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Abstract

In this paper, we consider the inverse problem of estimating the product fg of two densities,
given a n-sample of i.i.d. observations drawn from each. We propose both projection estimators
with model selection device and kernel estimators with bandwidth selection strategies. The
procedures do not consist in making the product of each density estimator, but in plugging an
overfitted estimator of one of the two densities, in an estimator based on the second sample. Our
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1 Introduction

In this work, we consider that we have n observations Xi, i = 1, . . . , n independent and identically
distributed (i.i.d.) with density f and independent from n additional observations Yi, i = 1, . . . , n
i.i.d. with density g. We study the question of estimating the product function fg from these
observations. Note that the resulting function is not a density, and none of the observations are
directly related to this product. In that sense, we face an inverse problem. Our framework contains
the case where f = g and the goal is to estimate f2 by splitting a 2n-sample. These quantities
may be of interest in some testing problems or as a first step for estimating the L2-norm of f , see
Laurent and Massart (2000); other product problems are considered in Butucea et al. (2018).

However, we must explain that we considered this problem as a simplified setting (a toy-problem,
in some sense) for a more complicated question. Let us explain it. Consider a regression model
with Yi = b(Xi) + εi with i.i.d. and independent sequences (Xi)1≤i≤n and (εi)1≤i≤n. The question
is to estimate the regression function b(·) from observations (Xi, Yi)1≤i≤n. A popular proposal is
the Nadaraya-Watson estimator (see Györfi et al. (2002))

b̂h(x) =
1
nh

∑n
i=1 YiK

(
Xi−x
h

)
1
nh

∑n
i=1K

(
Xi−x
h

) =

n∑
i=1

wn,i,hYi, wn,i,h =
K
(
Xi−x
h

)∑n
i=1K

(
Xi−x
h

) ,
where K is a kernel and h a bandwidth parameter. This estimator can be seen as a weighted
combination of the Yi’s (second equality) or as a ratio of an estimator of bf , where f is still the
density of the Xi’s, divided by an estimator of f (first equality). In this last case, it is not clear
that the same bandwidth h must be chosen for the numerator and the denominator. Surprisingly,
Comte and Marie (2021) proposed sophisticated strategies for these two terms, but noticed in the
simulation experiments that, if the numerical results obtained for both functions separately were
excellent, the performance of the ratio was almost systematically defeated by the single bandwidth
method selected from a least squares criterion relying on the weighted view of the question. The
unique bandwidth selected in this case is small, but the ratio of these two bad overfitted estimators
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is undoubtedly very good, at least for not too high noise level. This is why we wondered if the
product of two functional estimators was a good estimator of the product of two functions; we took
these functions as densities for simplicity. Thus our motivation is mainly theoretical, but we believe
that the question is of general interest.

Now, let us see why making a product of density estimators can be easily seen as an inadequate

(sub-optimal) strategy. Assume that we set f̂g := f̂ × ĝ, where f̂ and ĝ are minimax optimal
estimators of f and g respectively. To get an upper bound result, there is no other way than to
separate the role of each estimate : both individual risks of f̂ and ĝ would emerge. Then, the
resulting rate is the slowest between the rates of estimation of f and of g: it is the rate induced by
the less regular density between f and g, say g without loss or generality for the remaining of this
discussion. Clearly, this is not optimal if the product fg is more regular than g. For instance, for
f a β(p, p) density with p ≥ 2, p integer and g a uniform density, i.e. a β(1, 1). Then on R, f has
regularity p− 1 and g regularity 0, but fg = f has regularity p− 1. Therefore, one can wonder if
in these cases it is possible to build an estimator directly adapted to the regularity of the product
fg.

A related disadvantage of an upper bound separating the roles of f and g is that it does not treat
this problem as an inverse problem : both individual regularities of f and g intervene whereas one
expects that the sole regularity of fg should matter. Especially since, depending on the regularity
classes which are considered, there is often no universal rule relating the regularities of f and g to
the one of the product.

To complete this discussion, notice that it is easy to derive a lower bound result, inspired by
the former example on beta distributions. Denote by Σ(s, L) where s and L are positive, a ball of
radius L in space of functions with regularity s. Then it holds, for any measurable function T of
(Xi, Yi)1≤i≤n,

sup
fg∈Σ(s,L)

‖T − fg‖2 ≥ sup
fg∈Σ(s,L)

Suppf⊂[0,1]
g=1[0,1]

‖T − fg‖2 = sup
f∈Σ(s,L)

Suppf⊂[0,1]

‖T − f‖2.

It follows that

inf
T

sup
fg∈Σ(s,L)

‖T − fg‖2 ≥ inf
T

sup
f∈Σ(s,L)

Suppf⊂[0,1]

‖T − f‖2, (1)

we recover on the right side the lower bound of the direct density estimation problem. To summarize,
if the regularity set Σ(s, L) contains a [0, 1] supported density f0, a lower bound for the product is
given by a lower bound for the direct estimation of f0. This is enough to state that the upper bound

results presented below are optimal. For instance, we recover rates in n−
2s

2s+1 if (fg) ∈ Σ(s, L), a
Sobolev class of regularity s, that are minimax.

The plan of the paper is the following. We propose in section 2 a projection strategy: we
define a projection estimator of the product fg and prove a non-asymptotic risk bound showing
that a rate related to the regularity of fg can be reached for a well-chosen dimension of the
projection space (see section 2.2). As this choice depends on unknown parameters, we then propose
a model selection strategy and prove that the resulting estimator automatically reaches the squared-
bias/variance compromise. Then, we turn to kernel strategies, for which we propose in section 3
an estimator with similar properties. The bandwidth selection procedure is more complicated. We
study a Goldenshluger and Lepski (2011) method which gives, following a way rather similar to the
projection case, a theoretical result but is difficult to use in practice. Then we propose a method
inspired from the recent proposal of Lacour et al. (2017), which has a very intricate proof, but is
quite easy to implement. Comparisons of the different methods and associated strategies for product
estimators are conducted in section 4, and concur to our theoretical findings. Several additional
questions are presented in the concluding remarks of section 5. Lastly, proofs are gathered in section
6 concerning section 2 and in section 7 for section 3.
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2 Projection method

2.1 Estimator and first risk bound

Let (ϕj)j≥0 a L2(I)-orthonormal basis, where I ⊆ R is a subset of R and the domain on which fg is
estimated. We set Sm = vect(ϕ0, . . . , ϕm−1) the m-dimensional functional space linearly generated

by the m first ϕj ’s. For any square integrable function h on I, we denote by hm =
∑m−1
j=0 aj(h)ϕj

with aj(h) = 〈ϕj , h〉, the orthogonal projection of h on Sm. We also define the quantity, assumed
to be finite:

L(m) := sup
x∈I

m−1∑
j=0

ϕ2
j (x).

The order of L(m) depends on the choice of the basis. For the trigonometric basis for m odd and
I = [0, 1], it holds L(m) = m. For the Hermite basis where I = R, we have L(m) ≤ CH

√
m (see

Lemma 1 in Comte and Lacour (2021) and section 2.2). For the Legendre polynomial basis where
I = [−1, 1] it holds that L(m) = m2, see Cohen et al. (2013, p.831). In any case, we consider that
L(m) ≥ 1, which holds at least for m ≥ m0.

For simplicity, we write fg = fg1I and we recall the definition of the projection estimator of f
on Sm∗ where m∗ is a positive integer:

f̂m∗ =

m∗−1∑
j=0

âjϕj , âj =
1

n

n∑
i=1

ϕj(Xi). (2)

Now, we propose the following estimator of fg:

(̂fg)m,m∗ =

m−1∑
j=0

â
(m∗)
j ϕj , â

(m∗)
j =

1

n

n∑
i=1

ϕj(Yi)f̂m∗(Yi). (3)

Clearly, E(â
(m∗)
j ) = 〈ϕj , fm∗g〉, which shows that our estimator is indeed close to fm∗g, which

in turn should be near of fg for large m∗. Choosing m∗ large is possible only if the variance of
f̂m∗ does not appear in the risk bound. This is established for the integrated risk bound for the
estimator (3) in the following result.

Proposition 2.1. Assume that f and g are bounded on I with bounds denoted by ‖f‖∞ and ‖g‖∞
respectively. Let (̂fg)m,m∗ be the estimator defined by (3). Then for any m∗ such that L(m∗) ≤ n,
we have

E
(
‖(̂fg)m,m∗ − fg‖

2
)
≤ ‖(fg)m − fg‖2 + ‖g‖2∞‖f − fm∗‖2 + C(f, g)

L(m)

n
, (4)

where
C(f, g) := ‖g‖∞(1 + ‖f‖2) + ‖f‖∞‖g‖2 ≤ ‖g‖∞(1 + 2‖f‖∞)

and (fg)m is the orthogonal projection of fg on Sm, fm∗ the orthogonal projection of f on Sm∗ .

The risk bound (4) contains two standard terms, the squared bias

B1 = ‖(fg)m − fg‖2 =
∑
j≥m

[aj(fg)]2, aj(fg) = 〈fg, ϕj〉

and the variance C(f, g)L(m)/n, requiring a standard compromise (when m grows, the bias de-
creases while the variance increases). It also involves the bias term ‖f − fm∗‖2 which has no
counterpart: thus m∗ can and should be chosen as large as possible in order to make it negligible.

Strategy suggested by (4). If in the initial problem, f and g have symmetric roles, this is no
longer true in the definition (3) of the estimator, where one of the two densities is estimated first.
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As a matter of fact, Proposition 2.1 suggests: 1. to plug in the product estimator (3) an over-fitted
estimator, eliminating a selection issue for m∗, 2. to select for this over-fitted estimator the one
corresponding to the smoother density. Indeed, this should make the additional bias term decrease
faster. However, the information about which is smoother between f and g, is not available. From
theoretical viewpoint, both ‖f − fm∗‖2 and ‖g − gm∗‖2 are negligible by assuming a minimal
regularity for f and g and choosing m∗ maximal with L(m∗) ≤ n. From practical point of view, we
propose to consider that the smoother density is the one for which a model selection method for
the direct density estimation of f and g leads to the smallest selected dimension (see section 4).

2.2 Rates on Sobolev Hermite spaces

In this section, we give an example of rate induced by Proposition 2.1, in the case of the Hermite
basis and associated Sobolev spaces. The Hermite functions (ϕj)j≥0 are defined from Hermite
polynomials (Hj)j≥0 by:

ϕj(x) = cjHj(x)e−x
2/2, Hj(x) = (−1)jex

2 dj

dxj
(e−x

2

), cj = (2jj!
√
π)−1/2, x ∈ R. (5)

The Hermite polynomials (Hj)j≥0 are orthogonal with respect to the weight function e−x
2

, that is:∫
RHj(x)Hk(x)e−x

2

dx = 2jj!
√
πδj,k (see Abramowitz and Stegun (1964), chap 22.2.14). Therefore,

the Hermite basis (ϕj)j≥0 is an orthonormal basis on R. We note also that ϕj is bounded:

||ϕj ||∞ = sup
x∈R
|ϕj(x)| ≤ Φ0, with Φ0 ' 1, 086435/π1/4 ' 0, 8160 (6)

(see Abramowitz and Stegun (1964), chap.22.14.17). Moreover, it is proved in Lemma 1 of Comte

and Lacour (2021) that supx∈R
∑m−1
j=0 ϕ2

j (x) ≤ CH
√
m for a finite constant CH > 0.

For s > 0, the Sobolev-Hermite ball (see Bongioanni and Torrea (2006)) is defined by :

W s
H(D) =

{
θ ∈ L2(R),

∑
k≥0

ksa2
k(θ) ≤ D

}
, D > 0, (7)

where ak(θ) = 〈θ, ϕk〉. It is proved in Belomestny et al. (2019) that, for s an integer, s ≥ 1,
f ∈ W s

H = {θ ∈ L2(R),
∑
k≥0 k

sa2
k(θ) < +∞} is equivalent to : f admits derivatives up to order

s which satisfy: f , f ′, . . . , f (s), xs−`f (`) for ` = 0, . . . , s − 1 belong to L2(R). Moreover, for any
function f ∈W s

H(D), we have ‖f − fm‖2 ≤ Dm−s. It is also easy to see that if, in addition, s > 1,
then f is bounded. Indeed

|
∑
j≥0

ajϕj | ≤ Φ0

|a0|+
∑
j≥1

(|aj |js/2)j−s/2

 ≤ Φ0

‖f‖+

√∑
j≥1

jsa2
j

∑
j≥1

j−s

 .

As the functions are assumed to be bounded, it holds |〈fg, ϕj〉| ≤ min(‖f‖∞|〈g, ϕj〉|, ‖g‖∞|〈f, ϕj〉|).
Thus if fg ∈W s

H(D), f ∈W s′

H (D′) and g ∈W s′′

H (D′′), then s ≥ max(s′, s′′).
Then we obtain as a straightforward consequence of Proposition 2.1, the following result.

Proposition 2.2. Let s ≥ s′ ≥ 1/2 and assume that fg ∈ W s
H(D), f ∈ W s′

H (D′) with f and g
bounded and g ∈ L2(R). Then choosing mopt = [n1/(s+1/2)] and m∗n = n2/C2

H , we have

E
(
‖(̂fg)mopt,m∗n

− fg‖2
)
≤ C(D,D′, ‖f‖∞, ‖g‖∞)n−

2s
2s+1 .

We can conclude that the resulting rate is of order n−2s/(2s+1), and is optimal, see (1).
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2.3 Model selection

As noticed in the comments of Proposition 4, we can and should choose m∗ as large as possible.
Then only the dimension m remains to be selected from the data. We define the collection of
proposals for m as follows

Mn = {m ∈ {1, . . . , n}, L(m) ≤ n},

and set

γn(t) = ‖t‖2 − 2

n

n∑
i=1

f̂m∗(Yi)t(Yi). (8)

Then we select m̂ with the criterion

m̂ := arg min
m∈Mn

{
min
t∈Sm

γn(t) + pen(m)

}
, pen(m) = κ‖f‖∞(‖f‖∞ + ‖g‖∞)

L(m)

n

where κ is a numerical constant. Note that

min
t∈Sm

γn(t) = γn((̂fg)m,m∗) = −‖(̂fg)m,m∗‖
2.

