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ABSTRACT. In this paper, we propose a nonparametric estimation strategy for the conditional
density function of Y given X, from independent and identically distributed observations (X, Yi)i<i<n.
We consider a regression strategy related to projection subspaces of L? generated by non com-
pactly supported bases. This first study is then extended to the case where Y is not directly
observed, but only Z = Y + ¢, where ¢ is a noise with known density. In these two settings,

we build and study collections of estimators, compute their rates of convergence on anisotropic
space on non-compact supports, and prove related lower bounds. Then, we consider adaptive
estimators for which we also prove risk bounds.
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1. INTRODUCTION

The purpose of this paper is to estimate the conditional density of a response Y given a variable
X, with or without directly observing Y. We may assume that a noise € spoils the response so
that only Z = Y +¢ is available. From independent and identically distributed couples of variables
(Xi,Yi)1<i<n first, and (X;, Zi)1<i<p in a second step, we estimate the conditional density 7(z,y)
of Y given X defined by

m(x,y)dy = P(Y € dy|X = z).

In this framework, the regression function E[Y|X = z] is often studied, but this information is
more restrictive than the entire distribution of Y given X, in particular when the distribution is
asymmetric or multimodal. Thus the problem of conditional density estimation is found in various
application fields: meteorology, insurance, medical studies, geology, astronomy (see Nguyen| (2018])
and [Izbicki and Lee| (2017)) and references therein).

1.1. Bibliographical elements on conditional density estimation. The estimation of the
conditional density has often been studied with kernel strategies, initiated by Rosenblatt (1969)).
The idea is to define the estimator as a quotient of two kernel density estimators: we can cite among
othersYoundjé| (1996), [Fan et al|(1996)), [Hyndman and Yao (2002), De Gooijer and Zerom (2003)),
Fan and Yim|(2004). Also with kernel tools, Ferraty et al. (2006]) or Laksaci| (2007) are interested
in the conditional density estimation when X is a functional random variable. Using histograms on
partitions, Gyorfi and Kohler| (2007) estimate the conditional distribution of Y given X consistently
in total variation, see also [Sart| (2017)). Then several papers proposed strategies to estimate the
conditional density 7 as an anisotropic function under the Mean Integrated Squared error criterion.
They give oracle inequalities and adaptive minimax results. For instance Efromovich| (2007)
uses a Fourier decomposition to construct a blockwise-shrinkage Efromovich-Pinsker estimator,
whereas Brunel et al.[(2007) and |Akakpo and Lacour (2011)) use projection estimators and model
selection. Next, [Efromovich| (2010) developed a strategy relying on conditional characteristic
function estimation, and|Chagny| (2013]) studied a warped basis estimator while Bertin et al.| (2016))
used a Lepski-type method. Specific methods for higher dimensional covariates were recently
1
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developed by Fan et al.| (2009), Holmes et al| (2010), Cohen and Le Pennec (2013)), Izbicki and
Lee| (2016)), (Otneim and Tjostheim| (2018]), Nguyen et al.| (2021]).

The problem of estimating the conditional density when the response is observed with noise
has been much less studied. Toannides (1999) considers the estimation of the conditional density
of Y given X for strongly mixing processes when both X and Y are noisy, in order to estimate the
conditional mode. Using a quotient of deconvoluting kernel estimators, he establishes a conver-
gence rate for an ordinary smooth noise (see Assumption below for the definition of ordinary
smooth and supersmooth noise) when x belongs to a compact set.

1.2. About non compact support specificity. Our specific aim in this paper is to deal with
variables lying in a non-compact domain. Many authors assume that X and Y belong to a
bounded and known interval. In practice, this interval is estimated from the data and so it is
not deterministic. As explained in [Reynaud-Bouret et al| (2011), "this problem is not purely
theoretical since the simulations show that the support-dependent methods are really affected in
practice by the size of the density support, or by the weight of the density tail". They show in
their paper that the minimax rate of convergence for density estimation may deteriorate when
the support becomes infinite and they name it the "curse of support". This phenomenon had
been previously highlighted by Juditsky and Lambert-Lacroix (2004), and has been extended in
the mutivariate case by |Goldenshluger and Lepski| (2014). When using a R-supported basis for
density estimation, [Belomestny et al. (2019) obtain a nonstandard variance order; however it is
associated to a nonstandard bias, which leads to classical rates; the same kind of result holds
for R*-Laguerre basis, see Comte and Genon-Catalot| (2018). For regression function estimation,
Comte and Genon-Catalot| (2020)) introduce a specific method adapted to the non-compact case,
which allows them to obtain new minimax results; our study is inspired by their work.

1.3. Conditional density as a mixed regression-density framework. Here we study the
estimation of a conditional density: we can think of it as a regression issue in the first direction
and a density issue in the second. We show that the rate of convergence is again modified in
the case of a non-compact support. To do this, we define an estimator fr,(fl)), m = (my,mz), by
minimization of a least squares contrast on a subspace Sy, with finite dimension. This estimator
is a classical projection estimator expanded on an orthogonal basis (¢; ® ¥k)o<j<mi—1,0<k<ma—1-
The coefficients are written with the same kind of formula as in standard linear regression, with
the use of matrix

~ ~ 1 ~ - -
U = ¥p(X) = - ‘®,, ®,,, where B, = (95(Xi))1<i<n0<j<m-1-

The point is to use specific bases adapted to the non-compact problem. Two cases are of special
interest: the case where the support is R, for which we use the Hermite basis, and the case
where the support is Ry, for which we use the Laguerre basis. This last case is very useful in
various applications as reliability, economics, survival analysis. Note that we also consider the
trigonometric basis to include the compactly-supported case in our study. We detail the properties
of the Hermite and Laguerre bases in Section In particular, these bases are associated to
Sobolev-type functional spaces, and this allows us to define the smoothness of the target function.
Moreover a second motivation to study the non-compactly supported case is to allow an extension
to the noisy case, when Y is not directly observed. Indeed the classical use of Fourier transform
for nonparametric deconvolution requires to work on the whole real line. And actually these two
bases can be used in the deconvolution setting when considering noisy observations, see [Mabon
(2017) for Laguerre deconvolution and Sacko| (2020) for the Hermite case. Note that a conditional
density is an intrinsically anisotropic object, with possibly anisotropic smoothness. That is why
we use bases with different cardinalities my in the z-direction and mo in the y-direction, where
m = (ml, m2).
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1.4. Anisotropic (conditional) model selection. In this paper we compute the integrated
squared risk for our estimator, in particular the variance is of order my,/mz /n instead of mima/n
in the compact case. We derive the anisotropic rate of convergence for the conditional density
estimation with non-compact support. We recover classical rates in the compacted supported case,
and obtain different ones in the Hermite and Laguerre cases, for which we provide lower bounds,
under some condition. Moreover, we tackle the problem of model selection: what is the better
choice for my and me, and how to select it only from the data? Here we use the Goldenshluger-
Lepski method (Goldenshluger and Lepski, 2011)), which consists in minimizing some penalized
differences criterion over a collection of models M,,. In our fraglework this collection has to
be random because of the very importance of the normal matrix ¥,,, if we do not assume that
the distribution of X has a lower-bounded density, contrary to what is almost always supposed in
regression or conditional distribution issues. Instead, similarly to the non-compact regression case,
our results depend on a condition on \Tlml called stability condition, which bounds the operator
norm ||‘f1;111H0p in term of n and m;. Here we improve the condition required by Comte and
Genon-Catalot| (2020)) for the adaptive procedure in the regression context. Despite this inherent
difficulty of the role of \Tlml, we provide an adaptive method with no unknown quantity, and easy
to implement. This is worthy since adaptive penalized methods in complex models often involve
unknown quantities in the penalty. For example Brunel et al.[(2007) have a penalty which depends
on an upperbound on 7, or on a lowerbound on the design density. Here we avoid it by a judicious
use of conditioning.

1.5. Extensions to noisy case. Last but not least, we extend all the previous results to the
noisy case, where Y is not observed, and only Y + ¢ is available. As usual, we assume that the
distribution of € is known for identifiability reasons. This brings us to a deconvolution issue in the
y-direction: see Meister| (2009)) for an overview on nonparametric deconvolution. We divide our
study of this noisy case in two parts. In the first part (see Section , we consider the case where
all the variable are positive, including the noise. In another part (see Section , we consider
variables in R, with the classical hypothesis that the characteristic function of the noise does
not vanish. We study both cases of ordinary smooth noise and supersmooth noise. For these
two noisy cases (variables in Ry or in R), we provide new estimators fr,(,f ) and fr,(f ) and study
their integrated risk. The rates of convergence are more involved than in the direct (non-noisy)
case since they depend on the smoothness of the noise density. Indeed the smoother the noise
distribution, the smoother the distribution of Z, so that the true signal is difficult to recover.
We also propose an adaptive model selection and we obtain again an oracle inequality, using an
entirely known penalty term. Thus (unlike [loannides| (1999)) our method reaches an automatic
squared bias-variance compromise, without requiring the knowledge of the regularity order of the
function to estimate.

1.6. Content of the paper. The paper is organized as follows. After describing in Section 2] the
study framework (notation, bases functions and their useful properties, regularity spaces, model
of the observations), Section [3|is devoted to the definition and study of the estimation procedure
in the direct case (the Y;’s are observed). A risk bound is given in this setting, and the rates of
convergence of the estimators both in the usual and in new bases are given, together with Laguerre
and Hermite lower bounds as these cases correspond to nonstandard rates. Section [4] defines and
studies the estimator corresponding to the noisy case when all random variables are nonnegative
and the Laguerre basis is used, while the more general R-supported case is considered in Section 3]
relying on an estimator defined in the Hermite basis. Lastly, Section [0} states a general adaptive
result, based on a Goldenshluger-Lepski method, see |Goldenshluger and Lepski (2011). A few
concluding remarks are stated in Section All proofs are postponed in Section [8] while some
useful results are given in Appendix.
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2. MODEL AND ASSUMPTIONS

2.1. Notation. We denote by f the density of the covariate X, so that the joint density of (X,Y)
is f(z)m(z,y). We consider the weighted L2 norm of a bivariate measurable function 7', defined
by:

1) Al / / T (2, y) f (x)dady

and the associated dot product (11, T%)r = [[ Th(z, y)T2(z, y) f(z)dzdy. The usual (non-weighted)
L2 norm is denoted by ||.|]2. We also introduce the empirical norm of T

) 172> [ Ty
=1

Note that for any deterministic function T, EHTHEL = HT||? For two functions = — ¢(z) and
y + s(y), defined on R or R, we set (t ® s)(z,y) = t(z)s(y).
Let M,, be a subset of {1,...,n} x {1,...,n} and let m = (mj, m2) denote an element of

M,,. We construct a sequence (7m)menm, Of estimators of 7, each 7y, belonging to a subspace
Sm = Sm; ® S, where each linear space Sy, ¢ = 1,2 is generated by m; functions,

Smi - Span{‘ﬁj»j = 07" <y, My — 1}7 1= 1727

and the ¢; are known orthonormal functions with respect to the standard L2-scalar product:

(03 08) = / 3 () pr(w)du = 6.

Here 6;, is the Kronecker symbol, equal to 0 if j # k and to 1 if j = k. Thus Sy, is spanned by
{j ®er,7=0,...,m1 —1,k=0,...,ma — 1}. A key quantity associated to the basis (p;); is

m—1
3 L(m) = sup tgo t)|2) = sup 2(x).
(3) (m) tesm(ll 15/ 11t112) xeR;%()

Clearly, for the tensorized basis, L(m) = L(m1)L(mz).

Lastly, for a non necessarily square matrix M with real coefficients, we define its operator norm
| M |op s \/Amax(M M) where ‘M is the transpose of M and Amax denotes the largest eigenvalue.
Its Frobenius norm is defined by || M||% = Tr(M *M) where Tr(A) denotes the trace of the square
matrix A.

2.2. Bases. We give now the examples of basis functions we consider in the sequel: the trigono-
metric basis as an example of compactly supported basis for comparison with previous results,
and the Laguerre and Hermite bases which are respectively Ry and R-supported.

e Trigonometric basis functions are supported by [0, 1], with to(z) = 1 3)(x), and for j > 1,
taj—1(x) = V2cos(2mjz) 1 1)(x), taj(x) = V2sin(2mjz) L 1 (). For the basis (t;)o<j<m—1, if m
is odd, then L(m) =m with L(m) defined by (3).

e The Laguerre functions are defined as follows:

: k(5) 2"
0i(@) = V2L;(22)e 1,50 with Lj(z) = (1) <k>k‘

k=0

The functions ¢; are orthonormal, and are bounded by V2 (see 22.14.12 in /Abramowitz and Stegun
(1964)). So Z;n;ol E?(x) < 2m and as £;(0) = v/2, it holds that the supremum value 2m is reached
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in 0 and L(m) = 2m. The convolution product of two Laguerre functions has the following useful
property (see 22.13.14 in |Abramowitz and Stegun| (1964])):

(4) lj* l(z) = /Ox i(u)ly(z — u)du = \}i(ngrk(ﬂ?) —ljprt(2), Vo =0.

