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1. Introduction

In this paper, we consider a sample (Yj , δj)1≤j≤n of i.i.d. observations from the model

Yj = (Xj ∧ Cj) + εj = (Xj + εj) ∧ (Cj + εj), j = 1, . . . , n(1)

δj = 1Xj≤Cj ,

where the Xjs are the variables of interest. All variables Xj , Cj (right-censoring variable), εj (noise
or measurement error variable) are independent and identically distributed (i.i.d.) and the three
sequences are independent. The density fε of the noise is assumed to be known, the Xj and Cj are
nonnegative random variables. In other words, the data are censored and measured with error. Right
censoring corresponds to observations Uj = Xj ∧ Cj and δj and measurement errors to observations
Xj + εj . Obviously, 1Xj≤Cj = 1Xj+εj≤Cj+εj so that the censoring indicator is unchanged by the
measurement error.

The aim of the present work is to propose an estimation strategy for hX , the hazard rate of X,
defined by fX/SX where fX is the density and SX the survival function of X.

The literature has considered the two problems of measurement error and censoring mostly sep-
arately. On the one hand, deconvolution strategies have been developed for density estimation in
presence of measurement error by Stefanski and Carroll (1990), Fan (1991) (kernels), Delaigle and
Gijbels (2004) (bandwidth selection), Pensky and Vidakovic (1999); Fan and Koo (2002) (wavelet
estimators), Comte et al. (2006) (projection methods with model selection). Cumulative distribution
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function estimation in presence of measurement error is considered by Dattner et al. (2011). On
the other hand, nonparametric or hazard rate estimation for right censored data has been studied
in Antoniadis et al. (1999), Li (2007, 2008) (wavelets), Dohler and Ruschendorf (2002) (penalized
likelihood-based criterion), Brunel and Comte (2005, 2008), Reynaud-Bouret (2006), Akakpo and
Durot (2010) (penalized contrast estimators).

The only reference treating both the censor and the measurement noise is Comte et al. (2015), where
time between the onset of pregnancy and natural childbirth were to be estimated, from ultrasound
data subject to both right censoring and measurement error. The method proposed therein is based
on deconvolution strategies providing estimators of fXSC and SXSC where SC denotes the survival
function of C; then taking the ratio of these quantities delivers an estimate of hX . The method is
attractive, but theoretical rates are degraded by the survival step estimation. Moreover, the computa-
tion of an estimator built as a ratio is generally delicate and potentially unstable, as the denominator
can get too small. This is why we explore here a one-step regression-type method. But the problem
is difficult due to the double source of errors (censoring and measurement error). Here, we mainly
propose an extension of the regression strategy developed in Comte et al. (2011) and Plancade (2011),
relying on a projection contrast method, associated with spline spaces.

The paper is organized as follows. In Section 2, we state the assumptions. The estimator is then
defined as a contrast minimizer associated with a contrast which is justified and to splines projection
spaces which are described. Risk bounds in term of integrated mean squared error are given in
Section 3, discussion about convergence rates are then provided. A model selection procedure is
finally proposed and proved to perform an adequate compromise, at least in theory. For more practical
aspects, simulation results are provided in Section 4, which allow to compare the performances of the
present procedure with those of a previous quotient estimator. Proofs are gathered in Section 5.

2. Estimation procedure

2.1. Notation and assumptions. We denote by fU the density of a variable U , by SU (t) = P(U ≥ t)
the survival function at point t of a random variable U and by hU (t) = fU (t)/SU (t) the hazard ratio
at point t. The characteristic function of U is f∗U (t) = E(eitU ). We denote by g∗(t) =

∫
eitxg(x) dx

the Fourier transform of any integrable function g. For a function g : R 7→ R, we denote ‖g‖2 =∫
R g

2(u) du the L2 norm. For two integrable and square-integrable functions g and h, we denote g ? h
the convolution product g ? h(x) =

∫
g(x − u)h(u) du. For two real numbers a and b, we denote

a ∧ b = min(a, b).
Let us give the assumptions on the noise ε. We assume that the characteristic function of the noise

is known and such that

∀u ∈ R, f∗ε (u) 6= 0.

Moreover, to be able to propose sets of functions satisfying several constraints, we restrict ourselves
to the case of ordinary smooth errors, i.e. we assume that fε is such that

(2) |f∗ε (u)|−1 ∼ Cε(1 + u2)α/2.

This condition allows to consider Laplace or Gamma distributions, but not Cauchy nor Gaussian.

On the other hand, for the variables X and C, we assume that the following assumption is fulfilled:
Assumption (A1). We assume that both X and C are nonnegative random variables and E(X) <
+∞, E(C) < +∞.

Moreover, for A the compact set on which the function is estimated, we assume:
Assumption (A2). There exists a constant S0 such that, ∀x ∈ A,SX∧C(x) ≥ S0 > 0.
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2.2. Definition of the contrast. From Model (1), we observe for j = 1, . . . , n both Yj and δj and
we want to estimate the hazard rate hX of X.

Under (A1), SX∧C is integrable and square integrable on its support R+, so that S∗X∧C(u) =∫ +∞
0 eiuvSX∧C(v)dv is well defined. Then, the following Lemma, proved in Comte et al. (2015), holds

and defines an estimator of S∗X∧C , useful for the sequel.

Lemma 2.1. Assume that (A1) holds and let (Yj , δj)1≤j≤n be observations drawn from model (1).

Then the estimator Ŝ∗X∧C defined by

(3) Ŝ∗X∧C(u) =
1

n

1

iu

n∑
j=1

(
eiuYj

f∗ε (u)
− 1

)
is an unbiased estimator of S∗X∧C(u).

Now, let t be a function such that t and t2 are integrable, as well as t∗/f∗ε and (t2)∗/f∗ε . We consider
the following contrast

(4) γn(t) =
1

2π


∫

(t2)∗(u)Ŝ∗X∧C(−u) du− 2

∫
1

n

 n∑
j=1

δje
iuYj

 t∗(−u)

f∗ε (u)
du

 .

To understand why this proposal is relevant, let us compute the expectation of γn(t), which, by the
law of Large Numbers, coincides with its almost sure limit. First, notice that

E
[
δ1e

iuY1
]

= E
[
1X1≤C1e

iu(X1∧C1)eiuε1
]

= E
[
1X1≤C1e

iuX1
]
f∗ε (u)

= E
[
SC(X1)eiuX1

]
f∗ε (u) = (fXSC)∗(u)f∗ε (u).(5)

Then, we can easily deduce that, by Parseval formula

(6) E
[
δj
2π

∫
eiuYj

t∗(−u)

f∗ε (u)
du

]
=

1

2π

∫
(fXSC)∗(u)t∗(−u) du =

∫
t(x)SC(x)fX(x) dx.

Moreover, using that by Lemma 2.1, E(Ŝ∗X∧C(u)) = S∗X∧C(u), we get

E[γn(t)] =
1

2π

∫
(t2)∗(u)S∗X∧C(−u) du− 1

π

∫
(fXSC)∗(u)t∗(−u) du.

By Parseval formula, this yields

E[γn(t)] = 〈t2, SX∧C〉 − 2〈t, fXSC〉.

Lastly, using hX = fX/SX and SX∧C = SCSX , we obtain

E[γn(t)] =

∫
(t2(x)− 2t(x)hX(x))SX∧C(x)dx.

Therefore we get, if t is A-supported,

E[γn(t)] =

∫
A

(t(x)− hX(x))2SX∧C(x) dx−
∫
A
h2
X(x)SX∧C(x) dx.