We consider the following set of assumptions:

[A1] f and g are bounded on I.

[A2] The model m∗ is such that L(m∗) ≤ ‖f‖∞
16

n

log(n)
.

[A3] There exist two real numbers a > 1 and Ca > 0, which need not to be known, such that∑
j≥1 j

aa2
j (f) ≤ Ca < +∞.

[A4] The basis functions are bounded: ∀j ∈ N,∀x ∈ I, |ϕj(x)| ≤ Cϕ, and the collection of
models is nested.

[A5] The collection of models is such that Card(Mn) ≤ n, and ∀c > 0,
∑
m∈Mn

e−c
√
L(m) ≤

Σ < +∞ where Σ = Σ(c) is a constant depending on c but not on n.

We can prove the following result.

Theorem 2.1. If Assumptions [A1]-[A5] hold, then, there exists κ0 such that, for any κ ≥ κ0, we
have

E(‖(̂fg)m̂,m∗ − fg‖
2) ≤ inf

m∈Mn

{
3‖fg − (fg)m‖2 + 4κ‖f‖∞(‖f‖∞ + ‖g‖∞)

L(m)

n

}
+16‖g‖2∞‖f − fm∗‖2 +

C

n
, (9)

where C is a constant depending on ‖f‖∞, Ca.

The proof is relegated to section 6 and indicates that κ0 = 8× 12 = 96 would suit. In practice,
the estimate is replaced by its positive part, for which the same risk bound holds. Theorem 2.1
shows that our adaptive procedure automatically realizes the squared bias-variance tradeoff up to
negligible terms. As previously noticed if m∗ = m∗n is chosen large enough ‖f − fm∗‖2 is negligible
(less than 1/n).

In Assumption [A2], the maximal value of m∗ depends on ‖f‖∞. This constraint can be replaced

by L(m∗) ≤ n/ log3/2(n) and the result follows for n large enough. Condition [A3] implies that
the function f has a minimal regularity of 1/2 on Sobolev-Fourier spaces for I = [0, 1] and 1 on
Hermite Sobolev spaces. Assumptions [A4] and [A5] are classical, for instance they are fulfilled for
the trigonometric and Hermite bases.
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The values ‖f‖∞, ‖g‖∞ in the penalty term are unknown and must be replaced by estimates.
The bound ‖f‖∞ can be estimated by the maximal value of a projection estimate of f on a middle-

sized space, for instance supx∈I |f̂[
√
n](x)| and an analogous approach can be adopted for ‖g‖∞. Let

us denote these estimators by ‖̂f‖∞ and ‖̂g‖∞. This strategy is theoretically studied in Theorem
12 p.594 (Appendix A: Random penalty) in Lacour (2007).
We adopt in the numerical Section, the following strategy. The penalty is obtained from the theory

as the sum of the bounds of two terms, a bound on 1
n

∑m−1
j=1 E

(
ϕ2
j (Y1)[f̂m∗(Y1)]2

)
and a bound on

an additional term ‖f‖∞‖g‖∞L(m)/n. Following ideas in Massart (2007) (see also Theorem 7.6
p.216, in the density case), we replace the first term by

p̂en1(m) =
1

n2

n∑
i=1

m−1∑
j=0

[
f̂m∗(Yi)ϕj(Yi)

]2
and the second term by p̂en2(m) = ‖̂f‖∞‖̂g‖∞L(m)/n. So, in the Hermite basis where L(m) =
CH
√
m (with unknown CH), our global penalty is

p̂en1(m) + κ‖̂f‖∞‖̂g‖∞
√
m

n
. (10)

The constant κ is calibrated by preliminary simulations, see section 4.

3 Kernel estimators

3.1 Definition and risk bound

Let K be a symmetric kernel. We recall the definition of the classical kernel density estimator of f

f̃h(x) =
1

n

n∑
i=1

Kh(Xi − x), Kh(u) =
1

h
K
(u
h

)
, h > 0. (11)

Let us denote by ? the convolution product, u ? v(x) =
∫
u(t)v(x− t)dt for functions u, v such that

the integral is well defined. Then, for any function w, we set wh := w ? Kh.
By analogy with the projection study, we define the kernel estimator of fg by

(̃fg)h,ho
(x) =

1

n

n∑
i=1

f̃ho
(Yi)Kh(Yi − x). (12)

We prove the following integrated risk bound.

Proposition 3.1. Assume that f is square integrable on R and that g is bounded on R with

bound denoted by ‖g‖∞. Let (̃fg)h,ho
be the estimator defined by (12). Then for any ho such that

1/(nho) ≤ 1, we have

E
(
‖(̃fg)h,ho

− fg‖2
)
≤ 2‖(fg)h − fg‖2 + 2‖g‖2∞‖K‖21‖fho − f‖2 +

C(f, g,K)

nh
, (13)

where C(K, f) = ‖K‖2‖g‖∞(‖K‖2 + 2‖K‖21‖f‖2).

As observed in the projection context, Proposition 3.1 suggests to choose ho the smallest as
possible, in order to make this term negligible. For instance if f belongs to a Nikols’ki ball with
regularity parameter α (see Tsybakov (2009), Definition 1.4 p.13), ‖fho

− f‖2 has order (ho)
2α if

the kernel K has order at least bαc. It follows that for α > 1/2 and ho = 1/n, this term has order
less than 1/n and is negligible. Then, there is only one bandwidth h that requires to be selected.

If in addition fg belongs to a Nikols’ki ball with regularity parameter β and the kernel K
has order at least bβc, (see Tsybakov (2009), Definition 1.3, p.5) then the estimator will reach the
minimax rate n−2β/(2β+1) (Tsybakov (2009), chapter 1, section 1.2.3 and Theorem 1.2) for h chosen
of order n−1/(2β+1). As in the projection case, such a choice of h is not feasible since β is unknown,
a data driven procedure for selecting h must be proposed.
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3.2 Bandwidth selection with Goldenschulger and Lepski method

Our first proposal is a Goldenschluger and Lespki (2011) method. We define for Hn a discrete
collection of bandwidths in (1/n, 1) with cardinality less than n,

A(h) = sup
h′∈Hn

[
‖
(
Kh′ ? (̃fg)h

)
− (̃fg)h′‖

2 − κV (h′)
]

+
, V (h) =

‖K‖41‖K‖2(‖f‖2∞ + ‖g‖2∞)

nh
(14)

where we drop the index ho for readibility in (̃fg)h = (̃fg)h,ho
, and the selection of h is done by

the rule
ȟ = arg min

h∈Hn

{A(h) + κ′V (h)} .

Note that by denoting Kh,h′(x) = Kh′,h(x) = Kh ? Kh′(x),

Kh′ ? (̃fg)h(x) =
1

n

n∑
i=1

f̃ho
(Yi)Kh,h′(Yi − x) = Kh ? (̃fg)h′(x).

We consider the following set of assumptions:

[B1] fand g are bounded on R.

[B2] The kernel K is even, bounded and integrable.

[B3](p) The bandwidth ho is such that nho ≥ 3p[‖K‖∞/(2‖f‖∞‖K‖1)] log(n).

[B4] The discrete collection of bandwidths in (1/n, 1), Hn, has cardinality less than n and
such that for any c1 > 0,

∑
h∈Hn

exp(−c1/h) ≤ Σ = Σ(c1) < +∞.

Note that as
∫
K = 1, ‖K‖1 ≥ 1. As for [A2], we can replace [B3](p) with nho ≥ log(n)3/2, for

large enough n, to get rid of the unknown constant ‖f‖∞ in the bound defining ho. Assumption
[B4] is fulfilled for Hn = {hk = 1/k, k = 1, . . . , n}. Note that contrary to the projection, the kernel
method does not require any regularity constraint of type [A5].

Theorem 3.1. Under Assumptions [B1]-[B2]-[B3](3) and [B4], we have for κ′ ≥ κ, that

E
(
‖(̃fg)ȟ − fg‖

2
)
≤ C inf

h∈Hn

{
‖K‖41‖(fg)h − fg‖2 + κ′V (h)

}
+ 18‖K‖41‖g‖2∞‖fho

− f‖2 +
C ′

n
,

where C is numerical and C ′ depends on ‖f‖∞, ‖g‖∞,K.

Theorem 3.1 ensures that the adaptive estimator performs a squared bias-variance compromise.
However, the Goldenschluger and Lespki (2011) method is often difficult to calibrate from an im-
plementation viewpoint (see Comte and Rebafka (2012)) and suffers from important computational
costs. Moreover, it involves the calibration of two constants, κ′ and κ. Contrary to the model
selection procedure this preliminary calibration step is difficult, probably because these constants
act simultaneously on the bias and variance terms. Moreover, the ”double” convolution Kh,h′ is
numerically time consuming.

This is why we explore another PCO method, introduced for density estimation by Lacour et
al. (2017). The PCO method is more complicated from theoretical point of view, because it involves
the study of several U -statistics of order 2. But, it is much easier to calibrate and implement, from
practical point of view. Still, the Goldenschluger and Lespki (2011) method has the advantage
that its proof, though technical, is well delineated; it is enlightening to understand the order of the
different terms involved in the decomposition of the key processes appearing in both methods.
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3.3 Bandwidth selection with PCO

We keep omitting the index ho and write (̃fg)h = (̃fg)h,ho
as ho is fixed equal to minimal value.

We select
h̃ = arg min

h∈Hn

{
‖(̃fg)h − (̃fg)hmin

‖2 + 2pen(h)
}

with hmin = min{h, h ∈ Hn},

pen(h) = pen1(h) + pen2(h) where pen1(h) =
1

n2
〈Kh,Khmin〉

n∑
i=1

f̃2
h0

(Yi), (15)

pen2(h) = κ
c0(f, g,K)

nh
, c0(f, g,K) = 4‖K‖31‖K‖∞(‖g‖2∞ + ‖f‖2∞). (16)

Note that pen1 and pen2 are both of order 1/(nh). This is obvious for pen2; for pen1, observe that

|〈Kh,Khmin
〉| ≤ ‖K‖∞‖K‖1/h and that, under [B3](p), (1/n)

∑n
i=1 f̃

2
ho

(Yi) is bounded with large
probability, see (35).

Theorem 3.2. Assume that Assumptions [B1]-[B2], [B3](4) and [B4] hold and that 1/(nhmin) ≤ 1.
Then, for any θ ∈ (0, 1/4) and κ ≥ 1/4, we have

E
(
‖(̃fg)h̃ − fg‖

2
)
≤ 2(1 + c1(θ)) inf

h∈Hn

{
‖(fg)h − fg‖2 + (1 +

κ

1 + θ
)
c0(f, g,K)

nh

}
+c2(θ)‖(fg)hmin − fg‖2 + c3‖fh0 − f‖2 + C

log(n)

n
,

where

c1(θ) = 2θ(1− θ)/(1− 3θ) > 0, c2(θ) = 2
(1 + θ2)(1− 2θ)

θ(1− 2θ)
> 0,

and c3 and C are positive constants depending on θ, f, g,K.

The risk bound of Theorem 3.2 involves four terms. The first term in the first line is the
minimal risk among the collection of estimators, up to multiplicative constants. The two following
terms, ‖(fg)hmin

−fg‖2 and ‖fh0
−f‖2 are bias terms corresponding to small bandwidths, they are

negligible if hmin is of order 1/n and ho of order log(n)/n (as required by assumption [B3](4) and if
the functions f and fg have regularity larger that 1/2. The last term log(n)/n has negligible order
compared to the first one. Therefore, the adaptive estimator achieves the intended squared-bias
variance compromise detailed at the end of section 3.1.

4 Examples and simulation experiments

4.1 Description of the procedures

In this section, we illustrate the performances of the projection estimator with Hermite basis (see
section 2.2) and kernel estimator with kernel built as a Gaussian mixture defined by:

K(x) = 2n1(x)− n2(x), (17)

where nj(x) is the density of a centered Gaussian with a variance equal to j. This kernel is of order
3 (i.e.

∫
xjK(x)dx = 0, for j = 1, . . . , 3). We consider four examples:

1. X ∼ f = B(7, 5) and Y ∼ g = U(0, 1),
2. X ∼ f = Γ(4, 1/4) and Y ∼ g = E(1/4),
3. X ∼ f = N (0, 3) and Y ∼ g Laplace,
4. X ∼ f = N (0, 3) and Y ∼ g Cauchy.
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We compute normalized L2-risks to allow the numerical comparaison of the different examples
for which

∫
(fg)2 varies a lot. Namely, we evaluate

E[‖(̂fg)− fg‖2]

‖fg‖2

and the associated deviations, from N = 100 independent datasets with different values of sample
size n = 200, 1000 and 2000. All adaptive methods require the calibration of constants κ’s in
penalties. This is done by preliminary simulation experiments. For calibration strategies (dimension
jump and slope heuristics), the reader is referred to Baudry et al. (2012), and to Lerasle (2012) for
theoretical justifications. Here, we test a grid of values of κ’s, the tests are conducted on a set of
densities which are different from the one considered hereafter, to avoid overfitting. The different
estimators are computed on the same datasets and compared.
• Product : This estimator is obtained as the product of f̂ ĝ where each estimator is an adaptive

optimal estimator. In the projection case, the product is f̂m̂1
ĝm̂2

, where f̂m is defined by (2) with

m̂1 = arg min
m∈{1,...,Dmax}

−‖f̂m‖2 +
4

n2

n∑
i=1

m−1∑
j=0

ϕ2
j (Xi)

 ,

and ĝm̂2
is defined analogously. In the kernel case, f̃h̃1

g̃h̃2
, where f̃h̃1

is defined by (11) with

h̃1 = arg min
h∈{1/k,k=1,...,n}

{
‖f̃h − f̃ 1

n
‖2 +

4

n
〈Kh,K 1

n
〉
}
,

and g̃h̃2
is defined analogously.