Moreover, by |(Comte and Genon-Catalot| (2018]), Lemma 8.2, if
1

5 3C > 0¥z >0, E
©) ! (ﬁ

| X = x) <C
then for j > 1

2 o 2
(6) Ve >0, E(EY)X =z) = / (e, y)dy <

For instance, condition holds if Y = ¢g(X) + U with ¢ > 0, X and U independent, and
EU/? < co. Under , form > 1, for z > 0, E <Z;n:—01 go?(Y)‘X = ;c) < dymford >0a
constant.

e The Hermite functions are defined as follows:

> d 2

hi(2) = ————H(2)e "2, with Hj(x) = (<1)e” L),

295/ m
The functions h; are orthonormal, and are bounded by 1/ 71/4. The Hermite functions have the
following Fourier transform:

(7) Ve € R, hj(r):= /em“hj(u)du = V27 (i)’ h;(x), where i* = —1.
Moreover, from |Askey and Wainger| (1965) or Markett| (1984), it holds
(8) \hj(z)] < Ce ", for |a| > /2] + L,

where C' and ¢ are positive constants independent of z and j, 0 < £ < % Note that with , h;

satisfies the same inequality, with constant multiplied by /2.
Relying on these results, we can prove the following Lemma, (see Section [8.1)):

Lemma 1. There exists a constant K > 0 such that sup,cp Z;n:_ol h?(x) < K+\/m, for anym > 1.

As a consequence, for this basis L(m) < Ky/m.
In the sequel, p; = t; or ¢; = £; or p; = hj. Note that, for simplicity, we tensorize twice the
same bagis but we could mix two different bases.

2.3. Anisotropic Laguerre and Hermite Sobolev spaces. To study the bias term, we assume
that m belongs to a Sobolev-Laguerre or a Sobolev-Hermite space. In dimension d = 1, these
functional spaces have been introduced by Bongioanni and Torrea (2009) to study the Laguerre
operator. The connection with Laguerre or Hermite coefficients was established later and are
summarized in |Comte and Genon-Catalot| (2018). They were extended to multidimensional case
in Dussap| (2021). Following the same idea, we define Sobolev-Laguerre balls on Ri and Sobolev-
Hermite balls on R?.

Definition 1. (Sobolev-Laguerre or Hermite ball). Let L > 0 and s € (0,+00)%, we define the
Sobolev-Laguerre with A =R or Sobolev-Hermite with A = R? ball of order s = (s1,...,sq) and
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radius L by:

Wa(A, L) =g €L?(A), Y ap(gk® <Ly, kK =k kY,
keNd

with ax(g) := (9, px) = (9, Pk, @ - -Qr,), the Laguerre coefficients of g if px = by = L, ®- - - @1y,
or the Hermite coefficients of g if ox = hyx = hy; ® -+ @ hy,.

We refer to Belomestny et al.| (2019) for details about this space and the link with usual Sobolev
space. Note in particular that when d = 1 and s is an integer, g belongs to the Sobolev-Hermite
space if and only if g admits derivatives up to order s and the functions g, ¢, ... ,g(s) , a:sfkg(k), k=
0,...,s — 1 belongs to L?(A)

Assuming that g belongs to W5(A, L), the approximation term decreases to 0 with polynomial
rate. Indeed, for m = (mq,...,mq) € (N*)? and gm the orthogonal projection of g on Sp,, we
have:

d d
lg-gmlB= Y d@<d. Y dkiks < LY mg*.

keN? 3q,kq>mg q=1 keNd k,>mq q=1

Remark. In the present bivariate context, mixed cases involving basis (¢;);>0 in one direction
and basis (h;);>0 in the other, with coefficients of a function g defined by ax(g) := (g, lk, ® hi,)
would be possible. The link between regularity spaces defined by the rate of decay of the coef-
ficients and derivability properties is then undocumented, contrary to the "homogeneous" case
described in Definition [l

Supersmooth sub-classes. We mention here that in the context of Laguerre one-dimensional
developements, functions ¢ defined as mixtures of Gamma densities constitute a class of super-
smooth functions in the sense that ||1) — 1, ||* has exponential rate of decrease, see Lemma 3.9 in
Mabon| (2017). Continuous mixtures are also studied in section 3.2 of |Comte and Genon-Catalot
(2018).

We choose to be more explicit in the context of Hermite expansions. Let us define

x2 2

Ypo (@) = ——— e oxp(—

p
exp(—-—s
o2r+1\/2mcy), 202

where cop, = E[N?P] for N ~ N(0,1), 02 # 1 (cases with 0> = 1 have finite developments in the
basis, and null bias for m; larger that p). It is proved in |Belomestny et al. (2019)) (Proposition

12) that, for i = 1,2,
o2 +1\°
o2 -1
where (1 5 )m, are the orthogonal projections of ¢, , on Sy, .
By tensorization, we can thus consider the class WSSs z(L) for s = (s1,52) and A = (A1, \2)
for real numbers s, s9 and positive A1, Ao, of functions g such that,

)

[p.0 — (Vpo )il < Clp, a®)m? ™2 exp(=Agmi), Ao = log >0,

9) lg = gmll* < L(my™ exp(=A1m1) +my ™ exp(=A2m2))

where m = (my, m2). Mixed cases with ordinary smooth decay in one direction and super smooth
in the other may also be possible.



ESTIMATION OF CONDITIONAL DENSITY 7

2.4. Direct and noisy cases. In the sequel, we consider two settings.
e In the direct case, we observe independent and identically distributed couples of variables
(Xk, Yi), k= 1,...n with the same law as (X, Y). It is studied in section under the Assumption

Assumption A1l. The random variables (X;,Y:)1<i<n are i.i.d. and the X;, i = 1...,n are
almost surely distinct.

e In the noisy case, the observations are (X, Zx), k = 1,...n with the same distribution as
(X,Z), where Z can be written as
Z =Y +e.

This case is studied in Section [4] (nonnegative random variables and Laguerre basis) and Section
(general case and Hermite basis), under the additional assumption:

Assumption A2. The distribution of € is known, € is independent of X and independent of ¥
conditionally to X.

Notice that this implies the independence of Y and e.
In both direct and noisy settings, we estimate the function 7 on RxR or Ry xR, . In the direct
case, we also consider the case of 7 estimated on [0, 1] x [0, 1] already studied in the literature for

comparison.
We state a general result of adaptive model selection gathering all cases in Section [}

3. MINIMUM CONTRAST ESTIMATION PROCEDURE WITHOUT NOISE

3.1. Definition of the contrast and estimators in the direct case. We consider the contrast
function

2 n
WD) = 1T = = 37X, X))

i=1
where || T]|2 is defined by (2) and the estimator
(10) T = arg min 17 (T)

for m = (m1, ma). This contrast function has already been considered in Brunel et al. (2007)). It
can be understood by computing its expectation, for any deterministic function 7"

ExPU(T) = |1} - 2/T(x,y)ﬂ($,y)f(fﬂ)dﬂf =T = =7 - lI~l3,

where ||T ||?c is defined by (|1), and by observing that it is minimum for 7' = 7.

~(D)

To give an explicit formula for 7y, ’, we define

~ ~ 1~ =~

(11) P = (05 (Xi)h<isnogjsm—1s Wi = — O Oy

Note that U, := E(U,,) = ({5, k) flo<jk<m—1. We find, assuming that U,,, is invertible,
mi—1mo—1

(D D
Z ]k %(@@k(y), A( )= (a( k))ogjgmrl,ogkgmq
7=0 k=0

with
(12) A(D) \Il 1 tq) @ ( )s with ém(Y) = (‘Pj(Y;)hgign,ogjgmfy

Remark. In the Laguerre and Hermite case, conditions ensuring a.s. inversibility of \Tlml are
weak: m; < n and a.s. distinct observations, see Comte and Genon-Catalot| (2020)). The same
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conditions work in the trigonometric case. These conditions are ensured by Assumption and
n > my, taken for granted in the sequel.

3.2. Bound on the empirical MISE of 7p,. First we study the quadratic (empirical) risk of
the estimator Tm, on a given space Sm = Sm; ® Sy, as described in Sections and

We denote 7, the orthogonal projection of m on Sy, for the empirical norm, and 7y, the
orthogonal projection for the L?-norm. Then we can write
(13) 17 = 7ll2 = 17 — a2 + e — 712,
and then note that

[ =72 = ing |17 = 72 < it — 2.
Thus
E(||mmn — 7l13) < llmm — |3

Note that the following Lemma (proved in Section is useful, here and further:

Lemma 2. Assume thal Assumption holds and n > my. Then it holds that E[%r(f)(Xi, y)|X] =
T (Xioy) = 2080 020 Dl jees (Xo) ok (y) with
1~ o
(14) L ey .
n 1<i<n,0<k<mg—1
Using this result, we obtain the following risk bound (proved in Section .

Proposition 1. Let Ty, be defined by (@)—, and assume that Assumption 18 fulfilled.
Then, for any m = (mqy,ms) such that my < n,

~ L
(15) E[AL) |2 < I — o} + 72E2)
If moreover (6]) holds for Laguerre basis, then

~(D mi4/M2
(16) E|[#m’ = 7ll% < I — mnll} + =Y =2,

where c 1s a positive constant.

The bound in is obtained under weak conditions with explicit and optimal constants. It
involves a bias term ||7r—7rm||?¢ and a variance term mj L(mg)/n. Recall that mL(ma) = ®3mims
for trigonometric basis (@3 = 1 for odd ms) or Laguerre basis (93 = 2), and mi1L(m2) < cmy/ma
for Hermite basis. Consequently, the order of the variance is not the same for all bases.

Note that for any estimator Tm, we can set T4, (2,y) = sup(Tm(z,%),0) = Tm(z, ¥) 15, (2,9)>0,
and we have |7} — 7||2 < ||7L — 7|2 so the 7, is well defined, nonnegative, and inherits of the
risk bound proved for 7p,.

Remark. The variance order mj,/ma/n in the Hermite case is coherent with the following facts:

e when estimating a regression function b(-) in a model V; = b(U;) +n;, for i.i.d. centered n;
independent of U;, from observations (U;, V;)1<i<p with a least square projection estimator

on the space Sy, generated by hg, ..., hm,—1, the resulting integrated variance is of order
mq/n, see Comte and Genon-Catalot| (2020).

e when estimating a density fy from n ii.d. observations Uy,...,U, with a projection
estimator on S, generated by hg,...,hm,—1, the integrated variance of the estimator is

of order /my/n, see Comte and Genon-Catalot| (2018);
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The same kind of property can hold in the Laguerre basis under the additional condition E(1/vY]X) <
400 for the density estimator.

3.3. Anisotropic rates. In this setting, we obtain the following bound:

Proposition 2. Assume that the density f of X is bounded and that m belongs to W(A, L)

with s = (s1, 82), see Section and consider the estimator 7rm deﬁned by (@— under As-
sumption in Laguerre or Hermite basis. Then choosing, in the Laguerre basis m°® = (m§, m3)
with
sy s
m{ o nstsztsitse gnd  om§ o neis2tsite

~ __8 1 1 /1 1
E([75% — 7]2) = O(n~ %), s:<+).

2 S1 S92

provides

If s1 = s9 = s, the rate becomes n”wz. If moreover (@ holds for Laguerre basis, or if the basis is
the Hermite basis, then choosing

s L S
(17) m’l( oxX nsis2t+si1/2+s2 gnd m’é o meIsaTe1/2¥sg

1
B(IFD) — )2) =0 <n )

Note that these rates are different from the rates on periodic Sobolev spaces associated to the
trigonometric basis (or on Besov spaces associated to piecewise polynomials basis), n~20/(20+2)
for regularity o = (aq, a2), that we may also recover, see Brunel et al.| (2007)); a lower bound
corresponding to this rate is proved in Lacour| (2007)).

we obtain

We remark that, under the assumptions of Proposition , if m € WSSs (L), see @, then
choosing m} o [log(n) — (s; + 3/2) loglog(n)]/A; gives

B(I7Y) - ) = 0 <1°g3/2( )>.

n

This is an almost parametric rate, which is classical over analytic classes for instance.

Proof of Proposition We start from Inequality . For the bias term, we have, as f is
upper bounded by || f|lcoc < 400, that

I — Tl < [ fllocllm — Taml3-

We can then use regularity assumptions on 7 on Laguerre or Hermite Sobolev spaces to get
the order of the bias term, with the result recalled in Section . This gives |7 — mml|2 <
Lim; " 4+ mj *?]. Therefore

El7W) — |2 < Clmy® +my* + "L

—)-

Let 7(m1,ma) = m*' 4+ my* 4+ ™12, Then solving in m1,ms the sytem

n

Ot(my,mz)  Ot(mi,ma) 0
3m1 N 3m2 N

gives the first result. The second result is obtained analogously, by using the new variance order

mh/mg/n. O
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We mention that we may prove a risk bound measured in L2(A, f(z)dzdy)-norm, in the spirit
of Comte and Genon-Catalot| (2020)), but this would require the so-called "stability condition"
(see also |Cohen et al.| (2013)), namely

_ log(n
(13) Lm0, op < 202,

~—

for a well defined constant dg; we omit this result for sake of conciseness. Condition also
appears in the model selection setting, see Section [0

3.4. Lower bound. As the rate obtained in Proposition [2] is not standard, we need to check if
it is optimal in some sense. The answer can be positive, but on Sobolev-Laguerre or Hermite
regularity spaces taking the weighted norm into account.

