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1 Introduction

The aim of this chapter is to present statistical adaptivéhous of estimation of
the Lévy measure of a Lévy proces®,. a continuous time process with station-
ary independent increments whose sample paths are rigiihaous with left-hand
limits. We refer to [9] or [58] for a detailed probabilistitusly of these processes.
In what follows, we assume that the process is real-valuisdrately observed at
equispaced instants and inference is based on a samplebskrvations.

The distribution of a Lévy process is usually specified bychiaracteristic triple,
the drift, the Gaussian component and the Lévy measurer#tian by the distri-
bution of its independent increments. Indeed, the didtiobs of increments often
have no closed form formula. This is why statistical refeeshave increasingly
focused on nonparametric methods. In here, we especiallgiaje nonparametric
adaptive methods and rely mainly on the papers [17], [18], [RO].

In statistical inference for discretely observed contimitime processes, it is
now classical to distinguish two points of view. In the lowduency point of view,
the sampling interval is kept fixed and asymptotic resulesgven asn tends to
infinity. In the high frequency (HF) point of view, which is baoncern here, the
sampling interval tends to 0 and the total length time whéseovations are taken
tends to infinity. The HF point of view is simpler and allowsapply to Lévy pro-
cesses several adaptive methods of estimation: decoiom|projection or kernel
methods.

Section 2 gives notations and preliminary assumptionsetiti®n 3, moment and
small sample properties are stated. Section 4 deals witjporp Lévy processes
with finite variation on compact sets and no drift. SectionoBazrns the case of
Lévy processes with no Gaussian component and Section Getheral case. In
Section 7, the estimation of the drift and Gaussian compiareeificients is studied.
Examples are given in Section 8. Estimation proceduredlastrated on simulated
data in Section 9. In Section 10, we describe a specific mdtratie special case
of compound Poisson processes. Section 11 is devoted todnitgbhic comments.

2 Notations and preliminary assumptions

Letusintroduce some notations and assumptions which acessively considered.
The Lévy process is denoted i) and the observations afeua,k =1,...,n)
whereA is the sampling interval. The statistical procedure is base thei.i.d.
incrementszf = Lka — Lk—1)a- We assume that, astends to infinity,

A=Ay—0, and n4,— +oo. (2.1)

For simplicity, we omit the dependence nrand seiZf = Z. We assume that the
Lévy measure admits a density denotechby. The characteristic function df, is
denoted by



Adaptive Estimation for Lévy processes. 3

¢r(u) = exptyp(u)

where the characteristic exponentis given by
o~ 1 R .
Y(u) =iub— §u202+/R (€ —1—iuxLy <1 ) n(x)dx, (2.2)
withbe R, 02> 0. The Lévy density satisfies the usual assumption:
/ (2 A1)N(X)dx < +oo. (2.3)
R

Thus,(Z,k=1,...,n) is ani.i.d. sample with characteristic functighx. The non-
parametric estimation af(.) and the estimation of the other parameters? are
investigated under different sets of assumptions on tivy péocess. Depending on
the assumptions, we consider the estimation of the follgumctions:

gx) =xn(x), Lx)=x2n(x), p(x)=x3n(x). (2.4)

2.1 Purejump case

We first study the estimation gf g(x) = xn(x), (hence of, p) under the assumption:
(H1-g) / Xn(x)dx< o, b= [ xnx)dx o?=0.
R [x|<1

When the Lévy process is self-decomposable, the fungtiercalled the canonical
function and is decreasing (see [3] and [43]). Under (H1tigg,processL:) has

finite variation on compact sets, is of pure jump type, withdnidt component.

Formula (2.2) simplifies into

W) = /R (€~ 1) n(x)dx 2.5)

The distribution of(L; ) is therefore completely specified by the knowledg®©f
which describes the jumps behavior. The prodésscan be written as

Lt:/ / Xf)(du,dX)ZZALSa whereALs=Ls—Ls ,  (2.6)
Jot] /R/{0} $<

wherep(du,dX) = ¥ s Ua 20)Fs.aLs(du,dx) is the random Poisson measure asso-
ciated with the jumps ofL;) with intensitydu n(x)dx. Note that (2.6) holds under

the assumptior]/ (Ix] A1)n(x)dx < e0. Assumption (H1-g) is stronger and ensures
R
thatE(|Lt|) < +oo with
E(L) :t/ X n(X)dx
R
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2.2 Case of no Gaussian component

