2dt =

(
√
m)3

2π

∫
R
s2|k∗( s√

m
)|2mds.

Under the assumption
∫
t2|k∗(t)|2dt < +∞ (see (B3)), we can mimick the proof of Lemma A.1.

(Comte and Genon-Catalot (2012)) to obtain:

1

(
√
m)3

∫
R
t2|k∗m(t)2dt→

∫
s2e−vs

2
ds =

√
π

2v3/2
.

And for the case of two densities,

〈(k(1)
m )′, (k(2)

m )′〉 =

∫ +∞

0
(k(1)
m )′(y)(k(2)

m )′(y)dy ∼ (
√
m)3

2π

∫
R
s2e−(v1+v2)s2/2ds.

Hence (42). 2

Now we turn to the proof of Proposition 3.2. For the bias order, we have

E( ˜̄Fm(x)) =
1

x

∫ +∞

0
Km(

u

x
)F̄Y (u)du+

1

x
E(Y1Km(

Y1

x
))

=
1

x

∫ +∞

0
Km(

u

x
)
(
F̄Y (u) + ufY (u)

)
du =

1

x

∫ +∞

0
Km(

u

x
)F̄ (u)du

=

∫ +∞

0
Km(v)F̄ (vx)dv.

The order of this term on ΣI(β,C), is given in Proposition 3.2 in Comte and Genon-Catalot (2012).
Now, we bound the variance term.

Var( ˜̄Fm(x)) =
1

nx2
Var

[∫ +∞

0
Km(

u

x
)1IY1≥udu+ Y1Km(

Y1

x
)

]
≤ 2

nx2

(
E[(

∫ +∞

0
Km(

u

x
)1IY1≥udu)2] + E[Y 2

1 K
2
m(
Y1

x
)]

)
:= T1(x) + T2(x)(43)

T1(x) ≤ 2

nx2

(∫ +∞

0
|Km(

u

x
)|du

)2

≤ 2

nx2

 L∑
j=1

|αj |
∫ +∞

0
k(j)
m (v)xdv

2

=
2

n
|α|21,

T2(x) =
2

nx2

∫∫
((uv)2K2

m(
uv

x
)1I[0,1](u)f(v)1IR+(v)dudv =

2

nx2

∫ +∞

0
v2f(v)

(∫ 1

0
u2K2

m(
uv

x
)du

)
dv

=
2

nx2

∫ +∞

0

f(v)

v
x3

(∫ v/x

0
z2K2

m(z)dz

)
dv.
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Thus using Lemma 5.2 namely
∫ +∞

0 zk
(j)
m (z)dz = 1 and ‖k(j)

m ‖∞ ≤ 2
√
m/
√

2πvj), we get

T2(x) ≤ 2

n

∫ +∞

0
f(v)

(∫ v/x

0
zK2

m(z)dz

)
dv ≤ 2

n

∫ +∞

0
zK2

m(z)dz

≤ 2

n
‖Km‖∞

∫ +∞

0
z|Km(z)|dz ≤ 2

n

L∑
j=1

2|αj |
√
m√

2πvj

L∑
j=1

|αj |
∫
zk(j)

m (z)dz

≤ 4|α|1
√
m

n

L∑
j=1

|αj |√
2πvj

.

Consequently we have

Var( ˜̄Fm(x)) ≤ |α|1
2

n

|α|1 + 2
√
m

L∑
j=1

|αj |√
2πvj

 .

Next, we study the estimator of f . As (∂/∂y)(yKm( yx)) = Km( yx) + (y/x)K ′m( yx), we have

Ef̃m(x) =
1

x
EKm(

X1

x
) =

∫ +∞

0
Km(v)f(xv)dv.

As for the bias term of ˜̄Fm(x), the study of the bias term of f̃m(x) is a direct application of
Proposition 3.2 of Comte and Genon-Catalot (2012). For the variance term, we use that

Varf̃m(x) ≤ 1

nx2
E
(
Km(

Y1

x
) +

Y1

x
K ′m(

Y1

x
)

)2

=
1

nx2

[
EK2

m(
X1

x
) + E

(
Y1

x
K ′m(

Y1

x
)

)2
]

We have

EK2
m(
X1

x
) = x

∫ +∞

0
K2
m(v)f(xv)dv ≤ x‖f‖∞‖Km‖2

where, by Lemma 5.2, the L2-norm of Km satisfies, using (30),

(44) ‖Km‖2 ≤
√
m

∑
1≤i,j≤L

2 |αiαj |√
2π(vi + vj)

= C ′2
√
m ≤ C(K)

√
m.