More precisely, we consider as weighted Laguerre or Hermite Sobolev spaces regularity spaces the
ones defined by:

(19)  WI(A,R) = {g € L*(A4, f(x)dwdy),Ym,mi,ms > 1, g — & |3 < R(m* + m5*2)}

where g,(f:) is the orthogonal projection in L2(A, f(x)dxdy) of g on Sm = Sy @ S, -

Note that the rates in Proposition [2| are unchanged by considering that 7 belongs to WSf(A, R),
without requiring f bounded. On the other hand, for f bounded, Ws(A, L) C WSf(A,R) with
R=L|f]-

We assume that the regularity orders (si, s2) are integer. We denote by W, (A1, R) the univari-
ate Laguerre-Sobolev or Hermite-Sobolev ball, where A; = R, in the Laguerre case, and A; =R
in the Hermite case.

Theorem 1. Let R be a positive real and L be a large enough positive real. Then, for any density
f € Wy (A1, R)NLL>®(Ay), there exists a constant ¢ such that for any estimator ,, A = R? or
A= Ri and for n large enough,

sup [E; [Hfrn - 7T||?c:| > cw,%
reWd (4,1)

where )

2 _ ol
wn =n ! 2

if, for my = [,
(20) L(m) W llop < 952,

This result proves the optimality of the rate obtained in Proposition [2| for Hermite basis or
Laguerre basis under @

Let us comment condition (20). This condition is stronger than the stability condition, which
restricts the collection of models for the adaptive method and would appear for controlling the
integrated risk instead of the empirical one: see Comte and Genon-Catalot (2020) where it is also
proved that ||} op < em? if f has some polynomial decay. Recall that in the Laguerre case,
L(m1) = 2m; and in the Hermite case, L(my) = K/mj. Therefore, if in addition || ¥} ||op = cmf7
then is fulfilled if 5 4+ 1 < s7 in the Laguerre case and if 5+ 1/2 < s; in the Hermite case.

4. INDIRECT LAGUERRE CASE

Now, the observations are (X, Zx) with Zy = Yy + ek, k = 1,...,n, under Assumptions
and In this Section, we assume that X > 0, Yz > 0, e > 0 a.s., thus it is legit to use the
Laguerre basis, defined on Ry only. This framework of non-negative variables can be found in
many applications, in particular in survival analysis. Note in particular that € is not centered.
More precisely we assume
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Assumption A3. The distribution of the noise € admits a density with respect to the Lebesgue
measure, denoted by f.. Moreover X >0,Y >0,¢ >0 a.s.

4.1. Definition of the estimators in the noisy-Laguerre case. In this context, computations
rely on property (@), specifically fulfilled by the Laguerre functions, see also [Comte et al. (2017)
and Mabon| (2017) in regression and density context respectively. First we denote by 7z x(z, 2)
the conditional density of Z given X. We have

Tz 1x (v, 2) = /71'(.%’, z —u) fe(u)du.

This means that we can estimate the conditional density of Z given X and then invert the
convolution link to obtain the coefficients of 7.

Let us define the matrix the mg x mo lower triangular matrix G, = (gjk)o<jk<ms—1 With
coefficients

1
9k =75 ((fer lj—r)Vj_p>0 — (fe, Lj—k—1)1j_k—1>0) -

The diagonal elements of G, are (f-,4y)/V2 = f Je "du > 0. As a consequence Gy, is
invertible. Relying on equation ({)), in this noisy model we ﬁnd

mox(@,2) = DY) (mgx, L ® )l (x)lk(2)

Jj=0 k>0

= DD m by @ ) (fer Lp) () /Zk(z — u)ly(u)du
J20 k>0 p=0

= > (MG ) (o o) (@)27V2 (bpyi(2) = bpikia (2))
J>k:p=0

k
= D D2 e i) = (ferlhp 1)) (7, £ @ ) | £() k()

3,k>0 \ p=0
(21) = > [(m by ® 6p))p>0 'Goo)  45() k()
3,k>0

In other words, we have

k

mzx(@2) = Y | D (il @ )gkp | (@) ().

3,k>0 \ p=0
The partial L2-projection on S(c0,m2) Of Tz|x can thus be written

mo—1

(721X ) (c0,ma) (T, 2) Z Z (w05 @ Lp))o<p<ma—1 'Gmy |, Li(2)lk(2),

720 k=0

thanks to the triangular structure of G,,,. This explains why a two-step strategy gives in this
basis:

() = > Y @@y, AR = @)o<i<m -10<kem1

with

~L 1o o~ o~ 3 ) .
(22) Agﬂzﬁqull Dy, Omy (2) 'Gr, with  0,(Z) = (4(Z0)))<icnoejmt

ma9?

where ‘Tlml and <f>m1 are defined by .
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4.2. Bound on the empirical MISE of %1(1?. Let us note that
E[AL[X] = ~v Ut D, B[O, (2)[X] G
A first useful property is given by the lemma:
Lemma 3. We have E[O,,,(Z)|X] 'G;! = E[O,,(Y)|X] and thus E[7%)|X] = mm.n.
Thanks to this result, we can prove the following risk bound (see Section .

Proposition 3. Assume that Assumptions and hold. Then the estimator %r(lf) defined
by satisfies:

G miL(m
B(IRE = r)2) < f1r — 3 o 1Gmallop ML m2)
where L(mg) = 2myg here. If in addition the condition
1
23 3C >0,Vz, E(—=|X=2)<C
- (ﬁ | )
holds, then
G112 s/
(24) E(|7E - 7)2) < |r - Tenll% + C” mQHOI; 1\/72‘

As Gy, is lower triangular its eigenvalues are given by the diagonal terms, which are all equal
to 27 Y2(f., bg) = S+ € fe(u)du < 1. Therefore

HGm2||op = AmaX(G;}g tG;é) > [)‘maX(Gmg)] > 1

Therefore, as expected, the variance order in the inverse problem increases compared to the
variance order in the direct case. Moreover, it is proved in Lemma 3.4 of Mabon| (2017) that
may = |G, 1|12, is increasing.

Note that condition holds if condition holds or if E(1/4/¢) is finite.

4.3. Rates in the noisy-Laguerre case. Now let us assess the order of the variance term and
more specifically of HG,_,L12||gp. Comte et al.| (2017) show that we can recover the order of this
spectral norm, under the conditions on the density f.. First we define an integer a > 1 such that

@’ () 0 if j=0,1,...,a—2
dad T=07 ) Ba£0 if j=a-1.
Consider the two following assumptions:

Assumption A4.

(1) f. € LY(R,) is a times differentiable and fg(a) e LY(R,).
(2) The Laplace transform of f., z — E[e”*¢] has no zero with non-negative real part except
for the zeros of the form oo + ib, b € R.

It follows from |Comte et al.|(2017) that, under Assumptions there exists positive constants
C and C’ such that:

C'm3* < |G < Cm3e.

For example a Gamma distribution Wlth ['(p,0) satisfies Assumptions Ad4] for « = p (e =1
for an exponential distribution). If f. follows a $(a,b) and b > a, then ||G;;[|2, = O(m3") (see
Mabon| (2017)). On the contrary an Inverse Gamma distribution does not satlsfy Assumptions
because there exists no value of « such that the derivative is nonzero at 0.

mallop

These assumptions allow to deduce from Proposition [3| the following rates of convergence of the
estimator.
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Proposition 4. Assume that f is bounded. Under Assumptions f forme T/VS(R?H L), and
m* = (mj,m3) such that

s2/[(2a+1)s1+s2+5152] s1/[(2a+1)s1+s2+s152]

mj xn and m5xn

then

~(L _1/[2e41 1 4
E[|7%) — 72 < C(s, L, || flloc)n” /5% Far 1,
5. INDIRECT HERMITE CASE

Now we consider the general case where we observe (X;, Z;)1<i<n from Z; = Y; + ¢; and all
variables take values in R. Then, we define the estimator in the Hermite basis, and use standard
deconvolution methods in the y-direction, while still the regression strategy in the z-direction.

5.1. Assumption related to the noise. We denote by fZ the characteristic function of the
noise e:

VueR  f*(u) = Ele”™].
The following assumptions are required for fZ:

Assumption AS5.

(1) Function fr never vanishes, i.e. Yu € R, fZ(u) # 0.
(2) There ezista €R, 3>0,0<~v<2, (a>01ify=0), B<Eify=2 for{ defined in (§),
and ko, k1 > 0 such that Vu € R,

ko(u® + 1)~ exp(=Blul") < |2 (u)] < ki (u® + 1)~/ exp(—Bu])

If v = 0, the noise is called ordinary smooth, and super smooth for v > 0,8 > 0. For instance,
Laplace or Gamma distributions are ordinary smooth. On the other hand, Gaussian or Cauchy
noises are supersmooth.

Remark. If f. is a density, it is known that v < 2 (at least for v = O)EI

5.2. Definition of the contrasts in the noisy-Hermite case. To begin with, we recall that
the Fourier transform ¢* of t € S, is defined by

£ (u) = / () d.

For a bivariate function T' € Sp,, we denote by T2 the Fourier transform with respect to the
second variable :

T2 (2, u) = /eiy“T(w,y)dy.
Definition 2. For any function t € S,,, we denote by vy the inverse Fourier transform of
£/ f5(=), ie.
1 .
v(z) = /elm (w) du.
2m fE(=u)

For any bivariate function T € Sy, we denote by @ the following bivariate function

1 i T (2
@T(.’L‘,Z) = 27{'/6 f*(iu))du

We can also write @gf’z) (z,u) = T (2, 1)/ f2(—u).

1 According to [Lukacs| (1970), Theorem 4.1.1, the only characteristic function ¢ with ¢(u) = 1+o(u?), as u — 0,
is the function ¢(u) = 1 for all u. This rules out characteristic functions of the form e ?/*!" with v > 2. This
implies that if |fZ(u)|? = cexp(—28|u|”) then necessarily v < 2. Indeed, |fX(u)|? is the characteristic function of
a probability density function (it is a characteristic function of €1 — £} where €] is an independent copy of €1).
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Note that vy, is well defined for all ordinary smooth noise distributions and for a wide range of
super-smooth distributions also, thanks to property of the Hermite basis and Assumption
(2). Moreover, the operators v and ® are linked via the formula

Prps(w,y) = tz)vs(y), (I)hj®hk (z,y) = h]'(x)vhk (y)

and are helpful because of the following properties.

Ve Sm  Elu(Z0)|Vi] = HY3) and Efu(Z1)[X1] = / H2)m (X1, 2)d,

VT € Sm E[@T(Xh Z1)’X1] = E[T(Xl,Yi)’Xl] = /T(X1, Z)W(Xl, Z)dZ.
Now we can define our estimators by:
~(H) _ i (H)
2 m = T),
(25) T arg min ;" (T)

m

(),

with the following contrast vy,

(26) % ; [ / y)dy — 207(X;, Z; )}

The interest of this contrast can be easily understood by the computation of E[%LH) (T)]. Indeed,
using the previous properties, we can write

EN(T) = E| / T2(X, y)dy — 200(X, Z)] = / / T (2, y) f (x)dudy — 2E[T(X,Y)

— // (2,9) — n(2,9))? — 72(x,y)|f(2)dady = |T — =2 — |l=]2.

We obtain the following new estimator of m:

mi1—1mo—1

=3 3 @lni@)hiy) A = @8 )o<icmi—1.0<k<ms 1
=0 k=0
with
B U o
(27) AU _ g\pmll Dry Ting (Z), with Ting(Z) = (v, (Z0)) 1<y 0 j<my1

with Uy, ®,,, still defined by (L1).
Note that if X; € Ry and Y; € R we may use a product basis (¢; ®hk)j,k for estimation purpose.
The formulae above would still hold.

5.3. Bound on the empirical MISE of %Sf) and rates. Here we can prove the following
bound:
Proposition 5. Under Assumptions and we have E[?Tr(f)\X} = Tm,n and

A 1 d
BIRE 2 < r w3+ 222 wiere AGma) = < (4 L.
n ™ lu<vZmz |2 ()]

and ¢ is a constant only depending on £ (see ) and on fI.
Note that, under Assumption we can compute that
1—y
A(mg) < km§" 7 exp[28(2ma)™?).

By computations similar to the ones to prove Proposition [2] we obtain the following rates.
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Proposition 6. Assume that f is bounded and Assumptions and hold.
Let m € Ws(R%, L).