This is why, for large n, minimizing γn(t) among an adequate collection of functions t amounts to
minimize the term

∫
A(t(x) − hX(x))2SX∧C(x) dx, and brings an estimator of hX . This contrast is

new; it is of regression type and corresponds to a nontrivial generalization of the one studied in Comte
et al. (2011) and Plancade (2011).
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2.3. B-Splines spaces of estimation. As noted above, the contrast γn(t) is well defined for functions
t such that t and t2 are integrable, as well as t∗/f∗ε and (t2)∗/f∗ε . This is why we have to define our
projection estimator on finite dimensional functional spaces generated by functions having very specific
properties. Moreover, for technical reasons, the regression type of the contrast requires these functions
to be compactly supported. This is the reason why we restrict to ordinary smooth error distributions
given by (2). For simplicity, we set A = [0, 1].

Now, we specify the spaces Sm of functions t among which we minimize the contrast. We choose
the splines projection spaces, which verify the main properties needed for the estimation procedure.
We consider dyadic B-splines on the unit interval [0, 1]. Let Nr be the B-spline of order r that
corresponds to the r-times iterated convolution of 1[0,1](x) and has knots at the points 0, 1, . . . , r.
Using difference notation from de Boor (2001) or DeVore and Lorentz (1993), Nr is also defined as
Nr(x) = r[0, 1, . . . , r]( . − x)r−1

+ . Let m be a positive integer and define,

ϕm,k(x) = 2m/2Nr(2
mx− k), k ∈ Z.

Note that ϕm,k has only non zero values on ]k/2m, (k + r)/2m].
For approximation on [0, 1], one usually considers the B-splines ϕm,k which do not vanish identically

on [0, 1]. Let K̄m denote the set of integers k for which this holds, K̄m = {−(r−1), · · ·−1, 0, 1, . . . , 2m−
1} as Nr has support [0; r]. Let Km denote the subset of K̄m of integers k such that the support of
ϕm,k is included in [0, 1], i.e. Km = {0, 1, . . . , 2m − (r − 1)}.

We now define Sm as the linear span of the B-splines ϕm,k for k ∈ Km. The linear space Sm is
referred to as the space of dyadic splines, its dimension is 2m − (r − 1) and any element t of Sm can
be represented as

t(x) =
∑
k∈Km

am,kϕm,k

for a vector ~am = (am,k)k∈Km with 2m− (r− 1) coordinates. Note that the usual dyadic splines space
is generated by the 2m + (r − 1) functions corresponding to k ∈ K̄m, and our restriction to Km has
consequences on the bias order.

The following properties of the splines are useful. For any t ∈ Sm, ‖t‖∞ ≤ Φ02m/2‖t‖. Moreover,
there exists some constant Φ0 such that

(7) Φ−2
0

∑
k∈Km

a2
m,k ≤

∥∥∥∥∥∥
∑
k∈Km

am,kϕm,k

∥∥∥∥∥∥
2

≤ Φ2
0

∑
k∈Km

a2
m,k.

In the sequel we will use the following property of ϕ derived from their r-regularity:

(8) ∀u ∈ R |N∗r (u)| =
∣∣∣∣sin(u/2)

(u/2)

∣∣∣∣r and |ϕ∗m,k(u)| = 2−m/2
∣∣∣∣sin(u/2m+1)

(u/2m+1)

∣∣∣∣r .
We denote by S the space Smn with the greatest dimension smaller than n1/(2α+1). It is the maximal

space that we will consider. In the following, we set Dm = 2m.

2.4. Minimizer of γn for the B-spline basis. We can rewrite the contrast γn(t) for t =
∑

k∈Km
am,kϕm,k

and ~am denoting the vector of the coefficients of a function t in the basis, as follows

(9) 2πγn(t) = t~amGm~am − 2 t~amΥm,

where

Gm =

(∫
(ϕm,jϕm,k)

∗(u)Ŝ∗X∧C(−u) du

)
j,k∈Km

, Υm =

(∫
ϕ∗m,k(−u)

1
n

∑n
j=1 δje

iuYj

f∗ε (u)
du

)
k∈Km

with Ŝ∗X∧C given by (3). Note that the matrix Gm is band-diagonal with bands of length r − 1 on
each side of the diagonal (thus a symmetric diagonal band with global length 2r − 1).
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Then we define ĥm the estimator of the hazard rate as the minimizer of γn(t) over all functions
t ∈ Sm whenever it is meaningful. For that, we derive γn(t) to find t =

∑
k∈Km

am,kϕm,k such that

∀k0 ∈ Km,
∂γn
∂am,k0

(t) = 0.

This yields the following system for the vector coefficients of the estimator ~̂am = (âm,k)k∈Km solution
of the above equations,

Gm~̂am = Υm

Then, under (A2), we set Γm = {min sp(Gm) ≥ (2/3)S0} where sp(B) denotes the set of the
eigenvalues of a square matrix B. Clearly, G−1

m exists on Γm. Finally, we consider the estimator

(10) ĥm =

{
arg mint∈Sm γn(t) on Γm
0 otherwise.

Note that, as usual for mean square estimators, we have, on Γm, ~̂am = G−1
m Υm and thus, plugging

this in (9),

(11) γn(ĥm) = − 1

2π
tΥmG−1

m Υm.

Formula (11) allows an easy computation of the contrast, and this is useful for the sequel.

3. Risk bound and model selection

3.1. Risk bound and discussion about the rate. First let us study the L2-risk of our estimator
ĥm defined by Equation (10). For this purpose, we introduce the norm ‖f‖2A =

∫
A f

2(x) dx. Let hm
be the orthogonal projection of hX on the space generated by the ϕm,k for k ∈ Km. We can prove the
following result.

Proposition 3.1. Assume that fε satisfies (2) with regularity α > 1/2 and the Yj’s admit moments
of order 2. Assume also that (A1) and (A2) hold, that r > α + 1 and that fY , SCfX and hX are

bounded on A. Let ĥm be defined by (10). Then there exist constants C1,C2,C3 such that, ∀m such

that Dm ≤ n1/(2α+1),

E‖hX − ĥm‖2A ≤ C1

(
‖hX − hm‖2A + C2,1

D2α+1
m

n
+ C2,2

D
(2α)∨1
m

n
+ C2,3

Dm

n

)
+

C3

n
(12)

≤ C1

(
‖hX − hm‖2A + C2

D2α+1
m

n

)
+

C3

n
(13)

where C1 = C1(S0), C3 = C3(‖hX‖A) are two constants and

(14) C2 = C2,1 + C2,2 + C2,2.

with

2πC2,1 = Φ2
0C

2
ε‖SCfX‖∞I1 + (2r − 1)Φ4

0C
2
ε‖hX‖2AI2/(2π)2

2πC2,2 = 2(2r − 1)Φ4
0C

2
ε ‖hX‖2A‖fY ‖∞/(2π), 2πC2,3 = 2α(2r − 1)Φ4

0C
2
ε‖hX‖2AE[Y 2

1 ]/(2π),

where I1 =
∫
|N∗r (z)|2(1 + z2)α dz, I2 =

(∫
|v|>1 |v|

−r(1 + v2)α/2 dv
)2

.

The first term ‖h − hm‖2A is the squared bias. The second term C2D
2α+1
m /n is the variance term.

Inequality (13) gives the bias-variance decomposition, up to the negligible term C3/n.

Comment about C2 . We summarize the variance as C2D
2α+1
m /n in (13), but it results in fact of three

contributions detailed in (12). The first term is really of order D2α+1
m , the second one has order D2α∨1

m
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and the last one is of order Dm.

