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Abstract. We consider here nonparametric estimation for integrated diffusion pro-
cesses. Let (Vt) be a stationary and β-mixing diffusion with unknown drift and diffusion

coefficient. The integrated process Xt =
∫ t

0
Vsds is observed at discrete times with reg-

ular sampling interval ∆. For both the drift function and the diffusion coefficient of the
unobserved diffusion (Vt), we propose nonparametric estimators based on a penalized
least square approach. Estimators are chosen among a collection of functions belonging
to a finite dimensional space selected by an automatic data-driven method. We derive
non asymptotic risk bounds for the estimators. Interpreting these bounds through the
asymptotic framework of high frequency data, we show that our estimators reach the
minimax optimal rates of convergence. The algorithms of estimation are implemented
for several examples of diffusion models that can be exactly simulated.
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1. Introduction

In this paper, we consider the following two-dimensional process

dXt = Vtdt X0 = 0
dVt = b(Vt)dt+ σ(Vt)dWt t ≥ 0, V0 = η(1)

where (Wt) is a standard Brownian motion and η a real random variable independent of
(Wt). This model is a special case of two-dimensional diffusion process without noise in
the first equation. Our aim is to estimate the unknown functions b and σ2 when only the
first component (Xt) is observed at discrete equispaced times, k∆, k = 1, . . . , n+ 2. Our
estimation procedure will be based on the following equivalent set of data

(2)
1
∆

(X(k+1)∆ −Xk∆) = V̄k =
1
∆

∫ (k+1)∆

k∆
Vsds, k ≤ n+ 1.

Integrated diffusion processes are of common use for modelling purposes in the field of
engineering and physics. For instance, (Vt) may represent the velocity of a particle and (Xt)
its coordinate (see e.g. Rogers and Williams (1987, 114-115)). Other concrete examples
where these processes are considered can be found in Lefebvre (1997) or in Ditlevsen and
Sørensen (2004). It is worth noting that the component (Xt) provides a simple model for
non Markovian observations or increasing observations when Vt is positive. Now, the most
popular field of applications is certainly the field of finance with the stochastic volatility
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models. In this context, the model of interest (ξt, Vt)t≥0 is a bivariate diffusion process,
(Vt) is nonnegative, and the dynamics is described by the following equations:

(3)
{
dξt = ρ(ξt)dt+

√
VtdBt,

dVt = b(Vt)dt+ σ(Vt)dWt t ≥ 0,

where (Bt,Wt) is a standard two-dimensional Brownian motion. The first component
(ξt) describes the logarithm of a stock or asset price. It is observed while the volatility
process (Vt) is unobserved. Practitioners generally approximate the integrated volatility by
quadratic variations of (ξt) (realized volatility). Or, they derive the integrated volatility
using option prices (implied volatility) (see e.g. Renault and Touzi (1996), Barndorff-
Nielsen and Shephard (2002), Bollerslev and Zhou (2002)).

Statistical inference for discretely observed diffusion processes has been widely investi-
gated recently (see e.g. Yoshida (1992), Kessler (1997), Genon-Catalot et al. (1999), Ele-
rian et al. (2001), Bibby et al. (2002), Aı̈t-Sahalia and Mykland (2004), Aı̈t-Sahalia (2006),
Beskos et al. (2006b)). For what concerns integrated diffusions, parametric frameworks
have been considered. Ditlevsen and Sørensen (2004) use prediction-based estimating
functions (see Sørensen (2000)) and special parametric models for the underlying diffu-
sion. For general models, parametric inference for integrated diffusion processes has been
extensively addressed by Gloter (2000, 2006) and Gloter and Gobet (2005). For ergodic
underlying diffusion models, in the high frequency framework, Gloter (2006) introduces
a general contrast function and proves the consistency and asymptotic normality of the
resulting estimators of the parameters.

To our knowledge, nonparametric inference for these models has never been studied up
to now. In contrast, nonparametric estimation of b and σ2 when discrete observations
(Vk∆)1≤k≤n are available has been the subject of several contributions. In particular, in
Hoffmann (1999), minimax rates of convergence are exhibited (over Besov smoothness
classes) and adaptive estimators based on wavelet thresholding are built. These estima-
tors achieve optimal rates of convergence (up to a logarithmic factor) but are difficult to
implement in concrete. In a previous work (Comte et al. (2005)), we proposed nonpara-
metric estimators based on a penalized mean square approach. These estimators have
optimality properties and can be implemented through feasible algorithms. In the present
paper, we use analogous tools to build nonparametric estimators of b and σ2 based on
the observations (2). The process given by (1) is supposed to be strictly stationary and
β-mixing. Relying on regression-type equations for the drift and for the diffusion coeffi-
cient, we build mean-square contrasts. These allow to construct a collection of estimators
belonging to finite dimensional spaces including piecewise polynomials spaces. Model se-
lection techniques using penalization devices enable us to exhibit a data-driven choice of
the estimator among the collection. As it is usual with these methods, the risk of an
estimator f̂ of f = b, σ2 is measured by the expectation of an empirical norm E(‖f̂ − f‖2

n)
where ‖f̂ − f‖2

n = 1
n

∑n
k=1(f̂(V̄k)− f(V̄k))2. We obtain bounds for the risks which are non

asymptotic in the sense that they are expressed as functions of n,∆ and constants. Inter-
preting these bounds when n tends to infinity while ∆ = ∆n tends to 0, we prove that our
estimators achieve the minimax optimal rates under some constraints on the rate of ∆n,
up to logarihtmic factors in some cases for σ2. The optimality is evaluated in comparison
with Hoffmann’s results.
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The paper is organized as follows. The model, assumptions and finite dimensional spaces
on which estimators are built are described in Section 2. The spaces of approximation
include piecewise polynomials on irregular partitions of the interval where the unknown
functions are estimated. Sections 3 and 4 concern respectively the drift and the diffusion
coefficients. The first step is to establish the regression-type equations which are the
basement of the estimation method. Then, we present the penalized mean square contrasts
allowing the automatic selection of the best adaptive estimators and state the risk bounds.
For estimating the drift function, the regression-type equation has the form

Yk+1 :=
V̄k+2 − V̄k+1

∆
= b(V̄k) + noise + remainder,

where the lag of order 2∆ avoids cumbersome correlations due to integrated data. For
estimating σ2, the regression-type equation has the form

Ūk+1 :=
3

2∆
(V̄k+2 − V̄k+1)2 = σ2(V̄k) + noise + remainder.

The correcting factor 3/2 is specific to integrated observations and appears also in Gloter (2000).
The study of the remainder term (see Proposition 4.4) is surprisingly difficult and induces
constraints on the bases and on the sampling interval ∆ which must be small enough. One
assumption ([A6]) is especially discussed and illustrated in Section 5. Section 6 presents
some simulation results illustrated by plots and tables. Proofs are gathered in Sections 7
for the drift, 8 for the diffusion coefficient, 9 for the results of Section 5. Lastly a technical
proof is given in the appendix.

2. The assumptions

2.1. Model assumptions. Let (Vt)t≥0 be given by (1) and assume that only integrals
(V̄k)1≤k≤n+1 given by (2) are observed. We want to estimate the drift function b and the
square of the diffusion coefficient σ2 when V is stationary and geometrically β-mixing. We
assume that the state space of (Vt) is a known open interval (r0, r1) of the real line and
consider the following set of assumptions.

[A1 ] −∞ ≤ r0 < r1 ≤ +∞,
◦
I= (r0, r1), b and σ belong to C1(

◦
I ), with σ(v) > 0, for

all v ∈
◦
I .

[A2 ] For all v0, v ∈
◦
I ,

(i) the scale density

(4) s(v) = exp
[
−2
∫ v

v0

b(u)
σ2(u)

du

]
satisfies

∫
r0
s(x)dx = +∞ =

∫ r1 s(x)dx,
(ii) the speed density m(v) = 1/(σ2(v)s(v)) satisfies

∫ r1

r0
m(v)dv = M < +∞.

When the initial random variable satisfies P(η ∈
◦
I ) = 1, Assumption [A1] implies the

existence and unicity of the solution of (1) until a possible explosion time at r0 or r1.
Assumption [A2] implies that the process never reaches r0 nor r1, is positive recurrent on
◦
I and that dπ(v) = (m(v)/M)1I(r0,r1)(v)dv is the unique stationary density. We assume
moreover that

[A3 ] η ∼ π and E(η12) <∞.
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Under [A1]-[A3], (Vt) is strictly stationary, ergodic and β-mixing, i.e. limt→+∞ βV (t) = 0.
Here, βV (t) denotes the β-mixing coefficient of (Vt) and is given by

βV (t) =
∫ r1

r0

π(v)dv‖Pt(v, dv′)− π(v′)dv′‖TV .

The norm ‖.‖TV is the total variation norm and Pt denotes the transition probability of
(Vt) (see e.g. Genon-Catalot et al, 2000 for a review). We need in fact a stronger mixing
condition which is satisfied in most standard examples:

[A4 ] The process (Vt) is geometrically β-mixing, i.e., there exist constants K > 0, θ >
0, such that, for all t ≥ 0, βV (t) ≤ Ke−θt.

Lastly, we strengthen Assumption [A1] as follows in order to deal altogether with finite or
infinite boundaries (see e.g. Ethier and Kurtz (1986, chap.8)):

[A5 ] (i) Let I = [r0, r1] ∩ R. Suppose b ∈ C1(I), b′ bounded on I, σ2 ∈ C2(I),
(σ2)′′bounded on I, σ2(ri) = 0 ≤ (−1)ib(ri) if ri ∈ R, i = 0, 1,

(ii) σ2(v) ≤ σ2
1 for all v in I.

Assumption [A5](i) immediately implies that, for some positive constant K, for all v, v′

in I,

(5) |b(v)| ≤ K(1 + |v|), σ2(v) ≤ K(1 + v2), |b(v)− b(v′)| ≤ K|v − v′|.

The functions b and σ2 are estimated only on a compact subset A of the state space
◦
I .

For simplicity and without loss of generality, we assume from now on that

(6) A = [0, 1],

and set

(7) bA = b1A, σA = σ1A.

Under [A1]-[A4], for fixed ∆, (V̄k)k≥0 is a strictly stationary process. Since its β-mixing
coefficients βV̄ (k) satisfy βV̄ (k) ≤ βV (k∆), V̄k is geometrically β-mixing.

It follows from [A1]-[A3] that the stationary density π of (Vt) is bounded from below

and above on any compact subset of
◦
I . We need the analogous property for the marginal

density of the stationary process (V̄k)k≥0 and state it as an additional assumption:
[A6 ] The process (V̄k)k≥0 admits a stationary density π̄∆ and there exist two positive

numbers π̄0 and π̄1 (independent of ∆) such that

(8) 0 < π̄0 ≤ π̄∆(x) ≤ π̄1, ∀x ∈ [0, 1].

The existence of a density for V̄k is obtained under mild regularity conditions on b and
σ (see e.g. Rogers and Williams (2000) or Comte and Genon-Catalot (2006)). In Section
5, sufficient conditions ensuring (8) are given together with some examples for which exact
computations can be done. Assumption [A6] associated with [A4] is used in the proofs of
Theorem 3.1 and 4.1 to obtain the risk bounds.

Below, we use the following notations:

(9) ‖t‖2
π =

∫
t2(x)π(x)dx = E(t2(V0)) and ‖t‖2

π̄ =
∫
t2(x)π̄∆(x)dx = E(t2(V̄0)).
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2.2. Spaces of approximation. We aim at estimating functions b and σ2 of Model
(3) on [0, 1] using a data driven procedure. For that purpose, we consider families of
finite dimensional linear subspaces of L2([0, 1]) and compute for each space an associated
least-squares estimator. Afterwards, an adaptive procedure chooses among the resulting
collection of estimators the ”best” one, in a sense that will be later specified, through a
penalization device.

Let us describe now the collection of spaces that are considered below.
We start by describing the collection of dyadic regular piecewise polynomial spaces with
constant degree, denoted hereafter by [DP]. We fix an integer r ≥ 0. Let p ≥ 0 an integer.
On each subinterval Ij = [(j − 1)/2p, j/2p], j = 1, . . . , 2p, consider r + 1 polynomials of
degree 0, 1, . . . , r, ϕj,`(x), ` = 0, 1, . . . r and set ϕj,`(x) = 0 outside Ij . The space Sm,
m = (p, r), is defined as generated by the Dm = 2p(r+ 1) functions (ϕj,`). A function t in
Sm may be written as

t(x) =
2p∑

j=1

r∑
`=0

tj,`ϕj,`(x).

The collection [DP] is composed of the spaces (Sm,m ∈Mn) where

(10) Mn = {m = (p, r), p ∈ N, 2p(r + 1) ≤ Nn}.
In other words, Dm ≤ Nn and Nn ≤ n. We denote by Sn the largest space of this collection
of nested spaces and set dimSn = Nn. The maximal dimension Nn is subject to additional
constraints given below.

To be more concrete, consider the orthogonal collection in L2([−1, 1]) of Legendre poly-
nomials (Q`, ` ≥ 0), where the degree of Q` is equal to `, generating L2([−1, 1]) (see
Abramowitz and Stegun (1972), p.774). They satisfy |Q`(x)| ≤ 1,∀x ∈ [−1, 1], Q`(1) = 1
and

∫ 1
−1Q

2
`(u)du = 2/(2`+1). Let us set P`(x) =

√
2`+ 1Q`(2x−1) to get an orthonormal

basis of L2([0, 1]). And finally,

ϕj,`(x) = 2p/2P`(2px− j + 1)1IIj (x), j = 1, . . . , 2p, ` = 0, 1, . . . , r.

The space Sm has dimension Dm = 2p(r + 1). Its orthonormal basis described above
satisfies

(11)

∥∥∥∥∥∥
2p∑

j=1

r∑
`=0

ϕ2
j,`

∥∥∥∥∥∥
∞

≤ Dm(r + 1).

Hence, for all t ∈ Sm, ‖t‖∞ ≤
√
r + 1

√
Dm‖t‖, where

‖t‖2 =
∫ 1

0
t2(x)dx and ‖t‖∞ = sup

x∈[0,1]
|t(x)|.

This connection property between the sup-norm and the L2-norm for functions in Sm is es-
sential for the proofs. The order

√
Dm is specific to the case of regular subdivisions of [0, 1].