(1) If v = 0, then for m} oc ni/l@t1/2)sits2(s14+1] 5 — 1.2 e have

1
- Fi/2
E|7iY — 7|2 < On TR

(2) If v, B > 0, then for m} = (logn)?*2/%1) and mj = (1/2) (logn/4ﬁ)2/'y, we have
E|#gy - 7l < C (logn)~>=/7.
Let m € WSSsA(L), see (), and v = 0, then for m} = [log(n) — (a + s;) loglog(n)] /s, i = 1,2

N loen 14+«
BIRLD - )2 < o8

Here we find a usual phenomenon in deconvolution: if the noise is supersmooth and the target
function is only Sobolev, the rate of convergence is logarithmic. For more details about the rates
see [Comte and Lacour| (2013]).

6. ADAPTIVE ESTIMATORS WITH (GOLDENSCHLUGER-LEPSKI METHOD

In the previous sections, we have described collections of estimators 7, and computed their
rates of convergence for optimal m = m*. Nevertheless these values of m* depend of the smooth-
ness s of the unknown conditional density 7. Now we aim at selecting m in a purely data-driven
way. In this section, we define adaptive estimators of the conditional density for the three settings
described previously, and prove a risk bound for them, showing that they realize the adequate
compromise between bias and variance.

More precisely, we define the collections of models and estimators, and give a general result
with superscript (8P) where (Gup) = (D) (direct case), or (Sup) = (L) (Laguerre-noisy case) or
(Gup) = (H) (Hermite-noisy case).

6.1. Collection of models. First we define
mlL(mg)

’ V(L) (m) - K, m1L<m2)HGm12 ng 7 V(H) (m) _ KOM,
n n n
where K is a numerical constant (Ky = 12(1 + ¢€) for € > 0 suits, from the proof here).

These terms are of order of the variance of the corresponding estimators in the trigonometric
(L(m2) = my for odd my) or in the Hermite case (L(m2) = K,/m2). For the Laguerre case, we
have L(mg) = 2my while we know that, under condition the optimal order is \/ma. These
quantities will be used as penalty in a criterion to be minimized.

Then we consider the following collection of models

(28) VP (m) = K,

*
M%Gup) = {m S {17 s ,TL}Q, V(Gup)(m) <1, L(ml)H\Ij;lllHOP < 1 Z }
2 log*(n)
where 0* a well-chosen numerical constant such that 9*/log(n) < 0 with » = (3log(3/2) — 1)/10
and 0* < €C(€2)/42, C(€2) = min(v/1 + €2—1,1). Recall that U,,, = E(¥,,,) = (@5, 0k) fo<jk<mi—1-
Moreover, note that for a non-zero vector x = {xq,...,xpm,—1) € R™, then &¥,,,x =
f(E;n:lo_l z;0j(x))? f(x)dz > 0 under our assumptions, so that W,,, is invertible.
We also introduce its empirical random counterpart

(29) ME) = (m e {1,...,n}%VEP) (m) <1, Lim)|[ Ty op < 0" —y

log®(n)

Note that m; — L(m1)||\f/;n11|]0p is increasing, and m — V(%) (m) also, with respect to each
variable. Thus both collection are such that, if they contain m and m’, then they also contain

}.
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m A m’ defined as component-wise minimum.

Comments.
1. The definition of the collection of models involves two constraints. The first one is standard

and means that the variance remains bounded. As this term is known, it is the same for the two

sets, 7(55 up) and /(/l\%gup ). The second constraint must be compared to the so-called "stability

condition" introduced by |[Cohen et al.| (2013]), Cohen et al| (2019) and also used in (Comte and

Genon-Catalot| (2020): L(m1)|[¥;,} [lop < %% Obviously, it is here slightly reinforced. How-
ever, when dealing with adaptive estimation, (Comte and Genon-Catalot| (2020) had a stronger

condltlon L(my)|| ¥ b*log?n) The improvement here is substantial, specifically for non

campactly supported bases where H\I/m1 llop can be large. This is due to conditional preliminary

result. As the matrix W, is unknown, it has to be replaced by its empirical version and leads to
(Sup)

millop <
P

a random model collection ./\/l
2. Let us now mention specific properties in the direct case. If the support of the basis used for
estimation along x is compact, say [0, 1], then we can assume that f(x) > fo,Vz € [0,1]. In that
case || U, t|op < 1/ fo, see Comte and Genon-Catalot (2020). The collection of models no longer

need to involve neither ||¥!||lop nor ||, |lop and reduces to the standard one, and is similar to

Brunel et al.| (2007). However, the penalty we obtain here, V(P)(m), does not depend on fy nor
||7||s0, and this is an important improvement compared to this work.

Now we present constraints on the model collection.
Case (D). Assume that, for any ¢; > 0, there exists ¥ > 0 such that

(30) > emamlim) <3 < 4o,
me{l,...,n}2

Case (L). Assume that, for any ¢; > 0, there exists ¥ > 0 such that

(51) S IG R e Hm) < 5 < oo
Case (H). Let §(mg) := sup -~ +¢, and assume that, for any ¢; > 0, there exists ¥ > 0
z1<vams |12 (2)]
such that
A(mg)
32 ) — <X .
(32) g (ma) exp < cm e > <Y< +oo

Let us comment these conditions. First, condition if fulfilled for all our bases.
Under Assumption A' 1G,1 112, = O(m3*) and condition (31) is fulfilled.

Now we discuss condition . In the ordinary smooth case where 6 =~ =0,
A(my)
6(m2)
is indeed summable and condition is fulfilled. In the super-smooth case, with Lemma 1 in

Comte and Lacour| (2013)), A(mg) ~ Cmgﬂl_w/ exp(ﬁmv/ ); then condition is fulfilled if
v < 1/2; otherwise, the penalty must be slightly changed, see |(Comte and Lacour| (2013]).

) ~ my exp(—c1miy/ma)

d(ma) exp(—c1my
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6.2. General adaptive estimator and result.

Assumption A6. The conditional density ™ of Y given X is bounded on R2.

For m = (m1,m2) and m’ = (m}, mj), we define Smam’ := (Sm; N Spr) @ (Simy N Spy) where
Siinmt = Sm; N Sy 1s well defined with trigonometric, Laguerre and Hermite bases, which are
our leadmg examples These collections are regular and nested in each direction, with at most one

(GUP ) the minimum contrast

model for each m;. Thus Smam is well defined, and we denote by 7 Ton
estimator on Smam’-
We propose a model selection relying on the strategy initiated by |[Goldenshluger and Lepski

(2011) adapted to model selection in the spirit of |(Chagny| (2013). Let then
A () = sup (RS - FSIE - VO )

/,m
(S
m’E/Vlg;’ up)

with V(%) (m’) defined by and a4 = max(a,0) denotes the positive part of a. We select the
model m with the following rule

m®*) = arg  min {A(G”p)(m) + V(Gw’)(m)} :
mex\?ﬁ?“m
Our final estimator is

7(Gup) _ = (Gup)
0 = T (Sup) -

The first result is obtained conditionally on X1,..., X,.
Theorem 2. Assume that Assumption and Al hold. Assume that condition (30)) for (Sup) =
(D), Assumptions and condition for (SGup) = (L) and Assumptions and
condition for (Gup) = (H) hold. Then, for any m € M%GUP), we have a.s.

Cl

(33) E|lr—#"|21X] < mf {] 2 VE m)}+ =

meMy,

where C' is a numerical constant and C' is a constant which depends on ||7||oo, X, but not on
(X1,...,X,) nor on n.

The same assumptions and the method of proof used in the direct case lead to the following
non conditional result.

(Sup)

Corollary 1. Under the Assumptions of Theorem@ for any m € My~ we have
14
(34) Elr — 7|2 <O inf  {||r — 7} + V) (m )}+g
mGMﬁLG“p) n

where C' is a numerical constant and C" is a constant which depends on |||, X

Inequality states that the estimator is adaptive in the sense it performs a squared-bias/variance

compromise over the collection M%G”” ), up to the multiplicative constant C' and the additive neg-
ligible term C”/n. In the direct case (D), and for compactly supported basis along x, optimal
rates are then automatically reached under f(x) > fo > 0 for z in the support, see section .
Compared to previous results, we mention that the penalty term does not depend on fy nor || f||cc-
Moreover, the additional novelty is that more general non compact supports are admitted, with
size of the model collection depending on || ¥, 1]|o;. The optimal rate may not be reached, de-
pending on the order of this term. We emphagsize that the results obtained in the noisy cases are
entirely new.

Note that a compactly supported basis case be used in  and the Hermite basis for deconvolving
in y, even if this would make the bias term of particular feature.
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7. CONCLUDING REMARKS

We have proposed in this paper adaptive estimation method for the conditional density of Y
given X = x, when the observations are (Xj, Y;)1<i<p so-called direct observations, or (X;, Z;)1<i<n
with Z; = Y; 4 ¢; so-called noisy observations. The difficulty in the noisy case, is to use the same
basis in the two directions, the regression direction in x and the density direction with decon-
volving in y. Indeed, until recently, efficient regression methods with projection spaces rely on
compactly supported bases, while deconvolution requires Fourier transforms and inversions which
are more convenient with non compact support. This is why we first studied conditional density
estimation in the direct case with possibly non compactly supported bases, which, thanks to the
ideas in |[Comte and Genon-Catalot| (2020) and Goldenshluger and Lepski| (2011]) conducted to new
risk bounds for simple (fixed projection space) and adaptive estimator. Then, our two extensions
to noisy cases, either with RT-supported or with real valued variables, lead to new estimators and
risk bounds.

Now, the most standard basis for deconvolution is the sinus cardinal basis, ¢, j = /mp(mz—j)
for j € Z, and ¢(x) = sin(nwz)/(7wz), and the question of using this basis in regression setting
remains unsolved. Another extension would be to take into account multidimensional covariates;
this has been studied in deconvolution setting with Laguerre basis in Dussap (2021), but the
regression context is to be considered.

8. PROOFS
8.1. Proof of Lemma |1} We first use (7)) to write

ZhQ QWZ“L*

Now by splitting h}(z) = f‘u‘gm e h;(u)du + f\UI>\/m ¢"h;(u)du and using , we get,
for j <m —1,
. 2
W3 (x)[? < 2(hj, €1 o m)® 4 2C e du.
! ! H<v2mit1 |u|>+/2m+1
Thus

— 2v/2
> W) < 2||1|.sm\|§+20me‘5(2m“)/2/e‘gu2/2du — 2v2m + 1+ \/gccme—f@m“)/?

This implies the result of Lemma || with K = K(C,¢).0

8.2. Proof of Lemma [2. We compute 7y, 5, the orthogonal projection of m w.r.t. the empirical
scalar product. We have

mi1—1mo—1

Tm, n z Z Z ],k@] )@k(y)

7=0 k=0

where Dy, is such that (mm, — 7,0 @ @g)n = 0for 0 < j <mj—1and 0 < k < mg—1. Therefore
writing that the terms

(m,0; ® Pr)n = Z/ Xi,y)ei(Xi)er(y Zs@; / Y)ek(y)dy

1<i<n,0<k<ma—1| .

Jsk

S|
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and

n mp—1meo—1

(o 03 ® Qi = =D D D= Dl (e (X [ewentay

=1 j/=0 k'=
mi—1 1 mi—1
j/'=0 =1 Jj'=0 7

are equal, implies formula, . The last part of the result follows from

([ ernxinay) £ (8, (VX), X=(Xi... X)),
1<i<n,0<k<ma—1
where O,,,(Y) is defined by (12). O

8.3. Proof of Proposition [I, We start from equation (13). By elementary algebraic computa-
tion, we find
= rmal? = 23 [ Gl i) = (i)
m m,n||n n 4 - m(A, Y mn\i, Y Y
1=
2

_ 12 / > (Amlje — Dumlis) e (Xoen() | dy

k

- Tr [t(Am—D . (Zm—Dm)} .

Replacing the matrix coefficients by their formula, we get
1 ~ ~ ~ ~
~ 2 L t _ 163 _
=Tz = —Tr | (Brna(¥) = E (€ (V)IX) ) By U} Bray (O1ea(¥) — E (81 (V)IX) ) |
Then
1 el PO
35) [~ mmnl2X] = 5 3 3 B[54 ~ By (D1X0) 1] o, Tl B
=1 35=0

Now, note that [@ml\fl;ﬁ @ml]” > 0 as it is of the form ‘e;Me; = ||M'/?¢;||3 for M positive
definite. Under (6] for Laguerre basis or by Lemma [I] for Hermite basis,

ma—1 mo—1
> E (%) — Ee; (W)X 1X] € Y E(p3(V)IX0) < eyma
j=0 Jj=0

and

. ym ~ g mi/m

E [|fm — Tmall2|X] < c 2Ty D, UL D, ) =V 2

as Tr <<Pm1\If D,, ) =nTr ( g (@ @y )7 @m) =nTr (( @nu&)ml -1 @mltﬁml) =nmj.
In the general case, we have

mo—1 mo—1

> E (0500 — B (00)IX0)’ 1X] < D E(GA(V)IX0) < Lima),
j=0



20 F. COMTE AND C. LACOUR

and the variance bound becomes:
~ m1 L(m
E [ — %] < 222
8.4. Proof of Theorem [l

8.4.1. Core of the proof. We give the proof both in the Laguerre and Hermite settings. For the
Laguerre case, we note that the assumption E(1/vY|X = z) < C for all z is fulfilled for 7y and
mp below. This is why the lower bound concerns the rate associated with the variance my,/ma/n,
in both cases.

