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Abstract. Starting from a real data example in fluorescence, the problem of nonparametric
estimation of a density in a biased data model is considered. Bias correction can be done in two
ways: either an estimator is computed with the data and in a second time a correction (plug in
estimator) is applied, or weights are directly associated with the data so that a direct estimator
of the quantity of interest (weighted estimator) is obtained. In both cases, kernel and projection
estimation strategies with bandwidth or model selection devices are developed. The bandwidth
selection is inspired from a procedure recently proposed by Goldenshluger and Lespki (2011).
Risk bounds are proved showing that the final data-driven estimators perform an automatic
finite sample bias-variance tradeoff. A simulation study compares the two bias-correction meth-
ods and the different model or bandwidth selection methods. Finally real fluorescence data are
studied.
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1. Introduction

In various application settings, functional estimation can be difficult because the observations
are not a sample from the distribution of interest: this may be due to noise, missing data,
censored or truncated observations. In this paper biased data models are considered where
the cumulative distribution function (cdf) of the observations, denoted by G, is the result of a
(known) nonlinear distortion of the distribution of interest, say F . More precisely, the cdf G
and F are related by some known link function H by

G(x) = H(F (x)) , x ∈ R .(1)

This paper is concerned with the estimation of the probability density function (pdf) f associated
with F from a sample Z1, . . . , Zn with distribution G.

A special case of model (1) is the pile-up model, where a random variable Z with distribution
G is defined as the minimum of a random number N of independent and identically distributed
(i.i.d.) random variables Y1, . . . , YN with distribution F . This model is our leading example.
It is encountered for example in biostatistics when considering the time until the outbreak of
a tumor originated from a clonogenic cell in the presence of a random number of competing
clonogens (Tsodikov, 2001). Another example in physics is given by the arrival time of the
fastest of a random number of emitted photons (O’Connor and Phillips, 1984). The latter is the
setting this paper started from and it will be described in more detail below.

Various extensions and other examples may be considered pointing out the relevance of the
model given by (1) from an application viewpoint. For example, the maximum of a random
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number of i.i.d. random variables corresponds in actuarial science to modelling the largest
claim received by an insurer in a given time interval (Li and Zuo, 2004), or in transportation
theory to the modelling of the maximal accident-free distance of a shipment of, say, explosives,
with a random number of defective explosives which may explode and cause an accident during
transport (Shaked and Wong, 1997).

It is worth mentioning that our model can be related to other biased data contexts, which
have been studied from various points of view by several authors: strategies for estimating
cumulative distribution functions are proposed by Gill et al. (1988), Wu and Mao (1996), Wu
(1997), Efromovich (2004b), El Barmi and Simonoff (2000); the specific case of length-biased

sampling has been studied in many papers, see Vardi (1982), Jones (1991), de Uña-Álvarez

(2004), de Uña-Álvarez and Rodŕıguez-Casal (2006), Asgharian et al. (2002), among others.
The interest and difficulty of the present work lies in the fact that we have three aims.

(1) The primary concern of the paper is the nonparametric estimation of the pdf f of the
distribution of interest F in the model given by (1) based on an i.i.d. sample Z1, . . . , Zn
with distribution G and known link function H.

(2) Our second question is about a methodological point of view. We want to determine
which general approach of density estimation should be used. Indeed, we consider here-
after kernel estimators and projection estimators and wonder which are to be preferred.
More precisely, projection estimators with model selection devices and kernel estima-
tors with data-driven bandwidth selection are constructed for the model given by (1).
Adaptive projection estimators correspond to methods originally described by Barron
et al. (1999), see also Lerasle (2012) for developments more specific to density estimation.
These methods have been applied to survival analysis and biased data by Efromovich
(2004a,b) and Brunel et al. (2005); more recently, wavelet projection estimators have
been studied by Chesneau (2010), Cutillo et al. (2014). For the bandwidth selection of
the kernel estimator the recent approach of Goldenshluger and Lepski (2011) is applied
to our model and considered from both a pointwise and a global point of view. Here
”pointwise” refers to the estimation of the density on an interval with point-by-point
bandwidth selection, in contrast to a unique global bandwidth in the ”global” strat-
egy. One may expect better results for the pointwise method when the function under
consideration has inhomogeneous smoothness on the interval.

(3) Thirdly, the more model specific question is how to take into account the distortion H
in the estimation procedure. Indeed, different properties of the model (1) give rise to
two different strategies to correct the bias in the data. The first way is a sort of global
correction of a primary estimator of g, which we call plug-in estimator, as in Navarro
et al. (2015). The other way consists in using a standard density estimator of f while
associating specific weights with all observations to correct the bias more locally, and we
call it weighted estimator. This has been done in a different context in Rebafka et al.
(2010). The same type of question arises in density estimation for censored data: the
so-called Inverse Probability Correction Weights (IPCW) can be applied to the data, or
a final correction can be applied to a functional estimator, see Brunel et al. (2005).

The combination of every adaptive kernel and projection estimator with each bias correction
strategy finally gives rise to six different estimation procedures that are worth being compared.
In this paper theoretical results on the mean-square risk of the estimators, more precisely, oracle-
type risk bounds are provided. Namely the finite sample risk bounds for the adaptive kernel
estimators are new. For adaptive projection estimators, part of the proofs follow the line of
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Brunel et al. (2005) which makes the novelty of the results less decisive. Furthermore, a simu-
lation study is conducted to calibrate all methods and to find out how the different estimation
procedures compare in specific settings. To avoid a huge number of models, simulations are
carried out for the pile-up model and an application to real fluorescence data is provided. The
questions in order are: Which strategy to correct the bias has a better performance? Do projec-
tion or kernel estimators provide better results? How do the pointwise and the global strategy
for bandwidth selection compare in specific examples? We are not aware of any other empirical
study answering to these questions.

The paper is organized as follows. Section 2 presents the leading example and the general
model. In Section 3, kernel and projection estimators are defined, and risk bounds are given
in order to show why a data-driven selection of bandwidth or model is required. Section 4
explains how these procedures are performed and provides theoretical results ensuring that these
strategies reach their aim and deliver an adequate data-driven squared bias-variance compromise.
In the simulation study (Section 5) different aspects of the estimators are compared. Section 6
summarizes our findings. Finally, Section 7 presents the proofs for the theoretical results of the
paper.

2. Model and Assumptions

2.1. Notations. Let u : R 7→ R and v : R 7→ R be two real functions. If u is a one-to-one map,
denote u−1 its inverse function, that is the function verifying u−1(u(x)) = u(u−1(x)) = x for all
x. The standard convolution product is given by u ∗ v(x) =

∫

u(t)v(x − t)dt. Denote by ‖ . ‖p
the L

p–norm given by ‖u‖pp =
∫

|u(x)|pdx and by ‖ . ‖∞ the L
∞–norm, ‖u‖∞ = supx∈R |u(x)|.

The inner product 〈·, ·〉 is defined by 〈u, v〉 =
∫

u(t)v(t)dt.

2.2. Our leading example: the pile-up model in time-resolved fluorescence. Fluores-
cence is the phenomenon of photon emission by excited molecules. An important feature is the
duration that the molecule spends in the excited state before emitting a photon, also called fluo-
rescence lifetime. As the probability distribution of fluorescence lifetimes depends on numerous
molecular features, it is a very powerful mean for physicists to observe and understand physical
and chemical molecular processes. Fluorescence lifetimes are e.g. used to determine the speed of
rotating molecules or to measure molecular distances and they are the heart of the fluorescence
lifetime imaging microscopy (FLIM) technology (Lakowicz, 1999; Valeur, 2002).

Measurements of fluorescence lifetimes are obtained by the technique Time-Correlated Single-
Photon Counting (TCSPC) (O’Connor and Phillips, 1984). Here, a laser pulse excites a random
number of molecules, but for technical reasons, only the arrival time of the very first fluores-
cence photon striking the detector can be measured, while the other fluorescence lifetimes are
unobservable. That is, one excitation produces only a single observation. So the experiment is
repeated many times to generate a convenient number of observations. However, the data are
not a sample from the distribution of the fluorescence lifetimes, but of the distribution of the
minimum of the fluorescence lifetimes of a random number of molecules. This model is referred
to as the pile-up model.

Mathematically, let p be the number of excitations or laser pulses. Denote N∗
i the number of

emitted fluorescence photons after the i-th excitation and Yi,j, . . . , Yi,Ni
the associated fluores-

cence lifetimes. Then the fluorescence lifetime of the fastest photon after the i-th excitation is
the random variable Z∗

i defined by

Z∗
i = min{Yi,1, . . . , Yi,N∗

i
} .
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By convention, if N∗
i = 0, set Z∗

i = 0 . Note that Z∗
1 , . . . , Z

∗
p are observed, but not the variables

(Yi,j)i,j≥1 neither the numbers N∗
1 , . . . , N

∗
p .

From a physical point of view it is reasonable to suppose that N∗
1 , . . . , N

∗
p are i.i.d random

variables with Poisson distribution, (Yi,j)i,j≥1 are positive i.i.d. random variables with pdf f
and cdf F , and (Yi,j)i,j≥1 and (N∗

1 , . . . , N
∗
p ) are independent. The parameter of the Poisson

distribution of N∗
1 , say µ, is known to the physicists, as it is a tuning parameter depending on

the laser intensity. By the way, µ is easily estimated by the proportion of excitations where no
photon event is detected, i.e. µ̂ = − log(1p

∑

i 1{Z∗
i = 0}).

If Z∗
i = 0, then no photon is detected (N∗

i = 0) and hence no information on the distribution
of the fluorescence lifetimes is obtained. So, typically, these observations are deleted from the
sample. This is similar to consider random variables Ni with Poisson distribution restricted to
N
∗ := {1, 2, . . . } and positive observations Zi = min{Yi,1, . . . , Yi,Ni

}. Note that Z1, . . . , Zn are
i.i.d. random variables with common distribution. Denote G the cdf and g the pdf of Z1. Then
the pile-up model is an instance of the biased data model given in (1), since

G(x) = 1− P(Z1 > x) = 1−
∞
∑

k=1

P(N1 = k)P

(

min
1≤j≤k

Y1,j > x

)

= 1−
∞
∑

k=1

(N1 = k) [P(Y1,1 > x)]k = 1−M(1 − F (x)) ,

where

M(u) = E
[

uN1
]

=

∞
∑

k=1

ukP(N1 = k) =
eµu − 1

eµ − 1
, u ∈ [0, 1] ,

with P(N1 = k) = 1/(eµ − 1)(µk/k!) for k = 1, 2, . . . . Hence, we see that relation (1) is verified
with H(x) = 1−M(1− x).

2.3. Model and assumptions. More generally, let F and G in (1) be absolutely continuous
with pdf f and g, respectively. As our goal is to recover density f from a sample from G, we first
look for an expression to relate f to the distribution G of the observations and/or g. Clearly, if
the link function H : [0, 1] → [0, 1] in relation (1) is a one-to-one map, then

F (x) = H−1(G(x)) , x ∈ R .

Furthermore, if H is differentiable, deriving the last relation yields f(x) = g(x)/H ′(H−1(G(x))).
Introduce the weight function w defined by

w(u) =
1

H ′(H−1(u))
, u ∈ [0, 1] .

Then the following relation between the densities f and g holds,

f(x) = w(G(x))g(x) , x ∈ R .(2)

Concerning the assumptions on the model, first note that the link function H : [0, 1] → [0, 1]
in (1) is necessarily increasing and surjective, otherwise x 7→ H(F (x)) is not a cdf. It is also
natural to assume that H is a one-to-one map to ensure identifiability in the sense that the aim
is the estimation of the density of distribution F using a sample from G.