A more general family can be described, the collection of general piecewise polynomi-
als spaces denoted by [GP]. We first build the largest space Sn of the collection whose
dimension is denoted as above by Nn (Nn ≤ n and is subject to other constraints ap-
pearing later on). For this, we fix an integer Rmax and let Dmax be an integer such that
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Dmax(Rmax + 1) = Nn. The space Sn is linearly spanned by piecewise polynomials of
degree Rmax on the regular subdivision of [0, 1] with step 1/Dmax. Any other space Sm

of the collection is described by a multi-index m = (d, j1, . . . , jd−1, r1, . . . , rd) where d is
the number of intervals of the partition, j0 := 0 < j1 < · · · < jd−1 < jd := 1 are integers
such that ji ∈ {1, . . . , Dmax − 1} for i = 1, . . . d − 1. The latter integers define the knots
ji/Dmax of the subdivision. Lastly ri ≤ Rmax is the degree of the polynomial on the
interval [ji−1/Dmax, ji/Dmax[, for i = 1, . . . , d. A function t in Sm can thus be described
as

t(x) =
d∑

i=1

Pi(x)1I[ji−1/Dmax,ji/Dmax)(x),

with Pi a polynomial of degree ri. The dimension of Sm is still denoted by Dm and
equals

∑d
i=1(ri + 1) for all the

(
Dmax−1

d−1

)
choices of the knots (j1, . . . , jd−1). Note that

the Pi’s can still be decomposed by using the Legendre basis rescaled on the intervals
[ji−1/Dmax, ji/Dmax).

It is easy to see that now, for t ∈ Sm ⊂ Sn,

‖t‖∞ ≤
√

(Rmax + 1)Nn‖t‖.

The collection [GP] of models (Sm)m∈Mn is described by the set of indexes

Mn = {m = (d, j1, . . . , jd−1, r1, . . . , rd), 1 ≤ d ≤ Dmax, ji ∈ {1, . . . , Dmax − 1},
ri ∈ {0, . . . , Rmax}} .

Obviously, collection [GP] has higher complexity than [DP]. The complexity of a collec-
tion is usually evaluated through a set of weights (Lm) that must satisfy

∑
m∈Mn

e−LmDm <
∞. For [DP], it is easy to see that Lm = 1 suits. For [GP], we have to look at

∑
m∈Mn

e−LmDm =
Dmax∑
d=1

∑
1≤j1<···<jd−1<Dmax

∑
0≤r1,...,rd≤Rmax

e−Lm
∑d

i=1(ri+1)

From the equality above, we deduce that the choice

(12) LmDm = Dm + ln
(
Dmax − 1
d− 1

)
+ d ln(Rmax + 1)

can suit. Actually, it is the term inspiring the penalty function used in the practical
implementation. To see more clearly what orders of magnitude are involved, let us set
Lm = Ln for all m ∈Mn. Then, we have a further bound for the series:

∑
m∈Mn

e−LmDm ≤
Dmax∑
d=1

(
Dmax − 1
d− 1

)
(Rmax + 1)de−dLn

≤
Dmax−1∑

d=0

(
Dmax − 1

d

)
[(Rmax + 1)e−Ln ]d+1

≤ (Rmax + 1)
[
1 + (Rmax + 1)e−Ln

]Dmax−1

≤ (Rmax + 1) exp(Dmax(Rmax + 1)e−Ln) ≤ (Rmax + 1) exp(Nne
−Ln).
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Thus Lm = Ln = ln(Nn) ensures that the series is bounded. (For more details on these
collections, see e.g. Comte and Rozenholc (2004) or Baraud et al (2001b)).

Other spaces of approximation can be considered as, for example:
[T] Trigonometric spaces: Sm is generated by { 1,

√
2 cos(2πjx),

√
2 sin(2πjx) for j =

1, . . . ,m }, has dimension Dm = 2m+1 and m ∈Mn = {1, . . . , [n/2]−1} with Dm ≤ Nn.
[W] Dyadic wavelet generated spaces with smoothness r ≥ 2 and compact support, as
described e.g. in Cohen et al. (1993), Donoho et al. (1996) or Hoffmann (1999). The
spaces are also denoted by Sm, with dim(Sm) = Dm ≤ Nn.

In both cases, the maximal dimension Nn is subject additional constraints (see below).
The drawback of these spaces is their lack of flexibility. In particular, the notion of regular
or irregular partitions has no sense for trigonometric bases. For what concerns wavelet
bases, they are systematically built on dyadic partitions. On the other hand, the interest
of these spaces is that they are generated by smooth functions contrary to piecewise
polynomials. For the estimation of the diffusion coefficient, smooth bases are needed to
recover the optimal nonparametric rate of convergence.

Below, we keep general notations for the spaces of approximation: an orthonormal basis
of a space Sm will be denoted by (ϕλ)λ∈Λm where |Λm| = Dm.

3. Adaptive estimation of the drift

3.1. Estimator of the drift. Let

(13) Yk =
V̄k+1 − V̄k

∆
.

The following regression-type decomposition holds:

(14) Yk+1 = b(V̄k) + Z(k+1)∆ +Rb((k + 1)∆)

where Zk∆ is a noise term given by

(15) Zk∆ =
1

∆2

[∫ (k+2)∆

k∆
ψk∆(u)σ(Vu)dWu

]
with

(16) ψk∆(u) = (u− k∆)1I[k∆,(k+1)∆[(u) + [(k + 2)∆− u]1I[(k+1)∆,(k+2)∆[(u).

Note that, using the strict stationarity of (Vt),

(17) E(Z2
k∆) =

2
3∆

Eσ2(V0).

This explains the correcting factor 3/2 appearing in (29) below. As a consequence of
Proposition 3.1 below, the last term in (14) is negligible when ∆ is small (see Section 7
for proofs).

Proposition 3.1. Under Assumptions [A1]-[A2]-[A3], E(R2
b((k+1)∆) ≤ c∆ and E(R4

b((k+
1)∆) ≤ c′∆2 where c and c′ neither depend on k nor on ∆.
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In light of decomposition (14), for Sm a space of the collection Mn and for t ∈ Sm, we
consider the following regression contrast:

(18) γn(t) =
1
n

n∑
k=1

[Yk+1 − t(V̄k)]2.

If we denote by
Ft = σ (Vs, s ≤ t) ,

it must be noticed that Yk+1, Z(k+1)∆, Rb((k + 1)∆) are F(k+3)∆-measurable whereas V̄k

is F(k+1)∆-measurable. This lag of order 2∆ avoids dealing with unnecessary and tedious
correlations.

In a first step, the estimator belonging to Sm is defined as

(19) b̂m = arg min
t∈Sm

γn(t).

The second step is to ensure an automatic selection of the space Sm, which does not use
any knowledge on b. This selection is standardly done by

(20) m̂ = arg min
m∈Mn

[
γn(b̂m) + pen(m)

]
,

with pen(m) a penalty to be properly chosen. We denote by b̃ = b̂m̂ the resulting estimator.

Remark 3.1. It is worth noting that in (19), b̂m exists but may be non unique. Indeed
minimizing γn over Sm often leads to an affine space of solutions. In contrast, the random
Rn-vector (b̂m(V̄1), . . . , b̂m(V̄n))′ is always uniquely defined. Indeed, let us denote by Πm

the orthogonal projection (with respect to the inner product of Rn) onto the subspace of
Rn, {(t(V̄1), . . . , t(V̄n))′, t ∈ Sm}. Then, we have (b̂m(V̄1), . . . , b̂m(V̄n))′ = ΠmY where
Y = (Y2, . . . , Yn+1)′. This is the reason why we need consider a risk fitted to our problem.

Let us define the empirical norm of a function t in some Sm by

(21) ‖t‖2
n =

1
n

n∑
k=1

t2(V̄k).

The risk of an estimator b̂m is computed as the expectation of this empirical norm: E(‖b̂m−
b‖2

n).
Note that for a deterministic function E(‖t‖2

n) = ‖t‖2
π̄ =

∫
t2(x)π̄∆(x)dx and that, under

Assumption [A6], the norms ‖.‖ and ‖.‖π̄ are equivalent for [0, 1]-supported functions.

3.2. Risk of the drift estimator. The regression contrast (18) may be written as:

γn(t)− γn(b) = ‖t− b‖2
n −

2
n

n∑
k=1

(Yk+1 − b(V̄k))(t− b)(V̄k)

In view of (14), let us introduce the two processes indexed by functions t:

(22) νn(t) =
1
n

n∑
k=1

t(V̄k)Z(k+1)∆ and Rn(t) =
1
n

n∑
k=1

t(V̄k)Rb((k + 1)∆).
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Using the above notations, we obtain that

γn(t)− γn(b) = ‖t− b‖2
n − 2νn(t− b)− 2Rn(t− b).

Let bm be the orthogonal projection of bA on Sm. By (19), γn(b̂m) ≤ γn(bm), hence
γn(b̂m)− γn(b) ≤ γn(bm)− γn(b). This implies:

‖b̂m − b‖2
n ≤ ‖bm − b‖2

n + 2νn(b̂m − bm) + 2Rn(b̂m − bm).(23)

Since bm and b̂m are A-supported, ‖b1Ac‖n appears in both sides of the inequality. We
can cancel it and obtain

‖b̂m − bA‖2
n ≤ ‖bm − bA‖2

n + 2νn(b̂m − bm) + 2Rn(b̂m − bm).(24)

The last term, involving the residual Rb, can be controlled thanks to Proposition 3.1. And
the process νn defined in (22) satisfies:

Proposition 3.2. Consider Sm in collection [DP], [T] or [W]. Under Assumptions [A1]-
[A3], for any ∆, 0 < ∆ ≤ 1,

E

(
sup

t∈Sm,‖t‖=1
ν2

n(t)

)
≤ c

E(σ2(V0))Dm

n∆
.

For Sm in [GP], under [A1]-[A3]-[A5]-[A6], for any ∆, 0 < ∆ ≤ 1,

E

(
sup

t∈Sm,‖t‖=1
ν2

n(t)

)
≤ c′

σ2
1Dm

n∆
.

Remark 3.2. Propositions 3.1, 3.2 and inequality (24) are the keys to bound the risk for
one estimator b̂m of b belonging to a space Sm. Indeed, assume that, as n tends to infinity,
∆ = ∆n is such that ∆n → 0, n∆n/ ln2(n) → +∞. Under our set of assumptions, it is
possible to prove that (see (7):

(25) E(‖b̂m − bA‖2
n) ≤ 7π̄1‖bm − bA‖2 +K

E(σ2(V0))Dm

n∆
+K ′∆,

where K and K ′ are positive constants. Equation (25) holds if the maximal dimension
Nn satisfies Nn = o(n∆n/ ln2(n)) for collections [DP] and [W]. For collection [T], the
constraint is Nn = o(

√
n∆n/ ln(n)).

Note that, under the standard condition n∆2 = O(1), the term K ′∆ is negligible with
respect to the previous one.

Moreover the result is easy to extend to collection [GP] provided that E(σ2(V0)) is re-
placed by σ2

1 in (25). Since Theorem 3.1 below mainly contains this result, we do not give
the proof of (25).

To obtain results on the adaptive estimator, more accurate considerations on the martin-
gale properties of νn must be driven. In particular, we prove the following Bernstein-type
inequality:

Proposition 3.3. Under Assumptions [A1]-[A2]-[A3]-[A5],for any positive numbers ε and
v and for any function t in a space Sm, we have (see (2)-(15)-(21)-(22))

P
[
νn(t) ≥ ε, ‖t‖2

n ≤ v2
]
≤ exp

(
− n∆ε2

4σ2
1v

2

)
.
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Proposition 3.3 enables us to obtain the adequate penalty function for (20), that leads
to selecting the dimension Dm realizing the best compromise between the squared bias
term ‖bm − bA‖2 and the variance term of order Dm/(n∆) (see (25)).

Theorem 3.1. Let ∆ = ∆n be such that ∆n → 0, n∆n/ ln2(n) → +∞ when n → +∞.
Assume that [A1]-[A6] hold. Consider the nested collection of models [DP] (with Lm = 1)
or the collection [GP] (with Lm given by (12)), both with maximal dimension satisfying
Nn = o(n∆/ ln2(n)). Then the estimator b̃ = b̂m̂ of b with m̂ defined by (20) and

(26) pen(m) ≥ κσ2
1

(1 + Lm)Dm

n∆
,

where κ is a universal constant, is such that

(27) E(‖b̃− bA‖2
n) ≤ C inf

m∈Mn

(
‖bm − bA‖2 + pen(m)

)
+K ′∆ +

K”
n∆

.

Inequality (27) holds for the basis [W], under the same assumptions, with Lm = 1. For
[T] the additional constraint Nn = o(

√
n∆/ ln(n)) is required (with still Lm = 1).

Let us make some comments on Theorem 3.1. The constant κ in (26) is a numerical
value that has to be calibrated by simulations (see Section 6.2). One would expect from
(25) to obtain E(σ2(V0)) instead of σ2

1 in (26). We do not know if this is the consequence of
technical problems or if this is a structural result. In practice, this term is replaced by an
estimator (see Section 6.2). Inequality (27) enlights the fact that the adaptive estimator
automatically realizes the bias-variance compromise in a non asymptotic way.

Let us look at rates of convergence using the asymptotic point of view. Assume that bA
belongs to a ball of some Besov space, bA ∈ Bα,2,∞([0, 1]). Consider for instance collection
[DP] with r+1 ≥ α and weights Lm = 1 (see (10)) . Then ‖bA− bm‖2 ≤ C(α,L)D−2α

m , for
‖bA‖α,2,∞ ≤ L (see DeVore and Lorentz (1993) p.359 or Lemma 12 in Barron et al. (1999)).
Therefore, if we search the dimension Dm that achieves inf{D−2α

m + Dm/(n∆)}, we get
Dm ∝ (n∆)1/(2α+1). Thus, we find

(28) E(‖b̃− bA‖2
n) ≤ C(n∆)−2α/(2α+1) +K ′∆ +

K”
n∆

.

The first term (n∆)−2α/(2α+1) is the optimal nonparametric rate proved by Hoffmann (1999)
for a direct observation of V . Moreover, under the standard condition ∆ = o(1/(n∆)),
the last two terms are negligible with respect to (n∆)−2α/(2α+1). Hence, even though V

is not directly observed, the estimator b̃ reaches the optimal rate.

4. Adaptive estimation of the diffusion coefficient

4.1. Estimator of the volatility. Let us define

(29) Uk =
3
2

(V̄k+1 − V̄k)2

∆
.