• First X: In all our examples f is smoother than g. The theoretical results suggest that one
should consider for the preliminary estimate the dataset X which has density f . In the projection

setting our estimate is (̂fg)m̂,m∗ of Theorem 2.1 and penalty given by (10), where ‖̂f‖2∞ is estimated

by supx∈I |f̂2
10(x)|, ‖̂g‖2∞ is estimated similarly, and with κ = 0.15 after calibration. In the kernel

case we consider the estimator (̃fg)h̃ of Theorem 3.2 with penalty given by (15) where pen2 is
replaced by

p̂en2 = 0.32
‖̂f‖2∞ + ‖̂g‖2∞

nh
,

where ‖̂f‖2∞ is estimated by supx∈I |f̃2
logn/

√
n
(x)|, ‖̂g‖2∞ is estimated similarly. Note that ‖K‖1 '

1.133 and ‖K‖∞ ' 0.516, ‖K‖31‖K‖∞ ' 0.75.
• Optimal first : As the information about compared smoothness of f and g is unavailable

in practice, we have proposed an adaptive method for choosing which estimate is plugged in: we
perform a classical penalized (resp. PCO) procedure (see step Product) to the datasets X and

Y and we take as preliminary projection (resp. kernel) estimate the one for which m̂ (resp. h̃) is
the smallest (resp. largest). Indeed, the optimal dimension (resp. bandwidth) is asymptotically a
decreasing (resp. increasing) function of the regularity. For instance, if m̂1 < m̂2 we proceed as in
First X step, otherwise the roles of X and Y are switched. We count the number of times where
Y is selected first; thus, when this count is zero, First X and Optimal first are the same and give
the same result.
• Oracle (optimal first) : Our benchmark is computed as follows. We consider for all

dimensions or bandwidths the estimators of the step Optimal first and select the oracle that

minimizes m 7→ E[‖(̂fg)m,m∗ − fg‖2] or h 7→ E[‖(̃fg)h − fg‖2]. This quantity provides a numerical

lower bound for the L2-risk of our procedure.

4.2 Numerical results

Let us comment the results of Tables 1-4. First, we compare separately projection and kernel
procedures. Let us start with the two fully data driven methods Product and Optimal first. We
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n Product First X Optimal first Oracle
Hermite Kernel Hermite Kernel Hermite Kernel Hermite Kernel

200 18.2(1.85) 3.21(2.97) 12.3(3.32) 21.0(3.96) 7.79
(100)
(2.32) 5.80

(79)
(8.60) 2.08(1.64) 4.69(8.00)

1000 4.41(0.57) 1.22(1.05) 3.79(1.09) 1.05(0.68) 2.19
(100)
(0.66) 0.93

(26)
(0.6) 0.54(0.40) 0.74(0.54)

2000 2.26(0.38) 0.43(0.29) 1.92(0.46) 0.45(0.32) 1.18
(100)
(0.37) 0.40

(47)
(0.28) 0.27(0.21) 0.31(0.23)

Table 1: L2-risks with std in parenthesis (both multiplied by 102): f ∼ B(7, 5) and g ∼ U(0, 1), Dmax = 130.

For the Optimal first the bold upper script is the number of times where Y is selected first.

n Product First X Optimal first Oracle
Hermite Kernel Hermite Kernel Hermite Kernel Hermite Kernel

200 27.4(8.13) 16.6(9.11) 10.5(5.07) 5.21(3.36) 10.5
(0)
(5.07) 5.21

(0)
(3.36) 4.27(2.87) 3.79(2.18)

1000 38.1(6.63) 10.1(7.29) 3.86(1.43) 2.77(2.12) 3.86
(0)
(1.43) 2.80

(2)
(2.13) 1.52(1.02) 1.25(0.77)

2000 36.2(4.98) 11.0(10.8) 2.62(0.80) 1.75(1.57) 2.62
(0)
(0.80) 1.75

(0)
(1.57) 0.900.64) 0.80(0.55)

Table 2: L2-risks with std in parenthesis (both multiplied by 102): f ∼ Γ(4, 1/4) and g ∼ E(1/4),

Dmax = 100. For the Optimal first the bold upper script is the number of times where Y is selected first.

n Product First X Optimal first Oracle
Hermite Kernel Hermite Kernel Hermite Kernel Hermite Kernel

200 5.45(2.61) 6.81(7.42) 5.68(1.47) 6.50(3.49) 5.65
(51)
(1.44) 6.66

(29)
(3.59) 3.43(1.58) 3.18(2.04)

1000 4.62(0.93) 4.36(6.96) 2.25(0.93) 2.94(2.39) 2.53
(100)
(0.95) 2.80

(42)
(2.32) 1.16(0.60) 0.98(0.57)

2000 2.27(1.57) 2.46(2.37) 1.39(0.33) 2.34(2.44) 1.46
(55)
(0.41) 2.62

(26)
(2.68) 0.74(0.34) 0.62(0.35)

Table 3: L2-risks with std in parenthesis (both multiplied by 102): f ∼ N (0, 3) and g Laplace, Dmax = 100.

For the Optimal first the bold upper script is the number of times where Y is selected first.

n Product First X Optimal first Oracle
Hermite Kernel Hermite Kernel Hermite Kernel Hermite Kernel

200 4.60(2.59) 49.8(71.8) 3.24(2.14) 5.19(2.48) 3.24
(48)
(2.14) 5.18

(23)
(2.48) 2.43(1.67) 2.65(1.86)

1000 2.31(0.74) 72.3(74.6) 1.84(0.54) 2.51(1.87) 1.87
(100)
(0.50) 2.46

(13)
(1.87) 0.84(0.52) 0.78(0.68)

2000 0.92(0.74) 64.185.4) 0.73(0.49) 1.88(1.73) 0.83
(95)
(0.53) 1.77

(10)
(1.66) 0.43(0.30) 0.39(0.31)

Table 4: L2-risks with std in parenthesis (both multiplied by 102): f ∼ N (0, 3) and g Cauchy, Dmax = 50.

For the Optimal first the bold upper script is the number of times where Y is selected first.

observe that the results of the corresponding columns nicely confirm the theory: the risks of our
procedure is almost systematically and significantly smaller (see Table 2 in particular). Besides, the
risk of Optimal first is always comparable and even sometimes better than the risk of the First
X method which uses the unavailable knowledge of the smoothest density. The risk of Optimal
first has the same order as the Oracle even if a multiplicative factor larger than 2 is observed.
Lastly, as the risks are normalized we can compare the risks of the different Tables; we see that the
first two examples (Tables 1 and 2) are slightly more difficult which was expected: these densities
are less regular as functions on R.

Second, we can compare projection and kernel methods. The kernel method is much more
time consuming that the projection method (by a factor more than 10). We can see that for the
operational Optimal first method the kernel strategy seems better for the first two examples while
the projection method wins in the two other cases. Nevertheless, the gap between the risks is never
very large.

10



5 Concluding remarks

In this paper, we have shown that an optimal strategy for estimating a product of densities was
not to make a product of estimators but to plug an overfitted estimator of one of the densities in
the estimator of the product. This can be done both with projection and kernel estimators and
adequate model or bandwidth selection methods are proved to deliver adaptive estimators. We
have implemented these methods and proved their good numerical performances.

We assumed that the two samples had the same sizes but the case where the X-sample has size
nX and the Y sample size nY is worth being studied, for instance if nX = γn, nY = n, γ ∈ (0,∞).
Following the steps of the proof in the projection case suggests that the procedure can be adapted
and leads to similar results with rate induced by the smallest sample size (1 ∧ γ)n.

We considered a product of two densities but generalizations to product of other functions or
product of more than two densities may be worth studying. The real variables X and Y may
also be replaced by vectors, leading to a multivariate and anisotropy problem. Lastly, it is likely
that our methods would extend to dependent variables, provided that the two sequences remain
independent, but this should be further investigated.

If we come back to the Nadaraya-Watson problem that initiated our question, we justified in
our context that plugging an overfitted estimator is an optimal strategy. Other contexts where
overfitting has been recognized as judicious exists (see Chinot and Lerasle (2020)). The next step,
as the original problem is a ratio, is to address the question of estimating 1/f when f is a density.

6 Proofs of section 2

In the sequel C and C ′ denote generic constants whose value may change from line to line.

6.1 Proof of Proposition 2.1

First we write

‖(̂fg)m,m∗ − fg‖
2 = ‖(̂fg)m,m∗ − (fg)m‖2 + ‖(fg)m − fg‖2 := T + B1. (18)

The term B1 is the standard integrated squared bias and the first element of inequality (4). Next,
we study T. Using that the basis is orthonormal, we get

T := ‖(̂fg)m,m∗ − (fg)m‖2 =

m−1∑
j=0

(
â

(m∗)
j − aj(fg)

)2

.

We know that E(â
(m∗)
j ) = aj(fm∗g). Thus,

E(T) =

m−1∑
j=0

E
[(
â

(m∗)
j − aj(fm∗g)

)2
]

+

m−1∑
j=0

(aj(fm∗g)− aj(fg))
2

:= V + B2, (19)

where V is a variance term and B2 a second bias term. We have

B2 =

m−1∑
j=0

〈ϕj , g(fm∗ − f)〉2 = ‖[g(fm∗ − f)]m‖2 ≤ ‖g(fm∗ − f)‖2 ≤ ‖g‖2∞‖f − fm∗‖2. (20)

Then, we split V to involve the conditional variance given (X1, . . . , Xn) := X. As

E

[
1

n

n∑
i=1

ϕj(Yi)f̂m∗(Yi) |X

]
= 〈ϕj , gf̂m∗〉,
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this yields

V =

m−1∑
j=0

E

E( 1

n

n∑
i=1

ϕj(Yi)f̂m∗(Yi)− 〈ϕj , gf̂m∗〉

)2

|X

+ E
[
〈ϕj , g(f̂m∗ − f∗m)〉2

]
:= V1 + V2.

We successively study V1 and V2. First, for V1, we have

V1 =

m−1∑
j=1

E

[
Var

(
1

n

n∑
i=1

ϕj(Yi)f̂m∗(Yi)

)
|X

]
=

1

n

m−1∑
j=0

Var
(
ϕj(Y1)f̂m∗(Y1)

)

≤ 1

n

m−1∑
j=0

E
(
ϕ2
j (Y1)[f̂m∗(Y1)]2

)
≤ L(m)

n
E
(

[f̂m∗(Y1)]2
)
.

Now, as E
(

[f̂m∗(Y1)]2
)

= E
(

[f̂m∗(Y1)− fm∗(Y1)]2
)

+ E
(
[fm∗(Y1)]2

)
, it holds

E
(

[f̂m∗(Y1)]2
)
≤ ‖g‖∞

L(m∗)

n
+ ‖g‖∞‖f‖2 ≤ (1 + ‖f‖2)‖g‖∞,

for m∗ such that L(m∗) ≤ n. Finally we get

V1 ≤ ‖g‖∞(1 + ‖f‖2)
L(m)

n
.

Next, we turn to the study of V2,

V2 =

m−1∑
j=0

E
(
〈ϕj , g(f̂m∗ − f∗m)〉2

)
=

m−1∑
j=0

E

(
〈ϕj , g

m∗−1∑
k=0

(âk − ak(f))ϕk〉2
)

=

m−1∑
j=0

m∗−1∑
k,`=0

cov(âk, â`)〈ϕj , gϕk〉〈ϕj , gϕ`〉

As cov(âk, â`) =
1

n2

n∑
i,i′=1

cov(ϕk(Xi), ϕ`(Xi′)) =
1

n
cov(ϕk(X1), ϕ`(X1)), we get

V2 =
1

n

m−1∑
j=0

m∗−1∑
k,`=0

cov(ϕk(X1), ϕ`(X1))〈ϕj , gϕk〉〈ϕj , gϕ`〉 =
1

n

m−1∑
j=0

Var

(
m∗−1∑
k=0

〈ϕj , gϕk〉ϕk(X1)

)

≤ 1

n

m−1∑
j=0

E

(m∗−1∑
k=0

〈ϕj , gϕk〉ϕk(X1)

)2
 =

1

n

m−1∑
j=0

∫ (m∗−1∑
k=0

〈ϕj , gϕk〉ϕk(u)

)2

f(u)du

≤ ‖f‖∞
n

m−1∑
j=0

m∗−1∑
k=0

〈ϕk, ϕjg〉2 =
‖f‖∞
n

m−1∑
j=0

‖(ϕjg)m∗‖2

≤ ‖f‖∞
n

m−1∑
j=0

‖ϕjg‖2 ≤
‖f‖∞L(m)‖g‖2

n
.

The bounds for V1 and V2 imply

V ≤
(
‖g‖∞(1 + ‖f‖2) + ‖f‖∞‖g‖2

) L(m)

n
. (21)

Now, plugging (20) and (21) in (19) and the result in the expectation of (18) gives (4) and Propo-
sition 2.1 is proved. 2
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6.2 Proof of Theorem 2.1

First we note that

γn(t)− γn(s) = ‖t− fg‖2 − ‖s− fg‖2 + 2〈t− s, fg〉 − 2

n

n∑
i=1

f̂m∗(Yi)(t− s)(Yi)

= ‖t− fg‖2 − ‖s− fg‖2 + 2〈t− s, fg − fm∗g〉 − 2νn(t− s),

where νn(t) :=
1

n

n∑
i=1

[f̂m∗(Yi)t(Yi)− 〈fm∗g, t〉]. By definition of m̂, it holds, for any m ∈Mn,

γn((̂fg)m̂,m∗) + pen(m̂) ≤ γn((fg)m) + pen(m),

so that we get

‖(̂fg)m̂,m∗ − fg‖
2 ≤ ‖(fg)m − fg‖2 + 2〈(̂fg)m̂,m∗ − (fg)m, g(fm∗ − f)〉+ pen(m)

+2νn((̂fg)m̂,m∗ − (fg)m)− pen(m̂).