As usual in the proofs of lower bounds, we build a set of conditional densities (7y) quite distant
from each other in terms of the weighted Lo-norm, but whose distance between the resulting
models is small. Let us define in the Laguerre case

mole 5) = To(y) = 310 () + P01 (0)

where P, is a polynomial, Pr(y) > 0 on [1,2], ff Pr(y)dy = 1/2, Pr(1) = 1/2, P(2) = 0,
Pfsk)(l) = ng)(2) =0for k=1,...,s50+ 1. In the Hermite setting, we define

mo(z,y) = mo(y) = Pu(y)1—1,0/(y) + %1[0,1] (y) + Qu(y) 19 v),

where Py (—1) = Qu(2) =0, Py(0) = Qu(1) =1/2, Pg,Qpm > 0 on [—1,0] and [1, 2] respectively,
1% Py = [2Qu =1/4, and PP (1) = PP 0) = QW (1) = QW (2) =0, for k=1,..., 50 + L.

Next, we assume without loss of generality that ,/mso is an integer and we define in both
Laguerre and Hermite cases

s mi1—1+/m2—1
1/4
mol,y) = molwy) + = D0 D Al my Yy — )
j=0 k=0
with
A= \Ij;&m@v 0= (gj,k)lgjgmhlgkg\/@ € {07 1}mlm’

for 0 > 0 small enough, where 1) is a bounded function with support [0, 1] such that fol Y(u)du = 0.
Moreover, we assume that ¢ admits continuous bounded derivatives up to order ss. We use the
notation O for the matrix with m; lines and /mg columns, and 6 = vec(©) the associated vector

with my,/mao components. Lastly, ¢; = ¢; in the Laguerre case and ¢; = h; in the Hermite case.
Now we shall use the following lemmas:

Lemma 4. (a) Assume that f € W, (A1, R)NL>°(A1). Then there exists L > 0 such that m
s a conditional density belonging to WSf(A, L).
(b) If 6 < 1/(4][¢lloc) and
(36) L(m)|| ) lop < n/(m1y/mz)
then for all 0 € {0,1}™V™2 74 is a conditional density.
(c) If 6 is small enough, for all @ € {0,1}™V™m2 7y — 7y belongs to W (A, L) as soon as

s1+1 82+1/2
M VT2 _ o1 and M2 — o(1).
n

n
Then under the conditions of this lemma, the my’s are conditional densities belonging to
Wi (A,4L).

Lemma 5. We denote p(6,60") the Hamming distance between 6 and 6'.
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e For all 6 € {0,1}™V™2  the Kullback divergence between the distribution of (X;,Yi)i<i<n
under mg and under mo verifies K(Py™, P&™) < 26%||¢||2my\/mo.
o Forall ,0" € {0,1}™1V™2, ||mg — mp|[7 = 0%[[]>n~"p(0, 6)

We also recall the Varshamov-Gilbert bound (see Lemma 2.9 p.104 in Tsybakov| (2009)), that
we use with K = mq/ms.

Lemma 6. Fiz some even integer K > 0. There exists a subset {60, ... 00} of {0,1}X and a
constant a; > 0, such that 0©) = (0,...,0), p(8Y),00) > a, K, for all 0 < j <1 < M. Moreover
it holds that, for some constant ay > 0, M > 202K,

Thus we have built M conditional densities gy, ..., Ty belonging to WSf(A, R) such that

Imgcr = mgoo 17 > (0%[[[|*a1)mr/ma/n and K(ngﬁvpg?gi) < [20%][¢)][* /a2 og(2))] log(M). To
conclude it is sufficient to use Theorem 2.5 of [Tsybakov| (2009) with m; = m] and mg = mj given

by . Note that mj\/m5/n = 12 is the targeted rate, and that condition comes from .
O

8.4.2. Proof of Lemma[5 We start by proving Lemma [ since its provides a computation useful
for the proof of Lemma

e Note that the Kullback divergence between the distribution of (Xj, Y;)1<i<n under my and under
o verifies

K(Py™, P3™) < nK (Pp, Py) < nx*(mg, m0)

where x%(mg, m0) = [[ (mg (z E ;; 2:y))” f(z)dxdy. Now, using that the (,/may — k) have disjoint
supports

X2(7T977TO) _ // 7T9 X ?/ _71-0(:1j y)) f(x)d:vdy

mo(z,y)
mi— 1F 1

- / / >3 Al ym¥ w(mzy — k) | flw)dedy
Jj=0 =

2

2
my1—1 1
A 2 D M) | Syte [y - by
Jj=
vVm2—1m—1
= DY Y Al
k=0 j44=0

— 2 T A, A = 20 [T 00
252||w||2%

IN
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o Let 0 and ¢’ in {0,1}™vV™2. Denoting A’ = ¥,,/?@/,

2
mi—1+vma—1
o~ mol} = // > Y (A Al oy — 1) f(@)dsdy
=0 k=0
= (Ajr— A k) (Agr — Algg)] m1]€/\/ 22 (v/may — k)dy
3,4k
_ 52H¢”2 A A/ \IJ A A/
= n Z( gk = A ) [Wony e (Agr — Algr)
itk
82| 2

= —Tr [{(A = AT, (A —A")]

2 2 2 2
(37) _ 2l ”;/’” T [0 -0)e-0) = W” p(6,6).

8.4.3. Proof of Lemma[]}
In this proof for univariate functions g, h, the dot product (g, k) f means naturally [ g(z)h(z)f(z)dx
and ( = [g(y)

(a ) Flrst J mo(z y)dy = 1 and mo(z,y) > 0, Va,y and thus 7 is a conditional density. Now we
have to prove that the functions my are in T/VSf(A7 L) for some L > 0.

In the Laguerre case, it is proved in Belomestny et al. (2017), proof of Lemma 4.1, that y +—
7o(y) is in the univariate Sobolev-Laguerre space Wy, (R, Ly) for some Ly > 0. In the Hermite
case, we use the property proved in Bongioanni and Torrea; (2006) stating that the functions in
the usual Sobolev space

S2
W52 = {f € L}(R), f admits derivatives up to order s, such that Z 1 FD)1? < +00}
=0

which have compact support also belong to Sobolev-Hermite space with same regularity index.
Thus, y — mo(y) is in W, (R, Ls) for some La > 0.

Now we want to prove that (z,y) — mo(z,y) = mo(y) belongs to the weighted bivariate space
W (A, L) for some L > 0, for s = (sq, s3). We have

l1—1402—1 ;
(TO)(1 0y (0) = D_ D affis (2)enty)
7=0 k=0

avec ceux de la definition des my with

R =tmee w00 = ([ r@i) ([ mwed).
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Thus, it holds

2
Imo— (mo) il = [ R @enly) | f(@)dady
>€10rk>€2
’ 2 2
< 2 [ (St | fod [ Y meoa) | d
j=0 k>(o
2 2
2 [ St | f@de [ impant | do
>0 k>0

Now we have [ <Zk20 (0, Ok Pk (y)) dy = [ 73 (y)dy which is a finite constant, and the regularity
of mo implies [ (Zkz& (mo, g0k><pk(y)> dy < Lal5*2. On the other hand,

2 2

/ > (i yes(@) | f@)de < | flle / > (i Dyei(@) | do=flloo D0 )%
jzt Jj=b jzh
The assumption that f € W, (A1, R) implies Zjﬂl@j’ f)? < R, In the same way
2
/ Y (ei D) | f@)de < || flloll I3 < /13-
5>0

Gathering all terms yields |7y — wo)(el ) Hf < L(67% + £5°%) and thus 7 € W (A, L) for some
L > 0 depending on || f]|cc, R, 2.

(b) Since [ =0, we have [ mg(z,y)dy =1 and we prove hereafter that mg(z,y) > 0.

In the Laguerre case, for y €]1,2], mg(x,y) = Pr(y) > 0. Analogously, mp(z,y) > 0 for
y € R\ [0,1] in the Hermite case. Now, take y € [0,1] in both Laguerre and Hermite case. If for
ko = 0,...,\/772— 1,y e [ko/\/mig,(ko—i- 1)/\/772[, then

mi1—1
0

To(, ) = =+ = S A rs (@) (my (Y — ko).
2" U &

Denoting @(x) = Ypo(z),...,Pm,—1(x)) and ||.|| the Euclidean norm on R™!, we have
gy 4 1
1 1/4 mi—1
To(2,y) — 2' = Z Ao (@)Y (Vmay — ko)
6m1/4 ) sml/A
< \/% ['AG()]ky| = \/2— 9 [loo [ 'O /3 (@) ks |
5m§/4 t 1/2 = 5m1/4 1/2
< NG 9 ]|ool fex, O, 23(2)| < Tn 19l l| O, 11197472 lop /T (1)
6m§/4 mi m2L(m1)H\IIT_n11H0p
< T Wl | L) meluwzej o < Bl | T2
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Then, if L(m1)||¥;! lop < n/(miy/mz2)

1
o(e9) = | < N0l

which is less than 1/4 for § < 1/(4|[¢||sc). For this choice of §, we deduce my(x,y) > 0.

(c) Next, it remains to prove that h := mg — 7 belongs to st(A, L); this will give mp €
WSf(A, 4L). We note that for any function h,
f _ f Lf f
Hh - h(gl,gQ)Hf = Hh h(@ ,00) + h(el ) h(gl,gz)Hf Hh h (€1,00) + HS“@S (h h (00,62) )Hf
< b= by olls + 118 = Bl gl
So, to check that my — mg belongs to st(A, L), we prove
(i) £l — m0) = (w9 — m0) {1, 1) I} < /2 and (id) £5%|(mg — m0) — (g — m0)(LL ) IF < /2.

Let us first check condition (7). For the case ¢; < my, we write, using the same computation

(f

I (mo — m0) — (mo — m0)Z) I3 < llmg — moll3 =

2 2
T 0 6] < g2 /™
n n
so that

S gslml mo 51+1
634 — m0) = (o — mo)g1 L 3 < 2PV < 6 2R = (1)

s1+1
if M = O(1). On the other hand, for m; < ¢;, then (mg — 7T0)(f) =y — mp and

41,00

(g — o) — (g — m0) |13 = O.

Therefore, (7) is proved.
Now, we turn to condition (iz). Let us be more precise on the computation of the projection of

mp — mo. We have
l1—1465—1

(7‘(9 — 7T0) (1 22) Z Z B] k:SDJ )

j=0 k=0
withfor 0 <p</¥ —1,0< ¢ <l —1,

(6 — 0,05 ® 04) 1 = (9 = T0) 00 @ 0);-
Denote 9y, 1(y) = m§/4¢(\/m2y — k). The left hand side is equal to

_ \/7
(o — 0, 0p @ q)f = T Z Z kP> Pp) f (Yma ks Pq)
j=0 k=0
= — ¢m2,/€7 ‘:Dq> <90]a @p)f
Vi =
On the other hand
l1—1402—1 l1—1

((mp — Wo)ggl),@)a@p ® ¢q)f = Z Z Bji{@j p) fOk,q = Z Bjolpjsep) -
=0 k=0 J=0
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So, for £1 > mq, a solution is

/mao—1
) ) .
Bj7q:% kZO A (Um i, pq) for 5 =0,...,m; — 1, and Bj,=0for j =my,..., 01 — 1.