The correcting factor 3/2, linked with integrated observations, is not surprising since it
also appears in the parametric framework (see Gloter (2000, 2006)). Applications of Ito’s
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formula and Fubini’s theorem yield the following regression-type decomposition:

Uk+1 = σ2(V(k+1)∆) + Z̆(k+1)∆ + R̆(k+1)∆

= σ2(V̄k) + Z̆(k+1)∆ + R̆(k+1)∆ + [σ2(V(k+1)∆)− σ2(V̄k)].

where Z̆k∆ = Z̆
(1)
k∆ + Z̆

(2)
k∆ + Z̆

(3)
k∆. The main component of this noise term is (see (16))

Z̆
(1)
k∆ =

3
2∆3

(∫ (k+2)∆

k∆
ψk∆(s)σ(Vs)dWs

)2

−
∫ (k+2)∆

k∆
ψ2

k∆(s)σ2(Vs)ds


The two other components have negligible variance weight:

Z̆
(2)
k∆ =

3
∆
b(Vk∆)

∫ (k+2)∆

k∆
ψk∆(s)σ(Vs)dWs,

Z̆
(3)
k∆ =

3
2∆3

∫ (k+2)∆

k∆

(∫ (k+2)∆

s
ψ2

k∆(u)du

)
(σ′σ2)(Vs)dWs.

On the other hand, R̆(k+1)∆ is a residual term, as well as σ2(V(k+1)∆)−σ2(V̄k). The latter
term raises specific problem because the rates for the estimation of σ2 are faster than the
rates for the estimation of b. Proposition 4.1 and 4.2 below rely on standard tools.

Proposition 4.1. Under Assumptions [A1]-[A2]-[A3] and [A5], E([Z̆(1)((k + 1)∆)]2)] ≤
c1E(σ4(V0)) and for i = 2, 3, E([Z̆(i)((k + 1)∆)]2 ≤ ci∆, where the ci’s neither depend on
k nor on ∆.

Proposition 4.2. Under Assumptions [A1]-[A2]-[A3]-[A5], E(R̆2((k + 1)∆) ≤ c∆2 and
E(R̆4((k + 1)∆) ≤ c′∆4 where c and c′ neither depend on k nor on ∆.

Roughly, the last term has the following order

Proposition 4.3. Under Assumptions [A1]-[A2]-[A3]-[A5], E[(σ2(V(k+1)∆)−σ2(V̄k))2] ≤
C∆ where C neither depend on k nor on ∆.

The order obtained in Proposition 4.3 is worse than the one obtained in Proposition
4.2 and is not enough to reach optimal rates in the risk bounds (see Remark 4.2 below).
Nevertheless, if the functions of Sm are at least twice differentiable, then we obtain a
better result by using another approach.

Proposition 4.4. Let

(30) Tn(t) =
1
n

n∑
k=1

(σ2(V(k+1)∆)− σ2(V̄k))t(V̄k).

Then, under Assumptions [A1]-[A5] and for Sm in collection [T], ∆ ≤ 1, Dm ≤ Nn ≤√
n∆/ ln(n) or for Sm in collection [W], ∆ ≤ 1, Dm ≤ Nn ≤ n∆/ ln2(n),

(31) E

(
sup

t∈Sm,‖t‖=1
T 2

n(t)

)
≤ C

(
D2

m∆2 + ∆3D5
m

)
.
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If moreover ∆ ≤ n−2/3 for [T] or ∆ ≤ n−3/4 for [W], then, for the maximal space Sn of
the collection,

(32) E

(
sup

t∈Sn,‖t‖=1
T 2

n(t)

)
≤ c

n
.

To estimate σ2 on the compact set A = [0, 1], we define first

(33) σ̂2
m = arg min

t∈Sm

γ̆n(t), with γ̆n(t) =
1
n

n∑
k=1

[
Uk+1 − t(V̄k)

]2
.

We refer to Remark 3.1 for the existence of σ̂2
m. As previously, the second step is to

ensure an automatic selection of m. For this, we define

(34) m̆ = arg min
m∈Mn

[
γ̆n(σ̂2

m) + ˘pen(m)
]
.

We denote by σ̃2 = σ̂2
m̆ the resulting estimator and we need to determine the adequate

˘pen(m).

4.2. Risk of the estimator. Let us define

(35) ν̆n(t) =
1
n

n∑
k=1

t(V̄k)Z̆(k+1)∆, R̆n(t) =
1
n

n∑
k=1

t(V̄k)R̆(k+1)∆.

As for b, we start by writing:

γ̆n(t)− γ̆n(σ2) = ‖σ2 − t‖2
n −

2
n

n∑
k=1

(t− σ2)(V̄k)[Uk+1 − σ2(V̄k)]

= ‖σ2 − t‖2
n − 2ν̆n(t− σ2)− 2Tn(t− σ2)− 2R̆n(t− σ2).

We denote by σ2
m the orthogonal projection of σ2

A on Sm. Writing that γ̆n(σ̂2
m)− γ̆n(σ2) ≤

γ̆n(σ2
m)− γ̆n(σ2), we get (see (30), (35))

‖σ̂2
m − σ2‖2

n ≤ ‖σ2
m − σ2‖2

n + 2ν̆n(σ̂2
m − σ2

m) + 2Tn(σ̂2
m − σ2

m) + 2R̆n(σ̂2
m − σ2

m).

Cancelling ‖σ2
Ac‖2

n on both sides of the inequality, we obtain

(36) ‖σ̂2
m − σ2

A‖2
n ≤ ‖σ2

m − σ2
A‖2

n + 2ν̆n(σ̂2
m − σ2

m) + 2Tn(σ̂2
m − σ2

m) + 2R̆n(σ̂2
m − σ2

m).

The last two terms can be controlled thanks to Propositions 4.2 and 4.4. Using Proposition
4.1, we can prove the result analogous to Proposition 3.2 by a similar proof which is
omitted.

Proposition 4.5. For Sm in [DP], [W] or [T], under Assumptions [A1]-[A3]-[A5], for any
∆, 0 < ∆ ≤ 1,

E

(
sup

t∈Sm,‖t‖=1
ν̆2

n(t)

)
≤ c

E(σ4(V0))Dm

n
.

Remark 4.1. We can draw intermediate conclusions as in Remark 3.2 concerning an
estimator σ̂2

m with fixed m (see (33)). Assume [A1]-[A6]. Let ∆ = ∆n → 0, with
n∆n/ ln2(n) → +∞ when n → +∞. Let Sm be a space in collection [DP] or [T] with
dim(Sm)≤ Nn, Nn = o(n∆/ ln2(n)) or in collection [T] with dim(Sm)≤ Nn, Nn =
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o(
√
n∆/ ln(n)). Relying on Propositions 4.1, 4.2, 4.3, 4.4 and 4.5, it is possible to derive

that

(37) E(‖σ̂2
m − σ2

A‖2
n) ≤ 7π̄1‖σ2

m − σ2
A‖2 +K

E(σ4(V0))Dm

n
+Bn,

where σ2
A = σ21I[0,1], K is positive constant. The remainder term Bn is given by Bn = K ′∆

for collection [DP] and Bn = K ′/n for collection [T] if ∆ ≤ n−2/3 and for collection [W] if
∆ ≤ n−3/4. Here K ′ is a positive constant. The proof of this result is not provided, since
it is mainly implied by Theorem 4.1.

Here again, to obtain results on the adaptive estimator, some more accurate consider-
ations on the martingale properties must be driven. In particular, we prove:

Proposition 4.6. Under the assumptions of Theorem 4.1,

P

(
n∑

k=1

t(V̄k)Z̆
(1)
(k+1)∆ ≥ nε, ‖t‖2

n ≤ v2

)
≤ exp

(
−Cn ε2/2

2σ4
1v

2 + ε‖t‖∞σ2
1v

)
and

(38) P

(
1
n

n∑
k=1

t(V̄k)Z̆
(1)
(k+1)∆ ≥ vσ2

1

√
2x+ σ2

1‖t‖∞x, ‖t‖2
n ≤ v2

)
≤ exp(−Cnx).

The (non trivial) link between the two inequalities is established by Birgé and Mas-
sart (1998). Using this result, we can prove the following main theorem.

Theorem 4.1. Let ∆ = ∆n → 0 and n∆/ ln2(n) → +∞ as n→ +∞. Assume that [A1]-
[A6] hold. Consider the nested collection of models [DP] (Lm = 1) or the general collection
[GP] (Lm given by (12)), both with maximal dimension Nn ≤ n∆/ ln2(n). Or consider
the nested collection of models [T] (Lm = 1) with maximal dimension Nn ≤

√
n∆/ ln(n)

and ∆ ≤ n−2/3. Or consider the nested collection of models [W] (Lm = 1) with maximal
dimension Nn ≤ n∆/ ln2(n) and ∆ ≤ n−3/4. Then the estimator σ̃2 = σ̂2

m̆ of σ2 where m̆
is defined by (34) with

(39) ˘pen(m) ≥ κ̃σ4
1

(1 + Lm)Dm

n
,

where κ̃ is a universal constant, is such that

(40) E(‖σ̃2 − σ2
A‖2

n) ≤ C inf
m∈Mn

(
‖σ2

m − σ2
A‖2 + ˘pen(m)

)
+B′

n,

where B′
n is given by B′

n = K”∆ for collection [DP] or [GP] and Bn = K”/n for collections
[T] or [W] where K” is a positive constant.

Remark 4.2. Let us discuss the rate of convergence of σ̃2 in relation with Hoffmann’s (1999)
results. Assume that σ2

A belongs to a ball of some Besov space, σ2
A ∈ Bα,2,∞([0, 1]), with

α ≥ 2.
Consider first collection [DP] with r + 1 > α. For ‖σ2

A‖α,2,∞ ≤ L, it is known that
‖σ2

A − σ2
m‖2 ≤ C(α,L)D−2α

m . The infimum in (40) is attained when Dm ∝ n−1/(2α+1) and
this choice yields

(41) E(‖σ̃2 − σ2
A‖2

n) ≤ Cn−2α/(2α+1) +K”∆.
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The first term n−2α/(2α+1) is the optimal nonparametric rate proved by Hoffmann (1999).
However, we still have to check that the optimal dimension Dm = n1/(2α+1) can be

attained, i.e. that n1/(2α+1) ≤ Nn ≤ n∆/ ln2(n). This requires ∆ ≥ n−2α/(2α+1) ln2(n).
Hence, the optimal rate can at best be attained with a logarithmic loss. But we must fix ∆
without knowledge of α. Since α ≥ 2, 2α/(2α+1) ≥ 4/5. Consequently the only admissible
choice is ∆ = n−4/5 ln2(n) which is consistent with the constraint n∆2 = o(1) found for
the drift. If α = 2, the optimal rate is attained with a logarithmic loss. Otherwise, it is not.

Consider now collection [T]. With Dm ∝ n−1/(2α+1), we get now

(42) E(‖σ̃2 − σ2
A‖2

n) ≤ Cn−2α/(2α+1) +
K”
n
.

We consider ∆ = n−c with c > 2/3 and we require n1/(2α+1) ≤ Nn ≤
√
n∆/ ln(n). This

gives c < (2α − 1)/(2α + 1). Therefore there is now a possible range of values for c:
]2/3, (2α − 1)/(2α + 1)[ 6= ∅ for α > 5/2. Clearly, the collection [T] is well fitted for es-
timating very smooth functions. Notice that when α → +∞, the range for c tends to
]2/3, 1[. It follows that for large values of α, the optimal nonparametric rate is reached for
a wider range of values of c.

For collection [W], (42) still holds. An analogous discussion leads to c ∈]3/4, 2α/(2α+
1)[ which non empty for any α ≥ 2 and contains the interval ]3/4, 4/5[.

5. Discussion about Assumption [A6]

5.1. Sufficient conditions. Consider a diffusion model dVt = b(Vt)dt+σ(Vt)dWt, V0 = η
satisfying [A1]-[A5]. We give now details on how to check Assumption [A6]. First note
that the existence of the density π̄∆ of V̄0 is obtained under rather mild conditions on b
and σ. For this, it is enough to check that the two-dimensional diffusion process (Xt, Vt)
with dXt = Vtdt satisfies the Hörmander condition (see e.g. Rogers and Williams (2000),
where this model is studied). Under rather strong assumptions on b and σ, the following
proposition shows that [A6] holds.

Proposition 5.1. Assume that b, σ are defined on R and C1, that b, b′, σ, σ′ are bounded
and that σ(.) ≥ σ0 > 0. Then, on any compact interval K ⊂ R, there exist constants c, C
depending only on the bounds of b and σ and their derivatives and not on ∆, such that

∀v ∈ K, c ≤ π̄∆(v) ≤ C.

5.2. Explicit examples. Assumption [A6] can also be checked when explicit formulae
are available. Note that, as ∆ tends to 0, V̄0 tends to V0 = η almost surely, hence in
distribution. Now, the characteristic functions of these random variables are often more
explicit. Using the Fourier inversion formula, we can use the following standard sufficient
condition.

• Let Φ∆(s) and Φ(s) denote respectively the characteristic functions of V̄0 and V0 =
η. If

∫
R |Φ∆(s)−Φ(s)|ds tends to 0 as ∆ tends to 0, then supv∈(r0,r1) |π̄∆(v)−π(v)|

tends to 0.
Since the stationary density π satisfies [A6], the same will hold for π̄∆.
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We consider two models. For Model 1, the density π̄∆ is explicit. For Model 2, we
compute its characteristic function.
Model 1. The Ornstein-Uhlenbeck process gives evidently an explicit case. Consider
dVt = −θVtdt + cdWt, V0 = η, with θ > 0 and η centered Gaussian with variance ρ2 =
c2/2θ. Then, the solution process (Vt) is centered Gaussian, with covariance function
(s, t) → ρ2 exp (−θ|t− s|). The random variable V̄0 is centered Gaussian with variance

σ̄2
∆ =

c2(e−θ∆ − 1 + θ∆)
∆2θ3

∼ ρ2 as ∆ → 0.

Model 2. Now, we consider the classical model used by Cox, Ingersoll and Ross (1985) to
model interest rates. Let Vt be given by

(43) dVt = (−2θVt + δc2)dt+ 2cV 1/2
t dWt, V0 = η.

Since this model is well known, we briefly recall some of its properties (for more details,
see e.g. Lamberton and Lapeyre (1996) or Chaleyat-Maurel and Genon-Catalot (2006)).
We assume that θ > 0 and δ ≥ 1. When δ is integer, (Vt) is identical in law to

∑δ
i=1(ξ

δ
t )

2

where (ξj
t ) are i.i.d. Ornstein-Uhlenbeck processes solution of dξj

t = −θξj
t dt + cdW j

t .
Setting again ρ2 = c2/2θ, the stationary distribution of (43) is the Gamma distribution
G(δ/2, 1/2ρ2). This law is exactly equal to a ρ2χ2(δ). The Laplace transform is V̄0 is
explicit and can be obtained as follows.