Discussion about the convergence rate. First, let us recall that a function f belongs to the Besov space
Bβ,`,∞([0, 1]) if it satisfies

(15) |f |β,` = sup
y>0

y−βwd(f, y)` < +∞, d = [β] + 1,

where wd(f, y)` denotes the modulus of smoothness. For a precise definition of those notions we refer
to DeVore and Lorentz (1993) Chapter 2, Section 7, where it is also proved that Bβ,p,∞([0, 1]) ⊂
Bβ,2,∞([0, 1]) for p ≥ 2. This justifies that we now restrict our attention to Bβ,2,∞([0, 1]). It follows

from Theorem 3.3 in Chapter 12 of DeVore and Lorentz (1993) that ‖hX − h̄m‖2A = O(D−2β
m ), if h

belongs to some Besov space Bβ,2,∞([0, 1]) with |h|β, 2 ≤ L for some fixed L and h̄m is the projection
of hX on the space generated by the ϕm,k for k ∈ K̄m.

Consequently, under Besov regularity assumptions with regularity index β, we know that ‖hX −
h̄m‖2A = O(D−2β

m ), which implies, for a choice Dmopt = O(n1/(2α+2β+1)), and if ‖hX − h̄m‖2A �
‖hX − hm‖2A, a rate

E‖hX − ĥmopt‖2A = O
(
n−2β/(2α+2β+1)

)
Note that this rate is the optimal rate for density estimation in presence of noise satisfying (2) without
censoring (see Fan (1991) for Hölder regularity), therefore, it is likely to be optimal here as well.

However, it is not straightforward to evaluate the distance between ‖hX − h̄m‖2 and ‖hX − hm‖2,
even if this difference is likely to be small in practice. This also justify why we use K̄m in the imple-
mentation of the estimator.

3.2. Model selection. The aim of this section is to provide a data-driven estimator of the hazard rate
hX with a L2-risk as close as possible to the oracle risk defined by infm ‖hX − ĥm‖2. Thus we follow
the model selection paradigm introduced by Birgé and Massart (1997), Birgé (1999), Massart (2003)
which yields to a choice of the dimension of projection space m according to a penalized criterion.

To obtain the data driven selection of m, we propose the following additional step. We select

(16) m̂ = arg min
m∈Mn

{
γn(ĥm) + pen(m)

}
with pen(m) = κ

C2D
2α+1
m

n
, Mn = {m,D2α+1

m ≤ n},

where C2 is given by (14) and κ is a numerical constant. Then we consider the estimator h̃ = ĥm̂. We

recall that γn(ĥm) is given by (11) and thus easy to compute. Then we can prove the following result.

Theorem 3.2. Assume that the assumptions of Proposition 3.1 hold and the Yj’s admit moments of

order 10 and consider the estimator ĥm̂ with m̂ given by (16). Then there exists κ0 such that for all
κ ≥ κ0,

(17) E‖hX − h̃‖2A ≤ C1 inf
m∈Mn

{
‖hX − hm‖2A + pen(m)

}
+

C3

n
,

where C1 = C1(S0) and C3 = C3(‖hX‖A) are positive constants.

The first term is the squared bias. The second term pen(m) is of order of the variance term. The
oracle inequality is achieved up to the negligible term C3/n.

Many terms are known in C2, but there are also unknown terms namely ‖SCfX‖∞, ‖hX‖2A, ‖fY ‖∞
and E[Y 2

1 ]. In practice, they are replaced by estimators.
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4. Illustrations

The whole implementation is conducted using R software. The integrated squared errors ‖hX− h̃‖2A
are computed via a standard approximation and discretization (over 300 points) of the integral on

an interval A. Then the mean integrated squared errors (MISE) E‖hX − h̃‖2A are computed as the
empirical mean of the approximated ISE over 500 simulation samples.

4.1. Simulation setting. The performance of the procedure is studied for the four following distri-
butions for X. All the densities are normalized with unit variance.

. Mixed Gamma distribution: X = W/
√

5.48 with W ∼ 0.4Γ(5, 1) + 0.6Γ(13, 1), A = [0, 5.5].
. Beta distribution: X ∼ B(2, 5)/

√
0.025, A = [0, 2.5].

. Gaussian distribution: X ∼ N (5, 1), A = [0, 5.5].

. Gamma distribution: X ∼ Γ(5, 1)/
√

5, A = [0, 2.5].

Data are simulated with a Laplace noise with variance σ2 = 2b2 as follows:

fε(x) =
1

2b
2e−|x|/b and f∗ε (x) =

1

1 + b2x2

Since the four target densities X are normalized with unit variance, it allows the ratio 1/σ2 to represent
the signal-to-noise ratio, denoted s2n. We consider signal to noise ratios of s2n = 2.5 and s2n = 10
in the simulations which means that b = 1/(2

√
5) and b = 1/(

√
5).

The censoring variable C is simulated with an exponential distribution, with parameter λ chosen
to ensure 20% or 40% of censored variables. We consider samples of size n = 400 and 1000.

We choose the same design of simulation as in Comte et al. (2015) in order to compare our procedure
with theirs.

4.2. Practical estimation procedure. The adaptive procedure is implemented as follows:

. For m ∈Mn = {m1, . . . ,mn}, compute γn(ĥm) + pen(m).

. Choose m̂ such that m̂ = arg minm∈Mn

{
γn(ĥm) + pen(m)

}
.

. Compute h̃(x) =
∑

k∈K̄m̂
âm̂,kϕm̂,k(x).

Gathering (11) and (16), our procedure consists in computing

m̂ = arg min
m∈Mn

− tΥmG−1
m Υm + κC2

D2α+1
m

n

with κ = 0.5 and Mn =
{
m ∈ N,m ≤ n1/5/ log 2

}
. We chose splines with r = 4.

When there is no noise (NN), our procedure reduces to Plancade (2011)’s, and Gm and Υm become
more simply GNN

m and ΥNN
m defined by

GNN
m =

 1

n

n∑
j=1

∫
A
ϕm,k(u)ϕm,k′(u)1{u≤Yj} du


k,k′∈K̄m

, ΥNN
m =

 1

n

n∑
j=1

δjϕm,k(Yj)


k∈K̄m

where here Yj = Xj ∧ Cj . The selection is performed via

m̂NN = arg min
m∈MNN

n

− tΥNN
m (GNN

m )−1ΥNN
m + κ‖hX‖∞

Dm

n
,

withMNN
n = {m ∈ N,m ≤ n/ log 2}. Plancade (2011) shows that κ > 1 is a theoretical suitable value

for the adaptive procedure. Since we do not use the same basis as the author we take κ = 5. Moreover,
as in Plancade (2011) for sake of simplicity, we do not estimate ‖hX‖∞ and suppose that this quantity
is known. Some preliminary numerical studies show that replacing it by its estimator hardly affects
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the result. Thus in our procedure we do not estimate ‖hX‖∞ either.

To evaluate the quality of the estimators, we approximate via Monte Carlo repetitions the minimal
risk of the collection (ĥm) (risk of the oracle), the quadratic risk of ĥm̂, and the risk of the quotient
estimator. More precisely, we denote r̂or and r̂ad:

(18) r̂or = min
m∈Mn

Ê‖hX − ĥm‖2A and r̂ad = Ê‖hX − ĥm̂‖2A

where Ê is the approximation of theoretical expectation computed via Monte Carlo repetitions. We
denote r̂quot the estimated risk of the quotient estimator obtained by Comte et al. (2015).

4.3. Simulation results. The results of the simulations are given in Table 1. In the Table we report
estimations of MISE when the data are not censored, or not noisy, or neither censored nor noisy. First
we see that the risk decreases when the sample size increases. Likewise the risk increases when the
variance and the censoring increase.