The weight function w is well defined under the assumption that H ′ exists and is bounded
away from zero. Furthermore, we shall require that w is Lipschitz. If H is twice differentiable,
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then w′(u) = −H ′′(H−1(u))/[H ′(H−1(u))]3. If furthermore there exist finite constants a, b > 0
such that

(3) H ′(u) ≥ a , |H ′′(u)| ≤ b , u ∈ [0, 1] ,

then w is a Lipschitz function with Lipschitz constant cw such that cw ≤ b/a3.
Moreover, if there is a finite constant d > 0 such that

(4) H ′(u) ≤ d , u ∈ [0, 1] .

then w is bounded on [0, 1] by 0 < 1/d ≤ w(u) ≤ 1/a.
Note that we may possibly require that f or g is bounded. In fact, f and g are either both

bounded or both unbounded, since a‖f‖∞ ≤ ‖g‖∞ ≤ d‖f‖∞.

3. Density estimators: definition and first risk bounds

This section is concerned with the construction of estimators of density f using an i.i.d. sample
Z1, . . . , Zn from distribution G in the model given by (1). We indicate two general approaches
to correct the model bias and show how different kernel and projection estimators are obtained
when using these correction strategies. Finally, we state risk bounds to show the need for data
driven choices of bandwidth or model dimension.

3.1. Estimation strategies. The two standard approaches in nonparametric density estima-
tion are kernel estimators and projection estimators. We consider both of them to provide
estimators of f in our model.

We start with kernel estimators. Denote ĝkerh the standard kernel estimator of g based on
observations Z1, . . . , Zn from the distribution G given by

ĝkerh (x) =
1

n

n
∑

i=1

Kh(x− Zi) , x ∈ R ,

where K is a kernel, that is, an integrable function such that
∫

K(u)du = 1, h is a bandwidth
parameter and Kh(u) = K(u/h)/h. According to formula (2), a plug-in estimator of f is given
by

f̂ker-Ph (x) = w(Ĝn(x))ĝ
ker
h (x) , x ∈ R ,

where Ĝn(x) = 1
n

∑n
i=1 1{Zi ≤ x} denotes the empirical cdf associated with the observations

Z1, . . . , Zn.
Next, notice that (2) also implies that, for any measurable bounded function ψ, we have

(5) Ef [ψ(Y1)] = Eg [w(G(Z1))ψ(Z1)] .

This property allows the construction of another kernel type estimator of f . Indeed, if we had
at hand a sample Y1, . . . , Yn from distribution F , then the standard kernel estimator of f(x)

would be given by f̂kerh (x) = n−1
∑n

i=1Kh(x − Yi), Hence, taking ψ(z) = Kh(x − z) in (5), an
alternative estimator of f(x) based on a sample Z1, . . . , Zn from distribution G, that shall be

close to f̂kerh (x), is given by

(6) f̂ker-Wh (x) =
1

n

n
∑

i=1

w(Ĝn(Zi))Kh(x− Zi) .

Denote by Z(i) the i-th order statistic associated with (Z1, . . . , Zn) satisfying Z(1) ≤ · · · ≤ Z(n).

As w(Ĝn(Z(i))) = w(i/n), we have f̂ker-Wh (x) = n−1
∑n

i=1 w(i/n)Kh(x− Z(i)).
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In a similar way, projection estimators can be developed for the biased data model. The
general idea is to approximate g (or f) by its orthogonal projection onto some function space.
Let A be the interval on which the function f is estimated.

First, suppose that the restriction of g on some interval A is square integrable, that is g1A ∈
L
2(A). Let (ϕj)j≥0 be an orthonormal basis of L2(A). Define the subspaces Sm = Span(ϕj , j =

0, . . . ,Dm − 1) of dimension Dm. The orthogonal projection gm in the L
2–sense of g on Sm is

given by gm =
∑Dm−1

j=0 ajϕj with coefficients aj = 〈g, ϕj〉 = E[ϕj(Z1)]. A natural estimator of

aj is given by âj = n−1
∑n

i=1 ϕj(Zi). Hence, gm can be estimated by ĝprojm (x) =
∑Dm−1

j=0 âjϕj(x).
Applying the plug-in approach for bias correction, an estimator of f is given by

f̂proj-Pm (x) = w(Ĝn(x))ĝ
proj
m (x) = w(Ĝn(x))

Dm−1
∑

j=0

(

1

n

n
∑

i=1

ϕj(Zi)

)

ϕj(x) , x ∈ R .

To apply the second bias-correction method, suppose that f restricted on A is square in-
tegrable, that is f1A ∈ L

2(A). Then the orthogonal projection fm of f on Sm is given by

fm =
∑Dm−1

j=0 bjϕj with coefficients bj = 〈f, ϕj〉 = E[ϕj(Y )]. With ψ = ϕj in (5), an estimator

of bj is given by b̂j = n−1
∑n

i=1 w(Ĝn(Zi))ϕj(Zi) = n−1
∑n

i=1w(i/n)ϕj(Z(i)). Hence, a second
projection-type estimator of f is given by

(7) f̂proj-Wm (x) =

Dm−1
∑

j=0

b̂jϕj(x) =

Dm−1
∑

j=0

1

n

(

n
∑

i=1

w

(

i

n

)

ϕj(Z(i))

)

ϕj(x) , x ∈ R .

In the rest of the paper (ϕj)j≥0 is the trigonometric basis on A = [l1, l2] defined by ϕj(x) =

(l2 − l1)
−1/2ϕ0

j ((x − l1)/(l2 − l1)) and ϕ0
0(x) = 1[0,1](x), ϕ

0
2j+1(x) =

√
2 cos(2πjx)1[0,1](x) for

j ≥ 0, ϕ2j(x) =
√
2 sin(2πjx) for j ≥ 1. We consider subspaces Sm of dimension Dm =

2m+1. This basis has the advantage of simplicity and provides nested models allowing for fast
computations: when increasing the dimension from Dm to Dm+1, only two more coefficients are

taken into account, the previous ones being still valid. In other words, f̂proj-Wm+1 (x) = f̂proj-Wm (x)+

b̂2m+1ϕ2m+1(x) + b̂2m+2ϕ2m+2(x).

3.2. Pointwise and integrated risk of kernel estimators. The following proposition is
easily shown and proved in Section 7.

Proposition 3.1.

(i) If f is bounded, K is square-integrable and conditions (3) and (4) are fulfilled, then, for any

x0, the estimator f̂ ker-Wh defined by (6) satisfies

E

[

(f̂ker−Wh (x0)− f(x0))
2
]

≤ 3(Kh ∗ f(x0)− f(x0))
2 +

C1

nh
,

where C1 = 3
(

‖w‖22 + 5db2/(4a6)
)

‖f‖∞‖K‖22 and ‖w‖22 =
∫ 1
0 w

2(u)du.
(ii) Assume that f is a square integrable density and that (2) and (3) hold. Then the MISE of

f̂ ker-Wh defined by (6) satisfies

E

[

‖f̂ ker-Wh − f‖22
]

≤ 3‖Kh ∗ f − f‖2 + C2

nh
,

where C2 = 3(‖w‖22 + b2/a6)‖K‖22.
We see that both bounds are the sum of two terms, that can be interpreted as a squared

bias term and a variance term. Indeed, the squared bias terms 3(Kh ∗ f(x0) − f(x0))
2 and

3‖Kh ∗f−f‖2 decrease when h tends to zero, and the variance terms C1/nh and C2/nh increase
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when h increases. For this reason bandwidth selection devices always aim at achieving a data-
driven compromise between these two antagonist terms, in order to minimize the corresponding
square risk.

Under additional assumptions on the regularity of the function f and on the kernel, more
precise orders for the bias term may be obtained. Note ⌊x⌋ the largest integer not greater than
x. For pointwise estimation e.g. suppose that

(H1) f belongs to the Hölder class Σ(β,L) given by

Σ(β,C) = {f : R → R, f (ℓ)exists for ℓ = ⌊β⌋and |f (ℓ)(x)− f (ℓ)(x′)| ≤ L|x− x′|β−ℓ,∀x, x′ ∈ R},

(H2) K is a kernel of order ℓ = ⌊β⌋ satisfying
∫

|u|β|K(u)|du <∞.

Recall that a kernel of order ℓ satisfies
∫

xkK(x)dx = 0 for k = 1, . . . , ℓ. Assumption (H2) is also
considered in Tsybakov (2004) and Kerkyacharian et al. (2001), where examples of such kernels

are given. Now, under (H1)-(H2), Tsybakov (2004) shows that (Kh ∗ f(x0)− f(x0))
2 ≤ C̃2

1h
2β

with C̃1 = L
∫

|u|β |K(u)|du/ℓ!. Concerning the integrated risk, when it is computed on a
compact set, it has the same order under (H1)-(H2). For more general settings, one may consider
functions belonging to Nikol’ski classes. We refer the reader to Tsybakov (2004) for details.

Remark 3.1. The bias is minimal when the order of the kernel is larger than the regularity of
the function. Since the regularity is unknown, it is natural to think that the higher the kernel
order, the better. But we failed to illustrate it on the simulations, and simply used symmetric
kernels (which are of order one).

Risk bounds for the plug-in kernel estimator f̂ker-Ph are a consequence of usual density es-
timation results or of the above bounds in the particular case of w ≡ 1, and of the following
inequality.

[

f̂ker-Ph (x0)− f(x0)
]2

=
[

w(Ĝn(x0))(ĝ
ker
h (x0)− g(x0)) + (w(Ĝn(x0))− w(G(x0)))g(x0)

]2

≤ 2

a2

[

ĝkerh (x0)− g(x0)
]2

+
2b2

a6
g2(x0)

[

Ĝn(x0)−G(x0)
]2

.

Since E[(Ĝn(x0)−G(x0))
2] ≤ 1/n,

E

[

(f̂ker-Ph (x0)− f(x0))
2
]

≤ 2

a2
E

[

(ĝkerh (x0)− g(x0))
2
]

+
2b2g2(x0)

a6n
.(8)

Thus, (i) of Proposition 3.1 holds for f̂ker-Ph , under the assumption that g is bounded and C1 is
replaced by C ′

1 = (2‖g‖∞/a2)
(

‖K‖22 + db2‖g‖∞/a4
)

.
Analogously, in the integrated case, we get

(9) E

[

‖f̂ker-Ph − f‖22
]

≤ 2

a2
E

[

‖ĝkerh − g‖22
]

+ 2
b2‖g‖22
a6n

,

instead of (ii) of Proposition 3.1. For bounds on E
[

(ĝkerh (x0)− g(x0))
2
]

or E
[

‖ĝkerh − g‖22
]

, we
refer to Tsybakov (2004).

In all the previous cases, if the bandwidth could be chosen of order n−1/(2β+1), where β is
the Hölder (or the Nikol’ski) regularity index, then the resulting rate of the estimators is of

order n−2β/(2β+1). As β is unknown, this choice cannot be done in that naive way and thus
data-driven methods for bandwidth selection are required.
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3.3. Risk of the projection estimator. The following risk bound holds for the projection
estimator.

Proposition 3.2. Consider the estimator f̂proj-Wm defined by (7), then

(10) E

[

‖f̂proj-Wm − f1A‖22
]

≤ ‖f1A − fm‖22 + C3
Dm

n
,

where C3 = 2(‖w‖22 + b2/a6).

Again, the risk bound involves a squared bias term, ‖f1A − fm‖22, which decreases when Dm

increases, and a variance term, C3Dm/n, which increases with Dm.
To evaluate the order of the bias of a projection estimator, it is common to consider regularity
spaces that are different from those used in kernel estimation. Let f1A = fA belong to a ball
of some Besov space Bα,2,∞(A) with r + 1 ≥ α. Then for ‖fA‖α,2,∞ ≤ L we have ‖fA − fm‖22 ≤
C(α,L)D−2α

m (Barron et al., 1999, Lemma 12). Thus, choosingDm∗ = O(n1/(2α+1)) in inequality

(10) yields that the mean square risk satisfies E(‖f̂m∗ − fA‖22) ≤ O(n−2α/(2α+1)). This rate is
known to be optimal in the minimax sense for density estimation for direct observations (Donoho
et al., 1996).