For the other term, we have

E
(
Y1

x
K ′m(

Yi
x

)

)2

=

∫
v≥0,0≤u≤1

(uv)2

x2
(K ′m(

uv

x
))2 f(v)dudv

= x

∫ +∞

0

f(v)

v
dv

(∫ v
x

0
t2(K ′m(t))2dt

)
≤ 1

x
E(X1)

∫ +∞

0
(K ′m(t))2dt.

Now, we use (42) of Lemma 5.2

‖K ′m‖2 ≤
m3/2

√
2π

∑
1≤i,j≤L

2|αiαj |
(vi + vj)3/2

.

The result follows. This ends the proof of Proposition 3.2. 2
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5.9. Proof of Proposition 3.3. Inequality (43) for Var( ˜̄Fm(x)) must be integrated over R+.
The second term is the easiest:

(45)

∫ +∞

0
T2(x) dx ≤ 2

n
E(Y 2

1

∫ +∞

0
K2
m(
Y1

x
)
dx

x2
) =

2

n
E(Y1) ‖Km‖2.

For the term T1(x), we apply the generalized Minkowski inequality (see (54) in appendix):∫ +∞

0
T1(x) dx ≤ 2

n
E
∫

1Ix≥0
dx

x2

(∫
Km(

u

x
)1IY1≥u1Iu≥0du

)2

≤ 2

n
E

[∫
1IY1≥u1Iu≥0du

(∫
K2
m(
u

x
)1Ix≥0

dx

x2

)1/2
]2

≤ 2

n
E

[∫
1IY1≥u≥0

1√
u
du

(∫
K2
m(v)1Iv≥0dv

)1/2
]2

=
2

n
E(2
√
Y1)2)

∫ +∞

0
K2
m(v)dv =

8

n
EY1‖Km‖2.(46)

Finally, ∫ +∞

0
Var( ˜̄Fm(x))dx ≤ 10

n
EY1‖Km‖2

which is the announced result using (44). 2

5.10. Proof of Theorem 3.1.

5.10.1. Some preliminary Lemmas. Let us set, for m,m′ > 0,

(47) BmF̄ (x) = E ˜̄Fm(x)− F̄ (x), Bm,m′F̄ (x) = E ˜̄Fm,m′(x)− F̄ (x).

Similarly to Lemma A.3 of Comte and Genon-Catalot (2012), the following relation between
bias terms holds.

Lemma 5.3. We have BmF̄ (x) =
∫ +∞

0 Km(u)F̄ (xu)du− F̄ (x) and

Bm,m′F̄ (x) = Bm′F̄ (x) +

∫ +∞

0
Km′(u)BmF̄ (xu)du.

We also state a result with useful bounds concerning the convolution power kernels.

Lemma 5.4. Recall notations (25). Under assumptions (B1)-(B2), we have

(o) ||Km �Km′ ||∞ ≤ |α|1
∑L

j=1
|αj |√
2πvj

√
m ∧m′(1 + o(1)).

(i) ‖Km �Km′‖2 ≤ C(K)
√
m ∧m′ where C(K) is defined by (28).

(ii)
∫ +∞

0 (|Km(z)|/
√
z)dz ≤ 3|α|1.

(iii)
∫ +∞

0 (|Km �Km′(z)|/
√
z)dz ≤ 3|α|21.

Proof of Lemma 5.4. For (o), see Lemma A4 of Comte and Genon-Catalot (2012).
For (i), we write

(48)

∫
(Km �Km′)

2(u)du ≤ ‖Km �Km′‖∞
∫ +∞

0
|Km �Km′ |(u)du.
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Now we know from (o) that ‖Km �Km′‖∞ ≤ 2|α|1
∑L

j=1
|αj |√
2πvj

√
m ∧m′. Moreover∫ +∞

0
|Km �Km′ |(u)du ≤

∫ +∞

0

(∫ +∞

0
|Km(

u

v
)||Km′(v)|dv

v

)
du

=

∫ +∞

0
|Km′(v)|dv

∫ +∞

0
|Km(z)|dz ≤ |α|21.