Proposition 5.2. For λ > 0,

(44) ϕt(λ) = E(exp (−λ
∫ t

0
Vsds)) = Bt(λ)δ

(
1

1 + 2µt(λ)ρ2

)δ/2

,

with

Bt(λ) =
(

1 + (c̄+ θ)
e2c̄t − 1

2c̄

)−1/2

exp ((c̄+ θ)t/2) , µt(λ) = λ
e2c̄t − 1

2c̄+ (c̄+ θ)(e2c̄t − 1)
,

and c̄ = (θ2 + 2λc2)1/2.

Then we can easily deduce:

Corollary 5.1. The characteristic function of V̄0 is equal to

Φ∆(s) = ϕ∆(−is/∆)

where ϕt(λ) is given in (44).

Looking at formula (75), we see that the characteristic function of V0 is equal to

Φ(s) = (1− 2isρ2)−(δ/2).

This function is integrable for δ/2 > 1. After some tedious computations, we can prove
that

sup
∆≤1

|Φ∆(s)|

is also integrable for the same values of δ. So, in these cases, we get the uniform convergence
of π̄∆ to π and [A6] holds.
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5.3. An approach well-fitted to the problem. Actually, we only need
[A’6 ] ∃π̄0, π̄1 independent of n and ∆, such that

(i) ∀m ∈Mn, ∀t ∈ Sm,

π̄0‖t‖2 ≤
∫
t2(x)π̄∆(x)dx ≤ π̄1‖t‖2,

(ii) ‖bA − bm‖2
π̄ ≤ π̄1‖bA − bm‖2 and ‖σ2

A − σ2
m‖2

π̄ ≤ π̄1‖σ2
A − σ2

m‖2.
Obviously [A6] implies [A’6] and we can prove [A’6] (i) in our context.

Proposition 5.3. ∀m ∈Mn, ∀t ∈ Sm for Sm in collection [T] or [W],

|E[t2(V̄0)− t2(V0)]| ≤ CN3
n∆‖t‖2.

With Nn ≤
√
n∆/ ln(n) (resp. Nn ≤ n∆/ ln2(n)), the quantity N3

n∆ tends to zero when
n tends to infinity and ∆ = ∆n = o(n−2/3) (resp. ∆ = ∆n = o(n−3/4)). Therefore, it
follows from Proposition 5.3 that, for n large enough, [A’6] (i) holds with e.g. π̄1 = (3/2)π1

and π̄0 = (1/2)π0 where π1 = supx∈A π(x) and π0 = infx∈A π(x).

6. Examples and numerical simulation results

In this section, we consider examples of diffusions and implement the estimation algo-
rithms on simulated data.

6.1. Examples of diffusions. We consider the processes V (i)
t for i = 1, . . . , 7 specified

by the couples of functions (b(i), σ(i)) given in Table 6.1.
To simulate sample paths of diffusions V (1)

t and V
(3)
t , we use the retrospective exact

simulation algorithms proposed by Beskos et al. (2006a) and Beskos and Roberts (2005).
Contrary to the Euler scheme, these algorithms produce exact simulation of diffusions
under some assumptions on the drift and diffusion coefficient. We refer to Comte et
al. (2005) for details on the way the diffusions are chosen and generated.

Then processes V (2)
t , V (4)

t and V (5)
t are obtained as transformations of the previous ones.

More precisely, V (2)
t = sinh(V (1)

t /c) and V
(4)
t = arg sinh(cV (3)

t ) and V
(5)
t = G(V (3)

t ) with
G(x) = arg sinh(x − 5) + arg sinh(x + 5). The function G(.) is invertible and its inverse
has the following explicit expression,

(45) G−1(x) =
1√

2 sinh(x)

[
49 sinh2(x) + 100 + cosh(x)(sinh2(x)− 100)

]1/2
.

The last two models are simulated by using that the exact discretization of an Ornstein-
Uhlenbeck process is an autoregressive process of order one with known coefficients and
noise distribution. More precisely, V (6)

t = tanh(Yt) where dYt = −θYtdt+ cdWt and

Yiδ = e−θδY(i−1)δ + c

(
1− e−2θδ

2θ

)1/2

εi,

Y0  N (0, c2/(2θ)), and the εi’s are i.i.d. N (0, 1).
For V (7)

t , an exact discrete path is obtained with the standard following method. If Ut

is a d-dimensional Ornstein-Uhlenbeck process:

dUt = −θ
2
Utdt+

c

2
dW (d)(t)
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Process Drift: b(i)(x) = σ(i)(x) = (θ, c)
V

(1)
t −(θ/c+ c/2) tanh(cx) 1 (4,1)

V
(2)
t −θx c

√
1 + x2 (4,1)

V
(3)
t −θ x√

1 + c2x2
1 (2,2)

V
(4)
t −

[
θ +

c2

2 cosh(x)

]
sinh(x)
cosh2(x)

c

cosh(x)
(2,2)

V
(5)
t G′(G−1(x))b(3)(G−1(x)) + 1

2G”(G−1(x)) (*) G′(G−1(x)) (**) (1,10)

V
(6)
t −(1− x2)

[
c2x+ θ

2 ln
(

1+x
1−x

)]
c(1− x2) (1, 0.75)

V
(7)
t

dc2

4 − θx, d = 9 c
√
x (0.75, 1/3)

Table 1. List of the simulated diffusion processes.
(*) G(x) = arg sinh(x− 5) + arg sinh(x+ 5), G−1 is given by (45),
(**) G′(u) = 1

(1+(u−5)2)1/2 + 1
(1+(u+5)2)1/2

where W (d) is a d-dimensional standard brownian motion, then V
(7)
t = |Ut|2 =

∑d
i=1 U

2
i,t

where Ui,t are the coordinates of Ut, satisfies the equation

dV
(7)
t =

[
dc2

4
− θV

(7)
t

]
dt+ c

√
V

(7)
t dW ∗(t)

where W ∗ is another one-dimensional Brownian motion built on the coordinates of W (d).
Therefore, we build U0 ∼ (c/2

√
θ)N (0, Id), where Id denote the d × d identity matrix

and

U(p+1)δ = e−θδ/2Upδ +
c
√

1− e−θδ

2
√
θ

εp+1

where the εi’s are i.i.d. N (0, Id) random vectors and take V (7)
kδ = |Ukδ|2.

It can be checked that all the above processes satisfy assumptions [A1]-[A6], with I = R
for V (j)

t with j = 1, . . . , 5 and I = [−1, 1] for V (6)
t , I = (0,+∞) for V (7)

t .
We obtain samples of direct observations of the processes (V (j)

kδ )1≤k≤N for j = 1, . . . , 7,
from which we approximate the (V̄ (j)

k )1≤k≤n, by taking the mean of every p = N/n ob-
servations, the new step being ∆ = pδ. We shall compare the estimation procedure using
these (V̄ (j)

k ) with the one using the direct observations V (j)
k∆ . Note that the regression

equations for the estimation based on the exact observations Vk∆ are the following:

(46)
1
∆

(V(k+1)∆ − Vk∆) = b(Vk∆) + noise + remainder,
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b (integ) b (exact) σ2 (integ) σ2 (exact)
V 1 1.5e− 01 7.5e− 02 3.4e− 02 2.4e− 02
V 2 2.2e− 01 1.6e− 01 2.9e− 02 2.5e− 02
V 3 3.5e− 02 3.3e− 02 1.3e− 03 8.8e− 04
V 4 1.9e− 01 1.2e− 01 2.8e− 01 1.8e− 01
V 5 1.0e− 02 1.1e− 02 7.9e− 03 7.5e− 03
V 6 1.5e− 02 1.4e− 02 3.3e− 03 1.5e− 03
V 7 2.6e− 03 2.5e− 03 5.1e− 05 4.6e− 05

Table 2. Empirical risks obtained for the estimation of b and σ2 with
100 paths of the integrated and exact discretized processes when using the
trigonometric basis.

b (integ) b (exact) σ2 (integ) σ2 (exact)
V 1 1.0e− 01 3.8e− 02 3.5e− 02 2.4e− 02
V 2 9.3e− 02 2.5e− 02 2.8e− 02 2.5e− 02
V 3 5.7e− 02 5.4e− 02 4.3e− 03 2.4e− 03
V 4 1.9e− 01 1.3e− 01 4.2e− 01 1.9e− 01
V 5 9.8e− 03 1.0e− 02 7.0e− 03 5.9e− 03
V 6 1.6e− 02 1.3e− 02 3.2e− 03 1.7e− 03
V 7 2.9e− 04 3.3e− 04 1.0e− 05 6.6e− 06

Table 3. Empirical risks obtained for the estimation of b and σ2 with 100
paths of the integrated and the exact discretized processes when using the
piecewise polynomial basis.

b (integ) b (exact) σ2 (integ) σ2 (exact)
V 1 1.0e− 01 3.7e− 02 3.6e− 02 2.5e− 02
V 2 9.3e− 02 2.5e− 02 2.9e− 02 2.7e− 02
V 3 5.1e− 02 4.8e− 02 4.4e− 03 2.4e− 03
V 4 1.9e− 01 1.3e− 01 2.9e− 01 1.8e− 01
V 5 1.0e− 02 1.1e− 02 8.1e− 03 6.9e− 03
V 6 1.7e− 02 1.6e− 02 3.2e− 03 1.7e− 03
V 7 2.9e− 04 3.3e− 04 1.0e− 05 6.6e− 06

Table 4. Empirical risks obtained for the estimation of b and σ2 with 100
paths of the integrated and the exact discretized processes when using a
mixed trigonometric-piecewise polynomial strategy.

(47)
1
∆

(V(k+1)∆ − Vk∆)2 = σ2(Vk∆) + noise + remainder,

see Comte et al. (2005). Obviously, risks are computed using Vk∆ instead of V̄k.
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Figure 1. Processes V (i), i = 4, 5, 6 given in Table 6.1. First column:
Difference between the integrated and discretized. True (bold), estimates
using the integrated (thin grey) and the exact discretized (dotted thin)
for b (second column) and σ2 (third column). Error values: “Int” for the
integrated and “Disc” for the exact discretized.

b σ2

[T] [GP] [M] [T] [GP] [M]
V (1) 49 0 1 0 2 4
V (2) 140 0 0 4 0 5
V (3) 0 65 46 0 224 231
V (4) 0 1 0 0 47 1
V (5) 0 7 14 13 0 16
V (6) 0 9 14 3 0 0
V (7) 797 0 0 400 0 0

Table 5. (Risk−Best Risk)/Best Risk with Trigonometric [T], General
Piecewise Polynomial [GP] or Mixed [M] bases.

6.2. Estimation algorithms and numerical results.
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Figure 2. First column: one path of the processes V (i), i = 1, . . . , 7 given
in Table 6.1. Second column: true b (bold) and 20 estimations of b. Third
column: true σ2 and 20 estimations of σ2.
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We use the denoising algorithm described in full details in Comte and Rozenholc (2004).
The algorithm minimizes the mean-square contrast and selects the space of approximation.
There is a difficulty for precise calibration of the penalties. This is done for bases [GP]
and [T] and this is the reason why our implementation focuses on those spaces.

Additive correcting terms are involved in the penalty (see Comte and Rozenholc (2004)).
Such terms avoid under-penalization and are in accordance with the fact that the theorems
provide lower bounds for the penalty. The correcting terms are asymptotically negligible
so they do not affect the rate of convergence. Both penalties contain additional logarithmic
terms which have been calibrated in other contexts by intensive simulation experiments
(see Comte and Rozenholc (2002, 2004)).

More precisely, for collection [GP], the drift penalty (i = 1) and the diffusion penalty
(i = 2) are given by

2
ŝ2i
n

d− 1 + ln
(
Dmax − 1
d− 1

)
+ ln2.5(d) +

d∑
j=1

(rj + ln2.5(rj + 1))

 .

These penalties are valid for collection [T], with d = Dmax = 1 and r1 = Dm. For [GP],
Dmax = [n∆/ ln1.5(n)], Rmax = 5 and for [T], r1 is at most [n∆/ ln1.5(n)].

The constants κ and κ̃ in both drift and diffusion penalties have been set equal to 2. The
term ŝ21 replaces σ2

1/∆ for the estimation of b and ŝ22 replaces σ4
1 for the estimation of σ2.

Let us first explain how ŝ22 is obtained. We run once the estimation algorithm of σ2 with
the basis [T] and with a preliminary penalty where ŝ22 is taken equal to 2maxm(γ̆n(σ̂2

m)).
This gives a preliminary estimator σ̃2

0. Now, we take ŝ2 equal to twice the 99.5%-quantile
of σ̃2

0. The use of the quantile is here to avoid extreme values. We get σ̃2. We use this
estimate and set ŝ21 = max1≤k≤n(σ̃2(V̄k))/∆ for the penalty of b.

In all the examples, parameters have been chosen in the admissible range of ergodicity
(see Table 6.1). The sample size n = 5000 and the step ∆ = 1/20 are in accordance with
the asymptotic context (great n’s and small ∆’s) and may be relevant for applications in
finance. They are obtained with N = 50000 initial observations and blocks of size p = 10
to compute the integrated process.

First, Tables 2, 3, 4 give empirical risks estimated over 100 simulated paths. In Tables
2 and 3, we give the results of the estimation procedure when the Vk∆’s are observed or
when only the V̄k’s are available, using either the trignometric basis [T] or the general
piecewise polynomials basis [GP]. In addition, we also made another attempt denoted by
[M] (mixed) whose results are stated in Table 4. In [M], the algorithm chooses between
the basis [T] and [GP], looking at the global penalized least square criterion value. It
appears that the results are slightly better with the exact observations, which was to be
expected. One can notice that the risks are in most cases smaller for the estimation of σ2

than for the estimation of b, which is in accordance with the theoretical rates.
Figure 1 shows in a few cases (for V (4), V (5) and V (6)) the differences V̄k − Vk∆ (first

column). Clearly, these differences look like white noises for V (4) and V (6) and this was
also true for V (1), V (2), V (3) and V (7). Only V (5) seems to suffer from a lack of stationarity
implying some picks. In any case, the approximation of Vk∆ by V̄k does not suffer from
any systematic bias. The last columns of Figure 1 plot the estimated curves obtained
when using the Vk∆’s or the V̄k’s, with associated error values. The estimated curves are
very close.
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Table 5 compares more directly the performances of the different bases [T], [GP] and the
mixed basis [M]. The table gives the relative differences 100[(risk - smallest risk)/smallest
risk], which is a percentage of degradation with respect to the best score. Consequently,
the best basis corresponds to a null value. The basis [GP] appears to be better than [T]:
both have approximately the same number of null scores but errors with [T] may be large.
The mixed strategy is slightly better, but it does not really outperforms [GP].