We obtain for /1 > my,

(f) (

(779 - ﬂ—o)(h,b) xz, y) k@j )

S my—10a—1 [+/m2—1
- D Ajplmaper) | ¢(@)en)

s my—1+ma—1 la—1
— ‘ A, (Z (Vma.ps SOka(y)) @)

=0 p=0 k=0
5 my—1+ma—1 (Se.)
= = Ajpei(@)ms% (y),
7=0 p=0
where
(Sey) =
maip () = Z <T/}m2,p7 ©r)Pr(Y)
k=0
is the IL2(dy)-orthogonal projection on Sy, of y — ¢, . Thus, with ¢; = 400, we obtain
2 27p
(7 = w0) = (mg = 70)( L) I3 = [l(mg = m0) = (mg — m0){1), ) I3
52 V! (Sey)
4
= H Z Z A (@) (Ymyp — mfp)”?
\/771
52 (s S
= — Z [t@(a]k,k'(wmg,k—iﬁmfk,wmgk wfnj?,gJ
ko k' =0
52 ma=t |V -1 (Sey)||*
= > Oikthmak — | D Oiktmak
7=0 || k=0 k=0
o m1—1

- fz I — &%)

where §; = ,\C/Zm?fl 05,k Vms k. and 5](- &) is the L2-orthogonal projection of &; on Sp,. We denote,
for a function h € L2(R*) (Laguerre) or h € L?(R) (Hermite) by
(W2 =D ki (k). an(h) = (b, ox).
k>0
Then
(Sey) —s s —s
1€ = &7 1% =D al(&) < £,°2 ) al(§)p™ < 512,

p>La p>Lo
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For the Laguerre case, we use the result proved in (Belomestny et al., 2016, Appendix), stating
that the norm [&;]s, is equivalent to |[|¢;]||s, where |[|&]|[Z, :== > 72, [I&]Z and

2

s . r
lel = a2 3= (F)es?
q=0

and here fj(-q) is the derivative of order g of §;. For r < s, we have

2

ez = [ wz(q) Z byt g0 e )| de
q=0

IN

r +oo
T r 7‘
i Z(Q)/o " Z 03y TV (imge — ) | do

q=0

r \/7712—

+oo
- 2’”2@ > [ g O e — k)
q=0 k=0

as the Y9 (/mpz — k), D (\/max — k') have disjoint supports for k # k’. As they are bounded,
we get, for r < s9,

r vma=l (k1)) fmg
1612 < zfmg“/?Z(T) /k 2" (YD (mgz — k))2dx

=0\ =y Jk/vme
r Vimz—1 (k+1)/y/m2 r 1 227“
< vty ()Y e =2 S (1) = e
=0 q =0 k/\/mig =0 q) T -+ 1 r+ 1

82+1/2
< Cmy .

For the Hermite case, we use the result in (Belomestny et al.l 2019, Sec. 4.1) (see Proposition
4 and its proof, Sec. 7.4), which states that, for a compactly supported function h, the squared
norm |h|? is equivalent to the squared norm NZ2(h) := ||h||> + |W/||? + - + |h)]|%. Here &; is
compactly supported and it is easy to see that the same computation as above yields for r < so,
”§§r)”2 < ™% m£+1/2 < |12 m SQH/Q Consequently, in both Laguerre and Hermite cases,
we obtain

9 m1—1

& +1/2
032 (mg — m0) — (w0 — m0) Ly, I3 < Z 612, < C(W, 52)—myms? /2,
and this quantity is bounded using our assumption. [

8.5. Proof of Lemma l We check that the coefficients of the n X mg matrix, E(O,,,(Z)|X) =
(E(4;(Z;)| Xi))1<i<n,0<j<mo—1 are the same as those of E(©,, ,(Y)|X) ‘G,p,,. On the one hand, by
using Formula , we have fori=1,...,nand j =0,...,ma — 1,
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E(;(Z)|X;) = / 7o (X 2)05(2)d

k
= Z Z(ﬂ,@/@f Gip | 4 /ﬁk dz
j",k>0 \p=0
,]k

3'>0

> (ZJ: Ly @ Lp) gy,p> Ly (Xi)

(38) = > [(mty ® bp))ospzma—1 'Gins ] £ (X3)

3’20

as [((m, &5 @ L))y tGOOL’ = [((m, £j @ bp) Jo<psma—1 fGW?]j for j =0,...,ma — 1.
On the other hand,

[E(O1, (Y)[X)]

B0 = [ 75, 2)(:)ds

,J
= / D (m by @ L) (Xi)(2)L5(2)dz = Y (L @ £5)050(X5).
3§/, k>0 >0
Therefore
R mo—1 mo—1
[E@m:(Y)X) G| = > E@G(¥)1X0)] =3 Y m @ ) (XD G s
“J p=0 p=0 j'>0
mo—1
= > by @ 6,) Gy | £(X)
j'>0 \ p=0
(39) = (7, €50 @ £p) Jo<psma—1 Gy ; €7 (X).
J'>0

The equality of and gives the result. [J

8.6. Proof of Proposition (3. It follows from Lemma [3| that E(%ng) = Tpm,n and
e e e R [
The last term is the announced bias term, and we consider the variance term:
n = 7~ EE 1%
1 1i(A ~ ~ =g e ~ ~ _
- T [Gmg t(@mQ(Z) ~E (@m(z)\X)) By, Uyl D, (@mQ(Z) ~E (@mg(znx)) me;} .
Recall that for the matrix-norms: ||A[|7, = Tr('A A) (Frobenius norm) and ||A[[2, = Amax (‘A A)
(operator norm), we have ||AB|/% < HAH?DPHBH% Thus
Tt [Grok (Bna(Z) — E (00, (Z)[X) ) &1, Tk By (61,(2) — B (0,(2)]X) ) G|

< G Tr[ (@m(Z)—E(@m(Z)\X)) By, Uyl D, ((:)mQ(Z) —E(@mz(znx))}.

X
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Therefore, we obtain, analogously to ,
||Gm2Hop (mQ)ml

] <

E[|7%) — mmn

n
This gives the first result.
Next it is easy to see that similarly to , we have
|| n mo—1
B (170 - 2] < [Smel 5~ 3~ [ — B(5(Z0)1X0)) 1G] B, Tk B i
=1 7=0

argument as for

and condition 1} implies that Z;’f&l E [(gpj(Zi) — E(pj(Z:)|X:))? |Xl] < C'y/mz, with the same
lb As [iml\fl;}l @ml]” > 0 a.s., this yields . AsY >0and e >0,

1 1
El =|X=z)<mn(E|(—=|X=2],E(1/V¢) |,
(77 ==) <min (B 5 = =) m0/v8)
which explains the comment. [
8.7. Proof of Proposition [5, We write again
175 =72 = I = mmnlla + 175 = Tnnl

~(H
and note that E ( ,(Z )|X> (f W(Xk’y)hj(y)dy)lgkgn,ogjgmg—l so that E(m(n )\X) = Tmn-
Next,
HA(H)

— ﬁTr [ t(TmQ(Z) —E (TmQ(Z)\X)) By Uk D, (?mQ(Z) _E (Tm(znx))} .
We have

- 1 o SO
E 17 = mmal21X] = — 7 D7 E | (on,(Z0) = B0, (2)|X0)° X | @, Tk B

Now, let us study > 7% 'E [(Uhj (Zk) — IE(Uh.(Zk)\Xk))2 ]Xk}

- mo—1 fly 9
Z Uh; Zk (Uhj(Zk)|Xk))2 — Z <217T/[eszu_E(eszu’Xk)fZ:j((_l)L)du>

§=0 =0
ma—1 szku . —iZpu 2
S foo e f
T e \—
1 e ~iZyu _ [ (e—iZiu) X 2
Jj=0 €

Now, since (h;j)o<j<m,—1 is an orthonormal basis,

ma—1 —iZku —iZku 2 —iZyu —iZyu
[e™ "2k — E(e "7 | X})] e " — E(e | X))
Y ([ = ) < [ |G
=0 € e
< du

4 _.
/u|§\/% |f2(u)|?

2

du
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On the other hand, using , we have, for |u| > /2my = /(2ma —1)+1 > /25 + 1 for any

Jj<mg—1, hj(u)| < Ce™¢"" and thus, as, under Assumption , n=&—068>0,

mao—1 ; i 2 mao—1 2 2
2 [e—zzku _ E(e_lzku| X)) ) 2 Ce—(B+nu
E Iy d E —d
(/ i) f2(=u) Huom )= ! /UI>\/72m2 THO

J=0 J=0

mo—1 2
Ce—(B+n/2)u
B Sl L P
([
for a constant ¢ depending on f. but not on msy.
Gathering the two parts, we obtain
mo—1 )
> E [(on,(Z0) — E(wn, (Z0)] X)) * X5 | < A(ma)
j=0
and thus
n
~(H 1 =~ B ey mlA(mQ)
E (178" = mmal21X] < — ;A(mg)[@ ol By i = 2T D

8.8. Proof of Theorem [2, In this proof, we shall denote by Ex[-] = E[- |X].
)

Let m be an arbitrary element of M\(GUP First, we write

~(6 C ~(6 ~(6 ~(6
17 — x|z < 3 (7S — I + 7o) = 7 P2 + 7 — 712)

< 3((AC) (m) + V(Gup)( n)) + (A% (1) + V() (m)) + |73 — 2)
6A(S) (m) 46V () (m) + 37" — 7.

The bound on E(||7m (Sup) _ 7||2) follows from Proposmonlfor (Gup) = (D) and Proposition 3| for
(Gup) = (L) or Proposition [5| for (SGup) = (H). The term V(%) (m) has in each case the order

of the variance.
We have to study A(m). Thus the result of Theorem [2| follows if we can prove the result:

IA

Proposition 7. Under the assumptions of Theorem @ conditionnally to X = (X1,...,X,), we
have

Ex (A (m)) < 12l — 73+

Proof of Proposition . We decompose A®*)(m) as follows
AP m) < 3 s (FLY — mwalh - VP 0)/6) 43 sup Tt~ Tl

mleff/(\gl@’“l’) m’E./T/l\»Elgup)
G

+3 sup (A — Ty nll2 — VO (') /6) 1

m’EM\SLGUp)

and Proposition [7] holds if we have

S C
(a) EX[ sup (|75 — T ]2 — VO (m >/6>] =
m’eﬁfl\ﬁlg“p) n
S ~ C
(1) Ex | swp (7S — mmmal2 - VEP(m)/6), | <~
m'eﬂﬁf’“*’) n
(©  sup  |Tmm — TanmalZ < |7 — Tl

m’GJT/l\%Gup)
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We state here a Lemma proved in Section [8.9]

Lemma 7. ||Tm (Sup) _ Tmpnlln = sup < Flow) _ Tmm, T >n= sup v)(T),
T€Bm T€Bm

where By = {T € Sm, ||T||n =1} and

Case (D)  v\PN(T) = = [T(X,,Y;) — Ex(T(X:, Y3))],

Case (L) 1/1(1]4) (T) = =) [Vr(Xi, Z;) — Ex (Y7 (Xi, Zi))],

n

IM=10=

where for T'(z,y) = >, 1 bjrpj(®)er(y) and B = (bjk)o<j<mi—1,0<k<mo—1

mi1—1mo—1

(40) Up(e,2) = Y Y [BGLikes(@)en(2).
j=0 k=0

n

1
Case (H)  v{0)(T) = - > [@r(Xi, Zi) - Ex(r(Xi, Z0))),
i=1
where ®(x,z) is defined by Definition [4

Moreover, note that the following result holds.
Lemma 8. If T € Sy, then |TI|% < L(m1)L(ma)|[T)3, and |73 < [F51 op | T112-
Proof of Lemma |8 If T'(z,y) = >, bjrpj(z)pr(y), then

T(,y)? <D 020 03 (@) Y wr(y) < ITI3L(ma)L(my),
ik J %

which gives the first inequality. Moreover, we have ||T||3 = Tr(!BB), where B is the matrix (bj),
and ||T||2 = Tr(*BVY,,, B). Then

IT15 < 1951213

B 1715 < 115 lop 17115,

which is the second inequality.(]

Proof of (a).
First, using Lemma [7]

5 1V (Sup) (11
Tgcup) = [Ex [ sup (,ﬂ(@up) 2 _ 6(In)) ]
1’1’1'6./(/1\,(161"’) 4
< Z Ex (’A(Gup Tm’,n ‘2 o V(Gup)(m/)) ]
m/E/T/l\%Gup) 0 +
(Sup)
< Z ( sup [Vn(T)(G“")]z _ V(m)> ] ]
e ciew) L \T€Sm [ Tln=1 6 .

Now we consider separately the three different cases.
Direct case (D). We use Talagrand inequality recalled in Lemma @], conditionally to X. Re-

member that we have already proved (see the proof of Proposition , that
mlL(mg)

n 2
E ( sup — 3 [T (X, ) —EX<T<X1-,Y;>>]> X | = E [|[[fm — mmnl2]X] < - H2.

TeBm i
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Moreover
BN 2 2
- Y E(T*(X:, Yi)X) < [l oI 717
i=1
so that v = ||7]|es. To compute b, we use Lemma [8}

n L(m
1712, < Lm)L(me) [T [lop < 0+ 202 _ 2

log(n)
Thus we apply Lemma [9] (Talagrand) so that for Ko > 12(1 + 2€?) we get

TgD) < CO(HWHOO) Z (e—c1m1L(m2) + L(m2> —0210g(n)\/771> S
log®(n)

S|

where ¢y = 2¢C(€?) K1 /(7+/0*). Thus, use that > i1 e~V < SeTF to get domy>1€ log(n)v/m1 <

S/n and choose 0* such that co > 2 i.e. V0* < eC(e?)K1/7. So, using that for m € /(/(\q(lD),
L(ms) < n/Ky, the result holds for a well chosen constant 9* under condition ([30]).

Noisy-Laguerre case (L).
Now we can apply Talagrand Inequality (Theorem @ to

n

AD(T) = 23 (W (X, 2) — Ex(Wr(X;, 20)].
=1

First, we get from the proof of Proposition
myL(m )IIGr

IE( sup ug(T)|x> = E(||#) — mmnl2X) < ”°P‘ H2.