Plugging these two bounds in (48) gives the first result.
For (ii), we simply split the integral∫ +∞

0

|Km(z)|√
z

dz =

∫ 1

0

|Km(z)|√
z

dz +

∫ +∞

1

|Km(z)|√
z

dz

≤
∫ 1

0

|Km(z)|
z

dz +

∫ +∞

1
|Km(z)|dz.

By (B2),
∫ +∞

0 z−1|Km(z)|dz ≤ 2|α|1 and
∫ +∞

0 |Km(z)|dz ≤ |α|1. This ends the proof of (ii).
For (iii), we write∫ +∞

0

Km �Km′(s)√
s

ds =

∫ +∞

0

(∫ +∞

0
Km′(

u

s
)
ds

s1/2

)
Km(u)

du

u

and this term is simply equal to
∫ +∞

0 Km(u)/
√
udu

∫
Km′(v)/vdv, so that the result (iii) follows

by applying (ii). Hence Lemma 5.4. 2

Recall that C ′2 ≤ C(K). Thus, a straightforward consequence of Lemma 5.4 (i) and the
bounds in Proposition 3.3 is the following Lemma.

Lemma 5.5. Under assumptions (B1)-(B2), we have∫ +∞

0
Var ˜̄Fm,m′(x) dx ≤ 10 E(Y1)

√
m ∧m′
n

C(K),

where the constant C(K) (see (28)) does not depend on the density f .

5.10.2. Proof of Theorem 3.1. First note that the definition of m̂ implies that H(m̃) + Z(m̃) ≤
H(m) + Z(m) for all m ∈Mn. From now on, we extend all functions by setting them equal to
0 on (−∞, 0) so that ‖.‖ is the L2-norm on R+. Hence, for m any element ofMn, we can write
the decomposition

‖ ˜̄Fm̃ − F̄‖2 ≤ 3(‖ ˜̄Fm̃ − ˜̄Fm,m̃‖2 + ‖ ˜̄Fm,m̃ − ˜̄Fm‖2 + ‖ ˜̄Fm − F̄‖2)

≤ 3(H(m) + Z(m̃)) + 3(H(m̃) + Z(m)) + 3‖ ˜̄Fm − F̄‖2

≤ 6(H(m) + Z(m)) + 3‖ ˜̄Fm − F̄‖2.

Therefore, E(‖ ˜̄Fm̃− F̄‖2) ≤ 3E(‖ ˜̄Fm− F̄‖2)+6Z(m)+6E(H(m)). Let us study H(m) (see (29)).

Let E( ˜̄Fm(x)) = F̄m(x) and E( ˜̄Fm,m′(x)) = F̄m,m′(x). Then

‖ ˜̄Fm′ − ˜̄Fm,m′‖2 ≤ 3‖ ˜̄Fm′ − F̄m′‖2 + 3‖ ˜̄Fm,m′ − F̄m,m′‖2 + 3‖F̄m′ − F̄m,m′‖2.

By Lemma 5.3, for all m,m′ ∈Mn,

‖F̄m′ − F̄m,m′‖2 =

∫ +∞

0

(∫ +∞

0
BmF̄ (xu)Km′(u)du

)2

dx.
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Therefore, using that each k
(i)
m′ is a density, we obtain:

‖F̄m′ − F̄m,m′‖2 ≤ |α|1
∫ +∞

0

L∑
i=1

|αi|
(∫ +∞

0
(BmF̄ )(xu)k

(i)
m′(u)du

)2

dx

≤ |α|1
L∑
i=1

|αi|
∫ ∫

(BmF̄ )2(xu)k
(i)
m′(u)dudx

≤ |α|1
∫ +∞

0
(BmF̄ )2(v)dv

L∑
i=1

|αi|
∫ +∞

0

k
(i)
m′(u)

u
du,

having used Fubini and the change of variable v = xu. Now,
∫
k

(i)
m′(u)/u du = 1 +O(1/m′) ≤ 2.

Therefore

H(m) ≤ 3 sup
m′

(
‖ ˜̄Fm′ − F̄m′‖2 −

Z(m′)

6

)
+

+ 3 sup
m′

(
‖ ˜̄Fm,m′ − F̄m,m′‖2 −

Z(m′)

6

)
+

+3 sup
m′
‖F̄m′ − F̄m,m′‖2

≤ 3 sup
m′

(
‖ ˜̄Fm′ − F̄m′‖2 −

Z(m′)

6

)
+

+ 3 sup
m′

(
‖ ˜̄Fm,m′ − F̄m,m′‖2 −

Z(m′)

6

)
+

+6|α|21
∫ +∞

0
(BmF̄ )2(v)dv.