Lastly, in Figure 2, we have plotted the sample paths of V (1), . . . , V (7), the true functions
b and σ2 (bold lines) together with 20 estimated functions based on the data points V̄k

using the mixed strategy [M].

7. Proofs for the estimation of the drift

We shall need all along the proofs the following results and decompositions. First

(48) V(k+1)∆ = V̄k +
1
∆

∫ (k+1)∆

k∆
(u− k∆)dVu.

Noting that V(k+3)∆ − V(k+2)∆ =
∫ (k+3)∆
(k+2)∆ dVu, and using (48), we get

(49) Yk+1 =
1

∆2

∫ (k+3)∆

(k+1)∆
ψ(k+1)∆(u)dVu

where ψk∆ is given in (16). Second

Lemma 7.1. Under assumptions [A1]-[A3], for all s, t, |t−s| ≤ 1, E(Vt−Vs)2i ≤ c|t−s|i
and E(V(k+1)∆ − V̄k)2i ≤ c∆i for i ≤ 6 and for any integer k.

Proof of Lemma 7.1. From the strict stationarity, it is enough to prove that for 0 ≤
t ≤ 1, E(Vt − V0)2i ≤ cti. This follows from [A3], (5), and standard applications of Hölder
and Burkholder-Davis-Gundy inequalities.�

7.1. Proof of Proposition 3.1. Using (49), we can see that, in decomposition (14), the
residual term can be written Rb(k∆) =

∑5
i=1R

(i)(k∆) with

R
(1)
b ((k + 1)∆) = b(V(k+1)∆)− b(V̄k), R

(2)
b ((k + 1)∆) =

1
∆

∫ (k+2)∆

(k+1)∆
[b(Vs)− b(V(k+1)∆)]ds

R
(3)
b ((k + 1)∆) =

1
2
(b(V(k+2)∆)− b(V(k+1)∆)

R
(4)
b ((k + 1)∆) =

1
∆2

∫ (k+3)∆

(k+2)∆
((k + 3)∆− s)(b(Vs)− b(V(k+2)∆))ds

R
(5)
b ((k + 1)∆) = − 1

∆2

∫ (k+1)∆

(k+2)∆
((k + 2)∆− s)(b(Vs)− b(V(k+1)∆))ds.

Four terms are under study, the fifth one being the same as the fourth. For the first
one, use Taylor formula, Lemma 7.1 and [A5](i) to obtain

E[(R(1)
b ((k + 1)∆))2] = E

{[
(V(k+1)∆ − V̄k)

∫ 1

0
b′(V̄k + u(V(k+1)∆ − V̄k))du

]2
}

≤ KE
[
(V(k+1)∆ − V̄k)2

]
≤ K ′∆.(50)



NONPARAMETRIC ESTIMATION IN AN INTEGRATED DIFFUSION MODEL 23

It follows from (5) and Lemma 7.1 that

E

(∫ (k+2)∆

(k+1)∆
(b(Vs)− b(V(k+1)∆))ds

)2

≤ ∆
∫ (k+2)∆

(k+1)∆
c′∆ds = c′∆3.

Thus, E[(R(2)
b ((k + 1)∆))2] ≤ c′∆. The third term is obvious. Lastly

E[(R(4)
b ((k + 1)∆))2] ≤ 1

∆4

∫ (k+2)∆

(k+1)∆
∆[(k + 2)∆− u]2E[(b(Vu)− b(V(k+1)∆))2]du

so that with (5) again, we obtain E[(R(4)
b ((k + 1)∆))2] ≤ c4∆. Analogous tools lead to

E[(Rb((k + 1)∆))4] ≤ c∆2. �

7.2. Proof of Proposition 3.2. For Sm in [DP] or [GP], we can write

E

(
sup

t∈Sm,‖t‖=1
[νn(t)]2

)
≤
∑

λ∈Λm

E[ν2
n(ϕλ)] =

∑
λ∈Λm

Var (νn(ϕλ))

=
∑

λ∈Λm

1
n2

∑
1≤k,l≤n

cov(ϕλ(V̄k)Z(k+1)∆, ϕλ(V̄l)Z(l+1)∆)

=
∑

λ∈Λm

(
1
n

Var(ϕλ(V̄1)Z2∆) +
1
n2

n−1∑
k=1

cov(ϕλ(V̄k)Z(k+1)∆, ϕλ(V̄k+1)Z(k+2)∆)

)

≤
∑

λ∈Λm

2
n

E(ϕ2
λ(V̄1)Z2

2∆),

as the variances of the ϕλ(V̄k)Z(k+1)∆’s do not depend on k. When Sm belongs to collection
[DP], we use (11) and (17) and get

(51) E

(
sup

t∈Sm,‖t‖=1
[νn(t)]2

)
≤ 2(r + 1)Dm

n
E(Z2

2∆) =
4(r + 1)Dm

3n∆
E(σ2(V0)).

Now, for collection [GP], we use [A5] to write

E(ϕ2
λ(V̄1)Z2

2∆) = Eϕ2
λ(V̄1)

1
∆4

∫ 4∆

2∆
ψ2

2∆(u)σ2(Vu)du ≤ 2σ2
1

3∆
E(ϕ2

λ(V̄1)).

By [A6], E(ϕ2
λ(V̄1)) ≤ π̄1

∫
A ϕ

2
λ(x)dx = π̄1. Thus, for Sm in [GP],

E

(
sup

t∈Sm,‖t‖=1
[νn(t)]2

)
≤ 4σ2

1π̄1Dm

3n∆
.�

7.3. Proof of Proposition 3.3. We use that
∑n

k=1 t(V̄k)Z(k+1)∆ can be written as a
stochastic integral. Consider the process Hn

u = Hu defined by

Hu =
n∑

k=1

ψ(k+1)∆(u)t(V̄k)σ(Vu)

with ψk∆ given by (16). Note that 0 ≤ ψk∆(u) ≤ 1 for all u and k and ‖ψk∆‖2 =∫
ψ2

k∆(u)du = 2∆/3. Then, Hu satisfies H2
u ≤ σ2

1‖t‖2
∞ for all u ≥ 0. Then, denoting by
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Ms =
∫ s
0 HudWu, we get that M(n+1)∆ = ∆

∑n
k=1 t(V̄k)Z(k+1)∆, and 〈M〉(n+1)∆ is less

than or equal to

2
n∑

k=1

t2(V̄k)

[∫ (k+2)∆

(k+1)∆
[1− ((k + 2)− u

∆
)]2σ2(Vu)du+

∫ (k+3)∆

(k+2)∆
[(k + 3)− u

∆
]2σ2(Vu)du

]
.

Moreover, 〈M〉s ≤ 2nσ2
1∆‖t‖2

n, ∀s ≥ 0, so that (Ms) and exp(λMs − λ2〈M〉s/2) are
martingales with respect to the filtration Fs = σ(Xu, u ≤ s). Therefore, for all s ≥ 0,
c > 0, d > 0, λ > 0,

P(Ms ≥ c, 〈M〉s ≤ d) ≤ P
(
eλMs−λ2

2
〈M〉s ≥ eλc−λ2

2
d

)
≤ e−(λc−λ2

2
d).

Therefore, P(Ms ≥ c, 〈M〉s ≤ d) ≤ infλ>0 e
−(λc−λ2

2
d) = e−

c2

2d . Finally,

P

[
n∑

k=1

t(V̄k)Z(k+1)∆ ≥ nε, ‖t‖2
n ≤ v2

]
= P(M(n+1)∆ ≥ n∆ε, 〈M〉(n+1)∆ ≤ 2nv2σ2

1∆)

≤ exp
(
− (n∆ε)2

4nv2σ2
1∆

)
= exp

(
− nε2∆

4v2σ2
1

)
. �

7.4. Proof of Theorem 3.1. Recall that ‖t‖2
π̄ =

∫
t2(x)π̄∆(x)dx (see (9)). We start as

for getting (24). By simply writing that γn(b̂m̂) + pen(m̂) ≤ γn(bm) + pen(m), for all m
in Mn, we obtain

‖b̂m̂ − bA‖2
n ≤ ‖bm − bA‖2

n + 2‖b̂m̂ − bm‖π̄ sup
t∈Sm̂+Sm,‖t‖π̄=1

νn(t)

+2‖b̂m̂ − bm‖n

√√√√ 1
n

n∑
k=1

R2
b((k + 1)∆) + pen(m)− pen(m̂)

≤ ‖bm − bA‖2
n +

1
8
‖b̂m̂ − bm‖2

π̄ + 8 sup
t∈Sm̂+Sm,‖t‖π̄=1

[νn(t)]2

+
1
8
‖b̂m̂ − bm‖2

n +
8
n

n∑
k=1

R2
b((k + 1)∆) + pen(m)− pen(m̂)

Let us consider the set

(52) Ωn =
{
ω/

∣∣∣∣‖t‖2
n

‖t‖2
π̄

− 1
∣∣∣∣ ≤ 1

2
, ∀t ∈ ∪m,m′∈Mn(Sm + Sm′)/{0}

}
.

We use that, on Ωn, ‖t‖π̄ ≤
√

2‖t‖n, and that ‖b̂m̂− bm‖2
n ≤ 2(‖b̂m̂− bA‖2

n‖+‖bA− bm‖2
n).

After some elementary computations, we get

1
4
‖b̂m̂ − bA‖2

n1IΩn ≤ 7
4
‖bm − bA‖2

n + 8 sup
t∈Sm̂+Sm,‖t‖π̄=1

[νn(t)]21IΩn +
8
n

n∑
k=1

R2
b((k + 1)∆)

+pen(m)− pen(m̂)
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By Proposition 3.1, ER2
b((k + 1)∆) ≤ c∆. Therefore, using [A6],

E(‖b̂m̂ − bA‖2
n1IΩn) ≤ 7π̄1‖bm − bA‖2 + 32E

(
sup

t∈Sm̂+Sm,‖t‖π̄=1
[νn(t)]21IΩn

)
+32c′∆ + 4(pen(m)− E(pen(m̂))).

The difficulty here is to control the supremum of νn(t) on a random ball (which depends
on the random m̂). This is done by using the martingale property of νn(t). Let us set

Gm(m′) = sup
t∈Sm+Sm′ ,‖t‖π̄=1

νn(t).

Introducing a function p(m,m′), we first write

G2
m(m̂)1IΩn ≤ [(G2

m(m̂)− p(m, m̂))1IΩn ]+ + p(m, m̂)

≤
∑

m′∈Mn

[(G2
m(m′)− p(m,m′))1IΩn ]+ + p(m, m̂).

Then the penalty pen(.) is chosen such that 32p(m,m′) ≤ 4(pen(m) + pen(m′)). More
precisely, the next proposition determines the choice of p(m,m′) which in turn will fix the
penalty.

Proposition 7.1. Under the assumptions of Theorem 3.1, there exists a numerical con-
stant κ1 such that, for p(m,m′) = κ1σ

2
1[Dm + (1 + Lm′Dm′)]/(n∆), we have

E[(G2
m(m′)− p(m,m′))1IΩn ]+ ≤ cσ2

1

e−Lm′Dm′

n∆
.

Proof of Proposition 7.1. The result of Proposition 7.1 follows from the inequality
of Proposition 3.3 by the L2-chaining technique used in Baraud et al. (2001b) (see Section
7 p.44-47, Lemma 7.1, with s2 = σ2

1/∆). �

The result of Theorem 3.1 on Ωn follows from Proposition 7.1 with pen(m) ≥ κσ2
1(1 +

Lm)Dm/(n∆), and κ = 32κ1. Indeed, this choice ensures that for all m,m′ in Mn,
32p(m,m′) ≤ pen(m) + pen(m′). Now, the weights given in (12) ensure that Σ =∑

m′∈Mn
e−Lm′Dm′ < +∞. Thus,

(53) E(‖b̂m̂ − bA‖2
n1IΩn) ≤ 7π̄1‖bm − bA‖2 + 8pen(m) + c′σ2

1

Σ
n∆

+ 32c′∆.

Now, we look at Ωc
n. In Lemma 6.1 of Comte et al. (2005), it is proved that, under our set

of assumptions, P(Ωc
n) ≤ c̃/n4. The constraint on Nn (i.e. Nn = o(n∆/ ln2(n) for [DP],

[GP] or Nn = o(
√
n∆/ ln(n) for [T]) is imposed here. The existence of the maximal space

Sn, [A4] and [A6] are especially needed also and the constant c̃ depends on π̄0, π̄1 and the
rate of mixing θ.

Lastly we need to check that E(‖b̂m̂ − bA‖2
n1IΩc

n
) ≤ c/n. Write the regression model

(14) as Yk+1 = b(V̄k) + ε(k+1)∆ with εk∆ = Zk∆ +Rb(k∆). Let us recall that Πm denotes
the orthogonal projection (with respect to the inner product of Rn) onto the subspace of
Rn, {(t(V̄1), . . . , t(V̄n))′, t ∈ Sm}. By definition of b̂m, we have (b̂m(V̄1), . . . , b̂m(V̄n))′ =
ΠmY where Y = (Y2, . . . , Yn+1)′. Denoting in the same way a function t and the vector
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(t(V̄1), . . . , t(V̄n))′, we can see that ‖bA − b̂m̂‖2
n = ‖bA − Πm̂bA‖2

n + ‖Πm̂ε‖2
n ≤ ‖bA‖2

n +
n−1

∑n+1
k=2 ε

2
k∆. Using that P(Ωc

n) ≤ c̃/n4 and [A6], we have:

(54) E(‖bA‖2
n1IΩc

n
) ≤ E1/2(b4(V̄0))P1/2(Ωc

n) ≤ c

n2
.

Next, E(ε2k∆1IΩc
n
) ≤ E1/2(ε4k∆)P1/2(Ωc

n). From Lemma 3.1 we know that E(R4
b(k∆)) ≤ c′∆2.