4. Bandwidth and model selection

4.1. Model selection. We start with the projection estimators for which the classical penal-
ization approach by Barron et al. (1999) can be easily explained and applied. In Section 3.3 it
is made clear that the risk is minimized when a bias-variance trade-off is achieved. In practice
this is done by looking for the value m in Mn := {1, . . . ,mn,mn ∈ N,mn ≤ n} which minimizes
an estimate of the risk and more precisely an estimate of the bound ‖f1A − fm‖22 + C3Dm/n.
The two terms of the previous sum are considered separately. First the bias can be written
‖f1A − fm‖22 = ‖f1A‖22 − ‖fm‖22, since fm is an L

2-orthogonal projection of f1A on Sm. Thus,
this term is estimated by canceling ‖f1A‖22 which does not depend on m and replacing ‖fm‖22
by the natural estimate ‖f̂proj-Wm ‖22. Next, the variance is estimated by its bound but with a
special care on constants. Here the variance bound has order Dm/n. Then, in C3, only the first
part 2‖w‖22 is due to the variance, the other part can be shown to be negligible. Lastly, the
factor 2 is arbitrary, and has to be evaluated more precisely for the complete procedure to work.

This is why it is replaced by a numerical constant κf1 : the theoretical result will say that the

procedure works if κf1 is larger than a minimal value. In ”simple” theoretical case (e.g. pure
white noise models), the minimal value can be obtained from the proof of the results and it can
be proved that the risk of the estimate is explosive if the constant is taken too small, see Birgé

and Massart (2007). So, the constant κf1 has to be calibrated and methods to do it have been
developed, see Baudry et al. (2012) for both principles and practical algorithms.

More precisely, we select models m̂g and m̂f defined by

m̂g = arg min
m∈Mn

[

−‖ĝprojm ‖22 + peng(m)
]

, m̂f = arg min
m∈Mn

[

−‖f̂proj-Wm ‖22 + penf (m)
]

,

where the penalty terms peng(m) and penf (m) are defined by

peng(m) = κg1
Dm

n
, penf (m) = κf1‖w‖22

Dm

n
,

with constants κg1, κ
f
2 calibrated by preliminary simulations. Then we consider the density

estimates f̂proj-Pm̂g (x) = w(Ĝn(x))ĝ
proj
m̂g (x) and f̂proj-W

m̂f (x). The following result can be shown.
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Theorem 4.1. Assume that mn ≤ O(
√
n) and that f is bounded on A, i.e. ‖fA‖∞ <∞. Then

there exists a numerical constant κ0 such that for any κf1 ≥ κ0 we have

(11) E

[

‖f̂proj-W
m̂f − f1A‖22

]

≤ C inf
m∈Mn

(

‖f1A − fm‖22 + ‖w‖22
Dm

n

)

+K
log2(n)

n
,

where C is a numerical constant and K depends on a, b, ‖f1A‖∞ and the basis.

Risk bounds of the form (11) are often called oracle inequality: it means that the data driven

estimator f̂proj-W
m̂f performs the bias-variance compromise, up to the multiplicative constant C

and the residual K log2(n)/n. Note that the last term is clearly negligible with respect to the
order of the infimum in all Besov cases described above. This result can easily be generalized to
other bases, such as piecewise polynomials or wavelets.

The proof of the theorem relies on Talagrand’s inequality and follows the line of the proof of
Theorem 4.2 in Brunel and Comte (2005). Therefore, only a sketch of the proof is provided in
Section 7.

Lastly, using inequality (9) yields that f̂proj-Pm̂g leads to an optimal bias-variance trade-off with
respect to density g, and is optimal if f and g belong to the same Besov space. More precisely,
we have

E

[

‖f̂proj-Pm̂g − f1A‖22
]

≤ C
2

a2
inf

m∈Mn

(

‖g1A − gm‖22 +
Dm

n

)

+K ′ log
2(n)

n
,

where C is the same numerical constant as in the theorem and K ′ is a constant depending on
a, b, ‖g1A‖∞, ‖g‖2 and the basis.

4.2. Pointwise bandwidth selection. In this section, devices for a data-driven selection of
the bandwidth h for the kernel estimators ĝkerh and f̂ker-Wh are considered. Here we follow
Goldenshluger and Lepski (2011) for pointwise adaptive and global adaptive estimators: indeed,
this recent method allows for convenient and rigorous control of the estimators, relying on
empirical processes study and powerful deviation inequalities. Moreover, part of the results are
nonasymptotic, contrary to many kernel studies. Applying this method in the case of biased
data is a novelty, in theory and in practice.

Denote by H a finite collection of bandwidths given by

(12) H =

{

hk, k = 1, . . . ,Mn,
1

n
≤ hk ≤ 1

}

, with Mn an integer, Mn ≤ n .

First, consider the estimator ĝkerh of g (used to define f̂ker-Ph ). Let x0 be fixed and consider the
pointwise adaptive bandwidth selection method of Goldenshluger and Lepski (2011), that is a

bandwidth ĥg(x0) depending on x0 is selected. Introduce the estimator ĝkerh,h′ depending on two

bandwidths h, h′ defined by

ĝkerh,h′(x) = Kh′ ∗ ĝkerh (x) , x ∈ R .

Notice the symmetry of ĝkerh,h′ in h and h′. As for model selection, the principle is to approximate

the pointwise squared bias. The specific idea here is based on the fact that Kh′ ∗ (Kh ∗ g − g)

tends to Kh ∗ g − g when h′ tends to zero. Thus for small h′,
(

ĝkerh,h′(x0)− ĝkerh′ (x0)
)2

may be a

relevant approximation of the squared bias. Unfortunately, this estimate has a bias that is of
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the same order as the variance. To take account of this bias, we define

V g
0 (h) = κg2‖K‖21‖K‖22‖g‖∞

log n

nh
,

Ag0(h, x0) = sup
h′∈H

[

(

ĝkerh,h′(x0)− ĝkerh′ (x0)
)2

− V g
0 (h

′)

]

+

.

The term Ag0(h, x0) is the squared bias estimate, and V g
0 (h) can be interpreted as a variance

estimate, augmented by a log(n) factor. Consequently, one shall use the bandwidth ĥg(x0)
minimizing the sum of both terms, that is,

ĥg(x0) = argmin
h∈H

{Ag0(h, x0) + V g
0 (h)} .

Hence, the pointwise adaptive version of estimator f̂ker-Ph (x0) of f(x0) is given by

f̂ker-P
ĥg(x0)

(x0) = w(Ĝn(x0))ĝ
ker
ĥg(x0)

(x0) .

Here, the existence of a minimal value for the constant κg2 in the variance term V g
0 (h) has been

studied only very recently in Lacour and Massart (2015), and the calibration procedures are not
yet well understood. This is probably due to the fact that the variance estimate V0(h) plays
two different roles (variance estimate and bias correction). This is why the empirical study of
Section 5 is of interest.

For the estimator f̂ker-Wh (x0) we proceed in the same way. Define

f̂ker-Wh,h′ (x) = Kh′ ∗ f̂ker-Wh (x) , x ∈ R ,

V f
0 (h) = κf2‖K‖21‖K‖22

‖f‖∞
a

log n

nh
,

Af0(h, x0) = sup
h′∈H

[

(

f̂ker-Wh,h′ (x0)− f̂ker-Wh′ (x0)
)2

− V f
0 (h′)

]

+

.

Then, the pointwise adaptive version of estimator f̂ker-Wh (x0) of f(x0) is given by

f̂ker-W
ĥf (x0)

(x0) , with ĥf (x0) = argmin
h∈H

{

Af0 (h, x0) + V f
0 (h)

}

.

As mentioned above, the numerical constants κg2 and κf2 are calibrated by simulation. The

other constants in V g
0 (h) and V f

0 (h) are known, except ‖g‖∞ or ‖f‖∞ which in practice are
replaced with some estimators (see Section 5.2). We refer to Section 3.3 in Comte et al. (2011)
for an example of theoretical penalty involving such estimate; this development is omitted here
to avoid additional technicalities. Let us mention that it is an open question to determine if it

would be clever to look for variance estimates V g
0 (h), V

f
0 (h) depending on x0: different estimates

can be considered, which would imply both theoretical and empirical difficulties.

Now the following result holds for the estimator f̂ker-W
ĥf (x0)

(x0).

Theorem 4.2. Assume that f is bounded, K is integrable and bounded and that conditions (3),
(4) hold. Let H be given by (12) and assume that for all h ∈ H, nh ≥ log2(n) and that there
exists some finite constant S (independent of n) such that

(13)
1

n

∑

h∈H

1

h
≤ S .
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Then, there exist a numerical constant κ̃0 such that for κf2 ≥ κ̃0,

(14) E

[

(

f̂ ker-W
ĥf (x0)

(x0)− f(x0)
)2
]

≤ C∗ inf
h∈H

(

‖Kh ∗ f − f‖2∞ + V f
0 (h)

)

+ C̄
log n

n
,

where C∗ is a constant depending on ‖K‖1 only, and C̄ > 0 a constant depending on a, b, ‖f‖∞, S,
‖K‖1, ‖K‖2 and ‖K‖∞.

The definition of the bandwidth collection H via (12) is very general, only condition (13)
requires some comments and illustration. We give two examples satisfying (13).

(C1) The collection H = {hk = 1/k, k = 1, . . . , [
√
n]} satisfies (13) with Mn = [

√
n] and

S = 1.
(C2) The collection H = {hk = 2−k, k = 1, . . . , [log2(n)]} is another example satisfying (13)

with Mn = [log2(n)] and S = 2.

Note that under Assumption (H1)-(H2), ‖Kh ∗ f − f‖2∞ ≤ C2
2h

2β since the bound given for
(Kh ∗ f(x0)− f(x0))

2 does not depend on x0. In Theorem 4.2 we keep the general form for the
squared bias since it does not require any regularity condition on f . The order of the bias term
follows without requiring to know any unreachable constant.

Inequality (14) implies that the procedure almost performs the best possible compromise be-
tween the two terms of the bound given in Proposition 3.1: the bias-variance trade-off is achieved,
with a loss of order log(n), which is classical for pointwise adaptive procedures. If Assumptions

(H1)-(H2) are fulfilled, then the right-hand side of (14) is of order (n/ log(n))−2β/(2β+1) provided

that H contains bandwidths hk of order n−1/(2β+1). This is the case for collection [C2], and also
for [C1] if β ≥ 1/2. Moreover, in density estimation (corresponding to w ≡ 1), the log(n)-loss is
known to be unavoidable and thus adaptive minimax (see Butucea (2000)).

The results for the plug-in kernel estimators are a consequence of the previous ones. Clearly,
inequality (14) holds for w ≡ 1, and thus by (8) and under the assumptions of Theorem 4.2,
there exists a constant κ∗0 such that for κg2 ≥ κ∗0, we have

E

[

(

f̂ker-P
ĥg(x0)

(x0)− f(x0)
)2
]

≤ C∗ 2

a2
inf
h∈H

(‖Kh ∗ g − g‖∞ + V g
0 (h)) + C̄ ′′ log n

n
,

where C∗ is the same constant as in the theorem and C̄ ′′ is a constant depending on a, b, ‖g‖∞, S,
‖K‖1, ‖K‖2 and ‖K‖∞. If in addition g belongs to a Hölder class with regularity parameter β∗,
then ‖Kh∗g−g‖∞ ≤ h2β

∗
. Therefore, the risk bound on f̂ker-P

ĥg(x0)
(x0) is an automatic compromise

related to the regularity of g and provides the best possible rate if f and g belong to the same
Hölder space (i.e. β = β∗).