Now, we can prove the following Lemmas:

Lemma 5.6. Under the assumptions of Theorem 3.1, we have

E
(

sup
m′

(
‖ ˜̄Fm′ − F̄m′‖2 −

Z(m′)

6

)
+

)
≤ C

n
.

Lemma 5.7. Under the assumptions of Theorem 3.1, we have

E
(

sup
m′

(
‖ ˜̄Fm,m′ − F̄m,m′‖2 −

Z(m′)

6

)
+

)
≤ C

n
.

This yields that, ∀m ∈Mn,

E(‖ ˜̄Fm̃ − F̄‖2) ≤ 3E(‖ ˜̄Fm − F̄‖2) + 6Z(m) + 6|α|21
∫

(BmF̄ )2(v)dv +
6C

n
.

As E(‖ ˜̄Fm − F̄‖2) ≤ C(Z(m) +
∫

(BmF̄ )2(v)dv), the proof of Theorem 3.1 is complete. 2

5.10.3. Proof of Lemma 5.6. First we write,

(49) E
(

sup
m′

(
‖ ˜̄Fm′ − F̄m′‖2 −

Z(m′)

6

)
+

)
≤

∑
m∈Mn

E
((
‖ ˜̄Fm − F̄m‖2 −

Z(m)

6

)
+

)
.

Next, we split the estimator and its expectation in two parts,

˜̄Fm − F̄m = ( ˜̄F (1)
m − F̄ (1)

m ) + ( ˜̄F (2)
m − F̄ (2)

m )

where

˜̄F (1)
m (x) =

1

n

n∑
i=1

1

x

∫ +∞

0
Km

(u
x

)
1IYi≥u1IYi≤cn(u)du+

1

nx
Yi1IYi≤cnKm

(
Yi
x

)
,
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˜̄F
(2)
m = ˜̄Fm − ˜̄F

(1)
m , F̄

(k)
m = E( ˜̄F

(k)
m ) for k = 1, 2 and for a a numerical constant

(50) cn =
nE(Y1)

a log2(n)
.

We get

E
((
‖ ˜̄Fm − F̄m‖2 −

Z(m)

6

)
+

)
≤ 2E

((
‖ ˜̄F (1)

m − F̄ (1)
m ‖2 −

Z(m)

12

)
+

)
+ 2E

(
‖ ˜̄F (2)

m − F̄ (2)
m ‖2

)
and from the variance bound, for

√
m ≤ n,

E
(
‖ ˜̄F (2)

m − F̄ (2)
m ‖2

)
≤ CE(Y11IY1>cn)

√
m

n
≤ CE(Y p+1

1 )

cpn
.

With cn given by (50), p = 3 and cardMn ≤ n/ log(n), we get∑
m∈Mn

E
(
‖ ˜̄F (2)

m − F̄ (2)
m ‖2

)
≤ Ca3 E(Y 4

1 )

(EY1)3

log5(n)

n2
≤ C ′

n
,

provided that E(Y 4
1 ) < +∞, which makes this term negligible.

Next, we note that ‖ ˜̄F
(1)
m − F̄ (1)

m ‖2 = supt,‖t‖=1〈 ˜̄F
(1)
m − F̄ (1)

m , t〉2, and the supremum can be

taken over a dense countable family of functions t such that ‖t‖ = 1; we denote by B(1) this set.
Thus, setting

θt(y) =

∫ +∞

0

1

x

[∫ +∞

0
Km(

u

x
)(1Iy≥u1Iy≤cndu+ yKm(

y

x
)1Iy≤cn

]
t(x)dx := θ

(1)
t (y) + θ

(2)
t (y)

with obvious splitting into two terms, we introduce the centered empirical process

(51) νn(θt) = 〈 ˜̄F (1)
m − F̄ (1)

m , t〉 =
1

n

n∑
i=1

[θt(Yi)− Eθt(Yi)] .

We can apply the Talagrand inequality (see Appendix). For this, we search for H, v,M such
that:

E( sup
t∈B(1)

ν2
n(θt)) ≤ H2, sup

t∈B(1)
Var (θt(Y1)) ≤ v and sup

t∈B(1)
sup
y
|θt(y)| ≤M.