Moreover E(Z4
k∆) ≤ cE(σ4(V0))/∆2. Thus, E(ε4k∆) ≤ C ′/∆2. This implies, by using that

n∆ ≥ 1, that

(55) E
[
‖bA − b̂m̂‖2

n1IΩc
n

]
≤ c”

n
.

Inequality (27) of Theorem 3.1 follows by gathering (53) and (55). �

8. Proofs for the estimation of the diffusion coefficient

8.1. Proof of Proposition 4.1. First by using Burkholder-Davis-Gundy’s inequality,

E[(Z̆(1)
k∆)2] ≤ c

∆6
E

(∫ (k+2)∆

k∆
ψ2

k∆(u)σ2(Vu)du

)2


≤ c

∆5

∫ (k+1)∆

k∆
ψ4

k(u)E[σ4(V0)]du ≤
2cE[σ4(V0)]

5
.

E[(Z̆(2)
k∆)2] =

9
∆4

E

(∫ (k+2)∆

k∆
ψ2

k∆(u)σ2(Vu)b2(Vk∆)du

)
≤ 6∆E1/2[b4(V0)]E1/2[σ4(V0)].

Lastly, by using that 0 ≤ ψk∆(u) ≤ ∆,

E[(Z̆(3)
k∆)2] =

9
4∆6

E


[∫ (k+2)∆

k∆

(∫ (k+2)∆

s
ψ2

k∆(u)du

)
(σ′σ2)(Vs)dWs

]2


≤ 9
4∆6

∫ (k+2)∆

k∆
[2∆3]2E[(σ′σ2)2(V0)]ds = 18∆E[(σ′σ2)2(V0)].

For the moments of order 4, they are bounded for Z̆(1) and of order ∆2 for Z̆(2) and Z̆(3).
�

8.2. Proof of Proposition 4.2. We use again (49) to compute Uk+1 (29) and exhibit
the rmainder term R̆(k+1)∆. More precisely, we have: R̆k∆ = R̆

(1)
k∆ + R̆

(2)
k∆ + R̆

(3)
k∆ with

R̆
(1)
k∆ =

3
2∆3

(∫ (k+2)∆

k∆
ψk∆(s)b(Vs)ds

)2

R̆
(2)
k∆ =

3
∆3

(∫ (k+2)∆

k∆
ψk∆(u)(b(Vu)− b(Vk∆))du

)(∫ (k+2)∆

k∆
ψk∆(u)σ(Vu)dWu

)

R̆
(3)
k∆ =

3
2∆3

∫ (k+2)∆

k∆

(∫ (k+2)∆

s
ψ2

k∆(u)du

)
τb,σ(Vs)ds,

where τb,σ = 2(σ′σb) + [(σ′)2 + σσ”]σ2.
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Proposition 4.2 holds if E[(R̆(i)
k∆)2] ≤ ci∆2 for i = 1, 2, 3.

E[(R̆(1)
k∆)2] ≤ 9

4∆6
E

(∫ (k+2)∆

k∆
ψk∆(s)b2(Vs)ds

)4

≤ 18
∆3

E

(∫ (k+1)∆

k∆
ψ4

k∆(s)b4(Vs)ds

)
≤ 8∆2E(b4(V0)) ≤ c∆2 using [A5](i) and E(V 4

0 ) < +∞,

since
∫ (k+3)∆
(k+1)∆ ψ4

k∆(s)ds = 2∆5/5.

E[(R(2)
k∆)2] ≤ 9

∆6
E

(∫ (k+2)∆

k∆
ψk∆(s)(b(Vs)− b(Vk∆))ds

∫ (k+2)∆

k∆
ψk∆(s)σ(Vs)dWs

)2

.

Both terms have already been studied and using (5), this yields, if E(V 8
0 ) < +∞,

E[(R(2)
k∆)2] ≤ c′∆2.

Lastly

E[(R(3)
k∆)2] ≤ 9

2∆5
E

(∫ (k+2)∆

k∆
[
∫ (k+2)∆

s
ψ2

k∆(u)du]2τ2
b,σ(Vs)ds

)
≤ 36E(τ2

b,σ(V0))∆2 ≤ c”∆2,

by using [A5](i) and E(V 12
0 ) < +∞, since ψk(u)2 ≤ ∆2. Therefore Lemma 4.2 is proved.

�

8.3. Proof of Proposition 4.3. From standard results on Euler schemes, it is known
that:

σ2(V(k+1)∆)− σ2(Vk∆) =
√

∆(σ2)′(Vk∆)σ(Vk∆)ξk + R̃
(1)
k

where ξk = ∆−1/2(W(k+1)∆ −Wk∆) and E[(R̃(1)
k )2] ≤ c∆2. Moreover, from Gloter (2000,

Proposition 2), and the Taylor formula, we easily deduce that

(56) σ2(V̄k)− σ2(Vk∆) =
√

∆(σ2)′(Vk∆)σ(Vk∆)ξ′k + R̃
(2)
k

where ξ′k = ∆−3/2
∫ (k+1)∆
k∆ [(k+1)∆−s]dWs and E[(R̃(2)

k )2] ≤ c∆2. Therefore, the following
holds:

(57) σ2(V(k+1)∆)− σ2(V̄k) =
√

∆(σ2)′(Vk∆)σ(Vk∆)(ξk − ξ′k) + R̃k

with E(R̃2
k) ≤ c′∆2. Noticing that E[(ξk − ξ′k)

2] = 1/3, we get the result. �

8.4. Proof of Proposition 4.4. We only do the proof for [T]. Considering Sm in collec-
tion [T], we have to bound E

(
supt∈Bm(0,1)[Tn(t)]2

)
where Bm(0, 1) = {t ∈ Sm, ‖t‖ = 1}.

We shall use the following properties of the trigonometric basis and of collection [T] which
can be checked by elementary computations.

(58) ‖
∑

λ∈Λm

(ϕ(k)
λ )2‖∞ ≤ CD2k+1

m , ‖t(k)‖∞ ≤ CDk+1/2
m ‖t‖.

(59) ‖t′‖ ≤ CDm‖t‖.
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We use decomposition (57) to split Tn(t) into

Tn(t) = T̃n(t)− E(T̃n(t)) + E(T̃n(t)) +
1
n

n∑
k=1

R̃kt(V̄k)

with T̃n(t) = 1
n

∑n
k=1

√
∆[(σ2)′σ](Vk∆)(ξk − ξ′k)t(V̄k). Using (58) for k = 0, we get

E

 sup
t∈Bm(0,1)

(
1
n

n∑
k=1

R̃kt(V̄k)

)2
 ≤ CDm

(
1
n

n∑
k=1

E(R̃2
k)

)
≤ C ′Dm∆2.

Then notice that

E(T̃n(t)) = E

(√
∆
n

n∑
k=1

[(σ2)′σ](Vk∆)(ξk − ξ′k)(t(V̄k)− t(Vk∆))

)
.

Here, we have to use two derivatives of t. We use Gloter’s decomposition again in order
to write, as for (56), that

(60) t(V̄k)− t(Vk∆) =
√

∆t′(Vk∆)σ(Vk∆)ξ′k + ek(t).

For any t ∈ Sm, (58) for k = 2 implies E
[
supt∈Bm(0,1) e

2
k(t)

]
≤ C∆2D5

m. Thus, with (59),
we obtain

(61)

(
sup

t∈Bm(0,1)
E[T̃n(t)]

)2

≤ K(D2
m∆2 +D5

m∆3).

Next we write
T̃n(t)− E(T̃n(t)) = T̃ (1)

n (t) + T̃ (2)
n (t)− E(T̃ (2)

n (t))
with a centered term

T̃ (1)
n (t) =

1
n

n∑
k=1

√
∆[(σ2)′σ](Vk∆)t(Vk∆)(ξk − ξ′k),

and the non centered term (already used above)

T̃ (2)
n (t) =

1
n

n∑
k=1

√
∆[(σ2)′σ](Vk∆)(ξk − ξ′k)[t(V̄k)− t(Vk∆)].

Using the Hölder inequality and the fact that T (1)
n (t) is a sum of uncorrelated variables,

we see that

E


(

sup
t∈Bm(0,1)

T̃ (1)
n (t)

)2
 ≤

∑
λ∈Λm

E
[(
T̃ (1)

n (ϕλ)
)2
]

≤ ∆
n

∑
λ∈Λm

E[(ξ1 − ξ′1)
2]E{[(σ2)′σ]2(V∆)ϕ2

λ(V∆)}

≤ 1
3
CDm∆
n

E{[(σ2)′σ]2(V∆} := c
∆Dm

n
.(62)

Next, using (60), we introduce more terms:

T̃ (2)
n (t) = T̃ (3)

n (t) + T̃ (4)
n (t) + T̃ (5)

n (t)
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with, since E[(ξk − ξ′k)ξ
′
k] = 1/6,

T̃ (3)
n (t) =

1
n

n∑
k=1

∆[(σ2)′σ2t′](Vk∆)[(ξk + ξ′k)ξ
′
k − E[(ξk + ξ′k)ξ

′
k]]

T̃ (4)
n (t) =

∆
6n

n∑
k=1

[(σ2)′σ2t′](Vk∆)

T̃ (5)
n (t) =

√
∆
n

n∑
k=1

[(σ2)′σ](Vk∆)ek(t).

The last term is bounded by

(63) E


(

sup
t∈Bm(0,1)

[T̃ (5)
n (t)− E(T̃ (5)

n (t))]

)2
 ≤ 4cE1/2{[(σ2)′σ]4(V∆)}∆3D5

m = c′∆3D5
m

Moreover E(T̃ (3)
n (t)) = 0 and by using (58) with k = 1, it follows that

E


(

sup
t∈Bm(0,1)

T̃ (3)
n (t)

)2
 ≤

∑
λ∈Λm

E{[T̃ (3)
n (ϕλ)]2}

≤
cξ∆2

n

∑
λ∈Λm

E{[(σ2)′σ2]2(V∆)(ϕ′λ)2(V∆)}

≤ CD3
m∆2

n
E{[(σ2)′σ2]2(V∆)} := c”

D3
m∆2

n
,(64)

where cξ = E[(ξ1 − ξ′1)
2(ξ′1)

2]. For the last term, we apply Viennet’s mixing covariance
inequality (see Theorem 2.1 p.472 and Lemma 4.2 p.481 in Viennet (1997)). There exists
a function b(V )

∆ such that

E


(

sup
t∈Bm(0,1)

[T̃ (4)
n (t)− E(T̃ (4)

n (t)]

)2


≤ ∆2
∑

λ∈Λm

Var

(
1
n

n∑
k=1

[(σ2)′σ2ϕ′λ](Vk∆)

)

≤ 4∆2

n

∑
λ∈Λm

∫
(ϕ′λ)2(v)[(σ2)′σ2]2(v)b(V )

∆ (v)dPV∆
(v)

≤ 4∆2CD3
m

n

√∑
k

kβV (k∆)E1/2{[(σ2)′σ2]4(V∆)} := c3
∆D3

m

n
.(65)

It follows from (61), (62), (63), (64) and (65) that

E


(

sup
t∈Sm,‖t‖=1

Tn(t)

)2
 ≤ C

(
D2

m∆2 +
∆Dm

n
+ ∆3D5

m +
D3

m∆2

n
+

∆D3
m

n

)
.
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Since ∆ ≤ 1, D3
m∆2/n ≤ D3

m∆/n. We have ∆Dm/n ≤ ∆D3
m/n. Using that Dm ≤ Nn ≤√

n∆ ≤ n∆, we get ∆D3
m/n ≤ ∆2D2

m. This implies (31). If ∆ ≤ n−2/3, replacing Dm by
Nn in the right-hand side of (31), we obtain that N2

n∆2 +N5
n∆3 ≤ c/n and (32) follows.

For [W], since the constraint on Nn is different (Nn ≤ n∆/ ln2(n)), we get (32) for
∆ ≤ n−3/4. �

8.5. Proof of Proposition 4.6. First we note that:

En(u) := E
(
e
ut(V̄n)Z̆

(1)
(n+1)∆ |F(n+1)∆

)
= 1 +

+∞∑
p=2

up

p!
E
[
(t(V̄n)Z̆(1)

(n+1)∆)p|F(n+1)∆

]

≤ 1 +
+∞∑
p=2

up

p!
|t(V̄n)|pE

[
|Z̆(1)

(n+1)∆|
p|F(n+1)∆

]
.

Next we use the Burkholder-Davis-Gundy inequality given in Proposition 4.2 of Barlow
and Yor (1982), with optimal constant c

√
k: for a continuous martingale Mt, M0 = 0,

and M∗
t = sups≤t |Ms|, for k ≥ 2, there exists a universal constant c such that ‖M∗

t ‖k ≤
c
√
k‖〈M〉1/2

t ‖k. This yields:

E(|Z̆(1)
n∆|

p|Fn∆) ≤ 3p−1

2p∆3p

E

∣∣∣∣∣
∫ (n+2)∆

n∆
ψn∆(s)σ(Vs)dWs

∣∣∣∣∣
2p

|Fn∆


+E

(∣∣∣∣∣
∫ (n+2)∆

n∆
ψ2

n∆(s)σ2(Vs)ds

∣∣∣∣∣
p

|Fn∆

)}

≤ 2p−1

∆p
(c2p(8p)p∆3pσ2p

1 + ∆3p(2σ1)2p) ≤ (8σ1c)2ppp.

It follows that En(u) ≤ 1 +
∑∞

k=2
pp

p! (uσ
2
1 c̃

2)p|t(V̄n)|p. Since pp/p! ≤ ep−1, we find

En(u) ≤ 1 + e−1
∞∑

k=2

(uσ2
1 c̃

2e)p|t(V̄n)|p ≤ 1 + e−1 (uσ2
1 c̃

2e)2t2(V̄n)
1− (uσ2

1 c̃
2e‖t‖∞)

.

Let us set a = e(σ2
1 c̃

2)2 and b = σ2
1 c̃

2e‖t‖∞. Since for x ≥ 0, 1 + x ≤ ex, for bu < 1,

En(u) ≤ 1 +
au2t2(V̄n)

1− bu
≤ exp

(
au2t2(V̄n)

1− bu

)
.

This can also be written:

E
(

exp
(
ut(V̄n)Z̆(1)

(n+1)∆ − au2t2(V̄n)
1− bu

)
|F(n+1)∆

)
≤ 1.