4.3. Global bandwidth selection. In a similar way, a procedure for global bandwidth selec-
tion is developed, that is a bandwidth ĥ is selected that is valid for all x in R. Denote

V g(h) = κg3‖K‖21‖K‖22
1

nh
, V f (h) = κf3max(‖K‖21, 1)‖K‖22

‖w‖22
nh

,

Ag(h) = sup
h′∈H

(

‖ĝkerh,h′ − ĝkerh′ ‖2 − V g(h′)
)

+
,

Af (h) = sup
h′∈H

(

‖f̂ker-Wh,h′ − f̂ker-Wh′ ‖2 − V f (h′)
)

+
,

ĥg = argmin
h∈H

(Ag(h) + V g(h)) , ĥf = argmin
h∈H

(

Af (h) + V f (h)
)

,
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Figure 1. Densities for calibration and simulations.

where κg3 and κf3 are numerical constants calibrated by simulations. Then global adaptive
estimators of f are given by

f̂ker-P
ĥg

(x) = w(Ĝn(x))ĝ
ker
ĥg

(x) and f̂ker-W
ĥf

(x) , x ∈ R ,

for which a risk bound is given in Theorem 4.3 hereafter.

Theorem 4.3. Assume that f is bounded and square-integrable, K is integrable and bounded
and that conditions (3), (4) hold. Let H given by (12) and assume that for any c > 0, there
exists a finite constant B(c) (independent of n) such that

(15)
∑

h∈H
e−c/h ≤ B(c) .

Denote fh = Kh ∗ f . Then there exists a constant ˜̃κ0 for any κf1 ≥ ˜̃κ0, we have

E

[

‖f̂ ker-W
ĥf

− f‖22
]

≤ C inf
h∈H

{

‖K‖21‖f − fh‖22 + V f (h)
}

+ C ′ log n
n

,

where C is a numerical constant and C ′ is a constant depending on a, b, ‖f‖∞, B(‖K‖22/(12‖f‖∞)),
‖K‖1, ‖K‖2, ‖K‖∞.

It is worth emphasizing that, as previously, this inequality proves that a bias-variance trade-
off is achieved in a nonasymptotic way and without any regularity assumption on f . Moreover,

there is no additional log(n) factor in the definition of V f (h), contrary to V f
0 (h). Then, under

regularity conditions on g and an order condition on K, we may obtain standard convergence
rates.

As previously, for the plug in estimator in the integrated case, we get by (9) and by Theorem
4.3 that

E

[

‖f̂ker-P
ĥg

− f‖22
]

≤ C
2

a2
inf
h∈H

{

‖K‖21‖g − gh‖22 + V g(h)
}

+ C ′′ log n
n

,

where C is the same numerical constant as in the theorem and C ′′ is a constant depending on
a, b, ‖g‖∞, ‖g‖2, B(‖K‖22/(12‖g‖∞)), ‖K‖1, ‖K‖2, ‖K‖∞.

5. Experimental study

Now we have at hand six estimators with (nearly-)optimal rates corresponding to different
statistical methods that are intrinsically interesting to compare. From a theoretic point of view,
all the procedures are proved to deliver the best possible tradeoff when selecting the model or
the bandwidth. Now we study their practical performances and try to answer the questions on
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Figure 2. Each boxplot represents the values of MISE*1000 of the six estimators
computed on 1000 datasets for 6 different distributions with n = 500 and for
µ = 0.1, 0.8, 2 (from left to right in the figure).

the best bias-correction method, the best estimation strategy and the best data-driven selection
approach from a practical viewpoint. To this end this section provides a simulation study and
numerical results on a real data example.

5.1. Pile-up model. All simulations are carried out in the pile-up model which is motivated
by an application in fluorescence. The model is described in detail in Subsection 2.2. We just
recall that observations are of the form

(16) Zi = min{Yi,1, . . . , Yi,Ni
} , i = 1, . . . , n ,

where Ni follows the (restricted) Poisson distribution with parameter µ and the fluorescence
lifetimes Yi,j are i.i.d. with density f . We have H(u) = (1− e−uµ)/(1− e−µ), so that the model
assumptions (3) and (4) are fulfilled with a = µ/(eµ−1), d = µeµ/(eµ−1) and b = µ2/(1−e−µ).
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Table 1. Mean MISE*1000 values for the six different estimators in 36 different
settings. Each MISE value is based on 1000 simulated datasets.

Laplace distribution L(0.5) Beta distribution B(5, 3)
µ 0.1 0.8 2 0.1 0.8 2
n 500 2000 500 2000 500 2000 500 2000 500 2000 500 2000

f̂ker-W
ĥf

10.5 4.03 12.4 2.74 13.6 6.94 11.7 7.38 12.4 7.37 55.1 7.55

f̂ker-P
ĥg

11.6 3.08 11.7 3.06 17.2 4.05 11.5 7.38 12.0 7.14 17.2 10.1

f̂ker-W
ĥf (x)

17.5 9.18 18.2 10.6 24.6 12.9 34.8 18.7 45.5 18.1 84.8 23.7

f̂ker-P
ĥg(x)

17.5 9.47 21.7 9.64 51.0 16.6 35.0 17.5 45.5 16.0 89.5 23.5

f̂proj-W
m̂f 8.61 2.93 8.79 3.03 10.6 3.74 12.5 4.03 13.5 4.11 17.7 4.74

f̂proj-Pm̂g 8.60 2.94 9.28 3.17 16.5 5.74 12.6 3.88 12.1 3.59 20.6 5.57

Normal distribution N (10, 3) Mixture 7
10N (5.5, 1) + 3

10N (7, 0.16)
µ 0.1 0.8 2 0.1 0.8 2
n 500 2000 500 2000 500 2000 500 2000 500 2000 500 2000

f̂ker-W
ĥf

1.46 1.14 1.07 0.434 1.24 0.463 5.31 1.81 6.81 1.61 7.31 4.02

f̂ker-P
ĥg

1.15 0.584 1.29 0.691 1.80 0.880 6.31 1.58 6.75 1.61 7.62 1.82

f̂ker-W
ĥf (x)

3.61 2.67 2.94 1.62 2.51 1.95 8.57 5.02 8.39 5.39 9.69 7.17

f̂ker-P
ĥg(x)

3.61 2.20 2.94 2.36 3.47 1.88 8.37 5.00 9.28 6.76 9.69 8.02

f̂proj-W
m̂f 1.12 0.220 1.22 0.223 1.52 0.285 3.98 1.18 4.21 1.24 5.57 1.50

f̂proj-Pm̂g 1.12 0.222 1.25 0.282 2.27 1.05 3.99 1.17 4.94 1.26 11.2 4.77
Exponential distribution E(0.5) Gamma distribution Γ(3, 0.5)

µ 0.1 0.8 2 0.1 0.8 2
n 500 2000 500 2000 500 2000 500 2000 500 2000 500 2000

f̂ker-W
ĥf

109 96.4 129 97.2 138 98.3 4.02 2.86 4.88 2.57 14.5 2.67

f̂ker-P
ĥg

114 97.6 115 98.6 132 105 3.76 2.66 4.36 1.77 6.61 2.32

f̂ker-W
ĥf (x)

125 105 135 109 150 120 11.9 4.71 13.4 4.83 15.2 9.17

f̂ker-P
ĥg(x)

126 105 136 105 160 104 11.7 4.60 8.99 5.42 14.6 10.7

f̂proj-W
m̂f 182 169 182 169 186 171 4.52 1.48 4.72 1.52 5.95 1.87

f̂proj-Pm̂g 197 184 395 398 1712 1810 4.55 1.49 5.76 1.83 14.1 4.35

5.2. Computational issues. We implemented the adaptive pointwise kernel estimators f̂ker-P
ĥg(x0)

and f̂ker-W
ĥf (x0)

defined in Subsection 4.2 for different x0 in an interval, the adaptive global kernel es-

timators f̂ker-P
ĥg

and f̂ker-W
ĥf

given in in Subsection 4.3 as well as the adaptive projection estimators

f̂proj-Pm̂g and f̂proj-W
m̂f described in Section 4.1.

For the kernel estimators the bandwidth collection (C2) is used. Indeed, collection (C1) is
much larger without leading to proportionally better results. Moreover, we used the gaussian

kernel of order 1, i.e. K(u) = e−u
2
/
√
2π. In the quantities V g

0 (h) and V
f
0 (h) the value of ‖g‖∞

resp. ‖f‖∞ is replaced by some estimator. More precisely, ‖g‖∞ is approximated by the 95th
percentile of {maxx0 ĝ

ker
h (x0), h ∈ H}. Likewise, ‖f‖∞ is approximated by the 95th percentile

of {maxx0 f̂
ker
h (x0), h ∈ H}. Terms involving the L2-norm as e.g. ‖ĝkerh,h′ − ĝkerh′ ‖22 in Ag(h) are

approximated by Riemann-type discretization.
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We observed that the projection estimators are much improved by normalizing f̂proj-Pm̂g and

f̂proj-W
m̂f such that their integrals equal one. However, normalization is only appropriate when
the interval where the density is estimated covers the main support of the density. For the
kernel estimators normalization does not seem to be necessary. In fact, the property is almost

automatic if K is a density because then
∫

f̂kerh (x)dx = n−1
∑n

i=1w(i/n) ≈
∫ 1
0 w(u)du = 1.

5.3. Calibration. All our estimators involve constants, namely κgj , κ
f
j , j = 1, 2, 3, that have to

be calibrated. Here, simulations are carried out to determine the best values of these constants,
that means, that we are looking for the value such that the associated MISE is minimal.

More precisely, consider any of our adaptive estimators, that we denote for a moment by f̂κ to
stress the dependence of the estimator on some constant κ that has to be calibrated. We fix some
fine grid K = [κ1, . . . , κK ] of candidate values for κ. Furthermore, we choose some sample size
n, some Poisson parameter µ and some density f . Then a dataset of the corresponding pile-up
model is generated and, for every κ ∈ K, the estimator f̂κ and the associated MISEκ = ‖f̂κ−f‖2
are evaluated on this dataset. This is repeated for 1000 datasets and the mean values of the
MISEκ for every κ ∈ K are computed. The latter are represented in Figure 4 for all of our six
estimators and for different choices of the sample size (n = 500 and n = 2000), different Poisson
parameters (λ ∈ {0.1, 0.8, 2}) and different densities f , namely

• normal distribution N (10, 1),
• a mixture of two normal distributions, 2

5N (5, 0.25) + 3
5N (7, 0.09),

• Laplace distribution L(0.5) (with f(x) = e−2|x|),
• Beta B(5, 3).

These densities are of quite different form, see Figure 1 for illustration.
Finally, the constant κ of an estimator f̂κ is chosen as the value in K such that the mean

MISEκ values are minimized (or at least small) in all here considered setups.
Our first observation is that the MISEκ-curves in Figure 4 are rather similar for both bias

correction methods. In other words, the weighted version of an estimator (i.e. f̂ker-W
ĥf

, f̂ker-W
ĥf (x0)

,

f̂proj-W
m̂f resp.) produces very similar MISEκ-curves as its plug-in counterpart (f̂ker-P

ĥg
, f̂ker-P

ĥg(x0)
,

f̂proj-Pm̂g resp.). As a consequence, similar constants may be used for both versions of an estimator.
However, the MISEκ-curves are quite different from one estimation strategy to another.

The projection estimators seem to be quite robust with regard to the choice of κ as the MISEκ-

curves are rather flat on a large interval in all settings. In the following we set κg1 = κf1 = 3.5.
Concerning the global kernel estimators MISEκ-curves are less flat, but any value around 1.5

seems to be fine in all set-ups. We will choose κf3 = 1.4 and κg3 = 1.7. Finally, a good choice for

the constants of the pointwise kernel estimators is κf2 = 0.8 and κg2 = 0.9.
Let us make a remark on the choice of the densities f considered in these simulations. It is

well known that kernel estimators may suffer from boundary effects. Indeed, when there are
observations too close to the boundaries of the interval on which the density shall be estimated,
then the kernel estimator puts mass beyond the interval boundaries (if no correction is per-
formed). As a consequence, the density is systematically underestimated on the boundaries. To
avoid that those boundary effects influence on the calibration of the κ constants, in this section
only densities have been considered that vanish (or at least get close to 0) on the estimation
interval.