We can see that for the mixed Gamma distribution our results are less good than those of Comte
et al. (2015). But we can notice that for a mixed distribution, our results are similar to those of Plan-
cade (2011). However when the censoring level is high and the sample size small we obtain a better
result. For the Gaussian distribution, the results of the two methods are equivalent. Our method
improves the estimation for the Beta and Gamma distributions. Globally, we get better results than
Comte et al. (2015) in 65% of the cases, which is good performance.

Note that our procedure requires only one constant calibration whereas Comte et al. (2015) use an
estimator which is a quotient and choose independently the two dimensions and thus two constant
calibrations.

5. Proofs

5.1. About the spline basis. Any function t ∈ Sm can be decomposed as t(x) =
∑

k∈Km
am,kϕm,k(x).

Moreover, when ‖t‖ = 1, we have
∑

k a
2
m,k ≤ Φ0 from (7). The following relations will be used in the

proofs.

Lemma 5.1.

1) For all j = J, . . . ,m and k ∈ Λj , we have

ϕm,k(·) = 2m/2Nr(2
m · −k), ϕ∗m,k(u) = 2−m/2eiuk/2

m
N∗r

( u

2m

)
.

2) For any m and any k, k′, Lemma 4 from Lacour (2008) yields

(2π)|(ϕm,kϕm,k′)∗(u)| = |ϕ∗m,k ? ϕ∗m,k′(u)| ≤
{
|2−mu|1−r if |u| > 2m

1 if |u| ≤ 2m.

5.2. Proof of Proposition 3.1. Let us define

Ψn(t) =
1

2π

∫
(t2)∗(u)Ŝ∗X∧C(u) du,

which is such that, for t ∈ Sm,

E [Ψn(t)] =

∫
A
t2(x)SX∧C(x) dx := ‖t‖2SX∧C .
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s2n =∞ 0% censoring 20% censoring 40% censoring

fX n = 400 n = 1000 n = 400 n = 1000 n = 400 n = 1000

Mixed r̂or 0.49 0.19 0.58 0.27 0.71 0.37
Gamma r̂ad 1.21 0.49 1.24 0.58 1.52 0.72

r̂quot 0.82 0.29 1.15 0.38 2.05 0.67

Beta r̂or 0.53 0.30 0.54 0.31 0.60 0.33
r̂ad 0.78 0.54 0.77 0.53 0.85 0.54
r̂quot 1.37 0.66 1.83 0.79 2.40 1.05

Gaussian r̂or 0.28 0.13 0.42 0.24 1.06 0.52
r̂ad 0.63 0.27 0.81 0.49 1.95 0.97
r̂quot 0.61 0.19 1.97 0.57 8.64 5.87

Gamma r̂or 0.38 0.18 0.48 0.24 0.53 0.26
r̂ad 0.49 0.26 0.75 0.31 0.82 0.35
r̂quot 0.64 0.28 0.84 0.29 1.04 0.32

s2n = 10 0% censoring 20% censoring 40% censoring

fX n = 400 n = 1000 n = 400 n = 1000 n = 400 n = 1000

Mixed r̂or 0.50 0.32 0.56 0.35 0.65 0.41
Gamma r̂ad 1.04 0.90 1.06 0.89 1.13 0.91

r̂quot 0.72 0.30 0.94 0.43 1.34 0.75

Beta r̂or 0.99 0.44 1.09 0.47 1.22 0.54
r̂ad 1.13 0.44 1.25 0.49 1.40 0.57
r̂quot 1.49 0.82 2.00 1.08 2.64 1.03

Gaussian r̂or 0.35 0.20 0.70 0.29 2.14 0.69
r̂ad 0.48 0.28 0.90 0.41 2.47 0.96
r̂quot 0.56 0.24 1.34 0.71 7.39 5.87

Gamma r̂or 0.60 0.29 0.63 0.30 0.70 0.31
r̂ad 0.65 0.33 0.66 0.34 0.72 0.35
r̂quot 0.78 0.37 0.89 0.39 0.98 1.02

s2n = 2.5 0% censoring 20% censoring 40% censoring

fX n = 400 n = 1000 n = 400 n = 1000 n = 400 n = 1000

Mixed r̂or 0.59 0.37 0.67 0.41 0.80 0.47
Gamma r̂ad 1.08 0.92 1.12 0.91 1.23 0.94

r̂quot 1.15 0.48 1.37 0.68 1.93 1.04

Beta r̂or 2.13 1.04 2.44 1.05 3.16 1.40
r̂ad 2.87 1.81 4.36 1.80 4.66 2.14
r̂quot 2.05 1.14 3.98 1.92 5.72 2.57

Gaussian r̂or 0.61 0.27 1.87 0.50 6.04 1.69
r̂ad 0.91 0.42 2.54 0.73 7.30 2.88
r̂quot 0.86 0.44 2.15 1.06 8.04 6.27

Gamma r̂or 1.17 0.46 1.23 0.51 1.44 0.53
r̂ad 1.67 0.62 1.41 0.61 1.75 0.88
r̂quot 1.32 0.63 1.77 0.87 2.31 1.02

Table 1. MISE×100 of the estimation of hX , compared with the MISE obtained when
data are not censored, or not noisy, or neither censored nor noisy. MISE was averaged
over 500 samples (1000 for rquot). Data are simulated with a Laplace noise, and an
exponential censoring variable.
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Let us also consider the sets

∆m =

{
ω / ∀t ∈ Sm, ‖t‖2SX∧C ≤

3

2
Ψn(t)

}
, ∆ =

⋂
m∈Mn

∆m.

It is easy to see that ∀m ∈ Mn, ∆ ⊂ ∆m ⊂ Γm, see Lacour (2008). Moreover, we can prove in the
same way that P(∆c) ≤ c/n3.

Let hm be the orthogonal-L2(A, dx) projection of hX on Sm. We have

E‖hX − ĥm‖2A ≤ 2‖hX − hm‖2A + 2E[‖ĥm − hm‖2A]

and
‖ĥm − hm‖2A = ‖ĥm − hm‖2A1∆ + ‖ĥm − hm‖2A1∆c .

Now we have the following Lemma:

Lemma 5.2. Under the Assumptions of Proposition 3.1, for any m ∈Mn, we have

‖ĥm‖2 ≤ n2 a.s.

This yields

E
[
‖hX − ĥm‖2A

]
≤ 2‖hX − hm‖2A + 2E

[
‖ĥm − hm‖2A1∆

]
+ 4E

[(
‖ĥm‖2A + ‖hX‖2A

)
1∆c

]
≤ 2‖hX − hm‖2A +

2

S0
E
[
‖ĥm − hm‖2SX∧C1∆

]
+ 4

(
n2 + ‖hX‖2A

)
P [∆c]

≤ 2‖hX − hm‖2A +
3

S0
E
[
Ψn(ĥm − hm)1∆

]
+

4

n

(
1 +
‖hX‖2A
n2

)
.(19)

Now let us define

νn,1(t) =
1

2π

∫
t∗(−u)

(θ̂Y (u)− E[θ̂Y (u)])

f∗ε (u)
du with θ̂Y (u) = (1/n)

n∑
j=1

δje
iuYj ,

νn,2(t) =
1

2π

∫
(thm)(−u)

(
Ŝ∗X∧C(u)− E

[
Ŝ∗X∧C(u)

])
du.

We have

γn(ĥm)− γn(hm) = Ψn(ĥm − hm)− 2νn,1(ĥm − hm)− 2νn,2(hm − ĥm) + 2〈ĥm − hm, hm − hX〉SX∧C .