Therefore, by iterative conditioning

E

{
exp

[
n∑

k=1

(
ut(V̄k)Z̆

(1)
(k+1)∆ − au2t2(V̄k)

1− bu

)]}
≤ 1.
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Then, by using a standard method,

P

(
n∑

k=1

t(V̄k)Z̆
(1)
(k+1)∆ ≥ nε, ‖t‖2

n ≤ v2

)
≤ e−nuεE

[
1I‖t‖2n≤v2 exp

(
u

n∑
k=1

t(V̄k)Z̆
(1)
(k+1)∆

)]

≤ e−nuεE

[
1I‖t‖2n≤v2 exp

(
n∑

k=1

(ut(V̄k)Z̆
(1)
(k+1)∆ − au2t2(V̄k)

1− bu
)

)
e(au2)/(1−bu)

∑n
k=1 t2(V̄k)

]

≤ e−nuεe(nau2v2)/(1−bu)E

[
exp

(
n∑

k=1

(ut(V̄k)Z̆
(1)
(k+1)∆ − au2t2(V̄k)

1− bu
)

)]
≤ e−nuεe(nau2v2)/(1−bu)

The inequality holds for any u such that bu < 1. In particular, u = ε/(2av2 + εb) gives
−uε+ av2u2/(1− bu) = −(1/2)(ε2/(2av2 + εb) and therefore

P

(
n∑

k=1

t(V̄k)Z̆
(1)
(k+1)∆ ≥ nε, ‖t‖2

n ≤ v2

)
≤ exp

(
−n ε2/2

2av2 + εb

)
. �

8.6. Proof of Theorem 4.1. We proceed as in Theorem 3.1. We first give the proof for
collection [T]. We start from (36), with here γn(σ̂2

m̆) + pen(m̆) ≤ γn(σ2
m) + pen(m), for all

m in Mn. We recall that Ωn is defined by (52). Then, using that on Ωn, ‖σ̂2
m̆ − σ2

m‖2
π̄ ≤

2‖σ̂2
m̆ − σ2

m‖2
n, we find

‖σ̂2
m̆ − σ2

A‖2
n ≤ ‖σ2

m − σ2
A‖2

n +
1
8
‖σ̂2

m̆ − σ2
m‖2

π̄ + 16 sup
t∈Sm̆+Sm,‖t‖π̄=1

ν̆2
n(t)

+16 sup
t∈Sm+Sm̆,‖t‖π̄=1

[Tn(t)]2

+
1
8
‖σ̂2

m̆ − σ̂2
m‖2

n +
8
n

n∑
k=1

R̆2
(k+1)∆ + ˘pen(m)− ˘pen(m̆)

≤ ‖σ2
m − σ2

A‖2
n +

3
8
‖σ̂2

m̆ − σ2
m‖2

n + 16 sup
t∈Sm̆+Sm,‖t‖π̄=1

ν̆2
n(t)

+16 sup
t∈Sm̆+Sm,‖t‖π̄=1

[Tn(t)]2 +
8
n

n∑
k=1

R̆2
(k+1)∆ + ˘pen(m)− ˘pen(m̆),

where ν̆n(t) is defined by (35) and Tn(t) by (30). This yields on Ωn and denoting by
Bπ̄

m,m′(0, 1) = {t ∈ Sm + Sm′ , ‖t‖π̄ = 1},Bm,m′(0, 1) = {t ∈ Sm + Sm′ , ‖t‖ = 1},

1
4
‖σ̂2

m̆ − σ2
A‖2

n ≤ 7
4
‖σ2

m − σ2
A‖2

n + 16 sup
t∈Bπ̄

m,m̆(0,1)

ν̆2
n(t) +

16
π̄0

sup
t∈Bm,m̆(0,1)

T 2
n(t)

+
8
n

n∑
k=1

R̆2
(k+1)∆ + ˘pen(m)− ˘pen(m̆),

by using (8). First Lemma 4.2 implies that E(n−1
∑n

k=1 R̆
2
(k+1)∆) ≤ c∆2.
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Then we have

E(‖σ̂2
m̆ − σ2

A‖2
n1IΩn) ≤ 7π̄1‖σ2

m − σ2
A‖2 + 4 ˘pen(m) + 64E

(
sup

t∈Bπ̄
m,m̆(0,1)

[ν̆n(t)]21IΩn

)

−4E[ ˘pen(m̆)] +
64
π̄0

E

(
sup

t∈Bm,m̆(0,1)
[Tn(t)]21IΩn

)
+K ′∆2.(66)

Then we can use Proposition 4.4 to obtain

E


(

sup
t∈Bm,m̆(0,1)

Tn(t)

)2
 ≤ E


(

sup
t∈Sn,‖t‖=1

Tn(t)

)2
 ≤ c

n
.

Let us set

(67) ν̆(1)
n (t) =

1
n

n∑
k=1

t(V̄k)Z̆
(1)
(k+1)∆, ν̆(2)

n (t) =
1
n

n∑
k=1

t(V̄k)(Z̆
(2)
(k+1)∆ + Z̆

(3)
(k+1)∆),

and

(68) Ğm(m′) = sup
t∈Sm+Sm′ ,‖t‖π̄=1

ν̆(1)
n (t).

If we write, as for the drift

E(Ğ2
m(m̆)) ≤ E[(Ğ2

m(m̆)− p̆(m, m̆))1IΩn ]+ + E(p̆(m, m̆))

≤
∑

m′∈Mn

E[(Ğ2
m(m′)− p̆(m,m′))1IΩn ]+ + E(p̆(m, m̆)),

then ˘pen is chosen such that 64p̆(m,m′) ≤ 4[ ˘pen(m) + ˘pen(m′)]. More precisely, we can
prove

Proposition 8.1. Under the assumptions of Theorem 4.1, for p̆(m,m′) = κσ4
1[Dm +(1+

Lm′Dm′)]/n +K∆2, where κ is a numerical constant and K is a constant depending on
the collection of models and on π̄0, we have

E[(Ğ2
m(m′)− p̆(m,m′))1IΩn ]+ ≤ cσ4

1

e−Lm′Dm′

n
,

where Ğm(m′) is defined by (68).

The proof of the result is given in appendix.
Then, we use (66) and Proposition 8.1, choose ˘pen(m) ≥ κ̃σ4

1
(1+Lm)Dm

n and recall that
Σ =

∑
m∈Mn

e−LmDm . This yields

E(‖σ̂2
m̆ − σ2

A‖2
n) ≤ 7π̄1‖σ2

m − σ2
A‖2 + 8 ˘pen(m) + cσ4

1

Σ
n

+K ′∆2

+64E

(
sup

t∈Bπ̄
m,m̆(0,1)

[ν̆(2)
n (t)]2

)
+
K”
n

+ E(‖σ̂2
m̆ − σ2

A‖2
n1IΩc

n
).(69)

For the last term above, the bound:

(70) E(‖σ̂2
m̆ − σ2

A‖2
n1IΩc

n
) ≤ c

n
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is obtained in the same way as in the end of the proof of Theorem 3.1, by introducing the
regression model Uk+1 = σ2(V̄k) + η(k+1)∆, where, now, η(k+1)∆ = σ2(V(k+1)∆)− σ2(V̄k) +
Z̆(k+1)∆ + R̆(k+1)∆. We can bound E(η4

k∆) with a bound independent of k and we know
that P(Ωc

n) ≤ c/n2 .
Moreover, let Z̃k∆ = Z̆

(2)
k∆ + Z̆

(3)
k∆. To study the term involving ν̆(2)

n (t), we proceed as in
Proposition 3.2. For all m ∈Mn,

E

(
sup

t∈Sm,‖t‖π̄=1
[ν̆(2)

n (t)]2
)
≤ 1
π̄0

E

(
sup

t∈Bm(0,1)
[ν̆(2)

n (t)]2
)
≤ 1
π̄0

∑
λ∈Λm

E
(
[ν̆(2)

n (ϕλ)]2
)

Then, as in Proposition 3.2 and using Proposition 4.1, we obtain∑
λ∈Λm

E
(
[ν̆(2)

n (ϕλ)]2
)
≤ 2
n

∑
λ∈Λm

E(ϕ2
λ(V̄1)Z̃2

2∆) ≤ c
Dm

n
∆

Therefore, since the spaces are all contained in the maximal space Sn which has dimension
Nn ≤ n∆/ ln2(n), we have

(71) E

(
sup

t∈Bπ̄
m,m̆(0,1)

[ν̆(2)
n (t)]2

)
≤ 1
π̄0

E

(
sup

t∈Sn,‖t‖=1
[ν̆(2)

n (t)]2
)
≤ C

∆Nn

n
≤ K∆2 ≤ K ′

n
,

since ∆ ≤ n−2/3. The result of Theorem 4.1 follows by gathering (69), (70) and (71).

For collections [DP], [GP], the proof is analogous except that there is no Tn(t). In-
stead, R̆((k + 1)∆) is changed into R̆σ2((k + 1)∆) = R̆(k+1)∆ + [σ2(V(k+1)∆) − σ2(V̄k)].

Then it follows from Propositions 4.2 and 4.3 that E
[
(1/n)

∑n
k=1 R̆

2
σ2((k + 1)∆)

]
≤ c∆. �

9. Proofs of the Propositions of Section 5

Proof of Proposition 5.1. Consider the diffusion process (V v0
t ) given by dVt = b(Vt)dt+

σ(Vt)dWt, V0 = v0 and set xu = ∆−(1/2)(V v0
u∆ − v0), u ∈ [0, 1]. Then, (xu) is solution of

dxu = b̃(xu)du+ σ̃(xu)dW̃u, x0 = 0,

with b̃(x) = ∆1/2b(x∆1/2 + v0), σ̃(x) = σ(x∆1/2 + v0) and (W̃u) is a standard Brownian
motion. Then, setting

U =
∫ 1

0
xudu, V = x1,

we have

(1/∆)
∫ ∆

0
V v0

s ds = v0 + ∆1/2U, V v0
∆ = v0 + ∆1/2V.

Now, the following result is proved in Gloter and Gobet (2005, Theorem 3). The random
couple (U, V ) has a joint density pv0

∆ (u, v) such that

c−1
1 exp (−c1(u2 + v2)) ≤ pv0

∆ (u, v) ≤ c−1
2 exp (−c2(u2 + v2))
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where the constants c1, c2 only depend on the bounds of b, σ and their derivatives. Con-
sequently, the marginal density of U , say pv0

U,∆(u) satisfies

(72) c′1 exp (−c1u2) ≤ pv0
U,∆(u) ≤ c′2 exp (−c2u2),

with c′i = c−1
i (π/ci)1/2, i = 1, 2. After an elementary change of variable, we get that the

conditional density of V̄0 given V0 = v0, which is exactly the density of v0 + ∆1/2U , is
equal to

v̄ → 1
∆1/2

pv0
U,∆((v̄ − v0)/∆1/2).

The density π̄∆ is obtained by integrating the above density with respect to π(v0)dv0.
Using the bounds (72), we obtain

(73) c′1

∫
R

exp (−c1t2) π(v̄ + t∆1/2)dt ≤ π̄∆(v̄) ≤ c′2

∫
R

exp (−c2t2) π(v̄ + t∆1/2)dt

The stationary density π(.) is bounded and this gives an upper bound for π̄∆. Using (73),
we have, for all t0 > 0,

π̄∆(v̄) ≥ c′1

∫ t0

0
exp (−c1t2) π(v̄ + t∆1/2)dt.

Hence, for all v̄ ∈ [a, b], π̄∆(v̄) ≥ C ′ infu∈[a,b+t0] π(u) for some constant C ′. This gives the
result. �

Proof of Proposition 5.2. Let Qδ,θ,c2
v be the distribution on C(R+,R) of (43) starting

with V0 = v. Then,
Qδ,θ,c2

v ∗Qδ′,θ,c2

v′ = Qδ+δ′,θ,c2

v+v′ .

This property is obtained exactly as the analogous proof for the square of a δ-dimensional
Bessel process which corresponds to θ = 0 (see e.g. Revuz and Yor, 2005, p. 440). From
this property, it follows analogously that, for λ > 0,

(74) E(exp (−λ
∫ t

0
Vsds))|V0 = v) = Bt(λ)δAt(λ)v,

where 0 < Bt(λ), At(λ) < 1 have to be computed. Now, we set At(λ) = exp (−µt(λ)) with
µt(λ > 0. Since V0 = η has the stationary distribution G(δ/2, 1/2ρ2), we have, for all
µ > 0,

(75) E(exp (−µV0)) = (1 + 2µρ2)−(δ/2).

Hence, integrating (74) with respect to the distribution of V0, we get (44).
This preliminaries show that it is enough make computations for δ = 1, i.e. for Vt = ξ2t

where (ξt) is an Ornstein-Uhlenbeck process. Denote by P θ
x the distribution on C(R+,R)

of (ξt) given by
dξt = −θξtdt+ cdWt, ξ0 = x.

And denote by (Xt) the canonical coordinate process of C(R+,R). For any real number
c̄, we have, by the Girsanov formula,

E((exp (−λ
∫ t

0
ξ2sds)) = EP θ

x
((exp (−λ

∫ t

0
X2

sds)) = EP c̄
x
((exp (−λ

∫ t

0
X2

sds))Lt)
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where

Lt = exp
−θ − c̄

c2

∫ t

0
XsdXs −

θ2 − c̄2

2c2

∫ t

0
X2

sds.

We have
∫ t
0 XsdXs = (1/2)(X2

t − x2 − c2t) and we choose c̄ such that λ+ θ2−c̄2

2c2
= 0. This

yields

(76) EP θ
x
((exp (−λ

∫ t

0
X2

sds) = exp
c̄+ θ

2c2
(x2 + c2t)EP c̄

x
(exp

−θ − c̄

2c2
X2

t ).

The choice c̄ = (θ2 + 2λc2)1/2 implies that c̄ + θ > 0. Therefore, we easily compute
the above expectation since, under P c̄

x , Xt is Gaussian with mean x exp (c̄t) and variance
c2(exp (2c̄t)− 1)/2c̄. Indeed, for X a Gaussian variable with law N (m,β2) and µ > 0,

E(exp−µX2) = (1 + 2µβ2)−(1/2) exp (− µm2

1 + 2µβ2
).

From this, we deduce Bt(λ) and µt(λ).�

Proof of Corollary 5.1. The Laplace transform is well defined for all λ such that
θ2 + 2λc2 ≥ 0. So it is well defined on an open interval containing 0. By properties of
complex functions, this is enough to prove that we obtain the characteristic function of∫ t
0 Vsds by setting λ = −is with s ∈ R in (44). The corollary follows. �

Proof of Proposition 5.3. First write that

t2(V̄0) = t2(V0) + (V̄0 − V0)(t2)′(V0) +
1
2
(V̄0 − V0)2

∫ 1

0
(t2)”(V0 + u(V̄0 − V0))du

where the integrals and derivatives must be understood piecewisely. Now we use that for
any t ∈ Sm, there exists some constant C such that

‖(t2)′‖∞ ≤ CN2
n‖t‖2 and ‖(t2)”‖∞ ≤ CN3

n‖t‖2.