It follows from the definition of νn and Proposition 3.3 that

E( sup
t∈B(1)

ν2
n(θt)) ≤ E(‖ ˜̄Fm − F̄m‖2) ≤ 10C(K)E(Y1)

√
m/n := H2

where C(K) is defined in (28). Next, for ‖t‖ = 1, we have by (44)

θ
(1)
t (y) =

∫ y

0

(∫ +∞

0

1

x
Km(

u

x
)t(x)dx

)
du1Iy≤cn ≤

∫ cn

0

(∫ +∞

0

1

x2
K2
m(
u

x
)dx

)1/2

du

=

∫ cn

0

1√
u

(∫ +∞

0
K2
m(v)dv

)1/2

du = 2‖Km‖
√
cn ≤ 2

√
C(K)m1/4√cn,

and

|θ(1)
t (y)| ≤

(∫ ∞
0

(
y

x
Km(

y

x
))21Iy≤cndx

)1/2

=

(
1Iy≤cn

∫ ∞
0

(Km(u))2ydu

)1/2

≤
√
cn‖Km‖ ≤

√
C(K)m1/4√cn
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Hence, we can take M = 3
√
C(K)

√
cnm

1/4. Now, we study

Var(θ
(1)
t (Y1)) ≤ E

[(
θ

(1)
t (Y1)

)2
]

≤
∫

[0,+∞[5

1

x
Km(

u

x
)1Iy≥ut(x)

1

z
Km(

v

z
)1Iy≥vt(z)fY (y)dudvdxdydz

≤
∫

[0,+∞[5
Km(s)1Iy≥sxt(x)Km(w)1Iy≥wzt(z)fY (y)dsdwdxdydz

Writing that
∫ +∞

0 t(x)1Iy≥sxdx ≤ ‖t‖(
∫ +∞

0 1Iy≥sxdx)1/2 =
√
y/s, we get

Var(θ
(1)
t (Y1)) ≤

∫
[0,+∞[3

|Km(s)|
√
y

s
|Km(w)|

√
y

w
fY (y)dsdwdy

≤ E(Y1)

(∫ +∞

0

|Km(s)|√
s

ds

)2

= 9|α|21E(Y1),

by (ii) of Lemma 5.4. Therefore, Var(θ
(1)
t (Y1)) is bounded by a constant independent of m,n.

Next we consider Var(θ
(2)
t (Y1)).

Var(θ
(2)
t (Y1)) ≤

∫
(0,+∞)3

fY (y)(y/x)Km(y/x)t(x)(y/z)Km(y/z)t(z)dxdydz.

First,
∫

(y2/xz)fY (y)Km(y/x)Km(y/z)dy = (x2/z)
∫
u2Km(u)Km(xu/z)fY (xu)du. Hence,

(52) Var(θ
(2)
t (Y1)) ≤

∫ +∞

0
u2|Km(u)|

(∫ +∞

0
x2|t(x)|fY (xu)(

∫ +∞

0
|t(z)Km(xu/z)|dz

z
)dx

)
du.

Next, with v = xu/z, we get∫ +∞

0
|t(z)Km(xu/z)|dz

z
≤
[∫ +∞

0
(Km(xu/z)(1/z))2dz

]1/2

≤ ‖Km‖2

xu
≤ C(K)

√
m

xu
.

This yields:

Var(θ
(2)
t (Y1)) ≤

∫ +∞

0
u2|Km(u)| 1√

u
du

(∫ +∞

0
x2|t(x)|fY (xu)

1√
x
dx

)
C(K)1/2m1/4.

Then, as yfY (y) ≤ 1, we get
∫ +∞

0 y3f2
Y (y)dy ≤ E(Y 2

1 ) and∫ +∞

0
x2|t(x)|fY (xu)

1√
x
dx ≤

[∫ +∞

0
x3f2

Y (xu)dx

]1/2

≤ 1

u2

(∫ +∞

0
y3f2

Y (y)dy

)1/2

≤
√

E(Y 2
1 )

u2
.

Finally,

Var(θ
(2)
t (Y1)) ≤ C(K)1/2

√
E(Y 2

1 )m1/4

∫ +∞

0
|Km(u)| 1√

u
du ≤ 3|α|1C(K)1/2

√
E(Y 2

1 )m1/4.