Then, we study the estimation &f¢(x) = x?n(x), (hence ofp andg except near the
origin) under the assumption:

(H1-0) /x%umx<m,a%=a
R

The first part of this assumption, stronger than (2.3) wap@sed by [56] and is
useful for statistical inference. First, for all EL? < +o0. Second, g (€¥* — 1 —
iux)n(x)dxis well defined, consequently the following expression 2 holds:

|ub+/ e — 1 —iux)n(x)dx, (2.7

whereb = b+ [, ., xn(x)dx= EL; has a statistical meaning (contrarytp Thus,
the sample path can be expressed as:

L = bt 4+ X%, (2.8)

where(X;) is a centered square integrable pure-jump martingale:

f// p(du,dx) — du n(x)dx),
ot] JR/{0}

andp{du,dx) is the random Poisson measure associated with the jum(hs)cfor

(%))-

2.3 General case

Finally, we study the estimation @, p(x) = x3n(x), (hence o,/ except near the
origin) under the assumption:

(H1-p) Jr XPn(x)dx < o.
Here,E|Lt|® < +oo,

@(u) = iub— }gzuer / (€™ — 1 —jux)n(x)dx, (2.9)
2 R

and
Li = bt+ oW + X, (2.10)

with (%) as above an@) is a Wiener process independent¥f). The estimation
of bin the second case (regj, 0?) in the third case) is detailed in Section 7.

The following notations are used below. RorR — C integrable, we denote its
L'-norm and its Fourier transform respectively by
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Whenu,v are square integrable, we denote Iifenorm and thél.? scalar product
by

12
w'(AMWWﬁO , <uN>:AQ@w@mmmhz:pﬁ (2.12)

We recall that, for any integrable and square-integrabietionsu, us, uy, the fol-
lowing relations hold:

(U")*(x) = 2rmu(—x) and (ug, uz) = (2rm)~(ug, up). (2.13)

The convolution product af, v is denoted by:

uxv(x) = [ uy)¥x—-y)dy

3 Moment and small sample properties

For statistical purposes, the existence of momentd.ofis required. This is why
we introduce the following assumption:

(H2-(1)) Forl integer, /-1 [x|'n(x)dx < co.

According to [58], Section 5.25, Theorem 5.28L|' < o is equivalent to (H2-
(1)). Note that the integrability ofi(.) near O is in all cases ruled by (2.3) and by
Assumption (H1-g) in the finite variation case.

The following proposition relates the momentsfaf= L, under (H2-()) to the
integrals

m :/Rx'n(x)dx:/Rx'n(x)dx (3.1)

Proposition 3.1 1. Assume (H1-g) and (H@J) with | > 2. Then,E(Z;) = Amy,
E(Z2) = Amp + A2, and more generally, fa2 < g <1,

E(Z]) = Amg+0(4).

2. Assume (H2})) with | > 2. Then,E(Z;) = Ab, E(Z2) = A(0? + mp) + A2,
When |>3and3<g<l|,

E(Z]) = Amg+0(4).

Proof. Assumption (H24()) ensures the existence of moments up to otdarall
cases.
Under (H1-g) and (H21}), the characteristic exponent (2.5) ismes differentiable
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with ¢/10)(0) = ilm; for j <. Therefore, thg-th order cumulant oZ; is kj = Am;.
Denoting byy; the j-th order moment oZz, we have the classical relation between
cumulants and moments:

P = R A 3.2
j = Hj i; i1 Kilj—j. (3.2)

We havek; = E(Z;), k2 = Var(Z;) and by elementary induction, we get the result
for higher order moments.
In the general case, we derivate (2.9) to compute the cunsutdih;:

@'(0) =ib, ¢"(0) = —(a?+my), forq>3, Y@ (0)=imy.
The result follows.

The previous proposition shows that all momentZpére of ordetO(A).
We now look at absolute moments under different conditions.

Proposition 3.2 1. Assume (H2-(r)) and» 2. Then,
Elzi| =4 / X" N(X)dx-+0(4).

2. Assume (H1-g) and for< 1, [|x|"n(X)dx < c. ThenE|Z;1|" <A [|x|"n(X)dx.

3. Let Iy = B;; where([}) is a pure jump increasingévy process (subordinator)
with Lévy density p satisfyingf0+°° ynr(y)dy < o and(B) is a Brownian mo-
tion independent off;). The Llevy measure diL;) has a density given by

n(x) = /+m /2y
0

Ifce = [ V/2nr (y)dy < o with r < 2, E|Lp|" < AciCy, where G = E|X[", for
X a standard Gaussian variable.