Now we have

2|〈(̂fg)m̂,m∗ − (fg)m, g(fm∗ − f)〉| ≤ 1

8
‖(̂fg)m̂,m∗ − (fg)m‖2 + 8‖g(fm∗ − f)‖2

≤ 1

4
‖(̂fg)m̂,m∗ − fg‖

2 +
1

4
‖(fg)m − fg‖2 + 8‖g‖∞‖(fm∗ − f)‖2,

and as t 7→ νn(t) is linear,

2|νn((̂fg)m̂,m∗ − (fg)m)| ≤ 1

8
‖(̂fg)m̂,m∗ − (fg)m‖2 + 8 sup

t∈Sm+Sm̂,‖t‖=1

ν2
n(t)

≤ 1

4
‖(̂fg)m̂,m∗ − fg‖

2 +
1

4
‖(fg)m − fg‖2 + 8 sup

t∈Sm+Sm̂,‖t‖=1

ν2
n(t).

Thus, we find

1

2
‖(̂fg)m̂,m∗ − fg‖

2 ≤ 3

2
‖(fg)m − fg‖2 + 8‖g‖∞‖(fm∗ − f)‖2 + pen(m)

+8 sup
t∈Sm+Sm̂,‖t‖=1

ν2
n(t)− pen(m̂).

Consequently, we get

‖(̂fg)m̂,m∗ − fg‖
2 ≤ 3‖(fg)m − fg‖2 + 16‖g‖∞‖(fm∗ − f)‖2 + 2pen(m)

+16

(
sup

t∈Sm+Sm̂,‖t‖=1

ν2
n(t)− p(m ∨ m̂)

)
+ 16p(m ∨ m̂)− 2pen(m̂).

Now the following Lemma can be proved:

Lemma 6.1. Under the Assumptions of Theorem 2.1, there exists κ0 such that for any κ ≥ κ0 and
p(m) = κ‖f‖∞(1 + ‖g‖∞ + ‖f‖∞)L(m)/n, then it holds

∑
m

E

(
sup

t∈Sm,‖t‖=1

ν2
n(t)− p(m)

)
+

≤ C

n
.

Then applying Lemma 6.1, for κ such that 8p(m) ≤ pen(m), we get 8p(m ∨ m̂) − pen(m̂) ≤
8p(m) + 8p(m̂)− pen(m̂) ≤ pen(m) which gives the result of Theorem 2.1. 2
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Proof of Lemma 6.1. We split νn in four terms: νn = νn,1 + νn,2 + νn,3 + νn,4 where for some
positive constant c0 to be defined in the sequel, we set

A(x) = {|f̂m∗(x)− fm∗(x)| < c0},

and

νn,1(t) =
1

n

n∑
i=1

[(f̂m∗(Yi)− fm∗(Yi))1A(Yi)t(Yi)− 〈(f̂m∗ − fm∗)1A, gt〉],

νn,2(t) =
1

n

n∑
i=1

[(f̂m∗(Yi)− fm∗(Yi))1(A(Yi))ct(Yi)− 〈(f̂m∗ − fm∗)1Ac , gt〉],

νn,3(t) = 〈(f̂m∗ − fm∗), gt〉 =
1

n

n∑
i=1

ψt(Xi), ψt(X) =

m∗−1∑
j=0

(ϕj(X)− E(ϕj(X)))

∫
ϕjtg,

νn,4(t) =
1

n

n∑
i=1

[fm∗(Yi)t(Yi)− 〈fm∗ , gt〉].

Study of νn,2 Let Bm := {t ∈ Sm, ‖t‖ = 1}. We start by the study of νn,2 as it leads to
fix c0, and we first establish that E(supt∈Bm

|νn,2(t)|) ≤ n−p for some positive p. It holds that

E(supt∈Bm
[ν2
n,2(t)]) ≤

∑m−1
j=0 E[ν2

n,2(ϕj)]. We note that

E[ν2
n,2(ϕj)] = Var(νn,2(ϕj)) = E(Var(νn,2(ϕj)|X]) + Var(E(νn,2(ϕj)|X)),

since E(νn,2(ϕj)|X) = 0, we get E[ν2
n,2(ϕj)] = E[Var(νn,2(ϕj)|X)]. Next, we derive that

Var(νn,2(ϕj)|X) =
1

n
Var[(f̂m∗(Y1)− fm∗(Y1))1(A(Y1))cϕj(Y1)|X]

≤ 1

n
E
{[

(f̂m∗(Y1)− fm∗(Y1))1(A(Y1))cϕj(Y1)
]2
|X
}

and it follows

E
(

sup
t∈Bm

[ν2
n,2(t)]

)
≤ 1

n

m−1∑
j=0

E
{[

(f̂m∗(Y1)− fm∗(Y1))1(A(Y1))cϕj(Y1)
]2}

≤ L(m)

n
E
{[

(f̂m∗(Y1)− fm∗(Y1))1(A(Y1))c

]2}
.

The last term can be written as

E
{[

(f̂m∗(Y1)− fm∗(Y1))1(A(Y1))c

]2}
= E

[∫
(f̂m∗(u)− fm∗(u))21(A(u))cg(u)du

]
.

Then, we find an upper bound for

(f̂m∗(u)− fm∗(u))2 =

m∗−1∑
j=0

(âj − E(âj))ϕj(u)

2

≤ L(m∗)

m∗−1∑
j=0

(âj − E(âj))
2 = L(m∗)

m∗−1∑
j=0

(
1

n

n∑
i=1

(ϕj(Xi)− E(ϕj(Xi)))

)2

≤ 4(L(m∗))2 ≤ 4C2n2,

since [A2] implies that L(m∗) ≤ Cn for C a positive constant. Therefore,

E
(

sup
t∈Bm

[ν2
n,2(t)]

)
≤ 4n2

∫
P(|f̂m∗(u)− fm∗(u)| > c0)g(u)du. (22)
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We complete by applying the Bernstein inequality to Zi =
∑m∗−1
j=0 ϕj(Xi)ϕj(u) yielding

P
(
|f̂m∗(u)− fm∗(u)| > c0

)
= P

(
|
n∑
i=1

Zi − E(Zi)| > nc0

)
≤ 2 exp

(
− nc20

2(v2
2 + b2c0)

)
with v2

2 a bound on Var(Zi) and b2 an a.s. bound on Zi. We find that b2 = L(m∗) suits and

Var(Zi) ≤ E


m∗−1∑

j=0

ϕj(Xi)ϕj(u)

2
 ≤ ‖f‖∞ m∗−1∑

j=0

ϕ2
j (u) ≤ ‖f‖∞L(m∗).

Therefore, choosing
c0 = ‖f‖∞, (23)

and using that, by [A2] L(m∗) ≤ c1n/ log(n) where c1 = ‖f‖∞/p (here p = 16), it follows that

P
(
|f̂m∗(u)− fm∗(u)| > c0

)
≤ 2n−

p
4 . (24)

Then, gathering (22) and (24) leads to E( sup
t∈Bm

ν2
n,2(t)) ≤ 8n2− p

4 =
8

n2
, for p = 16. As a consequence

under [A5], we get ∑
m∈Mn

E( sup
t∈Bm

[ν2
n,2(t)]) ≤ C

n
. (25)

Study of νn,1. We apply the Talagrand inequality (see Lemma 8.1) to νn,1 conditionally to X.
Using that t 7→ νn,1(t) is linear and the Cauchy-Schwarz inequality, we get(

E
(

sup
t∈Bm

|νn,1(t)| |X
))2

≤ E
(

sup
t∈Bm

ν2
n,1(t)|X

)
≤
m−1∑
j=0

E[ν2
n,1(ϕj)|X]

=
1

n

m−1∑
j=0

Var[(f̂m∗(Y1)− fm∗(Y1))1A(Y1)ϕj(Y1)|X]

≤ 1

n

m−1∑
j=0

E[(f̂m∗(Y1)− fm∗(Y1))21A(Y1)ϕ
2
j (Y1)|X]

≤ c20L(m)

n
:= H2

1 .

Next, note that supx,t |(f̂m∗(x)− fm∗(x))1A(x)t(x)| ≤ c0 supt,x |t(x)| ≤ c0
√
L(m) := b1 and

sup
t

Var((f̂m∗(Y1)− fm∗(Y1))21A(Y1)t(Y1)|X) ≤ c20‖g‖∞ := v2
1 .

Applying Lemma 8.1 with δ = 1
2 , it follows that

E

[(
sup
t∈Bm

|νn,1(t)|2 − 4
c20L(m)

n

)
+

∣∣∣X] ≤ 4c20
nK1

(
‖g‖∞ exp

(
−K1

L(m)

2‖g‖∞

)
+

49

K1C2(1/2)
exp

(
−K1C(1/2)

7

√
n

))
.

Since the latter bound does not depend on X, the inequality holds unconditionally in expectation.
Therefore under [A5] and as L(m) ≥ 1 for m ≥ m0, we get, for C a positive constant, and using
(23), ∑

m∈Mn

E

[(
sup
t∈Bm

|νn,1(t)|2 − 4
‖f‖2∞L(m)

n

)
+

]
≤ C

n
. (26)
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Study of νn,3 Similarly to νn,1 we apply the Talagrand inequality(
E
(

sup
t∈Bm

|νn,3(t)|
))2

≤
m−1∑
j=0

E[ν2
n,3(ϕj)] =

1

n

m−1∑
j=0

Var(ψϕj (X1))

≤ 1

n

m−1∑
j=0

E

(m∗−1∑
k=0

ϕk(X1)〈ϕk, ϕjg〉

)2
 =

1

n

m−1∑
j=0

∫ (m∗−1∑
k=0

ϕk(u)〈ϕk, ϕjg〉

)2

f(u)du

≤ ‖f‖∞
n

m−1∑
j=0

m∗−1∑
k=0

〈ϕk, ϕjg〉2 ≤
‖f‖∞
n

m−1∑
j=0

‖ϕjg‖2 ≤
‖f‖∞‖g‖2L(m)

n
≤ ‖f‖∞‖g‖∞L(m)

n
:= H2

3 .

Next, note that supx,t

∣∣∣∑m∗−1
k=0 ϕk(x)〈ϕk, tg〉

∣∣∣ ≤ 2
√
L(m∗)‖tg‖2 ≤ 2

√
n‖g‖∞ := b3 and

sup
t

Var

(
m∗−1∑
k=0

ϕk(X1)〈ϕk, tg〉

)
≤ ‖f‖∞‖g‖2∞ := v2

3 .

Applying Lemma 8.1 with δ = 1
2 , it follows that

E

[(
sup
t∈Bm

|νn,3(t)|2 − 4‖f‖∞‖g‖∞
L(m)

n

)
+

]
≤ 4‖g‖2∞

K1 n

(
‖f‖∞ exp

(
−K1

L(m)

2‖g‖∞

)

+
49× 4

K1C2(1/2)
exp

(
−
K1C(1/2)

√
‖f‖∞

14
√
‖g‖∞

√
L(m)

))
.

Therefore under [A5], we get, for C a positive constant,

∑
m∈Mn

E

[(
sup
t∈Bm

|νn,3(t)|2 − 4
‖f‖∞‖g‖∞L(m)

n

)
+

]
≤ C

n
. (27)

Study of νn,4 Again we apply the Talagrand inequality, similar computations enable to derive
H2

4 = ‖f‖∞‖g‖∞L(m)/n. To obtain v2
4 we first write

sup
t∈Bm

Var(fm∗(Y1)t(Y1)) ≤ sup
t∈Bm

E(f2
m∗(Y1)t2(Y1)) = sup

t∈Bm

∫
fm∗(u)2t(u)2g(u)du

≤ ‖g‖∞‖fm∗‖2∞.

It remains to bound ‖fm∗‖∞. Under [A4], we have

|fm∗(x)| =

∣∣∣∣∣∣a0(f)ϕ0(x) +
∑
j≥m∗

aj(f)ϕj(x)

∣∣∣∣∣∣ ≤ Cϕ
|a0|+

∑
j≥1

|aj(f)|

 .

Then using [A3], we have

|fm∗(x)| ≤ Cϕ

Cϕ +

√∑
j≥1

jaa2
j (f)

∑
j≥1

j−a

 ≤ Cϕ
Cϕ +

√
Ca
∑
j≥1

j−a

 := C(a, ϕ) < +∞

since a > 1. Thus, we can set v2
4 := ‖g‖∞C2(a, ϕ). Similarly, we derive

sup
t∈Bm

‖fm∗t− 〈fm∗ , tf〉‖∞ ≤ 2 sup
t∈Bm

‖fm∗t‖∞ ≤ 2‖fm∗‖∞
√
L(m) ≤ 2C(a, ϕ)

√
L(m) =: b4.
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It follows, by applying Lemma 8.1 with δ = 1
2 , that

E

[(
sup
t∈Bm

|νn,4(t)|2 − 4‖f‖∞‖g‖∞
L(m)

n

)
+

]
≤ 4

K1

(
‖f‖∞C2(a, ϕ)

n
exp

(
−K1

L(m)‖f‖∞
2C2(a, ϕ)

)

+
49× 4C2(a, ϕ)

K1nC2(1/2)
exp

(
−K1C(1/2)

14

√
‖f‖∞‖g‖∞
C(a, ϕ)

√
n

))
.