5.4. Comparison of all six estimators. There are several factors potentially influencing the
performance of the different estimators. In our simulation study we consider
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• two different sample sizes (n = 500 and n = 2000),
• three levels of the Poisson parameter (µ = 0.1, µ = 0.8 and µ = 2),
• six different distributions: two distributions from calibration study (Laplace L(0.5) and
Beta B(5, 3)), two other distributions from the calibration study but with different pa-
rameters (normal N (10, 3) and a mixture 7

10N (5.5, 1)+ 3
10N (7, 0.16)) and two completely

new distributions (exponential E(0.5) and Gamma Γ(3, 0.5)), see Figure 1 for illustration.

To evaluate the performance of the estimators we proceed as in the calibration study. For each
setting the estimators and their MISE are evaluated on 1000 datasets. The boxplots in Figure 2
represent the corresponding results when the sample size is 500 and varying µ. Table 1 shows all
means of the MISE in the different settings. We now analyze the impact of the different factors
on the performance of the estimators.

Impact of the sample size. As usual, increasing the sample size results in a decrease of the
MISE. Interestingly, depending on the estimation strategy and on the type of distribution, this
decrease can be more or less pronounced. The increase of the sample size is more beneficial for the
projection estimators than for the pointwise kernel estimators. The global kernel estimators are
somewhere in between. The improvement is by far more important for the Laplace distribution
than for the exponential distribution, for example.

Impact of the Poisson parameter. In the pile-up model the Poisson parameter µ can be viewed
as an indicator for the amount of bias in the model. Indeed, when Ni = 1 in (16), there is a
single fluorescence lifetime Yi,1 and no minimum is taken in (16). So, if P(Ni = 1) is close to
1, then distribution G of Z1, . . . , Zn is approximately F and the amount of bias in the model
is very low. Intuitively, in this case the estimation problem should be much easier than in the
case where most of the observations Zi are the minimum of several values implying that G is
very different from F , that is, the model contains a lot of bias. The three levels of µ considered
here correspond to a very low (µ = 0.1), medium (µ = 0.8) and high (µ = 2) amount of bias.
More precisely, the corresponding probabilities that an observation Zi is the minimum of several
random variables (i.e. that the observation Zi is biased) are given by

Pλ=0.1(Ni ≥ 2) ≈ 0.05 , Pλ=0.8(Ni ≥ 2) ≈ 0.35 , Pλ=2(Ni ≥ 2) ≈ 0.69 .

As increasing µ results in a more difficult estimation problem, it is natural that the MISE
values increase with µ. This effect can be easily observed in Figure 2. However, there are some
exceptions where the MISE decreases when µ increases, see for example results for the Beta
distribution for n = 2000 in Table 1. This phenomenon occurs essentially for kernel estimators
and when µ passes from 0.1 to 0.8. In Subsection 5.5 we will come back to this phenomenon.

Comparison of bias-correction approaches: weighted estimators or plug-in strategy? When µ =
0.1 there is almost no bias in the model, as only 5% of the observations are biased data. Con-
sequently, almost no bias correction is necessary and thus no significant difference between the
weighted and the plug-in versions of any estimator is observed. However, for larger µ, differences
in the MISE appear for the different bias-correction methods, see for instance the projection
estimators in the exponential case or pointwise kernel estimators in the Laplace case. In Table 1
weighted estimators outperform their plug-in counterparts 60 times, plug-in versions are better
in 39 cases and in the remaining 9 cases they achieve equal MISE values. Moreover, in some
cases the plug-in version is really bad, while the weighted estimators seem to produce more
robust results. Consequently, preference should be given to weighted estimators. In particular
the weighted projection estimator almost always yields better results than its plug-in version.
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Comparison of estimation strategies: Global kernel, pointwise kernel or projection strategy?
Both pointwise kernel estimators are mostly far behind all other estimators. It seems that the
pointwise bandwidth selection fails. This is surprising as the pointwise method conceptually
outplays the global one, since it is conceived to capture peaks like in the exponential or Laplace
distribution. In our simulation study, only for the exponential distribution the pointwise method
achieves similar results to the global one, but still is doing worse. Indeed, in Figure 2 we see that
the boxplots associated with the pointwise kernel estimators are much more dispersed than the
other ones. Apparently, the method does not succeed to make good local choices. It is possible
that much larger sample sizes are necessary for the pointwise method to outperform the global
one.

Concerning the difference of the global kernel and the projection estimators, we note that the
performance depends on the underlying distribution and that there are significant differences.
Clearly, the projection estimator outperforms all other estimators for the Laplace distribution
and the normal mixture, while the global kernel estimator is better in the exponential case. In
the other cases, both strategies achieve comparable results.

5.5. Comparison to the oracle. In the previous simulations we also evaluated the oracles
for the different estimators. Here, by oracle we mean the MISE of the best estimator that

could have been chosen. More precisely, for the projection estimator f̂proj-Wm , for instance,

the oracle for a given dataset is given by minm∈M ‖f̂proj-Wm − f‖2. The mean values of these
oracles are reported in Table 2. Analyzing the oracles may give a hint on the quality of the
(simple) estimators. Furthermore, a comparison with the corresponding MISE values allows us
to evaluate the quality of the different data-driven bandwidth and model selection devices.

It is clear that the oracles of the pointwise kernel methods must be better than their global
counterparts, as for the pointwise method the best bandwidth is chosen at every point, while
the global method selects a single bandwidth that is used for the entire estimation interval. We
may conclude that the pointwise bandwidth selection method yields a log(n)-loss in the variance
and in the rate, which makes at the end the method less reliable. It is interesting to see that
the difference between the oracles of the pointwise and the global kernel methods essentially
depends on the type of distribution. While there is a factor 4 between the pointwise and global
oracles in the Laplace, mixture and Gamma case, there is only a factor 1.5 in the exponential
case.

As the projection estimators also rely on a global selection method for the entire interval,
it is natural that their oracles are much worse than the one of the pointwise kernel methods.
Among the global selection methods, the weighted global kernel estimator f̂ker-W

ĥf
outperforms

the others in the Laplace and the exponential case, whereas the weighted projection estimator

f̂proj-W
m̂f has the best oracles in the Gamma and the normal distribution. In the mixture model, all
global estimators achieve competing results, and in the Beta setting both projection estimators
outmatch the global kernel methods. This illustrates that the performance of different estimation
strategies depends on the density to estimate.

As for the MISE values it sometimes occurs that the oracles diminish when the Poisson
parameter passes from 0.1 to 0.8, see e.g. the Laplace or the Beta distribution. This is counter-
intuitive as a larger µ value means more data bias. Thus, it is not the bandwidth or model
selection device that causes the phenomenon, but it is likely that the problem is inherent to the
estimation strategies. As the problem occurs only for small values of µ, it is possible that the
bias correction fails in some settings where there is only little amount of bias in the data.

Now it is interesting to analyze the difference of the oracles in Table 2 with the actually
achieved MISE values by the adaptive procedures given in Table 1. Obviously, the kernel
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Table 2. Mean oracles*1000 values for the six different estimators corresponding
to the simulation results in Table 1.

Laplace distribution L(0.5) Beta distribution B(5, 3)
µ 0.1 0.8 2 0.1 0.8 2
n 500 2000 500 2000 500 2000 500 2000 500 2000 500 2000

f̂ker-W
ĥf

5.40 1.95 5.29 2.04 6.62 2.53 10.9 4.13 11.2 4.23 12.5 4.90

f̂ker-P
ĥg

5.40 1.95 5.37 2.06 7.55 2.81 10.9 4.13 11.3 4.18 15.4 5.44

f̂ker-W
ĥf (x)

1.50 0.443 1.43 0.477 1.73 0.569 3.92 1.29 4.10 1.34 4.68 1.53

f̂ker-P
ĥg(x)

1.49 0.442 1.52 0.506 2.31 0.755 3.92 1.29 4.02 1.25 4.97 1.58

f̂proj-W
m̂f 5.98 2.11 5.99 2.15 7.19 2.66 8.03 2.85 7.97 2.93 9.29 3.26

f̂proj-Pm̂g 5.98 2.12 6.11 2.19 8.44 3.11 7.80 2.77 6.22 2.48 11.0 3.48

Normal distribution N (10, 3) Mixture 7
10N (5.5, 1) + 3

10N (7, 0.16)
µ 0.1 0.8 2 0.1 0.8 2
n 500 2000 500 2000 500 2000 500 2000 500 2000 500 2000

f̂ker-W
ĥf

0.985 0.373 1.06 0.374 1.24 0.447 2.70 1.06 2.73 1.09 3.20 1.28

f̂ker-P
ĥg

0.985 0.373 1.11 0.383 1.54 0.555 2.70 1.06 2.71 1.09 3.38 1.30

f̂ker-W
ĥf (x)

0.444 0.127 0.481 0.127 0.598 0.162 0.806 0.273 0.835 0.292 1.05 0.360

f̂ker-P
ĥg(x)

0.444 0.127 0.490 0.129 0.660 0.182 0.806 0.273 0.840 0.293 1.06 0.366

f̂proj-W
m̂f 0.655 0.195 0.717 0.191 0.829 0.247 2.78 0.933 2.86 0.979 3.44 1.15

f̂proj-Pm̂g 0.656 0.196 0.822 0.242 1.65 0.656 2.75 0.917 2.77 0.967 4.35 2.37
Exponential distribution E(0.5) Gamma distribution Γ(3, 0.5)

µ 0.1 0.8 2 0.1 0.8 2
n 500 2000 500 2000 500 2000 500 2000 500 2000 500 2000

f̂ker-W
ĥf

94.5 83.7 97.5 84.8 103 89.0 3.27 1.17 3.46 1.22 4.18 1.51

f̂ker-P
ĥg

95.4 84.2 104 88.6 120 98.8 3.29 1.17 3.64 1.26 5.26 1.69

f̂ker-W
ĥf (x)

65.4 60.5 67.9 62.1 70.2 65.1 0.849 0.291 0.854 0.290 0.938 0.315

f̂ker-P
ĥg(x)

65.8 60.7 71.2 63.7 77.5 68.4 0.857 0.293 0.953 0.315 1.44 0.441

f̂proj-W
m̂f 174 164 175 164 179 166 3.10 1.06 3.25 1.11 4.06 1.36

f̂proj-Pm̂g 188 178 357 350 1054 1050 3.19 1.08 4.08 1.33 7.72 2.43

pointwise estimator is not able to take advantage of its very small oracles. It is evident that
the pointwise bandwidth selection fails completely. There is a factor 10 to 20 between the
oracles and the corresponding MISE values, increasing with µ. The exponential case is the only
exception with a factor 2. For the global kernel estimators the loss is at most a factor 2, and
in the exponential, normal and Gamma case the situation is even better. Finally, concerning
projection estimators, they even do a bit better than the global kernel methods.

5.6. Application to real data. We now apply our statistical methods to real fluorescence
lifetime measurements. Here the variables Yi,j are the sum of two quantities, say Yi,j = Fi,j+Ii,j,
where Fi,j denotes the fluorescence lifetime of a molecule and Ii,j is a sort of (random) process
time of the signal due to the measuring instrument. Denote fF and fI the densities of Fi,j and
Ii,j, resp. Then density f , which is to be estimated from the data, is the convolution f = fF⊗fI .
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Figure 3. (a) Histogram of instrumental function fI . (b) Fluorescence data and
density f . (c) Best estimator and density f .