4. Let(L;) be a Levy process with no Gaussian component. Thgpi[A converges
to 0 asA tends ta0 in probability and inlL" for all r < 2.

1nyﬂr(V)dV- (3.3)

Proof. For the first point, we refer to [30].
For the second point, the assumptions and the fact that imply

1Z1" = |Lal" = | Z Ls—Ls |" < Z ILs—Ls |".

<A <A

Taking expectations yields the result.
For the third point, consider a non-negative function such thi{0) = 0. We have:

Eszlf(Ls—L&) :]E;f(Brs—Brsf).
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_x2 _
Thus, e Ef(Br, — Br, ) = Soct Jo f(XE (e‘ ) s ) dx For

all x, we have

1 e ey L
ES [e—@2r-ry___ 1 ) _, / e /% ———nr(y)dy.
;( Van—Ts) )~ o Ve

Therefore, we get the formula for the Lévy densitgf (L;). Moreover,
teo o
/|x|“n(x)dx:Ca/ vV*/2nr (y)dy.
R 0

ThusE|La|" = GE(I,/%). As1/2< 1, [)/2 = (SeenTo— T )72 < Socn(ls—
Is )"/2. Taking expectation gives the result.
For the last point, we refer to [5] (Theorem 1, p. 804), see Hi

Let us now look at small sample properties of the distributi®z;.

Proposition 3.3 Let By denote the distribution ofiZ Define
u) = APy (dx), @ (dx) = Xn(x)dx (3.4)

1. Assume (H1-g). The distributiq:il) has a density g given by

9a(9 = [ alx—y)Pa(dy) = Eg(x—2)

and converges weakly fo') asA tends to0.
2. Under (H14), uf) converges weakly tg? asA tends ta0.

3. Under (Hl—p),uﬁ converges weakly ta® asA tends to0.

Proof. Recall thaig(x) = x n(x). Under (H1-g),

/E|g(x721)|dx: IE/ Ig(x—Z41)[dx— /|g(x)|dx< oo,

ThusE|g(x — Z1)| < + a.e.(dx), which implies thatE(g(x — Z1)) is a.e. well
defined. Derivatinghp and using (2.5) yields

A7, (u) =IATE(Z1€Y) = ga(u)y'(u) (3.5)

where

W (W) = ig*(u). (3.6)

Therefore, the Fourier transforms pjl), uD, P, satisfy

() = (D) P;.
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Consequentlyuél) = uD «Py. This gives the result for the density prgl). The
weak convergence is a consequence of the facithat) tends to 0 ag tends to 0.
Under (H1¥), derivatingg, a second time yields

A7 R (u) = iPATIE(Z2W4) = pa(u) g (u) + Ada(u) (P (u))? (3.7)

Now using (2.7) and recalling thétx) = x>n(x), we obtain:

W) =i <b+ /R (@~ 1)x n(x)dx), W' () = 20 (u). (3.8)

Therefore, _
AR (Z2d44) = —A71g) (u) — £*(u).

Hencep? = u® asA — 0.
Under (H1-p), derivating a third timg,, we get:

A1 (u) = iPATE(Z§eM )
= 92Uy () + 389 (WY (U)W (U) + 8294 (U)(W'(1))* (3.9)
with, using (2.9) ang(x) = x3n(x),

Y'(u) =i <b+iu02+/R(ei“X1)x n(x)dx>, Y (u) =i%(a%+ 1 (u)),

and
" (u) =i%p*(u). (3.10)
This shows that
ATYE(Z3E) =i72A7 e (u) — pf(u).
Therefore,uf) — u® asA — 0.

Note that the Lévy measure can always be obtained as afongvery fixeda > 0,
(1/A)Pa(dx) converges vaguely ox| > aasA — 0 ton(x)dx, seee.g.[9], p. 39,
ex.5.1.

The following elementary proposition gives the rate of cengence to 0 op,.
Proposition 3.4 1. Under (H1-g), we have:
|$a(u) — 1] < [ulA]|g]1. (3.11)
2. If [px®n(x)dx < oo,
|9 (u) — 1| < AJul(c(u) + o?|ul)

where ¢u) = |b| +| [g'|¢*(v)|dV]. If £* is integrable orR, then
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|94 (u) — 1| < AJul(|b] +[|€*]|1 + [u]o®). (3.12)

Proof. By the Taylor formula,

$a(U) — 1= Uy (cult) = iUAPA (cull) Y/ (cuu),

for somec, € (0,1).