Therefore under [A5], we get, for C a positive constant,

∑
m∈Mn

E

[(
sup
t∈Bm

|νn,4(t)|2 − 4
‖f‖∞‖g‖∞L(m)

n

)
+

]
≤ C

n
. (28)

As a consequence, gathering (25)-(26)-(27) and (28) gives the result of Lemma 6.1 for C a
positive finite constant, depending on a, ‖f‖∞, ‖g‖∞ and Cϕ. 2

7 Proofs of Section 3

7.1 Preliminary tools

In the sequel we make an extensive use of the following:

• The Young Inequality: for u ∈ Lp and v ∈ Lq, 1 ≤ p, q ≤ r ≤ ∞,

‖u ? v‖r ≤ ‖u‖p‖v‖q,
1

r
+ 1 =

1

p
+

1

q
, (29)

• The Bernstein inequality: For i.i.d. random variables Zi, set Sn = 1
n

∑n
i=1(Zi − E[Zi]). If

E[Z2
1 ] ≤ v and |Z1| ≤ b a.s. then with probability larger than 1− 2e−λ, for any λ > 0,

|Sn| ≤
√

2vλ

n
+
λ

n
b. (30)

• Deriving a bound in expectation from a bound on probability: If P(Z ≥ κλ
n ) ≤ n2e−λ for all

λ > 0, then it holds

E[Z+] ≤ c log(n)

n
. (31)

Indeed, for all positive A we have

E[Z+] =

∫ ∞
0

P(Z ≥ x)dx =
κ

n

∫ ∞
0

P(Z ≥ κλ

n
)dλ ≤ κ

n

(
A+ 2n2e−A

)
,

and A = 2 log(n) gives the result.

7.2 Proof of Proposition 3.1

First we note that

E
(

(̃fg)h,ho
(x)
)

= E(fho(Y1)Kh(Y1 − x)) = (fhog) ? Kh(x).

Then, write the bias variance decomposition:

E
(
‖(̃fg)h,ho

− fg‖2
)

=

∫
[(fhog) ? Kh(x)− fg(x)]2dx︸ ︷︷ ︸

:=B

+E
(
‖(̃fg)h,ho

− (fho
g) ? Kh‖2

)
︸ ︷︷ ︸

:=V

.
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Let us first study B. We have

B ≤ 2

∫
[(fho

g) ? Kh(x)− (fg) ? Kh(x)]2dx+ 2

∫
[(fg) ? Kh(x)− fg(x)]2dx := 2B1 + 2B2.

The term 2B2 is the first rhs term of (13). Next, we have

B1 =

∫
[(fho

− f)g] ? Kh(x))2dx = ‖[(fho
− f)g] ? Kh‖2 ≤ ‖(fho

− f)g‖2‖Kh‖21

by applying Young Inequality (29) with r = p = 2 and q = 1. We get

B1 ≤
∫

(fho
− f)2(x)g2(x)dx(

∫
|K(u)|du)2 ≤ ‖g‖2∞‖K‖21‖fho

− f‖2

which gives the second term of (13). Next, we split V = V1 + V2 where

V1 := E


∫ [

1

n

n∑
i=1

f̃ho
(Yi)Kh(Yi − x)− (f̃ho

g) ? Kh(x)

]2

dx


V2 := E

{∫ [
(f̃ho

− fho
)g) ? Kh(x)

]2
dx

}
.

First, we have

V1 =
1

n

∫
Var

(
f̃ho

(Y1)Kh(Y1 − x)
)
dx ≤ 1

n

∫
E
[(
f̃ho

(Y1)Kh(Y1 − x)
)2
]
dx.

Then, we write that

E
[(
f̃ho

(Y1)Kh(Y1 − x)
)2
]

= E
[
(f̃ho

− fho
)2(Y1)K2

h(Y1 − x)
]

+ E
[
f2
ho

(Y1)K2
h(Y1 − x)

]
where∫

E
[
f2
ho

(Y1)K2
h(Y1 − x)

]
dx =

∫ ∫
f2
ho

(u)K2
h(u− x)g(u)dudx =

∫
K2
h(v)dv

∫
f2
ho

(u)g(u)du

≤ ‖K‖2

h
‖g‖∞‖f ? Kho

‖2

≤ ‖K‖2

h
‖g‖∞‖f‖2‖Kho

‖21 =
‖K‖2‖K‖21‖f‖2‖g‖∞

h

and∫
E
[
(f̃ho − fho)2(Y1)K2

h(Y1 − x)
]
dx =

∫ ∫
E
[
(f̃ho − fho)2(u)

]
K2
h(u− x)g(u)dudx

= ‖Kh‖2
∫

E
[
(f̃ho

− fho
)2(u)

]
g(u)du

≤ ‖K‖2

h
‖g‖∞

∫
Var(f̃ho

(u))du =
‖K‖2

h
‖g‖∞

‖K‖2

nho

≤ ‖K‖4

h
‖g‖∞ as

1

nho
≤ 1.

As a consequence,

V1 ≤
‖K‖2‖g‖∞(‖K‖2 + ‖K‖21‖f‖2)

nh
.

18



Next, we bound V2 as follows.

V2 =

∫
Var

[
1

n

n∑
i=1

(Kho
(Xi − .)g) ? Kh(x)

]
dx =

1

n

∫
Var ((Kho

(X1 − .)g) ? Kh(x)) dx

≤ 1

n

∫
E
[
((Kho

(X1 − .)g) ? Kh(x))
2
]
dx =

1

n

∫ ∫ [
((Kho

(u− .)g) ? Kh(x))
2
]
dxf(u)du

=
1

n

∫
‖(Kho(u− .)g) ? Kh‖2f(u)du

≤ 1

n

∫
‖(Kho

(u− .)g)‖21‖Kh‖2f(u)du by the Young Inequality (29)

≤ ‖K‖2

nh

∫
(‖g‖∞‖Kho‖1)2f(u)du =

‖K‖2‖K‖21‖g‖2∞
nh

.

Finally we get,

V ≤ ‖K‖
2‖g‖∞(‖K‖2 + 2‖K‖21‖f‖2)

nh
,

which is the last term of Inequality (13) and ends the proof of Proposition 3.1 . 2

7.3 Proof of Theorem 3.1

For simplicity we write in the sequel (̃fg)h,h′ = Kh′ ? (̃fg)h. The proof starts by decompositions
which are standard when studying Goldenschluger and Lepski (2011) methods and bounds. For
κ′ ≥ κ, we get (see Comte (2017), sec 4.2)

E
(
‖(̃fg)ȟ − fg‖

2
)
≤ 3E(‖(̃fg)h − fg‖

2) + 6κ′V (h) + 6E(A(h)). (32)

Recall that uh = u?Kh and set also uh,h′ = u?Kh ?Kh′ = uh′,h. Then, to start the study of A(h),
we write

‖(̃fg)h′ − (̃fg)h,h′‖
2 ≤ 3(‖(̃fg)h′ − (fg)h′‖2 + ‖(fg)h′ − (fg)h,h′‖2 + ‖(̃fg)h,h′ − (fg)h,h′‖2).

The bound on the middle term

‖(fg)h′ − (fg)h,h′‖2 ≤ ‖K‖21‖(fg)h − (fg)‖2

refers to an adequate bias term. Next

‖(̃fg)h′ − (fg)h′‖2 ≤ 2(‖(̃fg)h′ − (fho
g)h′‖2 + ‖(fho

g)h′ − (fg)h′‖2)

and we have the bound ‖(fho
g)h′− (fg)h′‖2 ≤ ‖K‖21‖g‖∞‖fho

−f‖2. Now we notice that ‖(̃fg)h′−
(fho

g)h′‖2 = supt∈B(0,1) ν
2
n(t) where B(0, 1) is a countable set of square integrable functions with

‖t‖ = 1 and the empirical process is defined by

νn(t) = 〈(̃fg)h′ − (fho
g)h′ , t〉.

Therefore we have

‖(̃fg)h′ − (fg)h′‖2 ≤ 2

(
sup

t∈B(0,1)

ν2
n(t) + ‖K‖21‖g‖2∞‖fho − f‖2

)
.

Analogously for the last term we get ‖(fho
g)h,h′ − (fg)h,h′‖2 ≤ ‖K‖41‖g‖2∞‖fho

− f‖2. More
generally, all h, h′ terms are handled like the h or h′ terms with an additional factor ‖K‖21 in all
bounds. Therefore

‖(̃fg)h,h′ − (fg)h,h′‖2 ≤ 2

(
sup

t∈B(0,1)

ν̄2
n(t) + ‖K‖41‖g‖2∞‖fho

− f‖2
)
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with
ν̄n(t) = 〈(̃fg)h,h′ − (fhog)h,h′ , t〉.

Reminding the definition of A(h) given by (14), we have

E(A(h)) ≤ 6E

(
sup
h′∈Hn

sup
t∈B(0,1)

ν2
n(t)− κ

12
V (h′)

)
+ 6E

(
sup
h′∈Hn

sup
t∈B(0,1)

ν̄2
n(t)− κ

12
V (h′)

)
+6‖K‖41‖g‖2∞‖fho − f‖2 + 6‖K‖21‖(fg)h − (fg)‖2. (33)

Thus, the result of Theorem 3.1 holds if we prove that, for two constants c1, c2, we have

∑
h′∈Hn

E

(
sup

t∈B(0,1)

ν2
n(t)− c1V (h′)

)
≤ C

n
and

∑
h′∈Hn

E

(
sup

t∈B(0,1)

ν̄2
n(t)− c2V (h′)

)
≤ C

n
. (34)

Indeed, plugging (34) in (33) and the result in (32) is the result of Theorem 3.1.

We prove the first bound of (34), the second one can be checked similarly (with additional factors

‖K‖21). Define B(y) := {|f̃ho
(y)| ≤ b0} and b0 = 2‖f‖∞‖K‖1, we split νn(t) =

∑3
i=1 νn,i(t) where

νn,1(t) =
1

n

n∑
i=1

f̃ho
(Yi)1B(Yi)〈Kh(Yi − ·), t〉 − 〈[f̃ho

1Bg] ? Kh, t〉,

νn,2(t) =
1

n

n∑
i=1

f̃ho
(Yi)1B(Yi)c〈Kh(Yi − ·), t〉 − 〈[f̃ho

1Bcg] ? Kh, t〉,

νn,3(t) = 〈[f̃ho − fho)g] ? Kh, t〉 =
1

n

n∑
i=1

ψt(Xi), ψt(Xi) := 〈(Kho(Xi − ·)− fho)g, t ? Kh〉.

Note that, as K is even,

E
(
f̃ho

(Yi)1B(Yi)〈Kh(Yi − ·), t〉 |X
)

= 〈[f̃ho
1Bg] ? Kh, t〉 = 〈[f̃ho

1Bg], t ? Kh〉.

The terms being similar to the model selection case, we only give a sketch of proof concerning
the key bounds associated to the three terms.

Study of νn,1. First, we compute the bounds required to apply Talagrand Inequality conditional
to X. Recall that b0 = 2‖f‖∞‖K‖1.

E

(
sup

t∈B(0,1)

ν2
n,1(t) |X

)
≤ 1

n

∫
Var

(
f̃ho

(Y1)1B(Y1)Kh(Y1 − v) |X
)
dv

≤ 1

n

∫ (∫
(f̃ho

(y))21B(y)K
2
h(y − v)g(y)dy

)
dv

≤ b20
n

∫∫
K2
h(y − v)g(y)dy dv ≤ b20‖K‖2

nh
:= H2

1 .

sup
y,t
|f̃ho(y)1B(y)〈Kh(y − ·), t〉| ≤ b0‖Kh‖ = b0‖K‖/

√
h := b1.

sup
t

Var
(

(f̃ho
(Y1))21B(Y1)〈Kh(Y1 − ·), t〉2|X

)
≤ b20 sup

t
E
(
〈Kh(Y1 − ·), t〉2

)
≤ b20‖g‖∞ sup

t
‖Kh ? t‖2

≤ b20‖g‖∞‖K‖21 := v1.
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Then Talagrand Inequality implies that, under [B4],

E

(
sup
h∈Hn

sup
t∈B(0,1)

ν2
n,1(t)− 4

b20‖K‖2

nh

)
≤
∑
h∈Hn

E

(
sup

t∈B(0,1)

ν2
n,1(t)− 4

b20‖K‖2

nh

)
+

≤ C

n
.

Study of νn,2. First, by noticing that |f̃ho
(x)| ≤ |f̃ho

(x)− fho
(x)|+ ‖f‖∞‖K‖1 we get

P((B(x))c) = P(|f̃ho
(x)| > b0) ≤ P(|f̃ho

(x)− fho
(x)| > ‖f‖∞‖K‖1)

and by Bernstein Inequality

P(|f̃ho
(x)| > b0) ≤ 2 exp

(
−nho

b20
2(‖f‖∞‖K‖2 + ‖K‖∞b0)

)
≤ 2n−p (35)

for nh0 ≥ b1 log(n) and b1 ≥ 3p‖K‖∞/(2‖f‖∞‖K‖1), which is ensured under [B3]. Then

E

(
sup

t∈B(0,1)

ν2
n,2(t)

)
≤ 1

n
E
(∫

f̃2
h0

(y)1B(y)c

∫
K2
h(y − u)dug(y)dy

)
≤ ‖K‖21‖K‖2∞

nh0h

∫
P(Bc(y))g(y)dy ≤ ‖K‖

2
1‖K‖2∞

2np−1
≤ C

n2
,

for card(Hn) ≤ n and h−1 ≤ n, h−1
o ≤ n, provided that p ≥ 3. This implies

E

(
sup
h∈Hn

sup
t∈B(0,1)

ν2
n,2(t)

)
≤
∑
h∈Hn

E

(
sup

t∈B(0,1)

ν2
n,2(t)

)
≤ C

n
.