The principal advantage of the dataset at hand is that density f is exactly known, such that we
are able to evaluate the performance of the different estimators. According to the physicists, the
fluorescence lifetimes of the here analyzed specimen are known to be exponentially distributed
with mean 2.54 ns. The instrumental function fI can be observed separately, that is, we dispose
of an independent noise sample of size 259, 386 (see Figure 3(a)). That is, fI is considered to
be a known function. The Poisson parameter, which is directly related to the laser intensity, is
known to be µ = 0.166. Note that the same dataset has already been analyzed in Comte and
Rebafka (2012), but from a deconvolution point of view, that is the aim was the recovery of the
exponential density fF . Here we are interested in the estimation of f = fF ⊗ fI .

Figure 3(b) shows the data in form of a histogram with very fine bins and density f . The
sample size is 17, 402. Here we clearly observe the model bias, that is the histogram is biased in
the sense that mass is shifted to the origin compared to the original density f .

On this dataset the estimators achieve the following squared errors ‖f − f̂‖2:
f̂ker-W
ĥf (x0)

f̂ker-P
ĥg(x0)

f̂ker-W
ĥf

f̂ker-P
ĥg

f̂proj-W
m̂f f̂proj-Pm̂g

‖f − f̂‖2 5.18 10−5 5.30 10−5 6.18 10−5 6.74 10−5 4.48 10−5 4.43 10−5

We note that the squared error terms are all of the same order and the plug-in projection

estimators f̂proj-Pm̂g yields the best approximation. For illustration, Figure 3(c) displays the plug-

in projection estimator f̂proj-Pm̂g and the true density f . We can see that the projection estimator
gives a very good recovery of the target density f .

6. Conclusion

We resume the three aims of our work enunciated in the introduction (Section 1).
First of all, we managed to construct nonparametric estimators for the biased data model

given by (1), namely projection and kernel estimators both with data-driven model or bandwidth
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selection. On a real data example of fluorescence lifetime measurements all estimators achieve
very satisfying results.

Second, from a theoretical point of view it is shown that all these estimators are (nearly-)rate
optimal. In other words, all procedures minimize the MISE when automatically selecting the
model or the bandwidth. However, an extensive simulation study for the pile-up model reveals
that the pointwise adaptive kernel estimators fail in practice and should not be used in general.
Nevertheless, projection estimators as well as global adaptive kernel estimators achieve very
good results in various settings. Furthermore, according to our numerical results, the loss of the
adaptation step in comparison to the oracles is rather small for these estimators.

Third, for all projection and kernel estimators the correction of the model bias can be done
in two ways: global correction (plug-in estimators) or correction of every datapoint (weighted
estimators). The theoretical results hold for both bias-correction methods. Numerical results
show that both methods work very well in practice. Weighted estimators slightly tend to do
better and seem to be more robust than the corresponding plug-in methods.

The final conclusion of the simulation study is that although the performance of the global
kernel estimators is the best in some settings, the weighted projection estimator has an excellent
overall performance and should be the method of choice.

7. Appendix

7.1. Proof of Proposition 3.1.

Proof of (i). Let x0 be a fixed point. Denote by f̌h the pseudo-estimator of f given by f̌h(x) =
n−1

∑n
i=1 w(G(Zi))Kh(x− Zi). We write

(17) f̂ker-Wh (x0)−f(x0) =
(

f̂ker-Wh (x0)− f̌h(x0)
)

+
(

f̌h(x0)− E[f̌h(x0)]
)

+
(

E[f̌h(x0)]− f(x0)
)

.

First, we state that by property (5) and with the notation fh(x) = Kh ∗ f(x), we have

(18) E[f̌h(x0)]− f(x0) = E[Kh(x0 − Yi)]− f(x0) = Kh ∗ f(x0)− f(x0) = (fh(x0)− f(x0)) .

Therefore, the last term in (17) is a standard bias term in kernel density estimation (Tsybakov,
2004). To study the second term of (17), we successively apply property (5), 0 ≤ w ≤ 1/a and
the fact that K is square-integrable to obtain

E

[

(

f̌h(x0)− E(f̌h(x0))
)2
]

=
1

n
Var (w(G(Z1))Kh(x0 − Z1))

≤ 1

n
E

[

{w(G(Z1))Kh (x0 − Z1)}2
]

≤ 1

an
E
[

K2
h (x0 − Y1)

]

=
1

anh2

∫

K2

(

x0 − y

h

)

f(y)dy

≤ 1

anh
‖f‖∞‖K‖22 .(19)

For the first term in decomposition (17), the Lipschitz property of w implies that

E

[

(

f̂ker-Wh (x0)− f̌h(x0)
)2
]

≤ c2w
n

n
∑

i=1

E

[

(Ĝn(Zi)−G(Zi))
2K2

h(x0 − Zi)
]

=
c2w
n

(

n
∑

i=1

E

[

(

Ĝn,i(Zi)−
n− 1

n
G(Zi)

)2

K2
h(x0 − Zi)

]

+ E

[

(

1

n
(1−G(Zi))

)2

K2
h(x0 − Zi)

])

,
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since the cross product term is centered, where Ĝn,i(x) = n−1
∑n

j=1,j 6=i 1Zj≤x. Then

E

[

(

Ĝn,i(Zi)−
n− 1

n
G(Zi)

)2

K2
h(x0 − Zi)

]

= E

[

E

[

(

Ĝn,i(Zi)−
n− 1

n
G(Zi)

)2

K2
h(x0 − Zi)

∣

∣

∣

∣

∣

Zi

]]

= E

[

n− 1

n2
G(Zi)(1−G(Zi))K

2
h(x0 − Zi)

]

≤ 1

4n
E
[

K2
h(x0 − Zi)

]

≤ ‖g‖∞‖K‖22
4nh

.

Therefore, as ‖g‖∞ ≤ d‖f‖∞ and cw ≤ b/a3, we obtain that

E

[

(

f̂ker-Wh (x0)− f̌h(x0)
)2
]

≤ 5db2

4nha6
‖f‖∞‖K‖22 .(20)

Gathering (18), (19) and (20) yields the result. �

Proof of (ii). By (17) it follows that

E

[

‖f̂ker-Wh − f‖22
]

≤ 3
(

E

[

‖f̂ker-Wh − f̌h‖22
]

+ E
[

‖f̌h − E[f̌h]‖22
]

+ ‖E[f̌h]− f‖22
)

.(21)

Concerning the last term of (21), we get

(22) ‖E[f̌h]− f‖22 = ‖Kh ∗ f − f‖2

For the first right-hand-side term of (21) we obtain

E

[

‖f̂ker-Wh − f̌h‖22
]

=

∫

E





(

1

n

n
∑

i=1

(

w(Ĝn(Zi))− w(G(Zi))
)

Kh(x− Zi)

)2


 dx

≤
∫

E

[

(

w(Ĝn(Z1))− w(G(Z1))
)2
K2
h(x− Z1)

]

dx

≤ c2w
h
‖K‖22 E

[

(

Ĝn(Z1)−G(Z1)
)2
]

≤ b2

nha6
‖K‖22 ,(23)

where we used that E[(Ĝn(Z1)−G(Z1))
2] ≤ 1/n. This property can be shown by proceeding as

in the pointwise case and using that G(Z1) has uniform distribution.
For the second term of (21) we obtain

E
[

‖f̌h − E[f̌h]‖22
]

=
1

n

∫

E
[

(w(G(Z1)))
2K2

h (x− Z1)
]

dx

≤ 1

an

∫ ∫

K2
h(x− z)dx(w(G(z)))2g(z)dz =

‖w‖22
nh

‖K‖22 .(24)

Combining (22), (23) and (24) completes the proof. �
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7.2. Proof of Proposition 3.2. Pythagoras formula yields ‖f− f̂proj-Wm ‖22 = ‖f−fm‖22+‖fm−
f̂proj-Wm ‖22. By definition of the orthogonal projection fm =

∑2m
j=0 ajϕj and by using equality (5),

we have aj = 〈ϕj , f〉 = E(ϕj(Y )) = E(ϕj(Z1)w(G(Z1))). This, together with formula (7) implies

that ‖fm − f̂proj-Wm ‖22 =
∑2m

j=0(aj − âj)
2. If we define

νn(h) =
1

n

n
∑

i=1

[h(Zi)w(G(Zi))− E(h(Zi)w(G(Zi)))] ,(25)

Rn(h) =
1

n

n
∑

i=1

h(Zi)[w(Ĝn(Zi))− w(G(Zi))] ,(26)

then we get ‖fm − f̂m‖22 ≤ 2
∑2m

j=0(νn(ϕj)
2 +Rn(ϕj)

2). We have, on the one hand,

2m
∑

j=0

E(ν2n(ϕj)) =
2m
∑

j=0

1

n
Var(ϕj(Zi)w(G(Zi))) ≤

2m
∑

j=0

1

n
E
[

ϕ2
j (Z1)(w(G(Z1)))

2
]

≤ 1

n
E



‖
2m
∑

j=0

ϕ2
j‖∞(w(G(Z1)))

2



 ≤ Dm

n
E[(w(G(Z1)))

2] = ‖w‖22
Dm

n
,

because the basis satisfies
∑2m

j=0 ϕ
2
j = 2m+ 1 = Dm. On the other hand, we have

2m
∑

j=0

E(R2
n(ϕj)) ≤

2m
∑

j=0

E





(

1

n

n
∑

i=1

ϕj(Zi)[w(Ĝn(Zi))− w(G(Zi))]

)2




≤ 1

n

n
∑

i=1

2m
∑

j=0

E

(

ϕ2
j(Zi)[w(Ĝn(Zi))− w(G(Zi))]

2
)

≤ c2w

2m
∑

j=0

E

(

‖G − Ĝn‖2∞ϕ2
j (Zi)

)

≤ c2wDmE

(

‖G− Ĝn‖2∞
)

≤ c2w
Dm

n
,

with (3) and because of E
(

‖G− Ĝn‖2∞
)

≤ 1/n (see e.g. Brunel and Comte, 2005, p. 462). By

gathering all terms, we obtain the risk bound stated in Proposition 3.2. �

7.3. Sketch of proof of Theorem 4.1. In the following, we omit the super index proj-W.

It is easy to see that f̂m = argmint∈Sm γn(t) for γn(t) = ‖t‖2−2n−1
∑n

i=1 w(Ĝn(Zi))t(Zi). Thus,
we can write γn(t) − γn(s) = ‖t − f‖22 − ‖s − f‖22 − 2νn(t − s) − 2Rn(t − s), where νn and Rn
are defined by (25) and (26). By definition of f̂m̂ we have for all m ∈ Mn, γn(f̂m̂) + penf (m̂) ≤
γn(fm) + penf (m). This can be rewritten as ‖f̂m̂ − f‖22 ≤ ‖fm − f‖22 + penf (m) + 2νn(f̂m̂ −
fm)− penf (m̂) + 2Rn(f̂m̂ − fm). Using this and and that 2xy ≤ x2/θ + θy2 for all nonnegative
x, y, θ, we obtain

‖f − f̂m̂‖22 ≤ ‖f − fm‖22 + penf (m) + 2νn(f̂m̂ − fm)− penf (m̂) + 2Rn(f̂m̂ − fm)
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‖f − f̂m̂‖22 ≤ ‖f − fm‖22 + penf (m) + 2‖f̂m̂ − fm‖2 sup
t∈Sm̂+Sm,‖t‖2=1

|νn(t)| − penf (m̂)

+ 2‖f̂m̂ − fm‖2 sup
t∈Sm̂+Sm,‖t‖2=1

|Rn(t)|

≤ ‖f − fm‖22 + penf (m) +
1

4
‖f̂m̂ − fm‖22 + 4 sup

t∈Sm̂+Sm,‖t‖2=1
[νn(t)]

2

− penf (m̂) +
1

8
‖f̂m̂ − fm‖22 + 8 sup

t∈Sm̂+Sm,‖t‖2=1
[Rn(t)]

2 .