Then writing that on ∆ ⊂ Γm,

(20) γn(ĥm) ≤ γn(hm)

and defining B(m) = {t ∈ Sm, ‖t‖ = 1}, we get, on ∆,

Ψn(ĥm − hm) ≤ 2νn,1(ĥm − hm) + 2νn,2(hm − ĥm) + 2〈ĥm − hm, hX1A − hm〉SX∧C

≤ 2νn,1(ĥm − hm) + 2νn,2(hm − ĥm)

+
1

4
‖ĥm − hm‖2SX∧C + 4‖hX1A − hm‖2SX∧C

≤ 1

4
‖ĥm − hm‖2SX∧C +

8

S0
sup

t∈B(m)
ν2
n,1(t) +

8

S0
sup

t∈B(m)
ν2
n,2(t)

+
1

4
‖ĥm − hm‖2SX∧C + 4‖hX1A − hm‖2SX∧C

Then, as ‖ĥm − hm‖2SX∧C
1∆ ≤ 3

2Ψn(ĥm − hm)1∆, we obtain that, on ∆,

(21)
1

4
Ψn(ĥm − hm) ≤ 4‖hX1A − hm‖2SX∧C +

8

S0
sup

t∈B(m)
ν2
n,1(t) +

8

S0
sup

t∈B(m)
ν2
n,2(t).
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Now, plugging (21) in (19), we get

E
[
‖hX − ĥm‖2A

]
≤ C1

(
‖hX − hm‖2A + E

[
sup

t∈B(m)
ν2
n,1(t)

]
+ E

[
sup

t∈B(m)
ν2
n,2(t)

])

+
4

n

(
1 +
‖hX‖2A
n2

)
.(22)

with C1 = maxi=1,2(C0,i) with C0,1 = 2 + 48/S0, C0,2 = 96/S2
0 . To conclude, we use the following

proposition proved below:

Proposition 5.3. Under the assumptions of Proposition 3.1, for i = 1, 2

(23) E

[
sup

t∈B(m)
ν2
n,i(t)

]
≤ Ki

D2α+1
m

n
,

where K1,K2 are constants which do not depend on n nor m.

Inserting (23) in (22) gives the result and ends the proof of Proposition 3.1. �

5.2.1. Proof of Lemma 5.2. If ĥm is non zero, then we are on Γm. Therefore ‖ĥm‖2 ≤ Φ2
0‖~̂am‖2 =

‖G−1
m Υm‖2 ≤ [9/(4S2

0)]‖Υm‖2. Then, using that |θ̂Y (u)| ≤ 1 a.s., we get

‖Υm‖2 =
∑
k∈Km

∣∣∣∣∣
∫
ϕ∗m,k(u)

θ̂Y (u)

f∗ε (u)
du

∣∣∣∣∣
2

≤
∑
k

(∫ |ϕ∗m,k(u)|
|f∗ε (u)|

du

)2

≤
∑
k

(∫
|2−m/2N∗r (u/2m)|

|f∗ε (u)|
du

)2

≤ C2
ε

∑
k

2m22mα

(∫
|N∗r (v)|(1 + v2)α/2 dv

)2

≤ C2
εD

2α+2
m

(∫ (
sin(v/2)

v/2

)r
(1 + v2)α/2 dv

)2

≤ C1D
2α+2
m ≤ n2

where we use D2α+1
m ≤ n. The constant is such that C1 = C2

ε

∫ ( sin(v/2)
v/2

)r
(1 + v2)α/2 dv and is finite

provided that r > α+ 1. �
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5.2.2. Proof of Proposition 5.3. We start with E
[
sup‖t‖=1 |νn,1(t)|2

]
.

Φ−2
0 E

[
sup
‖t‖=1

|νn,1(t)|2
]
≤
∑
k∈Km

E
[
ν2
n,1(ϕm,k)

]

≤ 1

(2π)2

∑
k∈Km

E

 1

n

n∑
j=1

∫
ϕ∗m,k(−u)δj

eiuYj − EeiuYj
f∗ε (u)

du

2 
=

1

(2π)2

∑
k∈Km

1

n
Var

(∫
ϕ∗m,k(−u)δ1

eiuY1

f∗ε (u)
du

)
≤ 1

n

1

(2π)2

∑
k∈Km

E
∣∣∣∣∫ ϕ∗m,k(−u)δ1

eiuY1

f∗ε (u)
du

∣∣∣∣2

=
1

n

1

(2π)2

∑
k∈Km

E

∣∣∣∣∣
∫
ϕ∗m,k(−u)δ1

eiu(X1+ε1)

f∗ε (u)
du

∣∣∣∣∣
2

=
1

n

1

(2π)2

∑
k∈Km

∫ ∫ ∣∣∣∣∣
∫
ϕ∗m,k(−u)

eiu(x+e)

f∗ε (u)
du

∣∣∣∣∣
2

SC(x)fX(x)fε(e) dx de

≤ 1

n

‖SCfX‖∞
(2π)2

∑
k∈Km

∫ ∣∣∣∣∫ ϕ∗m,k(−u)
eiuz

f∗ε (u)
du

∣∣∣∣2 dz ≤ 1

n

‖SCfX‖∞
2π

∑
k∈Km

∫ ∣∣∣∣∣ϕ∗m,k(−u)

f∗ε (u)

∣∣∣∣∣
2

du

by using Parseval equality. Using that the noise is ordinary-smooth with constant α, we obtain

E

[
sup
‖t‖=1

|νn,1(t)|2
]
≤ Φ2

0

n

‖SCfX‖∞
2π

∑
k∈Km

∫
|N∗r (z)|2

|f∗ε (2mz)|2
dz

≤ Φ2
0C

2
ε

n

‖SCfX‖∞
2π

∑
k∈Km

∫
|N∗r (z)|2(1 + (2mz)2)α dz

≤ Φ2
0C

2
ε

n

‖SCfX‖∞
2π

∑
k∈Km

22mα

∫
|N∗r (z)|2(1 + z2)α dz

As we assume that r > α+ 1
2 , the integral

∫
|N∗r (z)|2(1 + z2)α dz is finite. We obtain

(24) E

[
sup
‖t‖=1

|νn,1(t)|2
]
≤ K1

D2α+1
m

n
, with K1 =

Φ2
0C

2
ε‖SCfX‖∞

2π

∫
|N∗r (z)|2(1 + z2)α dz

which is the announced result for i = 1.

• Now we consider E
[
sup‖t‖=1 |νn,2(t)|2

]
. The following inequality will be used:

(25) ∀u ∈ R, ∀a ∈ R,
∣∣∣∣eiua − 1

u

∣∣∣∣ ≤ |a|.
First, because of convergence problems near 0, we split this term in three parts:

E

[
sup
‖t‖=1

|νn,2(t)|2
]
≤ 3(T1 + T2 + T3)
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where Zj(u) = eiuYj − 1 and for ` = 1, 2, 3,

T` =
1

(2π)2
E

 sup
‖t‖=1

∣∣∣∣∣∣
∫
D`

(thm)∗(u)
1

n

1

iu

n∑
j=1

Zj(u)− E[Zj(u)]

f∗ε (u)
du

∣∣∣∣∣∣
2 ,

with D1 = {|u| ≤ 1}, D2 = {1 < |u| ≤ 2m} and D3 = {|u| > 2m}. Indeed

eiuYj − f∗ε (u)− E[eiuYj − f∗ε (u)] = Zj(u)− E[Zj(u)].

In all cases we start by decomposing the functions t and hm on the basis (ϕm,j)j :

T` ≤
Φ4

0‖hm‖2A
(2π)2

∑
k∈Km

∑
j,|j−k|<r

E

∣∣∣∣∣∣
∫
D`

(ϕm,kϕm,j)
∗(u)

1

n

1

iu

n∑
j=1

Zj(u)− E[Zj(u)]

f∗ε (u)
du

∣∣∣∣∣∣
2 .