Study of νn,3. We apply Talagrand Inequality with respect to the Xi’s. We have

E

(
sup

t∈B(0,1)

ν2
n,3(t)

)
≤ E

∥∥∥∥∥ 1

n

n∑
i=1

[(Kho
(Xi − .)− fho

)g] ? Kh

∥∥∥∥∥
2


= E

∫ { 1

n

n∑
i=1

[(Kho
(Xi − .)− fho

)g] ? Kh(u)

}2

du


=

1

n

∫
Var ([Kho(X1 − .)g] ? Kh(u)) du

≤ 1

n
E
[∫

([Kho(X1 − .)g] ? Kh(u))
2

]
du

≤ 1

n
E
[
‖Kho

(X1 − .)g‖21‖Kh‖2
]
≤ ‖g‖

2
∞‖K‖2‖K‖21

nh
:= H3.

Next we have

sup
x,t
|ψt(x)| ≤ sup

x
‖[(Kho

(x− ·)− fho
)g] ? Kh‖2 ≤ sup

x
‖[(Kho

(x− ·)− fho
)g]‖21‖Kh‖2

≤ sup
x

(∫
|Kho

(x− u)− fho
(u)| g(u)du

)2 ‖K‖2

h
≤ (2‖K‖1‖g‖∞)2 ‖K‖2

h

so that b3 = 2‖K‖1‖g‖∞‖K‖/
√
h. Lastly

sup
t

E
[
〈Kho(X1 − ·)g, t ? Kh〉2

]
= sup

t

∫ (∫
Kho(z − u)g(u)t ? Kh(u)du

)2

f(z)dz

≤ sup
t
‖f‖∞ ‖Kho ? [g(t ? Kh)]‖2

≤ sup
t
‖f‖∞‖Kho

‖21‖g(t ? Kh)‖2 ≤ sup
t
‖f‖∞‖g‖2∞‖K‖21‖t ? Kh‖2

≤ ‖f‖∞‖g‖2∞‖K‖41 := v3.

The conclusion follows as for νn,1 and gathering the previous bounds implied inequality (34) and t
Theorem 3.1. 2

21



7.4 Proof of Theorem 3.2

Following the first step in Lacour et al. (2017), we write

‖(̃fg)h̃ − fg‖
2 ≤ ‖(̃fg)h − fg‖

2 + (pen(h)− ψn(h))− (pen(h̃)− ψn(h̃)) (36)

with
ψn(h, hmin) = 〈(̃fg)h − fg, (̃fg)hmin

− fg〉.

As in Comte and Marie (2021), we decompose ψn in

ψn(h, hmin) = ψ1,n(h, hmin) + ψ2,n(h, hmin) + ψ3,n(h, hmin).

First,

ψ1,n(h, , hmin) :=
〈Kh,Khmin

〉
n2

n∑
i=1

f̃2
ho

(Yi) +
U(h, hmin)

n2
= pen1(h) +

U(h, hmin)

n2
,

where
Un(h, h′) :=

∑
1≤i 6=j≤n

〈f̃ho(Yi)Kh(Yi − ·)− (fg)h, f̃h0(Yj)Kh′(Yj − ·)− (fg)h′〉. (37)

Indeed,

〈Kh,Khmin
〉

n2

n∑
i=1

f̃2
ho

(Yi) =
1

n2

n∑
i=1

〈f̃ho
(Yi)Kh(Yi − ·), f̃ho

(Yi)Khmin
(Yi − ·)〉.

Second,

ψ2,n(h, hmin) := − 1

n2

(
n∑
i=1

〈f̃ho(Yi)Khmin(Yi − ·), (fg)h〉+

n∑
i=1

〈f̃ho(Yi)Kh(Yi − ·), (fg)hmin〉

)

+
1

n
〈(fg)h, (fg)hmin〉 (38)

and lastly

ψ3,n(h, hmin) := Vn(h, hmin) + Vn(hmin, h) + 〈(fg)h − fg, (fg)hmin
− fg〉

with
Vn(h, h′) := 〈(̃fg)h − (fg)h, (fg)h′ − fg〉.

We state a series of Lemmas that permit to establish Theorem 3.2.

Lemma 7.1. Under the assumptions of Theorem 3.2, E
(
suph,h′∈Hn

|ψ2,n(h, h′)|
)
≤ C/n, where

C = C(f, g,K) is a positive constant depending on f , g, K.

Lemma 7.2. Under the assumptions of Theorem 3.2, for every ϑ ∈ (0, 1), it holds

E

(
sup
h,h′

{
|Vn(h, h′)| − ϑ‖(fg)h′ − fg‖2

})
≤ 1

2ϑ
‖K‖21‖g‖∞‖fh0 − f‖2 + C

log(n)

n
.

Lemma 7.3. Under the assumptions of Theorem 3.2, for every ϑ ∈ [0, 1], it holds

E
(

sup
h∈Hn

{
|Un(h, hmin)|

n2
− ϑc0(f, g,K)

nh

})
≤ ϑ‖fho − f‖2 +

C log(n)

n
.

We deduce from (36) that

‖(̃fg)h̃ − fg‖
2 ≤ ‖(̃fg)h − fg‖

2 + 2 (pen1(h)− ψn(h)) + 2pen2(h)

−2(pen1(h̃)− ψn(h̃))− 2pen2(h̃). (39)
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We have for all positive h

ψn(h)−pen1(h) =
Un(h, hmin)

n2
+ψ2,n(h, hmin)+Vn(h, hmin)+Vn(hmin, h)+〈(fg)h−fg, (fg)hmin

−fg〉.

We note that for all positive θ

|〈(fg)h − fg, (fg)hmin
− fg〉| ≤ θ

2
‖(fg)h − fg‖2 +

1

2θ
‖(fg)hmin

− fg‖2.

Applying these for h = h̃ we get

E
(∣∣∣ψn(h̃)− pen1(h̃)

∣∣∣− pen2(h̃)
)

≤ E

(∣∣∣∣∣Un(h̃, hmin)

n2

∣∣∣∣∣− θ c0(f, g,K)

nh̃

)

+E
(
|Vn(h̃, hmin)| − θ

2
‖(fg)hmin

− fg‖2
)

+ E
(
|Vn(hmin, h̃)| − θ

2
‖(fg)h̃ − fg‖

2

)
+E

(
θ‖(fg)h̃ − fg‖

2 + (θ − κ)
c0(f, g,K)

nh̃

)
+

1

2
(θ +

1

θ
)‖(fg)hmin

− fg‖2 +
C

n
.

where we used Lemma 7.1. Now, using Lemmas 7.2 and 7.3, we get

E
(∣∣∣ψn(h̃)− pen1(h̃)

∣∣∣− pen2(h̃)
)
≤ 1

2
(θ +

1

θ
)‖(fg)hmin

− fg‖2 + c1(f, g,K, θ)‖fho
− f‖2

+θE
(
‖(fg)h̃ − fg‖

2 + (1− κ

θ
)
c0(f, g,K)

nh̃

)
+ C

log(n)

n
.

Observe that ‖(̃fg)h− fg‖2 = ‖(̃fg)h− (fg)h‖2 + ‖(fg)h− fg‖2 + 2Vn(h, h). It follows that for all
θ ∈ (0, 1

2 ),

(1− 2θ)

(
‖(fg)h − fg‖

2 + (1− κ

θ
)
c0(f, g,K)

nh

)
− ‖(̃fg)h − fg‖

2

= −2
(
Vn(h, h) + θ‖(fg)h − fg‖

2
)

+ (1− 2θ)(1− κ

θ
)
c0(f, g,K)

nh
− ‖(̃fg)h − (fg)h‖2

≤ −2
(
Vn(h, h) + θ‖(fg)h − fg‖

2
)
≤ 2(|Vn(h, h)| − θ‖(fg)h − fg‖

2)

provided that 1− κ/θ ≤ 0. Therefore we choose κ ≥ θ and apply Lemma 7.2 again. We obtain

E
(∣∣∣ψn(h̃)− pen1(h̃)

∣∣∣− pen2(h̃)
)
≤ 1

2
(θ +

1

θ
)‖(fg)hmin

− fg‖2 + c2(f, g,K)‖fho
− f‖2

+
θ

1− 2θ
E
(
‖(̃fg)h̃ − fg‖

2
)

+ C
log(n)

n
.

Similarly, we get

E (|ψn(h)− pen1(h)|+ pen2(h)) ≤ 1

2
(θ +

1

θ
)‖(fg)hmin − fg‖2 + c2(f, g,K)‖fho − f‖2

+θ

(
‖(fg)h − fg‖2 + (1 +

κ

θ
)
c0(f, g,K)

nh

)
+ C

log(n)

n
.

Plugging the last two bounds in the expectation of (39) implies(
1− 2θ

1− 2θ

)
E
(
‖(̃fg)h̃ − fg‖

2
)
≤ E

(
‖(̃fg)h − fg‖

2
)

+ 2θ

(
‖(fg)h − fg‖2 + (1 +

κ

θ
)
c0(f, g,K)

nh

)
+2(θ +

1

θ
)‖(fg)hmin

− fg‖2 + 4c2(f, g,K)‖fho
− f‖2 + C

log(n)

n
.
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Now applying Proposition 3.1 with a rougher bound on the variance (the constant is larger), we
get for θ ∈ (0, 1/4), and κ ≥ θ,(

1− 2θ

1− 2θ

)
E
(
‖(̃fg)h̃ − fg‖

2
)
≤ 2(1 + θ)‖(fg)h − fg‖2 + 2(1 + θ + κ)

c0(f, g,K)

nh

+2(θ +
1

θ
)‖(fg)hmin − fg‖2 + 4c2(f, g,K)‖fho − f‖2 + C

log(n)

n
.

We conclude that for κ ≥ 1/4 and all θ ∈ (0, 1/4) the result given in Theorem 3.2 holds true. 2

7.4.1 Proof of Lemma 7.1

For the study of ψ2,n, note that |〈(fg)h, (fg)h′〉| ≤ ‖fg ?Kh‖‖fg ?Kh′‖ ≤ ‖K‖21‖fg‖2 and observe
that

E(|f̃ho
(Y1)|) ≤

√
E(f̃2

ho
(Y1)) ≤

√
‖g‖∞(‖K‖2 + ‖K‖21‖f‖2).

As a consequence, for all positive h, h′,

E

(
sup

h,h′∈Hn

∣∣∣∣∣ 1n
n∑
i=1

〈f̃ho(Yi)Kh(Yi − ·), (fg)h′〉

∣∣∣∣∣
)
≤ E

(
|f̃ho(Y1)| sup

h,h′
|〈Kh(Y1 − ·), (fg)h′〉|

)
≤ E(|f̃ho

(Y1)|)‖K‖21‖fg‖∞

≤
√
‖g‖∞(‖K‖2 + ‖K‖21‖f‖2)‖K‖21‖fg‖∞.

From the definition of ψ2,n given by (38), il follows that the result of Lemma 7.1 holds with

C = (2??
√
‖g‖∞(‖K‖2 + ‖K‖21‖f‖2) + ‖g‖∞)‖fg‖∞‖K‖21. 2

7.4.2 Proof of Lemma 7.2 and study of Vn(h, h′)

We decompose Vn(h, h′) = Vn,1(h, h′) + Vn,2(h, h′) + Vn,3(h, h′) with

Vn,1(h, h′) = 〈(̃fg)h − (f̃hog)h, (fg)h′ − fg〉,
Vn,2(h, h′) = 〈(f̃hog)h − (fhog)h, (fg)h′ − fg〉,
Vn,3(h, h′) = 〈(fhog)h − (fg)h, (fg)h′ − fg〉.

We have for all positive θ

|Vn,3(h, h′)| = |〈(fho
g))h − (fg)h, (fg)h′ − fg〉| ≤

ϑ

2
‖(fg)h′ − fg‖2 +

1

2ϑ
‖K‖21‖g‖2∞‖fh0

− f‖2,

implying that

E

(
sup
h,h′

{
|Vn,3(h, h′)| − ϑ

2
‖(fg)h′ − fg‖2

})
≤ 1

2ϑ
‖K‖21‖g‖∞‖fh0

− f‖2. (40)

Next, we write

Vn,2(h, h′) =
1

n

n∑
i=1

(Zi − E(Zi)), Zi − E(Zi) := 〈[(Kho(Xi − ·)− fho(·)g(·)] ? Kh, (fg)h′ − fg〉

and apply Bernstein Inequality. Using that K is even, the variance bound is obtained by

VarZ1 ≤ E(Z2
1 ) =

∫
〈[(Kho

(u− ·) g(·)] ? Kh, (fg)h′ − fg〉2f(u)du

=

∫
[Kho ? (g [Kh ? ((fg)h′ − fg)])(u)]

2
f(u)du

≤ ‖f‖∞‖Kho ? (gKh ? ((fg)h′ − fg))‖2 ≤ ‖f‖∞‖Kho‖21‖(gKh ? ((fg)h′ − fg))‖2

≤ ‖f‖∞‖g‖2∞‖K‖41‖(fg)h′ − fg)‖2 := v2
h,h′ .
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On the other hand, we have

|Z1| ≤ sup
z

∣∣∣∣∫ Kho(z − x)g(x)((fg)h′ − fg) ? Kh)(x)dx

∣∣∣∣
≤ ‖g‖∞ sup

x
|((fg)h′ − fg) ? Kh)(x)|

∫
|Kho(z)|dz

≤ ‖g‖∞‖K‖1 sup
x
|((fg)h′ − fg)(x)|

∫
|Kh(u)|du

≤ ‖g‖∞‖K‖21(1 + ‖K‖1)‖fg‖∞ := bh,h′ .

Therefore, Bernstein Inequality (30) implies that with probability larger than 1− 2e−λ

|Vn,2(h, h′)| ≤

√
2λv2

h,h′

n
+
λ

n
bh,h′

≤ θ

4
‖(fg)h′ − fg)‖2 +

λ

n
‖f‖∞‖g‖2∞‖K‖21(2

‖K‖21
θ

+ 1 + ‖K‖1).