Under (H1-g),|¢/'(u)| = |g*(u)| < ||g|l1 (see (3.6)). Inequality (3.11) follows.
For the second point, we use (3.10) and the rela@ibh— 1 = ix [;'€*dv to

obtain:

Y'(u)=ib— uaz—/

u . U
(/ &*dv)x® n(x)dx:ib—uaz—/ *(v)dv.
R JO 0

This gives the two inequalities.

4 Adaptive estimation in the pure jump case

We consider now a Lévy procegk;) discretely observed with sampling interval
A under the asymptotic framework (2.1) and assume that (Hiclgls and that the
characteristic exponent is

w(u):é(éux—l)n(x)dx (4.1)

For the estimation of(x) = xn(x), (H1-g), (H2{1)) for an integet to be precised in
each proposition or theorem and the following additionaliasptions are required.

(H3-g) The functiorg belongs tdL?(R).
(H4-g) My := [x2g?(x)dx < +oo.

Assumptions (H1-g) and (H2-) are moment assumptions for thied. observed
random variable&Z, = Lya — Lk-1a,k=1,...,n) (see Section 3, Proposition 3.1).
Under (H1-g), (H2€l)) for | > 1 implies (H2{k)) for k <1I.

Noting that

Ig||2 := (/|g(x)|dx)2 < /(1+ |x|)292(><)dx/ﬁv

we see that (H3-g)-(H4-g) imply (H1-g).

Let us describe the ideas on which rely the statisticaleggias: estimation of
by a deconvolution approach, estimationgafn a compact subset & and kernel
estimation ofg.
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4.1 Deconvolution approach

The first strategy is based on deconvolution. By (H1-g),\ding ¢, yields the
following expression for the Fourier transformanf

. . A1) (u)

g'(1) = —ig/(W) = —i= (4.2)
As the r.h.s. depends on the distribution of the observatithis relation suggests to
estimateg* and then build an estimator gfby Fourier inversion, thus relating the
Lévy density estimation with deconvolution.
Let us make a short parenthesis to clarify the standard debtion problem. Sup-
pose that observatios= X; + &,i = 1,...,n are available where the two samples
(%) and (&) are independent, composediofd. random variables, thi’s have
density fx and theg’s have densityf,. The random variables of interest are the
Xi's and theg’s are an observation noise called observation error. |fRberier
transform of the noise distribution is never null, the rielat

LK
&

suggests to estimate the r.h.s. and deduce an estimattpibgfFourier inversion. A
key distinction appears at this stage. Either the noiseildiston is known (decon-
volution with known errors distribution) or it is not (decaiution with unknown
errors distribution). The latter problem is clearly morfidult than the former. With
known errors distribution, only the estimationfis required. This is usually done
by using an empirical estimator. With unknown errors digttion, the estimation of
fZ is also required. This raises lots of difficulties. Detaiteterences are given and
discussed in Section 11.
The link between deconvolution and estimationgois now clear. Formula (4.2)
shows thag*(u) is a quotient of two unknown Fourier transforms. The nunwerat
is

A7165(u) i= —iA T P (u) = A7 TEZ " = g (u), (4.3)

whereg, is the density of the measup%l) (see Proposition (3.3)). The denomi-
nator¢, (u) which is non null is the Fourier transform of the distribuitie, of Z;.
Numerator and denominator being linked with the unknowtrithistion of Z;, we

are faced with a problem closely related to deconvolutiah whknown errors dis-
tributions. In the LF framework, numerator and denominatare to be estimated
with the same samplgy). References are given in Section 11. The HF frequency
framework provides a simplification. Indeed, ¢s — 1, the estimation of the de-
nominator becomes useless. The price to pay is an additiermalwhich is a bias.
Relation (4.2) may be written as:

SIAT (W) = (W) + 0 (W) (Pa(U) - 1) = A EZE %) = A0, (u). (4.4)
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Simply using an empirical estimator 4f-1¢/, (u) yields an estimator of*(u). Let
us set

i Z&% g (U) = A8, (). (4.5)

—

Note that, using Proposition 3.4, the biaggofu) as a pointwise estimator of (u)
satisfies, under (H1-g),

[E(g"(u) — g (u)| = |46, (u) — g (u)| < |ulajg|. (4.6)

—

The following inequalities are useful for the variance o stimatog*(u).