For T1 we write that, by Schwarz’s inequality

T1 ≤
Φ4

0‖hm‖2A
(2π)2

∑
k∈Km

∑
j,|j−k|<r

∫
|u|≤1

|(ϕm,kϕm,j)∗(u)|2E

∣∣∣∣∣∣ 1n 1

iu

n∑
j=1

Zj(u)− E[Zj(u)]

f∗ε (u)

∣∣∣∣∣∣
2 du

≤
Φ4

0‖hm‖2A
(2π)2n

∑
k∈Km

∑
j,|j−k|<r

∫
|u|≤1

|(ϕm,kϕm,j)∗(u)|2

|f∗ε (u)|2
E

[∣∣∣∣Z1(u)− E(Z1(u))

iu

∣∣∣∣2
]

du.

Now we use Equation (25) and Lemma 5.1, 2) to get

T1 ≤
Φ4

0‖hm‖2A
(2π)3n

∑
k∈Km

∑
j,|j−k|<r

∫
|u|≤1

du

|f∗ε (u)|2
E[Y 2

1 ]

=
Φ4

02αC2
ε‖hX‖2A(2r − 1)E[Y 2

1 ]Dm

(2π)3n

Thus

(26) T1 ≤ C2,3Dm/n, with C2,3 = Φ4
0C

2
ε2
α‖hX‖2A(2r − 1)E[Y 2

1 ]/(2π)3.

For T2, we use Parseval formula and Lemma 5.1, 2) and we obtain

T2 ≤
Φ4

0‖hm‖2A
(2π)2n

∑
k∈Km

∑
j,|j−k|<r

E

∣∣∣∣∣
∫

1<|u|≤2m
(ϕm,kϕm,j)

∗(u)
1

iu

eiuY1

f∗ε (u)
du

∣∣∣∣∣
2


≤
Φ4

0‖hm‖2A‖fY ‖∞
2πn

∑
k∈Km

∑
j,|j−k|<r

∫
1<|u|≤2m

|(ϕm,kϕm,j)∗(u)|2

u2|f∗ε (u)|2
du

≤
Φ4

0‖hm‖2A‖fY ‖∞
(2π)2n

∑
k∈Km

∑
j,|j−k|<r

∫
1<|u|≤2m

du

u2|f∗ε (u)|2

≤
2(2r − 1)DmΦ4

0‖hX‖2AC2
ε‖fY ‖∞

(2π)2n
(2m)(2α−1)+ ≤

2(2r − 1)Φ4
0C

2
ε‖hX‖2A‖fY ‖∞

(2π)2n
D2α∨1
m .

Thus

(27) T2 ≤ C2,2D
(2α)∨1
m /n, with C2,2 = 2(2r − 1)C2

εΦ
4
0‖hX‖2A‖fY ‖∞/(2π)2.
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Lastly, for T3, we use Lemma 5.1, 2).

T3 ≤
Φ4

0‖hX‖2A
(2π)2n

∑
k∈Km

∑
j,|j−k|<r

E

∣∣∣∣∣
∫
|u|>2m

(ϕm,k, ϕm,j)
∗(u)

1

iu

eiuY1

f∗ε (u)
du

∣∣∣∣∣
2


≤
C2
εΦ

4
0‖hX‖2A

(2π)3n

∑
k∈Km

∑
j,|j−k|<r

(∫
|u|>2m

|2−mu|1−r (1 + u2)α/2

|u|
du

)2

≤
C2
εΦ

4
0‖hX‖2A

(2π)3n
(2r − 1)Dm

(∫
|v|>1

|v|1−r (1 + 22mv2)α/2

2m|v|
2m dv

)2

≤
(2r − 1)C2

εΦ
4
0‖hX‖2AD2α+1

m

(2π)3n

(∫
|v|>1

|v|−r(1 + v2)α/2 dv

)2

≤ K2
D2α+1
m

n
,(28)

with

(29) K2 =
(2r − 1)C2

εΦ
2
0‖hX‖2A

(2π)3

(∫
|v|>1

|v|−r(1 + v2)α/2 dv

)2

,

if α−r+1 < 0 i.e. r > α+1. Then gathering (26), (27) and (28) implies the result with C2,1 = K1+K2

with K1 defined in (24) and K2 in (29). �

5.3. Proof of Theorem 3.2. The proof starts similarly as proof of Proposition 3.1 with ĥm replaced
by ĥm̂ until inequality (20) which is now replaced by the fact that ∀m ∈Mn,

γn(ĥm̂) + pen(m̂) ≤ γn(hm) + pen(m).

Here, we define B(m,m′) = {t ∈ Sm + Sm′ , ‖t‖ = 1} and we get

Ψn(ĥm̂ − hm) ≤ 2νn,1(ĥm̂ − hm) + 2νn,2(ĥm̂ − hm) + 2〈ĥm̂ − hm, hm − hX〉SX∧C

+pen(m)− pen(m̂)

≤ 2νn,1(ĥm̂ − hm) + 2νn,2(ĥm̂ − hm)

+
1

4
‖ĥm̂ − hm‖2SX∧C + 4‖hX − hm‖2SX∧C + pen(m)− pen(m̂)

≤ 1

4
‖ĥm̂ − hm‖2SX∧C +

8

S0
sup

t∈B(m,m̂)
ν2
n,1(t) +

8

S0
sup

t∈B(m,m̂)
ν2
n,2(t)

+
1

4
‖ĥm̂ − hm‖2SX∧C + 4‖hX − hm‖2SX∧C + pen(m)− pen(m̂)

≤ 4‖hX − hm‖2SX∧C + pen(m) +
1

2
‖ĥm̂ − hm‖2SX∧C

+
8

S0

{
sup

t∈B(m,m̂)
ν2
n,1(t)− p1(m, m̂)

}
+

+
8

S0

{
sup

t∈B(m,m̂)
ν2
n,2(t)− p2(m, m̂)

}
+

+
8

S0
(p1(m, m̂) + p2(m, m̂))− pen(m̂)

We shall choose the penalty so that ∀m,m′ ∈Mn,

(8/S0)(p1(m,m′) + p2(m,m′)) ≤ pen(m) + pen(m′).
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Therefore we get, on ∆,

Ψn(ĥm̂ − hm) ≤ 4‖hX − hm‖2SX∧C + 2pen(m) +
1

2
‖ĥm̂ − hm‖2SX∧C

+8

{
sup

t∈B(m,m̂)
ν2
n,1(t)− p1(m, m̂)

}
+

+ 8

{
sup

t∈B(m,m̂)
ν2
n,2(t)− p2(m, m̂)

}
+

Then, ‖ĥm̂ − hm‖2SX∧C
1∆ ≤ 3

2Ψn(ĥm̂ − hm) implies that, on ∆,

1

4
Ψn(ĥm̂ − hm) ≤ 4‖hX − hm‖2SX∧C + 2pen(m) + 8

{
sup

t∈B(m,m̂)
ν2
n,1(t)− p1(m, m̂)

}
+

+8

{
sup

t∈B(m,m̂)
ν2
n,2(t)− p2(m, m̂)

}
+

Now, inserting this in (19) with ĥm replaced by h̃ = ĥm̂, we get

E‖hX − h̃‖2A ≤ C1

(
‖hX − hm‖2A + pen(m) + E

{
sup

t∈B(m,m̂)
ν2
n,1(t)− p1(m, m̂)

}
+

+E

{
sup

t∈B(m,m̂)
ν2
n,2(t)− p2(m, m̂)

}
+

)
+

4

n

(
1 +
‖hX‖2A
n

)
.

with C1 = maxi=1,2(C0,i) with C0,1 = 2 + 48/S0, C0,2 = 296/S2
0 . Now we use the following proposition

proved below:

Proposition 5.4. Let, for i = 1, 2, pi(m,m
′) = τi log(n)D2α+1

m /n with τi proportional to Ki, then

E

{
sup

t∈B(m,m̂)
ν2
n,i(t)− pi(m, m̂)

}
+

≤ C

n
.