This together with (31) and |Hn| = n leads to

E

(
sup
h,h′

{
|Vn,2(h, h′)| − ϑ

4
‖(fg)h′ − fg‖2

})
≤ C log(n)

n
. (41)

For Vn,1, we write Vn,1(h, h′) = V bn,1(h, h′) + V cn,1(h, h′) with

V bn,1(h, h′) =
1

n

n∑
i=1

∫ (
f̃ bho

(Yi)Kh(Yi − x)− (f̃ bho
g) ? Kh(x)

)
((fg)h′ − fg)(x)dx

where
f̃ bh0

(x) = f̃h0(x)1|f̃ho (x)|≤c0 c0 = 2‖f‖∞‖K‖1.

We apply Bernstein inequality conditionally to X, with bh,h′ = ‖f‖∞‖fg‖∞‖K‖21(1 + ‖K‖1)
and v2

h,h′ = ‖f‖2∞‖g‖∞‖K‖41‖(fg)h′ − fg‖2. The orders of bh,h′ and vh,h′ being the same as for

Vn,2 and independent of X, the result for V bn,1 is :

E

(
sup
h,h′

{
|V bn,1(h, h′)| − ϑ

4
‖(fg)h′ − fg‖2

})
≤ C log(n)

n
. (42)

Lastly, by noticing that |f̃ho
(x)| ≤ |f̃ho

(x)− fho
(x)|+ ‖f‖∞‖K‖1, we get

P(|f̃ho
(x)| > c0) ≤ P(|f̃ho

(x)− fho
(x)| > ‖f‖∞‖K‖1)

and by Bernstein Inequality

P(|f̃ho(x)| > c0) ≤ exp

(
−nho

c20
2(‖f‖∞‖K‖2 + ‖K‖∞c0)

)
≤ 2n−p (43)

for nh0 ≥ c1 log(n) and c1 ≥ 3p‖K‖∞/(2‖f‖∞‖K‖1). Then as ‖(fg)h−fg‖∞ ≤ ‖fg‖∞(‖K‖1 +
1), we get that

E

(
sup

h,h′∈Hn

|V cn,1(h, h′)|

)
≤

∑
h,h′∈Hn

2
‖K‖∞
ho

‖fg‖∞(‖K‖1 + 1)

∫
P(|f̃ho(x)| > c0)g(x)dx

≤ C(f, g,K)|Hn|2

npho
≤ C

n
.

Note that the last bound is obtained using |Hn| ≤ n, 1/ho ≤ n and p = 4, which holds under
assumption [B3](4). Gathering this with (40), (41), (42) gives the result of Lemma 7.2. 2
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7.4.3 Proof of Lemma 7.3 and study of Un(h, h′)

Warning. For the study of this term, in order to avoid burdensome technicalities, we assume that
f̃h0

is bounded by 2‖K‖1‖f‖∞. We proved in the study of Vn (see (43)) that that the probability
of the complement is 1/n4 under [B3](4).

Recall that Un(h, h′) is defined by (37). We write that

f̃ho
(Yi)Kh(Yi − ·)− (fg)h

= f̃ho
(Yi)Kh(Yi − ·)− (f̃ho

g) ? Kh︸ ︷︷ ︸
(1)h

+ (f̃ho
g) ? Kh − (fho

g) ? Kh︸ ︷︷ ︸
(2)h

+ (fho
g) ? Kh − (fg)h︸ ︷︷ ︸

(3)h

so that Un(h, hmin) can be splitted into 9 terms, denoted with obvious super-indices (k, `) for k, ` ∈
{1, 2, 3}. These 9 terms can be reduced to 6 by symmetry arguments, denoted by U

(i),(j)
n (h, hmin)

for i ≤ j ∈ {1, 2, 3}.

• Treatment of U
(1),(1)
n (h, hmin) we have, by analogy with Lemma 6.2 in Comte and Marie (2021),

that, for every ϑ ∈ [0, 1],

E

(
sup
h∈Hn

{
|U (1),(1)
n |(h, hmin)

n2
− ϑ‖K‖2‖K‖21‖f‖2∞

nh

}
|X

)
≤ C log(n)

n
(44)

and it is easy to see that all bounds do note depend on X so de-conditioning is straightforward.

• Treatment of U
(3),(3)
n (h, hmin) it is easy to handle thanks to the equality

U (3),(3)
n (h, hmin) = n(n− 1)〈(fho

g) ? Kh − (fg)h, (fho
g) ? Khmin

− (fg)hmin
〉

leading to the bound

|U (3),(3)
n (h, hmin)

n2
| ≤ ‖[(fho

− f)g] ? Kh‖‖[(fho
− f)g] ? Khmin

‖ ≤ ‖K‖21‖g‖2∞‖fho
− f‖2. (45)

• Treatment of U
(2),(3)
n (h, hmin) first note that U

(2),(3)
n (h, hmin)/n2 = [(n − 1)/n]〈(2)h, (3)hmin

〉
where 〈(2)h, (3)hmin

〉 is equal to

〈[(f̃hog)− (fhog)] ? Kh, ((fho − f)g) ? Khmin〉 = 〈[(f̃hog)− (fhog)], ((fho − f)g) ? Khmin ? Kh〉
= 〈[(f̃hog)− (fhog)], ((fho − f)g) ? Kh ? Khmin〉
= 〈[(f̃hog)− (fhog)] ? Khmin , ((fho − f)g) ? Kh〉

and thus 〈(2)h, (3)hmin
〉 = 〈(2)hmin

, (3)h〉, so that U
(2),(3)
n (h, hmin) = U

(3),(2)
n (h, hmin). Now, the

process can be written as

1

n

n∑
i=1

(Z2,3
i − E(Z2,3

i )), Z2,3
i := 〈Kho

(Xi − ·)g, [(fho
− f)g] ? Kh ? Khmin

〉.

To apply Bernstein Inequality, we need to bound the variance and infinite norm of the Z2,3
i ’s. For

the moment of order 2, we have

E[(Z2,3
1 )2] =

∫
f(x)

(∫
Kho

(x− u)g(u)[(f − fho
)g] ? Kh ? Khmin

(u)du

)2

dx

≤ ‖f‖∞‖Kho ? [g[(fho − f)g] ? Kh ? Khmin ]‖2

≤ ‖f‖∞‖Kho‖21‖[g[(fho − f)g] ? Kh ? Khmin ]‖2

≤ ‖f‖∞‖g‖2∞‖K‖61‖fho − f‖2 := v.
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For the upper bound, it holds:

sup
x

∣∣∣∣∫ Kho
(x− u)g(u)[(f − fho

)g] ? Kh ? Khmin
(u)du

∣∣∣∣
≤ ‖g‖∞ sup

u
|[(f − fho)g] ? Kh ? Khmin(u)| sup

x

∫
|Kho(x− u)|du

≤ ‖g‖∞‖K‖1 sup
v
||[(f − fho

)g] ? Kh(v)| sup
u

∫
|Khmin

(u)|du

≤ ‖g‖2∞‖K‖31(‖f‖∞ + sup
u
|f ? Kho

(u)|) ≤ ‖g‖2∞‖K‖31(1 + ‖K‖1)‖f‖∞ := b.

Then Bernstein Inequality implies that with probability larger than 1 − 2e−λ, λ > 0, for any
ϑ ∈ (0, 1),

|U (2),(3)
n (h, hmin)|/n2 ≤ |〈(2)h, (3)hmin

〉| ≤
√

2vλ

n
+
λ

n
b ≤ ϑ‖f − fho

‖2 + C(K, f, g)
λ

ϑn
.

As a consequence, we obtain

P

(
sup
h,h′

(∣∣∣∣U (2),(3)(h, h′)

n2

∣∣∣∣− ϑ‖f − fho‖2
)
≥ C(K, f, g)

λ

ϑn

)
≤ 2|Hn|2e−λ.

Then it follows from (31) and |Hn| = n that

E

(
sup
h,h′

∣∣∣∣U (2),(3)(h, h′)

n2

∣∣∣∣− ϑ‖f − fho
‖2
)

+

≤ C ′ log(n)

n
. (46)

• Treatment of U
(1),(3)
n (h, hmin) write that U

(1),(3)
n (h, hmin)/n2 = [(n − 1)/n]〈(1)h, (3)hmin

〉 and
〈(1)h, (3)hmin

〉 is

1

n

n∑
i=1

〈f̃ho
(Yi)Kh(Yi − ·)− (f̃ho

g) ? Kh, [(fho
− f)g] ? Khmin

〉.

We apply Bernstein Inequality conditionally to X, recalling that we consider f̃ho
bounded by

2‖f‖∞‖K‖1.

E
(
〈f̃ho(Yi)Kh(Yi − ·), [(fho − f)g] ? Khmin〉2 |X

)
=

∫ (∫
f̃ho(y)Kh(y − u)[(fho − f)g] ? Khmin(u)du

)2

g(y)dy

≤ 4‖K‖21‖f‖2∞‖g‖∞ ‖|Kh| ? |(fho − f)g| ? |Khmin |‖
2 ≤ 4‖K‖61‖f‖2∞‖g‖3∞‖fho

− f‖2,

by iterative application of Young Inequality. Next for the infinite norm

sup
y
|〈f̃ho

(y)Kh(y − ·), [(fho
− f)g] ? Khmin

〉|

≤ 2‖f‖∞‖K‖1 sup
y

∫
|Kh(y − u)||[(fho − f)g] ? Khmin(u)|du

≤ 2‖f‖∞‖K‖1
∫
|Kh(v)|dv sup

u
|[(fho

− f)g] ? Khmin
(u)|

≤ 2‖f‖∞‖K‖31 sup
z
|(fho

− f)(z)g(z)| ≤ 2‖f‖2∞‖g‖∞‖K‖31(1 + ‖K‖1).

The bounds do not depend on X, it holds:

E

(
sup
h,h′

∣∣∣∣U (1),(3)(h, h′)

n2

∣∣∣∣− ϑ‖f − fho‖2
)

+

≤ C log(n)

n
(47)
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for a constant C > depending on f, g,K. Moreover, the bounds do not depend on h, hmin so the

same bound hold for U
(3),(1)
n (h, hmin)/n2.

• Treatment of U
(1),(2)
n (h, hmin) write U

(1),(2)
n (h, hmin)/n2 = [(n − 1)/n]〈(1)h, (2)hmin〉 where

〈(1)h, (2)hmin
〉 is

1

n

n∑
i=1

〈f̃ho
(Yi)Kh(Yi − ·)− (f̃ho

g) ? Kh, [(f̃ho
− fho

)g] ? Khmin
〉.

First, we apply a Bernstein Inequality conditionally to X. The variance term is:

E
(
〈f̃ho

(Yi)Kh(Yi − ·), [(f̃ho
− fho

)g] ? Khmin
〉2
)
≤ 4‖f‖∞‖g‖∞‖K‖41‖Kh ? [(f̃ho

− fho
)g]‖2 := v.

For the upper bound, we get

sup
y
|〈f̃ho(y)Kh(y − ·), [(f̃ho − fho)g] ? Khmin〉| ≤ 6‖K‖41‖f‖2∞‖g‖∞ := b

with usual tricks. Now, we can notice that

E
(
‖Kh ? [(f̃ho

− fho
)g]‖2

)
≤ ‖g‖∞‖K‖

2
1‖K‖2

nh
. (48)

So we write

E

[
sup
h∈Hn

(
U

(1),(2)
n (h, hmin)

n2
− 4ϑ

‖g‖∞‖K‖21‖K‖2

nh

)]

≤ E

{
E

[
sup
h∈Hn

(
U

(1),(2)
n (h, hmin)

n2
− ϑ‖Kh ? [(f̃ho − fho)g]‖2

)
|X

]}

+ϑE
[

sup
h∈Hn

(
‖Kh ? [(f̃ho

− fho
)g]‖2 − 4

‖g‖∞‖K‖21‖K‖2

nh

)]
The first term is bounded by taking the expectation of the conditional Bernstein, where constants
are independent of the Xi, which writes with the terms b, v:

E

[
sup
h∈Hn

(
U

(1),(2)
n (h, hmin)

n2
− ϑ‖Kh ? [(f̃ho − fho)g]‖2

)]
≤ C log(n)

n
. (49)

For the second, we use Talagrand Inequality, relying on the linear process

νn(t) = 〈Kh ? [(f̃ho
− fho

)g], t〉

which fulfills supt∈B(0,1) ν
2
n(t) = ‖Kh ? [(f̃ho

− fho
)g]‖2 where B(0, 1) is a countable dense subset

of {t ∈ L2(R), ‖t‖2 = 1}. To apply Talagrand inequality, we compute H2, v, b. We have from (48)
that

H2 =
‖g‖∞‖K‖21‖K‖2

nh
.

Then we compute v2.

sup
‖t‖=1

Var

(∫∫
Kh(x− u)Kho

(X1 − u)t(x)dxdu

)
≤ sup

‖t‖=1

E

[(∫∫
Kh(x− u)Kho

(X1 − u)t(x)dxdu

)2
]

= sup
‖t‖=1

E
[
(Kho ? Kh ? t(X1))

2
]

≤ ‖f‖∞ sup
‖t‖=1

‖Kho
? Kh ? t‖2 ≤ ‖f‖∞‖K‖41 := v2.
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Next, for b, we find

sup
‖t‖=1

sup
y
|Kho ? Kh ? t(y)| ≤ sup

‖t‖=1

sup
y

[∫
t2(x)dx

∫
(Kh ? Kho(y − x))2dx

]1/2

= ‖Kh ? Kho‖

≤ ‖K‖1‖K‖√
h

:= b.

Talagrang Inequality gives

E

[
sup
h∈Hn

(
‖Kh ? [(f̃ho − fho)g]‖2 − 4

‖g‖∞‖K‖21‖K‖2

nh

)
+

]

≤ C

n

( ∑
h∈Hn

exp(−c1/h) + card(Hn) exp(−C2

√
n)

)
.