As ‖f̂m̂ − fm‖22 ≤ 2(‖f̂m̂ − f‖22 + ‖fm − f‖22), this yields

1

4
E[‖f − f̂m̂‖22] ≤ 7

4
‖f − fm‖22 + 2penf (m) + 8E

(

sup
t∈Smn ,‖t‖2=1

[Rn(t)]
2

)

+4E

(

sup
t∈Sm̂+Sm,‖t‖2=1

[νn(t)]
2 − (penf (m) + penf (m̂))/4

)

+

.

Then the term E

(

supt∈Sm̂+Sm,‖t‖2=1[νn(t)]
2 − (penf (m) + penf (m̂))/4

)

+
is bounded by C/n

by using Talagrand Inequality in a standard way (see e.g. Brunel et al., 2005), as soon as κf1/4 ≥ 4

(ǫ = 1/2 in Lemma (7.2)). For the last term E

(

supt∈Smn ,‖t‖2=1[Rn(t)]
2
)

, we define ΩG by

ΩG = {√n‖Ĝn −G‖∞ ≤
√

log(n)} .

As in (32), we use Massart (1990) and get

P(
√
n‖Ĝn −G‖∞ ≥ λ) ≤ 2e−2λ2 .

This implies that P(ΩcG) ≤ 2/n2. Then we write that E
(

supt∈Smn ,‖t‖2=1[Rn(t)]
2
)

is less than

E

(

sup
t∈Smn ,‖t‖2=1

[Rn(t)1ΩG
]2

)

+ E

(

sup
t∈Smn ,‖t‖2=1

[Rn(t)1Ωc
G
]2

)

:= R1 +R2.

For the first term, we have

R1 ≤ c2wE

[

‖Ĝn −G‖2∞1ΩG
E

(

sup
t∈Smn ,‖t‖2=1

(
1

n

n
∑

i=1

|t(Zi)|)2
)]

≤ c2w
log(n)

n
E

(

sup
t∈Smn ,‖t‖2=1

(
1

n

n
∑

i=1

t2(Zi))

)

≤ 2c2w
log(n)

n

[

E

(

sup
t∈Smn ,‖t‖2=1

|ν ′n(t2)|
)

+ sup
t∈Smn ,‖t‖2=1

E(t2(Z1))

]

where ν ′n(t) =
1
n

∑n
i=1(t(Zi)− E(t(Z1)). It is proved in Brunel and Comte (2005) that

E

(

sup
t∈Smn ,‖t‖2=1

|ν ′n(t2)|
)

≤ C log(n)
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if the density of Z1 is bounded and Nn ≤ O(
√
n) for the trigonometric basis. Moreover

E(t2(Z1)) ≤ ‖t‖22‖f‖∞/w0. We obtain R1 ≤ C log2(n)/n. On the other hand, we have

R2 ≤
∑

j

E(R2
n(ϕj)1Ωc) ≤ c2wnE

1/2(‖Ĝn −G‖4∞)P1/2(ΩcG) ≤
C

n
.

This yields E
(

supt∈Smn ,‖t‖2=1[Rn(t)]
2
)

≤ C log2(n)/n. Finally we obtain that, for all m ∈ Mn,

E[‖f − f̂m̂‖22] ≤ 7‖f − fm‖22 + 8penf (m) +Klog2(n)/n, which ends the proof. �

7.4. Proof of Theorem 4.2. For the sake of readability, super-indices ker-W and f are omitted
in the whole proof. For any h ∈ H,

(

f̂ĥ(x0)(x0)− f(x0)
)2

≤ 3

{

(

f̂ĥ(x0)(x0)− f̂h,ĥ(x0)(x0)
)2

+
(

f̂h,ĥ(x0)(x0)− f̂h(x0)
)2

+
(

f̂h(x0)− f(x0)
)2
}

≤ 3

{

(

A0(h, x0) + V0(ĥ(x0))
)

+
(

A0(ĥ(x0), x0) + V0(h)
)

+
(

f̂h(x0)− f(x0)
)2
}

≤ 6A0(h, x0) + 6V0(h) + 3
(

f̂h(x0)− f(x0)
)2

,

(27)

where the second inequality holds by the definition of A0, i.e. for all h, h
′ ∈ H we have A0(h, x0)+

V0(h
′) ≥

(

f̂h,h′(x0)− f̂h′(x0)
)2

. The last inequality holds by the definition of ĥ(x0), that is

A0(ĥ(x0), x0) + V0(ĥ(x0)) ≤ A0(h, x0) + V0(h) for all h ∈ H. The term E[(f̂h(x0) − f(x0))
2] is

controlled by Proposition 3.1. Hence, it is sufficient to study the term E[A0(h, x0)]. We state
that

(28) A0(h, x0) = sup
h′∈H

[

(

f̂h,h′(x0)− f̂h′(x0)
)2

− V0(h
′)

]

+

≤ 5 (D1 +D2 +D3 +D4 +D5) ,

where

D1 = sup
h′∈H

(

f̂h,h′(x0)− f̌h,h′(x0)
)2

, D2 = sup
h′∈H

[

(

f̌h,h′(x0)− E
[

f̌h,h′(x0)
])2 − V0(h

′)
10

]

+

,

D3 = sup
h′∈H

(

E
[

f̌h,h′(x0)
]

− E
[

f̌h′(x0)
])2

, D4 = sup
h′∈H

[

(

E
[

f̌h′(x0)
]

− f̌h′(x0)
)2 − V0(h

′)
10

]

+

,

and D5 = sup
h′∈H

(

f̌h′(x0)− f̂h′(x0)
)2

, with f̌h,h′ = Kh′ ∗ f̌h.

We start with term D3. Recall that E[f̌h(x0)] = Kh∗f(x0) by (18). Likewise, by property (5),
E
[

f̌h,h′(x0)
]

= Kh′ ∗Kh ∗ f(x0). In general we have ‖s ∗ r‖∞ ≤ ‖s‖∞‖r‖1 and ‖Kh‖1 = ‖K‖1,
yielding

∣

∣E
[

f̌h,h′(x0)
]

− E
[

f̌h′(x0)
]
∣

∣ = |Kh′ ∗ (Kh ∗ f − f)(x0)| ≤ ‖Kh ∗ f − f‖∞ ‖K‖1 .

Hence

(29) D3 ≤ ‖Kh ∗ f − f‖2∞ ‖K‖21 .
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Concerning term D4 we note that

E[D4] ≤
∑

h∈H
E

[(

{

f̌h(x0)− E
[

f̌h(x0)
]}2 − V0(h)

10

)

+

]

=
∑

h∈H

∫ ∞

0
P

([

{

f̌h(x0)− E
[

f̌h(x0)
]}2 − V0(h)

10

]

+

> x

)

dx

=
∑

h∈H

∫ ∞

0
P

(

∣

∣f̌h(x0)− E
[

f̌h(x0)
]
∣

∣ >

√

V0(h)

10
+ x

)

dx .

The probability in the last term can be bounded by the Bernstein inequality. To this end we
introduce the random variables Si = w(G(Zi))Kh(x0−Zi). Obviously, |Si| ≤ ‖K‖∞/(ah) =:M
almost surely and by property (5)

Var (Si) ≤ E
[

w2(G(Z1))K
2
h(x0 − Z1)

]

≤ 1

h
‖K‖22‖w‖∞‖f‖∞ ≤ 1

ah
‖K‖22‖f‖∞ =: v .

Hence, the Bernstein inequality implies for any x > 0

P

(

∣

∣f̌h(x0)− E
[

f̌h(x0)
]∣

∣ ≥
√

V0(h)

10
+ x

)

= P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

(Si − E[Si])

∣

∣

∣

∣

∣

≥
√

V0(h)

10
+ x

)

≤ 2max

{

exp

(

− n

4v

(

V0(h)

10
+ x

))

, exp

(

− n

8M

√

V0(h)

10

)

exp
(

− n

8M

√
x
)

}

.

By the definition of V0(h)

n

4v

V0(h)

10
=
κ2‖K‖21 log n

40
≥ p log n ,

for κ2 ≥ 40p, since ‖K‖21 ≥ 1. Furthermore,

n

8M

√

V0(h)

10
=

‖K‖2‖K‖1
8‖K‖∞

√

κ2a‖f‖∞hn log n
10

:= ρ
√

κ2hn log n.

As nh ≥ log2(n), we get (n/8M)
√

V0(h)/10 ≥ log n if ρ2κ2log(n) ≥ p, which holds automatically
for n large enough, and thus for a well chosen κ2. Then we get

E[D4] ≤
∑

h∈H

∫ ∞

0
2n−pmax

{

exp

(

− nhax

4‖K‖22‖f‖∞

)

, exp

(

−nha
√
x

8‖K‖∞

)}

dx

≤ 2n−p
∑

h∈H

∫ ∞

0
max

{

e−τ1nhx, e−τ2nh
√
x
}

dx ≤ 2n−p
∑

h∈H
max

{

1

τ1
,
2

τ22

}

≤ C ′n−p+1 ,

as h ≥ 1/n and the cardinality of H verifies #H ≤ n. Finally, we choose p = 2 (and thus
κ2 ≥ 80) to get

(30) E[D4] ≤
C ′

n
.

Term D2 can be treated in exactly the same way as D4. More precisely, instead of Si use
Ti = w(G(Zi))Kh ∗Kh′(Zi − x0) verifying

f̌h,h′(x0)− E
[

f̌h,h′(x0)
]

=
1

n

n
∑

i=1

Ti − E[Ti] ,
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and |Ti| ≤ ‖K‖∞‖K‖1/(ah′) =: M̄ and Var(T1) ≤ ‖f‖∞‖K‖21‖K‖22/(ah′) =: v̄. Hence, the
Bernstein inequality yields

(31) E[D2] ≤
C ′′

n
.

To study the terms D5 and D1 we first prove the following property.

Lemma 7.1. Under the assumptions of Theorem 4.2, for any set Ω and for all t ∈ R,

E

[

(

f̂h(t)− f̌h(t)
)2
1Ωc

]

≤ c2w‖K‖2∞n2P (Ωc) and

E

[

(

f̂h′,h(t)− f̌h′,h(t)
)2
1Ωc

]

≤ c2w‖K‖2∞‖K‖21n2P (Ωc) .

Proof. By using ‖Ĝn −G‖∞ ≤ 1, we have

E

[

(

f̂h(t)− f̌h(t)
)2
1Ωc

]

= E





(

1

n

n
∑

i=1

(w(Ĝn(Zi))− w(G(Zi)))Kh(t− Zi)

)2

1Ωc





≤ c2w
n2

E





(

n
∑

i=1

|Kh(t− Zi)|
)2

1Ωc



 ≤ c2wE
[

K2
h(t− Z1)1Ωc

]

≤ c2w‖Kh‖2∞E [1Ωc ] =
c2w
h2

‖K‖2∞P (Ωc) ≤ c2w‖K‖2∞n2P (Ωc) ,

as 1/h ≤ n. In the same way, we show the second statement of the Lemma, by using ‖Kh′ ∗
Kh‖∞ ≤ ‖Kh′‖∞‖Kh‖1 ≤ n‖K‖∞‖K‖1. �

Now let Ω = {ω : ‖Ĝn −G‖∞ ≤ s} for some constant s > 0. Then (see Massart (1990)),

(32) P(Ωc) = P(‖Ĝn −G‖∞ > s) ≤ e−2ns2 ,

by the Dvoretzky-Kiefer-Wolfowitz inequality. This implies that

E

[

sup
h∈H

(

f̂h(x0)− f̌h(x0)
)2
1Ωc

]

≤
∑

h∈H
E

[

(

f̂h(x0)− f̌h(x0)
)2
1Ωc

]

≤
∑

h∈H
c2w‖K‖2∞n2e−2ns2

= c2w‖K‖2∞n3e−2ns2 <∞ ,

as #H ≤ n. Furthermore,

E

[

sup
h∈H

(

f̂h(x0)− f̌h(x0)
)2
1Ω

]

≤ c2wE



sup
h∈H

(

1

n

n
∑

i=1

|Ĝn(Zi)−G(Zi)||Kh(x0 − Zi)|
)2

1Ω





≤ s2c2wE



sup
h∈H

(

1

n

n
∑

i=1

|Kh(x0 − Zi)|
)2




≤ 2s2c2w

{

1

n

∑

h∈H
Var (|Kh(x0 − Z1)|) + sup

h∈H
[E(|Kh(x0 − Z1)|)]2

}

.