This ends the proof of Theorem 3.2. �

5.3.1. Proof of Proposition 5.4. To prove Proposition 5.4, we apply to νn,1 and νn,2 the following
version of Talagrand inequality.

Lemma 5.5. Let T1, . . . , Tn be independent random variables and νn(r) = (1/n)
∑n

j=1(r(Tj) −
E[r(Tj)]), for r belonging to a countable class R of measurable functions. Then, for ε > 0,

(30) E
{

sup
r∈R
|νn(r)|2 − (1 + 2ε)H2

}
+

≤ C
(
v

n
e−K1ε

nH2

v +
M2

n2C2(ε)
e−K2C(ε)

√
εnH

M

)
with K1 = 1/6, K2 = 1/(21

√
2), C(ε) =

√
1 + ε− 1 and C a universal constant and where

sup
r∈R
‖r‖∞ ≤M, E

[
sup
r∈R
|νn(r)|

]
≤ H, sup

r∈R

1

n

n∑
j=1

Var[r(Tj)] ≤ v.

Inequality (30) is a straightforward consequence of the Talagrand inequality given in Klein and Rio
(2005). Moreover, standard density arguments allow to apply it to the unit ball of spaces.

• Study of νn,1. We need to compute the three bounds involved in Lemma 5.5. We proved the bound

for E
[
sup‖t‖=1 |νn,1(t)|2

]
in Proposition 5.3, and the spaces are nested so that Sm + Sm′ is just equal

to the largest of the two spaces. Therefore H2 = C
n (Dm ∨Dm′)

2α+1‖SCfX‖∞.
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Now we compute v such that supt∈Sm∨Sm′ ,‖t‖=1 Var[δ1

∫ t∗(u)
f∗ε (u)e

iuY1 du] ≤ v. For this we denote by

Sm∗ = Sm ∨ Sm′ and write, using Parseval equality as previously,

sup
t∈Sm∗ ,‖t‖=1

Var

[
δ1

2π

∫
t∗(u)

f∗ε (u)
eiuY1 du

]
≤ ‖fXSC‖∞

2π
sup

t∈Sm∗ ,‖t‖=1

∫ ∣∣∣∣ t∗(u)

f∗ε (u)

∣∣∣∣2 du

≤ ‖fXSC‖∞
2π

sup
t∈Sm∗ ,‖t‖=1

‖t∗‖
(∫

|t∗(u)|2

|f∗ε (u)|4
du

)1/2

≤ ‖fXSC‖∞Φ2
0√

2π

 ∑
k∈Km∗

C4
ε

∫
|N∗r (v)|2(1 + (2m

∗
v)2))2α dv

1/2

≤ C2
ε‖fXSC‖∞D

2α+1/2
m∗

Φ2
0√

2π

(∫
|N∗r (w)|2(1 + w2)α dw

)1/2

:= v.

The last constant to be computed in order to apply Lemma 5.5 is M .

sup
t∈Sm,‖t‖=1

sup
z

∣∣∣∣δ1
1

2π

∫
eiuz

t∗(u)

f∗ε (u)
du

∣∣∣∣ ≤ sup
t∈Sm,‖t‖=1

∑
k∈Km

∫
am,k

∣∣∣∣∣ϕ∗m,k(u)

f∗ε (u)

∣∣∣∣∣ du

≤

 ∑
k∈Km

(∫ ∣∣∣∣∣ϕ∗m,k(u)

f∗ε (u)

∣∣∣∣∣ du

)2
1/2

≤

 ∑
k∈Km

2−m
(∫ ∣∣∣∣N∗r (u/2m)

f∗ε (u)

∣∣∣∣ du

)2
1/2

≤

(
22m

(∫ ∣∣∣∣ N∗r (v)

f∗ε (2mv)

∣∣∣∣ dv

)2
)1/2

≤
(
C 22m22mα

)1/2 ≤ CDα+1
m =: M

Finally, Lemma 5.5 with ε = 1/2, M = (D∗m)α+1, v = C(D∗m)2α+1/2 and H2 = C(D∗m)2α+1/n where
D∗m = Dm ∨Dm′ yields

E

[
sup

t∈Sm∨Sm̂

ν2
n,1(t)− 2H2

]
≤

∑
m′/ Dm′∈Mn

E

[
sup

t∈Sm∨Sm′
ν2
n,1(t)− 2H2

]

≤ C0

(∑
m′

(Dm ∨Dm′)
2α+1

n
e−C1

√
Dm∨Dm′

+
(Dm ∨Dm′)

2α+2

n2
e−C2

√
n/
√
Dm∨Dm′

)
≤ K/n

since the first series is convergent and ∀m ∈ Mn, Dm ≤
√
n (indeed, D2α+1

m ≤ n and α > 1/2); thus√
n/Dm ∨Dm′ ≥ n1/4 and exp(−C2

√
n/
√
Dm ∨Dm′) ≤ exp(−C2n

1/4) for any m. �

• Study of νn,2. First, because of boundedness problems, we split the expectation in two terms

E

[
sup

t∈Sm∨Sm̂

ν2
n,2(t)− p2(m, m̂)

]
≤ 2E

[
sup

t∈Sm∨Sm̂

|ν(1)
n,2(t)|2

]

+2E

[
sup

t∈Sm∨Sm̂

|ν(2)
n,2(t)|2 − p2(m, m̂)/2

]
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where, for ` = 1, 2,

ν
(`)
n,2(t) =

∫
t∗ ? h∗m(u)

1

n

1

iu

n∑
j=1

Z
(`)
j (u)− E(Z

(`)
j (u))

f∗ε (u)
du,

with Z
(1)
j and Z

(2)
j defined, introducing a cut-off cn, as:

Z
(1)
j (u) = (eiuYj − 1)1{|Yj |>cn}, Z

(2)
j (u) = (eiuYj − 1)1{|Yj |≤cn}.

We choose
cn = c0

√
n/ log(n)

where c0 is detailed below.

. We start with ν
(1)
n,2. We want to bound E1 := E

[
sup‖t‖=1,t∈Sm+Sm̂

|ν(1)
n,2(t)|2

]
.

Let Sn be a nesting space such that ∀m ∈Mn, Sm ⊂ Sn. Then

E1 ≤ E

[
sup

‖t‖=1,t∈Sn
|ν(1)
n,2(t)|2

]

≤ E

 ∑
k∈Kmn

∣∣∣∣∣∣
∫
ϕ∗mn,k ? h

∗
m(u)

1

n

1

iu

n∑
j=1

Z
(1)
j (u)− E(Z

(1)
j (u))

f∗ε (u)
du

∣∣∣∣∣∣
2

=
1

n
E

 ∑
k∈Kmn

∣∣∣∣∣
∫
ϕ∗mn,k ? h

∗
m(u)

1

iu

Z
(1)
1 (u)− E(Z

(1)
1 (u))

f∗ε (u)
du

∣∣∣∣∣
2


≤
E[Y 2

1 1|Y1|>cn ]

n

∑
k∈Kmn

(∫ ∣∣∣∣∣ϕ∗mn,k
? h∗m(u)

f∗ε (u)
du

∣∣∣∣∣
)2

Now, decomposing hm along the ϕmn,` we get∑
k∈Kmn

(∫ ∣∣∣∣∣ϕ∗mn,k
? h∗m(u)

f∗ε (u)
du

∣∣∣∣∣
)2

≤ Φ2
0‖hm‖2A

∑
k∈Kmn

∑
`,|`−k|<r

(∫ ∣∣∣∣∣ϕ∗mn,k
? ϕ∗mn,`

(u)

f∗ε (u)
du

∣∣∣∣∣
)2

.