Moreover,
E[(V̄0 − V0)(t2)′(V0)] = E

[
E
(
V̄0 − V0|F0

)
(t2)′(V0)

]
and

E
(
V̄0 − V0|F0

)
= E

(
1
∆

∫ ∆

0
(
∫ s

0
(b(Vu)du+ σ(Vu)dWu))ds|F0

)
= E

(
1
∆

∫ ∆

0
(
∫ s

0
b(Vu)du)ds|F0

)
.

It follows that, using (5), |E
(
V̄0 − V0|F0

)
| = O(∆). Thus, |E[(V̄0 − V0)(t2)′(V0)]| ≤

CN2
n∆‖t‖2 = O(N2

n∆). On the other hand,∣∣∣∣E [(V̄0 − V0)2
∫ 1

0
(t2)”(V0 + u(V̄0 − V0))du

]∣∣∣∣ ≤ ‖(t2)”‖∞E[(V̄0 − V0)2]

≤ CN3
n∆‖t‖2 = O(N3

n∆).

This implies a global order N3
n∆. �
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10. Appendix. Proof of Proposition 8.1

The result of Proposition 8.1 is obtained from inequality (38) of Proposition 4.6 by a
L2(π̄∆) − L∞ chaining technique. The method is analogous to the one given in Proposi-
tion 2-4 pp.282-287 in Comte (2001), in Theorem 5 in Birgé and Massart (1998) and in
Proposition 7, Theorem 8 and Theorem 9 in Barron et al. (1999). Since the context is
slightly different, for the sake of completeness, we give the detail of the proof. It relies on
the following Lemma (Lemma 9 in Barron et al. (1999)):

Lemma 10.1. Let µ be a positive measure on [0, 1]. Let (ψλ)λ∈Λ be a finite orthonormal
system in L2 ∩ L∞(µ) with |Λ| = D and S̄ be the linear span of {ψλ}. Let

(77) r̄ =
1√
D

sup
β 6=0

‖
∑

λ∈Λ βλψλ‖∞
|β|∞

.

For any positive δ, one can find a countable set T ⊂ S̄ and a mapping p from S̄ to T with
the following properties:

• for any ball B with radius σ ≥ 5δ,

|T ∩ B| ≤ (B′σ/δ)D with B′ < 5.

• ‖u− p(u)‖µ ≤ δ for all u in S̄, and

sup
u∈p−1(t)

‖u− t‖∞ ≤ r̄δ, for all t in T.

To use this Lemma, the main difficulty is often to evaluate r̄ in the different contexts.
In our problem, the measure µ is π̄∆. We consider a collection of models (Sm)m∈Mn

which can be [DP], [GP] or [T]. Recall that Bπ̄
m,m′(0, 1) = {t ∈ Sm + Sm′ , ‖t‖π̄ = 1}. We

have to compute r̄ = r̄m,m′ corresponding to S̄ = Sm + Sm′ . We denote by D(m,m′) =
dim(Sm + Sm′).
Collection [DP]– Sm + Sm′ = Smax(m,m′), D(m,m′) = max(Dm, Dm′), an orthonormal
L2(π̄∆)-basis (ψλ)λ∈Λ(m,m′) can be built by orthonormalisation on each sub-interval of
(ϕλ)λ∈Λ(m,m′). Then

sup
β 6=0

‖
∑

λ∈Λ(m,m′) βλψλ‖∞
|β|∞

≤ ‖
∑

λ∈Λ(m,m′)

|ψλ|‖∞ ≤ (r + 1) sup
λ∈Λ(m,m′)

‖ψλ‖∞

≤ (r + 1)3/2
√
D(m,m′) sup

λ∈Λ(m,m′)
‖ψλ‖

≤ (r + 1)3/2
√
D(m,m′) sup

λ∈Λ(m,m′)
‖ψλ‖π̄/

√
π̄0

≤ (r + 1)3/2
√
D(m,m′)/π̄0.

Thus here r̄m,m′ ≤ (r + 1)3/2/
√
π̄0.

Collection [GP]– Here we have r̄m,m′ ≤ [(Rmax + 1)
√
Nn]/

√
D(m,m′)π̄0.
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Collection [T]– For trigonometric polynomials, we write

sup
β 6=0

‖
∑

λ∈Λ(m,m′) βλψλ‖∞
|β|∞

≤
C
√
D(m,m′)‖

∑
λ βλψλ‖

|β|∞
≤
C
√
D(m,m′)‖

∑
λ βλψλ‖π̄√

π̄0|β|∞

≤
C
√
D(m,m′)

√∑
λ β

2
λ√

π̄0|β|∞
≤ CD(m,m′)√

π̄0
.

Therefore, r̄m,m′ ≤ C
√
D(m,m′)/π̄0.

We may now prove Proposition 8.1. We apply Lemma 10.1 to the linear space Sm +Sm′

of dimension D(m,m′) and norm connection measured by r̄m,m′ bounded above. We
consider δk-nets, Tk = Tδk

∩ Bπ̄
m,m′(0, 1), with δk = δ02−k with δ0 ≤ 1/5, to be chosen

later and we set Hk = ln(|Tk|) ≤ D(m,m′) ln(5/δk) = D(m,m′)[k ln(2) + ln(5/δ0)]. Given
some point u ∈ Bπ̄

m,m′(0, 1), we can find a sequence {uk}k≥0 with uk ∈ Tk such that
‖u−uk‖2

π̄ ≤ δ2k and ‖u−uk‖∞ ≤ r̄m,m′δk. Thus we have the following decomposition that
holds for any u ∈ Bπ̄

m,m′(0, 1),

u = u0 +
∞∑

k=1

(uk − uk−1).

Clearly ‖u0‖π̄ ≤ 1, ‖u0‖∞ ≤ r̄(m,m′) and for all k ≥ 1, ‖uk − uk−1‖2
π̄ ≤ 2(δ2k + δ2k−1) =

5δ2k−1/2 and ‖uk−uk−1‖∞ ≤ 3r̄(m,m′)δk−1/2. In the sequel we denote by Pn(.) the measure
P(.∩Ωn), see (52), (actually only the inequality ‖t‖2

n ≤ 3
2‖t‖

2
π̄ holding for any t ∈ Sm+Sm′

is required).
Let (ηk)k≥0 be a sequence of positive numbers that will be chosen later on and η such that
η0 +

∑
k≥1 ηk ≤ η. Recall that ν̆(1)

n is defined by (67). We have

IPn

 sup
u∈Bπ̄

m,m′ (0,1)

ν̆(1)
n (u) > η


= IPn

∃(uk)k∈IN ∈
∏
k∈IN

Tk / ν̆
(1)
n (u0) +

+∞∑
k=1

ν̆(1)
n (uk − uk−1) > η0 +

∑
k≥1

ηk


≤ IP1 + IP2

where

IP1 =
∑

u0∈T0

IPn(ν̆(1)
n (u0) > η0), IP2 =

∞∑
k=1

∑
uk−1∈Tk−1

uk∈Tk

IPn(ν̆(1)
n (uk − uk−1) > ηk).

Then using Inequality (38), we straightforwardly infer that IP1 ≤ exp(H0 − Cnx0) and
IP2 ≤

∑
k≥1 exp(Hk−1 +Hk − Cnxk) if we choose{

η0 = σ2
1(
√

3x0 + r̄(m,m′)x0)
ηk = (σ2

1/
√

2)δk−1(
√

15xk + 3r̄(m,m′)xk).
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Fix τ > 0 and choose x0 such that

Cnx0 = H0 + Lm′Dm′ + τ

and for k ≥ 1, xk such that

Cnxk = Hk−1 +Hk + kDm′ + Lm′Dm′ + τ.

If Dm′ ≥ 1, we infer that

IPn

 sup
t∈Bπ̄

m,m′ (0,1)

ν̆(1)
n (t) > η0 +

∑
k≥1

ηk

 ≤ e−Lm′Dm′−τ

(
1 +

∞∑
k=1

e−kDm′

)
≤ 1.6e−Lm′Dm′−τ .

Now, it remains to compute
∑

k≥0 ηk. We note that
∑∞

k=0 δk =
∑∞

k=0 kδk = 2δ0. This
implies

x0 +
∞∑

k=1

δk−1xk

≤

[
ln(5/δ0) + δ0

∞∑
k=1

2−(k−1)[(2k − 1) ln(2) + 2 ln(5/δ0) + k]

]
D(m,m′)

nC

+

1 + δ0
∑
k≥1

2−(k−1)

 Lm′Dm′

nC
+

1 + δ0
∑
k≥1

2−(k−1)

 τ

nC

≤ a(δ0)
D(m,m′)

n
+

1 + 2δ0
C

Lm′Dm′

n
+

1 + 2δ0
C

τ

n
,(78)

where Ca(δ0) = ln(5/δ0) + δ0(4 ln(5/δ0) + 6 ln(2) + 4). This leads to( ∞∑
k=0

ηk

)2

≤ σ4
1

2

[
√

2
(√

3x0 + +r̄m,m′x0

)
+

∞∑
k=1

δk−1

(√
15xk + 3r̄m,m′xk

)]2

≤ σ4
1

2

[(
√

6x0 +
∞∑

k=1

δk−1

√
15xk

)
+ r̄m,m′

(
√

2x0 + 3
∞∑

k=1

δk−1xk

)]2

≤ 15σ4
1

(√x0 +
∞∑

k=1

δk−1xk

)2

+ r̄2m,m′

(
x0 +

∞∑
k=0

δk−1xk

)2


≤ 15σ4
1

(1 +
∞∑

k=1

δk−1

)(
x0 +

∞∑
k=1

δk−1xk

)
+ r̄2m,m′

(
x0 +

∞∑
k=1

δk−1xk

)2
 .

Now, fix δ0 ≤ 1/5 (say, δ0 = 1/10) and use the bound (78). The bound for (
∑+∞

k=0 ηk)2 is
less than a quantity proportional to

σ4
1

[
D(m,m′)

n
+
Lm′Dm′

n
+ r̄2m,m′

(
D(m,m′)

n
+
Lm′Dm′

n

)2

+
τ

n
+ r̄2m,m′

τ2

n2

]
.

Now in the case of collection [DP], we have Lm = 1, r̄m,m′ is bounded uniformly with
respect to m and m′ and (D(m,m′)/n)2 ≤ (Nn/n)2 ≤ ∆2/ ln4(n) with Nn ≤ n∆/ ln2(n).
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Thus the bound for (
∑
ηk)2 reduces to

C ′σ4
1

[
D(m,m′)

n
+ (1 + r)3∆2/π̄0 +

τ

n
+ r̄2m,m′

τ2

n2

]
.

Next, for collection [GP], we use the Lm ≤ c ln(n), r̄2m,m′ ≤ (Rmax + 1)3Nn/(π̄0D(m,m′))
and Nn ≤ n∆/ ln2(n) to obtain the bound

r̄2m,m′

(
D(m,m′)

n
+
Lm′Dm′

n

)2

≤ (Rmax + 1)3
Nn

π̄0D(m,m′)
D(m,m′)2

n2
(1 + ln(n))2

≤ (Rmax + 1)3
NnD(m,m′)

π̄0n2
(1 + ln(n))2

≤ (Rmax + 1)3
N2

n

n2
(1 + ln(n))2 ≤ 2(Rmax + 1)3∆2/π̄0.

Thus, the bound for (
∑
ηk)2 is proportional to

σ4
1

[
D(m,m′)

n
+
Lm′Dm′

n
+ 2(Rmax + 1)3∆2/π̄0 +

τ

n
+ r̄2m,m′

τ2

n2

]
.

This term defines p̆(m,m′) as given in Proposition 4.6.
The last case corresponds to collection [T]. Here Lm = 1, r̄m,m′ ≤ C

√
D(m,m′) and

Nn ≤
√
n∆/ ln(n). We get

r̄2m,m′

(
D(m,m′)

n
+
Lm′Dm′

n

)2

≤ C”
D(m,m′)3

n2
≤ C”

N3
n

n2
≤ C”

∆3/2

√
n

≤ C”∆2,

since 1/
√
n ≤

√
∆. Thus, the bound for (

∑
ηk)2 is proportional to

σ4
1

[
D(m,m′)

n
+
Lm′Dm′

n
+ C”∆2 +

τ

n
+ r̄2m,m′

τ2

n2

]
.

This term defines p̆(m,m′) as given in Proposition 4.6.
We obtain, for K = (Rmax + 1)3/π̄0 or K = C”,

IPn

 sup
u∈Bπ̄

m,m′ (0,1)

[ν̆(1)
n (u)]2 > κσ4

1

(
Dm +Dm′(1 + Lm′)

n
+K∆2 + 2(

τ

n
∨ 2r̄2m,m′

τ2

n2
)
)

≤ IPn

 sup
u∈Bπ̄

m,m′ (0,1)

[ν̆(1)
n (u)]2 > η2

 ≤ 2IPn

 sup
u∈Bπ̄

m,m′ (0,1)

ν̆(1)
n (u) > η

 ≤ 3.2e−Lm′Dm′−τ
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so that, reminding that Ğm(m′) is defined by (68),

E
[(
Ğ2

m(m′)− κσ4
1

Dm +Dm′(1 + Lm′)
n

+K∆2

)
+

1IΩn

]
≤

∫ ∞

0
Pn

(
Ğ2

m(m′) > κσ4
1

Dm +Dm′(1 + Lm′)
n

+K∆2 + τ

)
dτ

≤ e−Lm′Dm′

(∫ ∞

2κσ4
1/r̄2

(m,m′)

e−nτ/(2κσ4
1)dτ +

∫ 2κσ4
1/r̄2

m,m′

0
e−n

√
τ/(2

√
κr̄m,m′σ2

1)dτ

)

≤ e−Lm′Dm′ 2κσ
4
1

n

(∫ ∞

0
e−vdv +

2r̄2m,m′

n

∫ ∞

0
e−

√
vdv

)

≤ e−Lm′Dm′ 2κσ
4
1

n
(1 +

4r̄2m,m′

n
) ≤ κ′e−Lm′Dm′ σ

4
1

n
which ends the proof.�
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