On the one hand,

1

n

∑

h∈H
Var (|Kh(x0 − Z1)|) ≤

1

n

∑

h∈H
E
[

K2
h(x0 − Z1)

]

=
1

n

∑

h∈H

1

h
‖K‖22‖g‖∞ ≤ S‖K‖22d‖f‖∞ ,
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where S is defined in (13) and d in (4). On the other hand,

sup
h∈H

[E(|Kh(x0 − Z1)|)]2 = sup
h∈H

(
∫

|K(z)|g(x0 − zh)dz

)2

≤ d2‖f‖2∞‖K‖21 .

It follows that E[D5] ≤ µ1n
3e−2ns2+µ2s

2, with constants µ1 = c2w‖K‖2∞ and µ2 = 2c2wd‖f‖∞(S‖K‖22+
d‖f‖∞‖K‖21). Choosing s2 = 2 log n/n gives

(33) E[D5] ≤
µ1
n

+ 2µ2
log n

n
.

Finally, the study of D1 follows the same line as the study of D5. That is, on the one hand,
we have for the same set Ω

E [D11Ωc ] ≤ c2w‖K‖2∞‖K‖21n3e−2ns2 .

On the other hand,

E [D11Ω] ≤ 2s2c2w

{

1

n

∑

h∈H
E
[

(Kh′ ∗Kh(x0 − Z1))
2
]

+ sup
h∈H

(E [|Kh′ ∗Kh(x0 − Z1)|])2
}

.

By the generalized Minkowski inequality, we obtain

E
[

(Kh′ ∗Kh(x0 − Z1))
2
]

≤
[

∫

|Kh′(u)|
(
∫

K2
h(x0 − z − u)g(z)dz

)1/2

du

]2

≤ ‖g‖∞‖Kh‖22‖Kh′‖21 ≤ d‖f‖∞‖K‖22‖K‖21/h .
Furthermore,

sup
h∈H

(E [|Kh′ ∗Kh(x0 − Z1)|])2 ≤ sup
h∈H

(
∫
∣

∣

∣

∣

∫

Kh′(u)

∣

∣

∣

∣

∫

|K(v)| g(x0 − vh− u)dvdu

)2

≤ (d‖f‖∞‖K‖21)2 .

It follows with µ̃1 = µ1‖K‖21 and µ̃2 = µ2‖K‖21 that E[D1] ≤ µ̃1n
3e−2ns2 + µ̃2s

2. Hence,

(34) E[D1] ≤
µ̃1
n

+ 2µ̃2
log n

n
,

with s2 = 2 log n/n. Now, if we plug (29), (30), (31), (33) and (34) into (28), we get

E[A0(h, x0)] ≤ C̃1h
2β + C̃2

log n

n
,

which, associated with Proposition 3.1, can be inserted in (27) to end the proof of Theorem 4.2.
�

7.5. Proof of Theorem 4.3. In all the proof below, super-indices ker-W are omitted. Similar
to the pointwise case, we have for any h ∈ H

‖f̂ĥ − f‖22 ≤ 6A(h) + 6V (h) + 3‖f̂h − f‖22 .(35)

By the proof of (ii) of Proposition 3.1,

E

[

‖f̂h − f‖22
]

≤ 3‖fh − f‖22 +
C4

nh
.(36)

Hence, only term E[A(h)] needs to be studied. By analogy to the proof of Theorem 4.2,

A(h) ≤ 5(F1 + F2 + F3 + F4 + F5) ,(37)
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where

F1 = sup
h′∈H

‖f̂h,h′ − f̌h,h′‖22 , F2 = sup
h′∈H

(

‖f̌h,h′ − E[f̌h,h′]‖22 −
V (h′)
10

)

+

,

F3 = sup
h′∈H

‖E[f̌h,h′ ]− E[f̌h′ ]‖22 , F4 = sup
h′∈H

(

‖E[f̌h′ ]− f̌h′‖22 −
V (h′)
10

)

+

,

F5 = sup
h′∈H

‖f̌h′ − f̂h′‖22 .

First, we study term F3. The inequality ‖u ∗ v‖2 ≤ ‖u‖1‖v‖2 yields

(38) F3 = sup
h′∈H

‖Kh′ ∗Kh ∗ f −Kh′ ∗ f‖22 ≤ sup
h′∈H

‖Kh′‖21‖Kh ∗ f − f‖22 = ‖K‖21‖f − fh‖22 .

To study term F4 we introduce the centered empirical process νn,h defined by

νn,h(ψ) = 〈f̌h − E[f̌h], ψ〉

=
1

n

n
∑

i=1

∫

(w(G(Zi))Kh(u− Zi)− E[w(G(Zi))Kh(u− Zi)])ψ(u)du .

As ψ 7→ νn,h(ψ) is continuous, the supremum can be taken over a countable dense subset of

{ψ ∈ L2, ‖ψ‖ = 1}, which we denote by B(1). Then, ‖f̌h−E[f̌h]‖22 = supψ∈B(1)〈f̌h−E[f̌h], ψ〉2 =

supψ∈B(1) νn,h(ψ). Therefore we obtain

E[F4] ≤
∑

h∈H
E

[(

‖f̌h − E[f̌h]‖22 −
V (h)

10

)

+

]

=
∑

h∈H
E

[(

sup
ψ∈B(1)

ν2n,h(ψ)−
V (h)

10

)

+

]

.

The expectation in the last term can be bounded by Talagrand’s inequality (see Subsection 7.6).
More precisely, to apply this result, we have to determine the values of the constants H, M and
v. Denote fψ(z) = w(G(z))Kh ∗ ψ(z), so that νn,h(ψ) =

1
n

∑n
i=1(fψ(Zi)− E[fψ(Zi)]). First, for

any ψ ∈ B(1) the Cauchy-Schwarz inequality gives

‖fψ‖∞ ≤ 1

a
‖Kh ∗ ψ‖∞ =

1

a
sup
z

|〈|Kh(· − z)|, |ψ|〉| ≤ ‖Kh‖2‖ψ‖2
a

≤ ‖K‖2
a
√
h

=:M .

Next, we see that
(

E

[

sup
ψ∈B(1)

|νn,h(ψ)|
])2

≤ E

[

sup
ψ∈B(1)

ν2n,h(ψ)

]

≤ E
[

‖f̌h − E[f̌h]‖22
]

≤ V (h)

κ1
=: H2 ,

by (24). Furthermore, let ε2 = 1/2. To obtain 4H2 = V (h)/10, we set H =
√

V (h)/40.
Lastly, for any ψ ∈ B(1) we show that by (5)

Var (fψ(Z)) ≤ E
[

(w(G(Z))Kh ∗ ψ(Z))2
]

≤ 1

a

∫

(Kh ∗ ψ(y))2f(y)dy

≤ 1

a
‖f‖∞‖Kh ∗ ψ‖22 ≤

1

a
‖f‖∞‖Kh‖21‖ψ‖22 ≤ 1

a
‖f‖∞‖K‖21 =: v .

Finally, Talagrand’s inequality yields, for κf3/10 ≥ 4,

E

[(

sup
ψ∈B(1)

ν2n,h(ψ)−
V (h)

10

)

+

]

≤ C̃1

n

(

e−C̃2/h +
1

nh
e−C̃3

√
n

)

≤ C̃1

n

(

e−C̃2/h +
C̃4

n

)

,
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where C̃k > 0, k = 1, . . . , 4 are constants depending on K, ‖f‖∞ and a, and in particular

C̃2 = ‖K‖22/(12‖f‖∞). Consequently, for κf3 ≥ κ0 (with here κ0 = 40),

(39) E[F4] ≤
C̃1

n

∑

h∈H

(

e−C̃2/h +
C̃4

n

)

≤ C̃5

n
,

as #H ≤ n and
∑

h∈H e−C̃2/h ≤ B(C ′
2) under condition (15).

In the same way we obtain for F2

(40) E[F2] ≤
C̄

n
.

Now let us turn to F5. We note that

‖f̂h − f̌h‖22 ≤ 4

a2n2

∫

(

n
∑

i=1

|Kh(u− Zi)|
)2

du ≤ 4

a2n

n
∑

i=1

‖Kh(· − Zi)‖22 =
4

a2h
‖K‖22 ≤

4n

a2
‖K‖22 .

Therefore,

E

[

sup
h∈H

‖f̂h − f̌h‖221Ωc

]

≤ 4n

a2
‖K‖22P(Ωc) ,

where Ω = {ω : ‖G− Ĝn‖∞ ≤ s} as previously, and we recall that P(Ωc) ≤ e−2ns2 .

Following the same line as for D5 in the pointwise case and by choosing s =
√

log n/n, we
conclude that

(41) E[F5] ≤
C ′
1

n
+ C ′

2

log n

n
.

For F1, we follow the same line as for F5 to obtain

(42) E[F1] ≤ ‖K‖21
(

C ′
1

n
+ C ′

2

log n

n

)

.

Consequently, plugging (38), (39), (40), (41) and (42) into (37) gives a bound of E[A(h)]. Com-
bining this with (36), (35) and the definition of V (h) yields Theorem 4.3. �

7.6. The Talagrand inequality. The following result follows from the Talagrand concentration
inequality given in Klein and Rio (2005) and arguments in Birgé and Massart (1998) (see the
proof of their Corollary 2 page 354).

Lemma 7.2. (Talagrand’s inequality) Let Y1, . . . , Yn be independent random variables, let νn,Y (f) =
n−1

∑n
i=1[f(Yi)−E(f(Yi))] and let F be a countable class of uniformly bounded measurable func-

tions. Then for ǫ2 > 0

E

[

sup
f∈F

|νn,Y (f)|2 − 2(1 + 2ǫ2)H2
]

+
≤ 4

K1

(

v

n
e−K1ǫ2

nH2

v +
98M2

K1n2C2(ǫ2)
e
− 2K1C(ǫ2)ǫ

7
√

2
nH
M

)

,

with C(ǫ2) =
√
1 + ǫ2 − 1, K1 = 1/6, and

sup
f∈F

‖f‖∞ ≤M, E

[

sup
f∈F

|νn,Y (f)|
]

≤ H, sup
f∈F

1

n

n
∑

k=1

Var(f(Yk)) ≤ v.

By standard denseness arguments, this result can be extended to the case where F is a unit
ball of a linear normed space, after checking that f 7→ νn(f) is continuous and F contains a
countable dense family.
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ĥf

0.5 1 1.5 2 2.5 3
0

0.005

0.01

0.015

0.02

0.025

0.03

 

 

Normal
Laplace
Beta
Mixture

0 0.5 1 1.5 2 2.5 3
0

0.005

0.01

0.015

0.02

0.025

0.03

 

 

Normal
Laplace
Beta
Mixture

0 0.5 1 1.5 2 2.5 3
0

0.005

0.01

0.015

0.02

0.025

0.03

 

 

Normal
Laplace
Beta
Mixture

f̂ker-P
ĥg
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Figure 4. Mean MISEκ values for all estimators on grids of candidate values for

the constants κfj , κ
g
j , j = 1, 2, 3 that are to be calibrated. Every row corresponds

to the results of one estimator, every column to different values for n and µ and
in each setting four different densities f are considered. Each curve is based on
1000 datasets.