With Lemma 5.1, 2), we get∑
k∈Kmn

(∫ ∣∣∣∣∣ϕ∗mn,k
? h∗m(u)

f∗ε (u)
du

∣∣∣∣∣
)2

≤ 4Φ2
0‖hm‖2AC2

ε

∑
k∈Kmn

∑
`,|`−l|<r

(∫
|u|≤2mn

(1 + u2)α/2 du+

∫
|u|>2mn

|2−mnu|1−r(1 + u2)α/2 du

)2

≤ 4Φ2
0‖hX‖2A(2r − 1)DmnC

2
ε(2

2mn(α+1) + 2mn(2α+2)(

∫
|v|>1

|v|1−r(1 + v2)α/2 dv)2) = O(D2α+3
n ).

All dimensions considered are such that D2α+1
m /n ≤ C, so that D2α+3

n ≤ n3. Then for any p, we have

E1 ≤ Cn2E[Y 2
1 1|Y1|>cn ] ≤ Cn2E[|Y1|2+p]/cpn

so that p = 8 implies that E1 ≤ CE[|Y1|10](log(n))8/n2 ≤ C/n.

. Now we consider ν
(2)
n,2 and more precisely, E

[
sup‖t‖=1 |ν

(2)
n,2(t)|2

]
.
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We apply Talagrand Inequality and compute the three bounds involved in Lemma 5.5. First, because
of convergence problems near 0, similarly to proof of Proposition 5.3, we split this term in three parts:

E

[
sup
‖t‖=1

|ν(2)
n,2(t)|2

]
≤ 3E

 sup
‖t‖=1

∣∣∣∣∣∣
∫
|u|≤1

t∗ ? h∗m(u)
1

n

n∑
j=1

Z
(2)
j (u)− E[Z

(2)
j (u)]

iuf∗ε (u)
du

∣∣∣∣∣∣
2

+3E

 sup
‖t‖=1

∣∣∣∣∣∣
∫

1<|u|≤2m∨m′
t∗ ? h∗m(u)

1

n

n∑
j=1

Z
(2)
j (u)− E[Z

(2)
j (u)]

iuf∗ε (u)
du

∣∣∣∣∣∣
2

+3E

 sup
‖t‖=1

∣∣∣∣∣∣
∫
|u|>2m∨m′

t∗ ? h∗m(u)
1

n

n∑
j=1

Z
(2)
j (u)− E[Z

(2)
j (u)]

iuf∗ε (u)
du

∣∣∣∣∣∣
2

Bounding these terms follows the same line as bounding E[sup‖t‖=1 |νn,2(t)|2] in the proof of Proposi-

tion 5.3, so that we get H2 = C(Dm ∨Dm′)
2α+1/n.

Now we look for v = 3(v1 +v2 +v3) with obvious notation. For the first two terms corresponding to
previous T1 and T2, we can clearly obtain v1 = K2,1Dm∨Dm′ and v2 = K2,2D

2α
m under the assumption

α > 1/2. For T3, we have

sup
t∈Sm∗ ,‖t‖=1

Var

[
1

2π

∫
|u|≥2m∗

(thm)∗(u)

iuf∗ε (u)
eiuY1 du

]
≤ ‖fY ‖∞

2π
sup

t∈Sm∗ ,‖t‖=1

∫
|u|≥2m∗

∣∣∣∣(thm)∗(u)

uf∗ε (u)

∣∣∣∣2 du

≤
‖fY ‖∞Φ4

0‖hX‖2A
2π

∑
j∈Km∗

∑
|j−k|<r

∫
|u|≥2m∗

∣∣∣∣(ϕm∗,kϕm∗,j)∗(u)

uf∗ε (u)

∣∣∣∣2 du

≤
‖fY ‖∞Φ4

0‖hX‖2A
2π

∑
j∈Km∗

∑
|j−k|<r

∫
|u|≥2m∗

∣∣∣∣(2−m∗u)1−r

uf∗ε (u)

∣∣∣∣2 du

≤
‖fY ‖∞Φ4

0‖hX‖2A(2r − 1)

2π
D2α
m∗

∫
|z|>1

|z|−2r(1 + z2)α dz = v3,

for r > α+ 1/2. Therefore we obtain v = θ(Dm ∨Dm′)
2α.

Next, we look for M1. The term to be bounded is

sup
‖t‖=1

sup
y∈R+

∣∣∣∣∣
∫
t∗ ? h∗m(u)

f∗ε (u)

(eiuy − 1)1|y|<cn
u

du

∣∣∣∣∣
We split it into two terms as previously, depending on |u| < 2m or |u| ≥ 2m.

sup
‖t‖=1

sup
y∈R+

∣∣∣∣∣
∫
|u|≤2m

t∗ ? h∗m(u)

f∗ε (u)

(eiuy − 1)1|y|<cn
u

du

∣∣∣∣∣ ≤ cn sup
‖t‖=1

∫
|u|≤2m

∣∣∣∣ t∗ ? h∗m(u)

f∗ε (u)

∣∣∣∣ du

≤ cn2mα sup
‖t‖=1

∣∣∣∣∣
∫
|u|≤2m

|t∗ ? h∗m(u)| du

∣∣∣∣∣
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As previously, we have

sup
‖t‖=1

∣∣∣∣∣
∫
|u|≤2m

|t∗ ? h∗m(u)| du

∣∣∣∣∣
2

≤ 2m
∫
|t∗ ? h∗m(u)|2 du = 2π2m‖thm‖2A

≤ 2π‖hm‖2∞,ADm,

so that, as ‖hm‖∞,A ≤ 2‖hX‖∞,A, we obtain

sup
‖t‖=1

sup
y∈R+

∣∣∣∣∣
∫
|u|≤2m

t∗ ? h∗m(u)

f∗ε (u)

(eiuy − 1)1|y|<cn
u

du

∣∣∣∣∣ ≤ KcnDα+1/2
m .

Now, we bound the second part with |u| > 2m

sup
‖t‖=1

sup
y∈R+

∣∣∣∣∣
∫
|u|>2m

t∗ ? h∗m(u)

f∗ε (u)

(eiuy − 1)1|y|<cn
u

du

∣∣∣∣∣
≤ sup

‖t‖=1

∫
|u|>2m

∣∣∣∣ t∗ ? h∗m(u)

f∗ε (u)

2

u

∣∣∣∣ du

≤ ‖hm‖A

 ∑
k∈Km

∑
`,|k−`|<r

(∫
|u|>2m

∣∣∣∣∣ϕ∗m,k ? ϕ∗m,`(u)

f∗ε (u)

2

u

∣∣∣∣∣ du

)2
1/2

≤ 2‖hm‖A

 ∑
k∈Km

∑
|k−`|<r

(∫
|u|>2m

∣∣∣∣∣ϕ∗m,k ? ϕ∗m,`(u)
(1 + u2)α/2

u

∣∣∣∣∣ du

)2
1/2

≤ 2‖hX‖A

 ∑
k∈Km

∑
`,|k−`|<r

(∫
|u|>2m

|2−mu|1−r (1 + u2)α/2

u
du

)2
1/2

≤ 2C(2r − 1)‖hX‖ADα+1/2
m .

The two bounds yield M1 = KcnD
α+1/2
m .

Applying Talagrand Inequality with ε = 1/2 and cn = c0
√
n/ log(n) gives the result for ν

(2)
n,2,

following the same lines as for νn,1. �
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