Proposition 4.1 Under (H1-g) and (H22p)), for p> 1, there exists a constan{C
such that

—— —— C
E(9'(W) - E@ (W)F) < 4.7
Note that forp =1, (4.7) is a simple variance inequality:
E(G(0) - E@W)P) < (o +And) = oEEZD).  (48)

Proof. For p=1, (4.8) follows from:

=

E(|6(u) — 6a(u)[?) = %Var(zlexp(iuzl)) < ﬁ1E(z§).

For p > 1, we apply Rosenthal’s inequality recalled in Appendixe(64)):

£ (16a(W) - Oa(u)??) < 2P (kilEnzkéuzk — E(Z,€"%)[27

n P
N ——
k=1

/!
< C'(2p
= nzp

~

(NE(ZE®) +nP(E(Z2))P).

Dividing both sides bynA)?P and using that all moments have ordegProposition
3.1), we get

P

E(|g" (u) — E(g*(u))[?°) <C"(2p) <<nA>12p1 " (ni)p> '

We conclude using thai > 1.
The following inequality for empirical moments holds.

Proposition 4.2 Assume (H1-g). If pl is even, (H3!)) and (H2{2l)) hold, then
there exists a constaniGuch that
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P 1 1
E( ) <Co (Gt ) @9

The proof is almost identical to the proof of Proposition with the use of Rosen-
thal’s inequality and is omitted.

1.2 |
— > 4 —E(Zy)
nA k;

4.1.1 Definition of a collection of estimators

In this paragraph, we present a collection of estimatdg, indexed by a positive
parametem that will below be subject to constraints for adaptivityuks. Distinct
constructions give rise to this class of estimators, easingdts own interest for
interpretation, implementation or theoretical aspects.stdrt with the simple cut-
off approach.

To build an estimator of, we have at our disposal an estimatoigofgiven by
g = 6r/A (see (4.5)). This function is not integrable so that we carsimoply
take its inverse Fourier transform. The cut-off approachstsis in introducing a
parametem > 0, the cut-off parameter, and setting:

Gm(X) = %T /_ Tne*ixug/*(\u)du. (4.10)

This first step provides a collection of estimatdés)m-~0. A second step treated
below is to define a data-driven choigeof mto build the final estimatayg,. A key
feature ofgp, lies in the relation

—

Om = 9" (W[ rm 7 (U)- (4.11)
A second interesting property gf, s that the integral (4.10) is explicit. Introducing

_ sin(71x)

P(x)

a simple integration leads to

(with @(0) = 1), (4.12)

) = o7 3 22—

Thereforegy may be interpreted as a kernel estimator with kegnahd bandwidth
1/m. Formula (4.10) allows to study tfie?-risk of g for all m. We need to introduce

1 m —[UX %
6n(8) = gy |9 (0
which is such that

g% = g*:u[—nm,rrm] and(g - gm)* = g*:u[—nm,n,m]c- (4.13)
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Proposition 4.3 Assume that (H1-g)- (H22))- (H3-g) hold. Then for all positive
ml

(g~ Gnl?) < g~ anl? + EZ2/) %+ 19002 ™ g )

Remark 4.1 In the above inequality|g — gm||? is a square bias which decreases
with m, due to the estimation method; ¢s estimated instead of g. The second
term bounds the variance of the estimafar and increases with m. As a minimal
condition to bound the variance term, we impose belowmd. The last term comes
from the fact that we have neglectedg) (¢ (u) — 1) when building the estimator.

It is a bias of the estimating method.

Proof. By the Parseval equalityigm — 9||* = ||§in — g°[|?/(27). Using definitions
(4.5) and (4.3) yields

. O, 6 O .
E(|[6m—gl*) = ZT[EH(ZA — ) + (5~ ) — 7Y el
8 Z *
< o =02 Aﬂ[_nm,nm]|2>+|<f—g>ﬂ[_m,nm]|2]

1
ang ]J [=rm,T,m|¢ ||2

By (4.13) and the Parseval equality, the last term is ex#gtlygm||2. For the second
term, using (4.4) and (3.11), we have

12 =) 2= /(83— D' |2 < 421013 [ 12lg ()l
mm

Lastly, (4.8) yields

2rmiE(Z2)

B2~ ) ) = [ 4 2E(8a ()~ 65(0)Adu<

By gathering the three bounds, we obtain the result.