As a consequence, as under [B4],
∑
h∈Hn

exp(−c1/h) ≤ Σ < +∞ and card(Hn) ≤ n, we get

E

[
sup
h∈Hn

(
U

(1),(2)
n (h, hmin)

n2
− 4ϑ

‖g‖∞‖K‖21‖K‖2

nh

)]
≤ C log(n)

n
. (50)

• Treatment of U
(2),(2)
n (h, hmin) write U

(2),(2)
n (h, hmin)/n2 = [(n − 1)/n]〈(2)h, (2)hmin

〉 where
〈(2)h, (2)hmin

〉 is

〈[(f̃ho
− fho

)g] ? Kh, [(f̃ho
− fho

)g] ? Khmin
〉.

The decomposition of this term involves first a U-statistics related to X:

UX
n (h, hmin)

n2
:=

1

n2

∑
1≤i 6=j≤n

∫ (∫
(Kho

(Xi − u)− f ? Kho
(u))g(u)Kh(x− u)du

)

×
(∫

(Kho
(Xj − v)− f ? Kho

(v))g(v)Khmin
(x− v)dv

)
dx

and terms corresponding to i = j that are studied separately:

1

n2

n∑
i=1

∫ (∫
(Kho

(Xi − u)− f ? Kho
(u))g(u)Kh(x− u)du

)
×
(∫

(Kho
(Xi − v)− f ? Kho

(v))g(v)Khmin
(x− v)dv

)
dx.

First, developing the latter product leads to the study of the four following terms. Two cross-terms
that are are bounded by

1

n2

n∑
i=1

∣∣∣∣∫ f ? (Khog) ? Kh ? Khmin(x)Kho(Xi − x)g(x)dx

∣∣∣∣
≤ ‖g‖∞

n
sup
x
|f ? (Kho

g) ? Kh ? Khmin
(x)|

∫
|Kho

(z)|dz

≤ ‖g‖∞‖K‖21
n

sup
x
|f ? (Khog) ? Kh(x)| ≤ ‖g‖

2
∞‖K‖31
n

sup
x
|f ? Kho(x)|

≤ ‖f‖∞‖g‖2∞‖K‖41
n

.

The product of last terms can be written

1

n

∣∣∣∣∫ (f ? Kho
g) ? Kh(x)(f ? Kho

g) ? Khmin
(x)dx

∣∣∣∣ ≤ 1

n
‖(f ? Kho

g) ? Kh‖‖(f ? Kho
g) ? Khmin

‖

≤ 1

n
‖Kh‖1‖Khmin‖1‖g‖2∞‖f ? Kho‖2

≤ ‖K‖41‖g‖2∞‖f‖2

n
.
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Finally, the product of the first terms is∣∣∣∣∣ 1

n2

n∑
i=1

∫∫∫
Kho

(Xi − u)Kho
(Xi − v)Kh(x− u)Khmin

(x− v)g(u)g(v)dudvdx

∣∣∣∣∣
≤ ‖g‖2∞

n2

n∑
i=1

∫
|Kho

| ? |Kh|(Xi − x)|Kho
| ? |Khmin

|(Xi − x)dx

=
‖g‖2∞
n

∫
|Kho | ? |Kh|(z)|Kho | ? |Khmin |(z)dz

≤ ‖g‖2∞
n

sup
z
|Kho

| ? |Kh|(z)
∫
|Kho

| ? |Khmin
|(z)dz

≤ ‖g‖2∞‖K‖31‖K‖∞
nh

,

implying that

sup
h

(∣∣∣∣∣ 1

n2

n∑
i=1

∫∫∫
Kho(Xi − u)Kho(Xi − v)Kh(x− u)Khmin(x− v)g(u)g(v)dudvdx

∣∣∣∣∣− ‖g‖2∞‖K‖31‖K‖∞nh

)
≤ 0.

Let us deal with the U-statistics UX
n (h, hmin). We follow the line of the proof of Lemma 6.2 in

Comte and Marie (2021) and write UX
n (h, hmin) =

∑
1≤i6=j≤nGh,hmin(Xi, Xj) where

Gh,hmin(Xi, Xj) = 〈[(Kho(Xi − ·)− fho)g] ? Kh, [(Kho(Xj − ·)− fho)g] ? Khmin〉.

Indeed, Gh,hmin
(Xi, Xj) = Ghmin,h(Xi, Xj) as for all functions u, v it holds

〈u ? Kh, v ? Khmin
〉 = 〈u, v ? Khmin

? Kh〉 = 〈u, v ? Khmin
? Kh〉 = 〈u ? Khmin

, v ? Kh〉.

We apply the deviation inequality for U-statistics of order 2, as in Lacour et al. (2017), see Theorem
3.4 in Houdré and Reynaud-Bouret (2003). Following the notations of the aforementionned papers,
we have to compute four bounds an, bn, cn, dn.
� First an is a bound on supz,z′ |Gh,hmin(z, z′)|.

sup
z,z′
|Gh,hmin(z, z′)| ≤ sup

z,z′

(
sup
x
|[(Kho(z − ·)− fho)g] ? Khmin(x)|

∫
|[(Kho(Xi − ·)− fho)g] ? Kh(x)|dx

)
≤ sup

z,z′

(
‖Khmin‖∞‖(Kho(z − ·)− fho)g‖1

∫
|[(Kho(Xi − ·)− fho)g](x)|dx

∫
|Kh(x)|dx

)
≤ 2

‖K‖∞
hmin

‖g‖∞‖K‖1 × 2‖g‖∞‖K‖21 = 4
‖g‖2∞‖K‖31‖K‖∞

hmin
:= an.

Thus
anλ

2

n2
≤ 4λ2 ‖g‖2∞‖K‖31‖K‖∞

n
.

� Next b2
n is a bound on n supz E[G2

h,hmin
(z,X1)], we write

n sup
z

E[G2
h,hmin

(z,X1)] ≤ n sup
z
‖[(Kho

(z − ·)− fho
)g] ? Kh‖2E(‖[(Kho

(X1 − ·)− fho
)g] ? Khmin

‖2)

≤ ‖Kh‖2‖Khmin
‖2 sup

z
‖[(Kho

(z − ·)− fho
)g]‖21E(‖[(Kho

(X1 − ·)− fho
)g]‖21)

≤ 4n
‖K‖4‖K‖41‖g‖2∞

hhmin
:= b2

n.

We obtain

bnλ
3/2

n2
≤ 2λ3/2 ‖K‖2‖K‖21‖g‖∞√

hhminn3/2
≤ θ‖K‖

2‖K‖21‖g‖2∞
nh

+
λ3

θ

‖K‖2‖K‖21
n2hmin

.
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� We compute c2n which is a bound on n2E
[
G2
h,hmin

(X1, X2)
]
. Decompose

E
[
G2
h,hmin

(X1, X2)
]

= E
[
〈[(Kho(X1·)− fho)g] ? Kh, [(Kho(X2 − ·)− fho)g] ? Khmin〉2

]
into four squared terms. First,

〈fho
g ? Kh, fho

g ? Khmin
〉2 ≤ ‖K‖41‖fho

g‖4 ≤ ‖g‖4∞‖K‖81‖f‖4≤ ‖g‖4∞‖K‖81‖f‖2∞.

Second

〈fhog ? Kh, (Kho(X2 − ·)g) ? Khmin〉2 ≤
{

sup
z
|fhog ? Kh(z)|

∫
|(Kho(X2 − ·)g) ? Khmin(z)|dz

}2

≤
{
‖K‖1 sup

z
|(fhog)(z)|‖K‖1

∫
|Kho(X1 − u)g(u)|du

}2

≤
{
‖K‖21‖f‖∞‖g‖∞ × ‖g‖∞‖K‖21

}2
= (‖f‖∞‖g‖2∞‖K‖41)2.

The twin term in hmin, h has clearly the same bound. Lastly

E
[
〈(Kho

(X1 − ·)g) ? Kh, (Kho
(X2 − ·)g) ? Khmin

〉2
]

=

∫∫ (∫
Kho

(u− ·)g ? Kh(x)Kho
(v − ·)g ? Khmin(x)dx

)2

f(u)f(v)dudv

≤ ‖g‖4∞
∫∫ (∫

|Kho
| ? |Kh|(u− x)|Kho

| ? |Khmin|(v − x)dx

)2

f(u)f(v)dudv

= ‖g‖4∞
∫∫

[|Kho
| ? |Kh| ? |Kho

| ? |Khmin|(u− v)]
2
f(u)f(v)dudv

≤ ‖g‖4∞‖f‖2∞‖|Kho
| ? |Kh| ? |Kho

| ? |Khmin|‖2

≤ ‖g‖4∞‖f‖2∞‖K‖61
‖K‖2

h
.

We get

c2n =
n2

h
‖g‖4∞‖f‖2∞‖K‖61

(
‖K‖2 + 3‖K‖21

)
.

Thus , for all positive θ, λ it holds

cn
√
λ

n2
≤ θ‖g‖

4
∞‖f‖2∞‖K‖61

nh
+
λ(‖K‖2 + 3‖K‖21)

4n θ
.

� Lastly, the term dn is a bound on

sup
a,b

∑
1≤i6=j≤n

E [Gh,hmin
(Xi, Xj)ai(Xi)bj(Xj)] ,

where ak(·), bk(·) for k = 1, . . . , n is such that E(
∑n
k=1 a

2
k(Xk)) ≤ 1 and E(

∑n
k=1 b

2
k(Xk)) ≤ 1.

Using the independence for i 6= j between functions of Xi and functions of Xj , we get that the
term inside the sup is less than

〈
n∑
i=1

E (|Kho(Xi − ·)g − fhog| ? |Kh||ai(Xi)|) ,
n∑
i=1

E (|Kho(Xj − ·)g − fhog| ? |Khmin ||bj(Xj)|)〉.

(51)
First we have

n∑
i=1

E (|Kho
(Xi − ·)g − fho

g| ? |Kh||ai(Xi)|) ≤
√
n

{
n∑
i=1

[E (|Kho
(Xi − ·)g − fho

g| ? |Kh||ai(Xi)|)]2
}1/2

≤
√
n

{
n∑
i=1

E
[
(|Kho

(Xi − ·)g − fho
g| ? |Kh|)2

]
E(a2

i (Xi))

}1/2
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As
E
[
(|Kho(Xi − ·)g − fhog| ? |Kh|)2

]
≤ ‖f‖∞‖g‖2∞[‖|Kho | ? |Kh|‖2 + ‖fho ? |Kh|‖2]

we get
n∑
i=1

E (|Kho
(Xi − ·)g − fho

g| ? |Kh||ai(Xi)|) ≤
√

2n‖f‖∞‖g‖∞‖K‖1‖Kh‖.

Plugging this in formula (51), we get

〈
n∑
i=1

E (|Kho
(Xi − ·)g − fho

g| ? |Kh||ai(Xi)|) ,
n∑
i=1

E (|Kho
(Xj − ·)g − fho

g| ? |Khmin
||bj(Xj)|)〉

≤
√

2n‖f‖∞‖g‖∞‖K‖1‖Kh‖
n∑
j=1

E
(∫
|Kho

(Xj − ·)g − fho
g| ? |Khmin

(u)|du |bj(Xj)|
)

≤
√

2n‖f‖∞‖g‖∞‖K‖1‖Kh‖ × 2‖K‖21‖g‖∞

 n∑
j=1

E(bj(Xj)|)


≤ 2

√
2n‖f‖∞‖g‖2∞‖K‖21‖Kh‖ ×

√
n.

Therefore,

dn := 2
√

2‖f‖∞‖g‖2∞‖K‖21‖K‖
n√
h
.

It follows that
dnλ

n2
≤ θ‖f‖

2
∞‖g‖4∞‖K‖41‖K‖2

nh
+ 2

λ2

n
.

Applying the deviation inequality for U-statistics of order 2 (see Lacour et al. (2017) and Theorem
3.4 in Houdré and Reynaud-Bouret (2003)) leads thus to

E
{

sup
h∈Hn

(
UX
n (h, hmin)

n2
− θ‖f‖

2
∞‖g‖4∞‖K‖41‖K‖2

nh

)}
≤ C log(n)

n
.

Therefore

E

{
sup
h∈Hn

(
U

(2),(2)
n (h, hmin)

n2
− θ‖f‖

2
∞‖g‖4∞‖K‖41‖K‖2

nh

)}
≤ C log(n)

n
. (52)

The result of Lemma 7.3 follows by gathering the bounds (44), (49), (50), (52), (47), (46), (45).2

8 Appendix

The Talagrand inequality. The result below follows from the Talagrand concentration inequality
given in Klein and Rio (2005) and arguments in Birgé and Massart (1998) (see the proof of their
Corollary 2 page 354).

Lemma 8.1. (Talagrand Inequality) Let Y1, . . . , Yn be independent random variables and let F be
a countable class of uniformly bounded measurable functions. Consider νn, the centered empirical
process defined by

νn(f) =
1

n

n∑
i=1

[f(Yi)− E(f(Yi))]

for f ∈ F . Assume there exists three positive constants M, H and v such that

sup
f∈F
‖f‖∞ ≤ b, E

[
sup
f∈F
|νn(f)|

]
≤ H, sup

f∈F

1

n

n∑
k=1

Var(f(Yk)) ≤ v2.
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Then, for any δ > 0 the following holds

E
[

sup
f∈F
|νn(f)|2 − 2(1 + 2δ)H2

]
+
≤ 4

K1

(
v2

n exp
(
−K1δ

nH2

v2

)
+ 49b2

K1n2C2(δ) exp
(
−K1C(δ)

√
2δ

7
nH
b

))
,

with C(δ) =
√

1 + δ − 1 and K1 = 1/6.

By standard density arguments, this result can be extended to the case where F is a unit ball
of a linear normed space, after checking that f 7→ νn(f) is continuous and F contains a countable
dense family.
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