T€Sm,[|T[ln=1

Next we have

*ZE \I’T Xz;Z ‘X = Z/\IJT XZaZ 7TZ|X(XZ,Z dZ< ||7T||OOZ/\IJ2 i %

as w7 x (¢, 2) = [ w(,2 — u) folu)du < |[7]loc. Thus,

2

1< 7
~ > E[EH(X:, Z)X] < e ”°° Z / BGW likpi(Xi)en(2) | da
i=1
= ||7T||ooz BG;LQ j,k[BG;u]jﬂk[‘pmJJ = |7l Tx[ tG7_TLlQ tB\IJmlBGT_TLIQ]
'7-]'/ k
< N7lloollGrp 12, Tl B, B) = I lloc[|Gons 12,1715
which implies that v = ||7||o |G, Hop Lastly we write

[l = sup| 3B @)or(a)] < \/ Limi)Lima) [BGb

< \/L(m1)L(m2)Hsz 1211817

and by Lemma [§]
1B7 = Te['B B] = |13 < |97, lop I 715
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Therefore, we get

_ ~_ n
19713 < L(ma) L(ma) | Gony 19501 lop I TI17 < e

~ log*(n)

L(ms)||G

e

by using that m € MP (second constraint).
Therefore, by applying Talagrand Inequality (Theorem @) that for Ko > 12(1 + 2€2), we get

L Cl( 7T|OO —chmyiL(m
Tg)g 0 Hn‘ ) Z <”Gm2||0p tmaL( 2)_|_

mE./T/l\n

(mQ)HszHop —chog(n)F
log®(n)

where ¢y is the same as in case (D). So, using that m € /(/l\,(zm), L(me) |G
constraint), the result holds if holds.

n/ Koy (first

mg”op =

Case Noisy-Hermite (H).
We now proceed to the application of Talagrand inequality to U,SH) (T') conditionally to X =
(X1,...,X,), where we already saw that
mlA(mQ)
n

TESm,||T|[n=1 n

Ex sup [T = Ex|#l) — Exal)|? < = H.

Next we determine v. Let T'= 3, bj kpj ® ¢ € Sm, B = (bjk)jk, such that || T, = 1.

1< 1< 1 <
QZEX[‘I’%(XmZi)] = nZ/(I)%F(Xi,Z)WZX(XhZ)dZ < HWZXHoonZ/CD%F(XiaZ)dz
] =1

=1

< oot 3 Y b X00(X0) [y (1
=1 j,k,5' k'
ol i [fB@mlB«v%vwk,»ogk,k,gm_l} .
As Yo = tB\TJmlB is square symmetric positive definite and So := ((vy,, Ve, ))o<k b/ <m,—1 18

symmetric, we can prove that Tr(20Sp) < ||SollopTr(Z0). Indeed, Sy = 'PDg,P with Dg, =
diag(d;(Sp)); diagonal and P orthogonal, and

Tr[$0So] = Tr[S 'PDg,P] = Tr[P% 'PDg,]

mo
= 3" di(So)[PSo Pliy  with [P0 Pli; = ||Sy/*Pes]|? > 0

=1
< max(|d;(50)]) > [P 'Pli; = max(|d;(So)|) Tr(PSo 'P) = max(|d;(So)|) Tr(Xo)-
=1

Therefore

Tr [ tB@mlB«vSOka ka/>)0§k,k’§m2—l} < ”(<U50k’ ’U@k/>)0§k’7k”§m2—1 HOpTr [ tB‘/I}ml B} )
Then Tr [ tB\TImlB} = ||T|? = 1 and we have to bound the operator norm. First

H(<U<pk7'Ugok/>)0§k,k/§m2*1||0p = sup t$(<v<pk7 U@k,>)0§k,k/§m2—1$ = sup ”UtHQ.
xeR'm27”xH:1 tESmQ,Ht”:].
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Next, as v; = (1/2m)(t*/ fZ)*(—.), we have
2

1 t*(z)
2 =
Hth T op f*(Z) dz
1 / t*(2) |
t*(2)|* dz + — / dz
27[-\ |<\/W’f€ ’2 27 |z\>\/2m2 f (Z)
1 mo—1
< sup " Z / SDJ dz
|2|<v/2m2 |f€(z 27T |2|>+/2m2
1
< sup + ¢ = 0(ma2),

|2|<v2mo |fa (Z)|2
by proceeding as in the proof of Proposition [5] As a consequence,
1
sup ZEX P2, (Xi, Zi)] | £ sup o o=
TESm, | Tlln=1 \" {5 |z\§«/72m2 |f2(2)]
Lastly, for T'(z,y) = >_, » bj ki (%)ex(y)

2
sup sup |®7(z, )| = sup sup Zb] ki (T)vy, (2)
TESm,||IT|ln=1 %2 TE€Sm,||T||n=1 =,z

< sup sup Tr[ ‘B B] Z(pj )Zmpk(z
TESm,||T||n=1 %,z P, &

< sup  sup | lop e[ BB, BIL(m1)A(my)
TESm,||T|ln=1 2

~_ N
= 1%, llop L(m1) A(mg) <

log(n)

as Tr[ 'BW,,, B] = ||T||2 = 1 and using that m € M
As a consequence, by Talagrand inequality,

ZE ( sup [VéH)(T)]Z—V(H)(m)) ]
+

TESm,||T|n=1
Co Z { ) exp(—c{ma ?;::LL;))) + lig(;réi)) exp(—co log(n)\/ﬁ)} )

A(mQ) = b2

where co is the same as previously. As for m € /T/l\ng), we have A(mg) < n, and the choice of ?
manage with the second sum. The first one is handled with condition (32)).
Consequently

(H
sup (g = Tavalls = VI (m')/6).4
m EM(H)
This ends the proof of case (H).OO
We proved (a) in the three cases.

Proof of (b).
To prove (b) we simply write, using first the fact that V(.) is nondecreasing with respect to both
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mq and ms, and secondly that we assumed that m A m’ was still in the collection,

(6 6
sup (Ilﬂm?ﬂ) (el — VI (m') /6) ¢ ]
_m’Eﬂ&Gup)
< (Gup) _ 2 _ 1/ (Sup) !
< sup (|7, — T(mm')nlln (mAm’)/6)+
_m’EM\SFup)
(G}
< | s (RS — a2 = VR ) /). ]
_m”G./T/l\glbup)

Therofore, the bound on the expectation follows from (a).

Proof of (c)
We already noticed that E(%I(I?)|X) (A(L 1X) = E( )|X) = Tmn, SO the bias terms are
exactly the same in the three cases.

Let us define Projgz denotes the empirical projection on Sy, which associates to (z,y) — T'(z,y)

the function (z,y) — (Projg:r).T)(a:,y) =

mi—1mo—1

> X | @) B ([T ) | i)

j=0 k=0 0<k<ma—1 .k

For any bivariate function T, the following holds:

(41) PrOJ(S7r)L1A7,L’1®S,n2AnL2T PrOngr)L/ @5, (PTOJ(SW)LI@JSmQT) .
Then
|7 — T(m,m’),n ln = ||Projgill®sm,27r — Projg: 5, Am27r||n
= ||Projgjill®sm,27r - Projg;)l,1®5m12 Pr03(5121®57n27r||n
< = Proj) o 7l

Thus we obtain (c).

8.9. Proof of Lemma (7, We prove now that

~(6 ~(6 ~(6& ~(6&
Hm(n up) _ Exm(n up)Hn = sup <7T§n up) _ Exwfn up), T), = sup VT(LGup) (T).
TESm,||T||ln=1 TESm,||IT||n=1

The first equality is standard (bound the scalar product by the norm and choose T to see that the
upper bound is reached). For the second equality, we denote T'(z, y) = Zml L EZEO_l Bj kej(x)er(y),
so that

(& ~& ~&
<7r1(n w) _ T, L)n = Z (Ag;up) - EXAl(mup)>jkBj’k’ (0j ® r, i1 ® Prr >n

33" koK
=) (AR — Ex ARk Birk (Wi, ).
j?jl7k

_ [ (AS™ gy ASWN T, B} .
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For the rest of the proof, we study separately the three cases.
Direct case. Recall that Al = =1y 1%, 6,,(Y). Then

~

o~ 1 A D
<7Tx(1?) — Tm,n» T>n = *TI‘ [ t(9m2 (Y) - EX®m2 (Y))(I)ml B

*ZZ or(Yi) — Ex(pr(Y3)))w; (Xi) Bk

=1 jk

= =) [T(X:, Vi) — ExT(X;, Yy)].
n
Laguerre case. In this case AL = %\i’;ﬁ D, O, (Z) 'G,,}, then
~(L 1 oA ~ ~
(FE) — Ty Thn = 5Tr |Gk (B (Z) — ExOp, (2))B 1, B

= ZZ (Vi) — Ex (0r(Y3))) @i (Xi) (BGrb ) ik

zl]k

= % Z[\IJT(XZ‘, Zi) - EX\IIT(X% ZZ)]

Hermite case. Here we use that E&n) = Tlllllmll D, T ,(Z). Thus

(F)— m Tho = 215 [ (T () BT (2o ]
- % YD (0 (Zi) — Ex(vg,(Z:))9i (Xi) B
i=1 jk
= :LZ[(I)T(Xi’Zi) —EX(I)T(Xi7Zi)]' u

8.10. Proof of Corollary De-conditionning is justified by Lemma stated and proved in

Appendix.
Let AL = {./\/l(Gup M%Gup)} and write

Gup)

~(6 ~(6
E[75" — 2] = BEx[I75 " — 7l|2]1, 0] + EIFS = 21 @] = T3 + To.

We first study 77. On A( up) , we have
inf {Wmn—ﬂﬁ+vﬁmam} < it lmm = 72+ VO ()}

meMHP) em(Sup)
< inf {Hﬂm — )+ v<6up>(m)} .
meM(Cup>

So, for the first term, we have, using Theorem I and the definition of A(Gup)
(& o
Ex[[f ™ — w21 yewm <C il {7 = mmallh + VP ()} +

n mEM(Gup)
and taking the expectation yields

Cl

EEx(I7" = 721l @] <€ inf {llr = mlF + VP (m)} + =,

m
mGM;Gu )
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Now, T5 is bounded thanks to the two facts:
(1) P[(A%Gup))c] < C/n? for 0 well chosen,
2) |75 — 72 < C'n for e M.

First let us prove point (2). We prove that, Vm € M\T(ID), ||ﬁr(£) —7||2 < 2(Kon + ||7]|e). Indeed
we have

~ 1 ~ o~ ~
712 = T (B Uk By 10 (Y) ©1a(Y))
1 ~ o~ o~ ~ ~
< 5 1B T} B op TrlOrmy (Y) By (Y)]
1 n mo—1
< - ©2(Y;) < L(mg) < Kon
nz:l k=0

Similarly, for m € /Vl( )

ma2

~(L 1 3 -1 a-19 3 -
171 = 5T (B B3 By GO (2) 010, (2) Gl )

IA

L(m2)||Gyll, < Kon
and for m € .A//Y%H),

_ [
”7755)‘|% = ﬁTr ((I)mllI/mi tq)ml Tm2(Z) t,rm2(z)>
< A(mQ) < Kyn.

To bound ||7||?, as 7 is bounded, we have
[Py <l [ 706000y = e < o0,
and the result of (2) holds.

Now we study point (1). We have

PAS)) = P

—

MEW) M\(G”p)}c> = P(3m € M) such that m ¢ ./(/l\%gup))

o n ~_ n
< X (L < 5 and L) B > )
‘o 2 log%(n) log?(n)
meM,,
0 n
< P (L)1~ 195 o) > 5 5 )
(6 2 log=(n)
meMn“P)
< P (L) (195} = W llop) > L(ma) [¥,2 )
mEMnmp)
= Y P09 = Tallop) > 195 op)
mEMSlGuP)
1
< X P (10720 0 = T o> 3 )
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where the last inequality follows from Proposition 4 (ii) in |Comte and Genon-Catalot| (2020]).
Then the matrix Chernov Inequality (see Tropp (2012)) gives, for 0 < 6 < 1,

42 P20, U2 1d,, [lon > 0) <2 <— 5 n )
(42) B (I T V1 T oy > 0) < 2 exp ( =e00) ey

where ¢(d) = (14 6)log(1 4 6) — d, which for 6 = 1/2 yields ¢(1/2) = (3/2)log(3/2) — 1/2 = 59,
¢(1/2) ~ 0.11. Thus, under the condition L(m1)||¥,,! [[op < 0*n/ log?(n) < on/ log(n), for n large

enough, in the definition of M(Gup) we get
omy MW 2
SGup 1 n
RAS) s Y S < s
meMglGup)
This ends the proof. [J
APPENDIX

Lemma 9 (Talagrand Inequality). Let Y1,...,Y, be independent random variables and let F be
a countable class of uniformly bounded measurable functions. Then for €2 > 0

2 (v 2 nH? 492 2K O(2)e i
E 2201 22H2} < (- e 7 b
Jsclelg_’_|Vn,Y(f)| ( + 2¢ ) e ne + 4K1n2c2(€2)6 )

with C(2) = (V1+ e —1)A 1, Ky =1/6, and

sup [l < b E[sup vy (1] < H, sup L3 Var(s
feFr JeF fer i —

This inequality comes from a concentration Inequality in Klein and Rio| (2005) and arguments
that can be found in Birgé and Massart Birgé and Massart| (1998). Usual density arguments show
that this result can be applied to the class of functions of type F = Bm(0, 1).