Thus, we can take v = 3|α|1C(K)1/2
√
E(Y 2

1 )m1/4. Lastly,

nH

M
=

√
10 a

3
log(n),

nH2

v
= B m1/4, B =

10
√
C(K)E(Y1

3|α|1
√
E(Y 2

1 )
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This yields, choosing ε2 = 1/2, using (50) and taking a such that 2K1C(ε2)ε
√

10 a/(21
√

2) = 2,
and using m ≤ n2 for any m in Mn we get

E

[
sup
t∈B(1)

(ν2
n(t)− 4H2)+

]
≤ C1

[
m1/4

n
e−Bm

1/4
+

1

log2 n
e−2 log(n)

]
.

Now, reminding of (49) and Card(Mn) ≤ n, we get

E
(

sup
m′

(
‖ ˜̄Fm′ − F̄m′‖2 −

Z(m′)

6

)
+

)
≤ C1

n

∑
m∈Mn

m1/4e−Bm
1/4

+
C2

n
≤ C

n

This ends the proof of Lemma 5.6. 2.

5.10.4. Proof of Lemma 5.7. The proof of Lemma (5.7) follows the same line as previously with
Km replaced by Km �Km′ , where m is fixed and the sum is now taken over m′ in Mn.
(53)

E
(

sup
m′

(
‖ ˜̄Fm,m′ − F̄m,m′‖2 −

Z(m′)

6

)
+

)
≤

∑
m′∈Mn

E
((
‖ ˜̄Fm,m′ − F̄m,m′‖2 −

Z(m′)

6

)
+

)
.

The truncation of the Yi’s by cn is done as previously, and the bound given in Lemma 5.5 leads
to the same result. Therefore, we can work as if the Yi’s were bounded by cn.

Thus, we apply the Talagrand inequality to the empirical process

ν∗n(θ
(m,m′)
t ) = 〈 ˜̄Fm,m′ − F̄m,m′ , t〉2

where θ
(m,m′)
t is the analogous of θt with Km �Km′ instead of Km. We have to find the three

quantities H, v,M. This reduces to using Lemma 5.5 for H and inequalities given in (i) and (iii)
of Lemma 5.4. The bounds being the same as for Lemma 5.6, the conclusion is also analogous.
2

6. Appendix

6.1. Auxiliary result. We recall the generalized Minkowski inequality. The proof of the following inequality
can be found in e.g. Tsybakov (2004, p. 161). For all Borel function g on R× R, we have

(54)

∫
R

(∫
R
g(u, x)du

)2

dx ≤

(∫
R

(∫
R
g2(u, x)dx

)1/2

du

)2

.

The Young inequality. (see [13]). Let f be a function belonging to Lp(R) and g belonging to Lq(R), let p, q, r
be real numbers in [1,+∞] and such that

1

p
+

1

q
=

1

r
+ 1.

Then

(55) ‖f ? g‖r ≤ ‖f‖p ‖g‖q.

where f ? g is the convolution product and ‖f‖pp =
∫
|f(x)|pdx. In particular, for p = 1, r = q = 2, we have

‖f ? g‖2 ≤ ‖f‖1 ‖g‖2.

The Talagrand inequality. The result below follows from the Talagrand concentration inequality given in Klein
and Rio (2005) and arguments in Birgé and Massart (1998) (see the proof of their Corollary 2 page 354).

Lemma 6.1. (Talagrand Inequality) Let Y1, . . . , Yn be independent random variables, let νn,Y (f) = (1/n)
∑n
i=1[f(Yi)−

E(f(Yi))] and let F be a countable class of uniformly bounded measurable functions. Then for ε2 > 0

E
[

sup
f∈F
|νn,Y (f)|2 − 2(1 + 2ε2)H2

]
+
≤ 4

K1

(
v

n
e−K1ε

2 nH2

v +
98M2

K1n2C2(ε2)
e
− 2K1C(ε2)ε

7
√

2
nH
M

)
,
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with C(ε2) =
√

1 + ε2 − 1, K1 = 1/6, and

sup
f∈F
‖f‖∞ ≤M, E

[
sup
f∈F
|νn,Y (f)|

]
≤ H, sup

f∈F

1

n

n∑
k=1

Var(f(Yk)) ≤ v.

By standard density arguments, this result can be extended to the case where F is a unit ball of a linear
normed space, after checking that f 7→ νn(f) is continuous and F contains a countable dense family.
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