Lemma 10. Let (X;,Y;)1<i<n be i.i.d. couples of random variables. Then (Y;)1<i<n are indepen-
dent conditionally to (X1,...,X,).

This Lemma legitimates the application of Talagrand inequality conditionally to (X1,..., Xy).
Proof of Lemma First Y7,...,Y, are independent conditionally to Xi,..., X, if, for all
measurable (bounded or nonnegative) functions f; : R — R,

Hfz )X, X ] HIEfZ NX1, ... X

As collection of test functions of X7,..., X, for caracterization of the conditional expectation,
we consider g(X1,...,X,) = [[i; gi(X;) for measurable functions g; : R — R, bounded or
nonnegative (density argument: measurable function as monotone limit of linear combinations
of indicators of measurable partitions and take as a borelian A of the partition in the product
o-algebra the cartesian product A = A; x --- x A, which are generators). Therefore holds if

[H fi(Yi ng

(43)

n

E|\[[EfE)IX.... X Hgl

i=1
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To check that this equality holds, let us start from the right-hand-side term.

n n

E HE(fz‘(Yi)!Xh o, Xn) ng‘(Xz‘)

i=1 i=1

=E

[ o:(XDES V)X, Xn)]
i=1

= E HE(Qi(Xi)fi(Yi)Xla--~aXn)] = E | [ [ Eg:i(X0) fi(Y3)| X2)

=1 =1 =1 (X;)

n
= HE[%(XO] as the X; are independent
1=1

n

= JIEE@X)f(Y)1X)] = [[Elo:(X0) fi(Y)] = E [Hgi(Xi)fi(Yi)
i=1 i1

=1

where the last line follows by independence of the (X1,Y1),...,(Xn,Ys). This ends the proof of
Lemma O

REFERENCES

Abramowitz, M. and Stegun, I. A. (1964). Handbook of mathematical functions with formulas,
graphs, and mathematical tables, volume 55 of National Bureau of Standards Applied
Mathematics Series. For sale by the Superintendent of Documents, U.S. Government Print-
ing Office, Waghington, D.C.

Akakpo, N. and Lacour, C. (2011). Inhomogeneous and anisotropic conditional density estimation
from dependent data. Electron. J. Stat., 5:1618-1653.

Askey, R. and Wainger, S. (1965). Mean convergence of expansions in Laguerre and Hermite
series. Amer. J. Math., 87:695-708.

Belomestny, D., Comte, F., and Genon-Catalot, V. (2016). Nonparametric Laguerre estimation
in the multiplicative censoring model. Electronic Journal of Statistics, 10(2):3114 — 3152.

Belomestny, D., Comte, F., and Genon-Catalot, V. (2017). Correction to: Nonparametric Laguerre
estimation in the multiplicative censoring model | MR3571964|. Electron. J. Stat., 11(2):4845—
4850.

Belomestny, D., Comte, F., and Genon-Catalot, V. (2019). Sobolev-Hermite versus Sobolev non-
parametric density estimation on R. Ann. Inst. Statist. Math., 71(1):29-62.

Bertin, K., Lacour, C., and Rivoirard, V. (2016). Adaptive pointwise estimation of conditional
density function. Ann. Inst. Henri Poincaré Probab. Stat., 52(2):939-980.

Birgé, L. and Massart, P. (1998). Minimum contrast estimators on sieves: exponential bounds
and rates of convergence. Bernoulli, 4(3):329-375.

Bongioanni, B. and Torrea, J. L. (2006). Sobolev spaces associated to the harmonic oscillator.
Proc. Indian Acad. Sci. Math. Sci., 116(3):337-360.

Brunel, E., Comte, F., and Lacour, C. (2007). Adaptive estimation of the conditional density in
presence of censoring. Sankhya, 69(4):734-763.

Chagny, G. (2013). Warped bases for conditional density estimation. Math. Methods Statist.,
22(4):253-282.

Cohen, A., Davenport, M. A., and Leviatan, D. (2013). On the stability and accuracy of least
squares approximations. Found. Comput. Math., 13(5):819-834.

Cohen, A., Davenport, M. A.; and Leviatan, D. (2019). Correction to: On the stability and
accuracy of least squares approximations. Found. Comput. Math., 19(1):239.

Cohen, S. X. and Le Pennec, E. (2013). Partition-based conditional density estimation. ESAIM
Probab. Stat., 17:672-697.




ESTIMATION OF CONDITIONAL DENSITY 39

Comte, F., Cuenod, C.-A., Pensky, M., and Rozenholc, Y. (2017). Laplace deconvolution on the
basis of time domain data and its application to dynamic contrast-enhanced imaging. J. R.
Stat. Soc. Ser. B. Stat. Methodol., 79(1):69-94.

Comte, F. and Genon-Catalot, V. (2018). Laguerre and Hermite bases for inverse problems. J.
Korean Statist. Soc., 47(3):273-296.

Comte, F. and Genon-Catalot, V. (2020). Regression function estimation as a partly inverse
problem. Ann. Inst. Statist. Math., 72(4):1023-1054.

Comte, F. and Lacour, C. (2013). Anisotropic adaptive kernel deconvolution. Ann. Inst. Henri
Poincaré Probab. Stat., 49(2):569-609.

De Gooijer, J. G. and Zerom, D. (2003). On conditional density estimation. Statist. Neerlandica,
57(2):159-176.

Dussap, F. (2021). Anisotropic multivariate deconvolution using projection on the Laguerre basis.
Journal of Statistical Planning and Inference, 215:23-46.

Efromovich, S. (2007). Conditional density estimation in a regression setting. Ann. Statist.,
35(6):2504-2535.

Efromovich, S. (2010). Oracle inequality for conditional density estimation and an actuarial
example. Ann. Inst. Statist. Math., 62(2):249-275.

Fan, J., Yao, Q., and Tong, H. (1996). Estimation of conditional densities and sensitivity measures
in nonlinear dynamical systems. Biometrika, 83(1):189-206.

Fan, J. and Yim, T. H. (2004). A crossvalidation method for estimating conditional densities.
Biometrika, 91(4):819-834.

Fan, J.-q., Peng, L., Yao, Q.-w., and Zhang, W.-y. (2009). Approximating conditional density
functions using dimension reduction. Acta Mathematicae Applicatae Sinica, English Series,
25(3):445-456.

Ferraty, F., Laksaci, A., and Vieu, P. (2006). Estimating some characteristics of the conditional
distribution in nonparametric functional models. Stat. Inference Stoch. Process., 9(1):47-76.
Goldenshluger, A. and Lepski, O. (2011). Bandwidth selection in kernel density estimation: oracle

inequalities and adaptive minimax optimality. Ann. Statist., 39(3):1608-1632.

Goldenshluger, A. and Lepski, O. (2014). On adaptive minimax density estimation on RY.
Probability Theory and Related Fields, 159(3-4):479-543.

Gyorfi, L. and Kohler, M. (2007). Nonparametric estimation of conditional distributions. IEEE
Trans. Inform. Theory, 53(5):1872-1879.

Holmes, M. P., Gray, A. G., and Isbell, Jr., C. L. (2010). Fast kernel conditional density estimation:
a dual-tree Monte Carlo approach. Comput. Statist. Data Anal., 54(7):1707-1718.

Hyndman, R. J. and Yao, Q. (2002). Nonparametric estimation and symmetry tests for conditional
density functions. J. Nonparametr. Stat., 14(3):259-278.

Ioannides, D. A. (1999). Estimating the conditional mode of a stationary stochastic process from
noisy observations. Metrika, 50(1):19-35.

Izbicki, R. and Lee, A. B. (2016). Nonparametric conditional density estimation in a high-
dimensional regression setting. Journal of Computational and Graphical Statistics, 25(4):1297—
1316.

Izbicki, R. and Lee, A. B. (2017). Converting high-dimensional regression to high-dimensional
conditional density estimation. Electron. J. Stat., 11(2):2800-2831.

Juditsky, A. and Lambert-Lacroix, S. (2004). On minimax density estimation on R. Bernoulli,
10(2):187-220.

Klein, T. and Rio, E. (2005). Concentration around the mean for maxima of empirical processes.
Ann. Probab., 33(3):1060-1077.

Lacour, C. (2007). Adaptive estimation of the transition density of a markov chain. Ann. Inst.
H. Poincaré Probab. Statist., 43(5):571-597.




40 F. COMTE AND C. LACOUR

Laksaci, A. (2007). Convergence en moyenne quadratique de 'estimateur a noyau de la densité
conditionnelle avec variable explicative fonctionnelle. Ann. 1.S.U.P.; 51(3):69-80 (2008).

Lukacs, E. (1970). Characteristic functions. Hafner Publishing Co., New York. Second edition,
revised and enlarged.

Mabon, G. (2017). Adaptive deconvolution on the non-negative real line. Scand. J. Stat.,
44(3):707-740.

Markett, C. (1984). Norm estimates for (C, ) means of Hermite expansions and bounds for deg-.
Acta Math. Hungar., 43(3-4):187-198.

Meister, A. (2009). Deconvolution problems in nonparametric statistics, volume 193. Springer
Science & Business Media.

Nguyen, M.-L. J. (2018). Nonparametric method for sparse conditional density estimation in
moderately large dimensions. https://hal.archives-ouvertes.fr/hal-01688664.

Nguyen, M.-L. J., Lacour, C., and Rivoirard, V. (2021). Adaptive greedy al-
gorithm for moderately large dimensions in kernel conditional density estimation.
https://hal.archives-ouvertes.fr/hal-02085677.

Otneim, H. k. and Tjostheim, D. (2018). Conditional density estimation using the local Gaussian
correlation. Stat. Comput., 28(2):303-321.

Reynaud-Bouret, P., Rivoirard, V., and Tuleau-Malot, C. (2011). Adaptive density estimation: a
curse of support? Journal of Statistical Planning and Inference, 141(1):115-139.

Rosenblatt, M. (1969). Conditional probability density and regression estimators. In Multivariate
Analysis, II (Proc. Second Internat. Sympos., Dayton, Ohio, 1968), pages 25-31. Academic
Press, New York.

Sacko, O. (2020). Hermite density deconvolution. ALEA Lat. Am. J. Probab. Math. Stat.,
17(1):419-443.

Sart, M. (2017). Estimating the conditional density by histogram type estimators and model
selection. ESAIM Probab. Stat., 21:34-55.

Tsybakov, A. B. (2009). Introduction to nonparametric estimation. Springer Series in Statistics.
Springer, New York.

Youndjé, E. (1996). Propriétés de convergence de l'estimateur & noyau de la densité conditionnelle.
Rev. Roumaine Math. Pures Appl., 41(7-8):535-566.

*LABORATOIRE MAP5, UNIVERSITE DE PARIS, FRANCE
E-mail address: fabienne.comte@parisdescartes.fr

LABORATOIRE LAMA | UNIVERSITE GUSTAVE EIFFEL, FRANCE
E-mail address: claire.lacour@u-pem.fr



	1. Introduction
	1.1. Bibliographical elements on conditional density estimation
	1.2. About non compact support specificity
	1.3. Conditional density as a mixed regression-density framework
	1.4. Anisotropic (conditional) model selection
	1.5. Extensions to noisy case
	1.6. Content of the paper

	2. Model and assumptions
	2.1. Notation
	2.2. Bases
	2.3. Anisotropic Laguerre and Hermite Sobolev spaces
	2.4. Direct and noisy cases

	3. Minimum contrast estimation procedure without noise
	3.1. Definition of the contrast and estimators in the direct case
	3.2. Bound on the empirical MISE of "0362m
	3.3. Anisotropic rates
	3.4. Lower bound

	4. Indirect Laguerre case
	4.1. Definition of the estimators in the noisy-Laguerre case
	4.2. Bound on the empirical MISE of "0362m(L)
	4.3. Rates in the noisy-Laguerre case

	5. Indirect Hermite case
	5.1. Assumption related to the noise
	5.2. Definition of the contrasts in the noisy-Hermite case
	5.3. Bound on the empirical MISE of "0362m(H) and rates.

	6. Adaptive estimators with Goldenschluger-Lepski method
	6.1. Collection of models
	6.2. General adaptive estimator and result

	7. Concluding remarks
	8. Proofs
	8.1. Proof of Lemma 1
	8.2. Proof of Lemma 2
	8.3. Proof of Proposition 1
	8.4. Proof of Theorem 1
	8.5. Proof of Lemma 3
	8.6. Proof of Proposition 3
	8.7. Proof of Proposition 5
	8.8. Proof of Theorem 2
	8.9. Proof of Lemma 7
	8.10. Proof of Corollary 1

	Appendix
	References