4.1.2 Rates of convergence
Rates of convergence of tfié-risk can be deduced from Proposition 4.3. In decon-

volution, the regularity classes for rates interpretatiom usually Sobolev classes
such as

¢(al)= {g e (L'NL?)(R), /(1+ u?)3|g*(u)[2du < L}. (4.14)

The following holds:
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Proposition 4.4 Assume that (H1-g)- (H22))- (H3-g) hold and that g belongs to
%(a,L). Assume that i€ nA and in addition to the asymptotic framework (2.1),
that A2 < 1. The following rate is obtained by choosing=O((nA)Y/ (2a+1)):

E(]|g— Gml[%) < O((nA)~28/(2a+1)),

If a > 1, then it is enough to haveA? = O(1) (instead of #? < 1).

Proof. We evaluate the infimum oven of the risk bound of Proposition 4.3. By
relation (4.13), ag € ¥(a,L), we get

1 L
2 * 2 —2a
— = — du< —(mm .

The optimal compromise betwedig — gm||2 andm/(n4), infimum overm of the
sum

19— gml|*+my/ (na),
i.e. the first two terms in the risk bound of Proposition 4.3), isaied form—22 [J
m/(n4), i.e. m= O((nA)Y(2+1) and leads to the rai@A) 2%/ (2a+1),
We now look for a condition od implying that the ternA? (™7 u?|g* (u)|?duhas
order less thafinA)—2a/(2a+1),
Asgeé(a,l),

~TIM
/ W2|g*(u))[2du < L2+
mm

If a> 1, the conditiomA? = O(1/(n4)), i.e. nA% = O(1) implies:
mm
22 [ g (u)f?du=0(1/(nd))
—7m
which is negligible. The risk bound order@{nA)—2&/(2a+1),

If ae (0,1), we must have at leagt?m?1-d < m~22, HenceA%n? < 1. This is
achieved fonA? < 1 asm < nA. The risk bound order is agal((nA) 2%/ (2a+1)),

Remark 4.2 I1f nA2 < 1 and if g is analytic i.e. belongs to a class
A (¥,.Q) = {f,/(eVX+e-VX)2|f*(x)|2dxg Ql,

then the risk is of order Qog(nA)/(nA)) (choose m= O(log(n4))).

4.1.3 Adaptive estimator

In this paragraph, the selection method of a relevant davacut-off parameter
m is described. The choice should lead to an adaptive estimatoestimator is
adaptive if itsL2-risk attains automatically the best possible rate of coymece to
0 without any knowledge of the regularity of
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For this, it is convenient to use the property that the egtinsaj,,, are projection
estimators, obtained as minimizers of a projection cohtFas positivem, consider
the following closed subspace bf(R)

Sn= {t e L3(R),suppt*) C [—rm, rim]}. (4.15)

Let us give the main properties of the collection of spa&g. Fort € L2(R), let
tm denote its orthogonal projection &,. The functionty, is characterized by the
fact that

tr = t*]J[,nm,mn].

Hence,

1 1
t—t 2:—t*—t*2:—/ t*(x)|2dx.
[t —tml| 2nH ml| o ‘X‘anl (x)]

The functiongy, defined above is thus the orthogonal projectiog oh Sy, anddn,

belongs tdSy, (see (4.11) and (4.13)). _
Moreover, fort € Sy, t(x) = (1/2m) [Tp,e"t*(u)du, and

i m * 2 m jux|2 12
0ol < = </nm|t o] du1m|é | du) .

Thus
Vt € S, ||t|\m::suH£|t(x)| < Vmit||. (4.16)
Xe
Let, fort € Sy,
1 [ 6a(u) 2 .
o 2 - A Y _ 2 & yak gk
h(®) = 7 - = [ 220 (Cudu= P = Gt (@.17)
= [[tl}* = 2(@m,t) = [It — Gml|* — || Gml|*.
Evidently,
Gm = argminya(t).
and
Yh(Gm) = _||@mH2-
Using (4.10) and (4.12), we have
18]
A2+ A (U _ _
IGnl? = 5 [ |2 du= 7 > 2&eMZ-Z).  (41)

Finally, it is interesting to stress that the sp&gs generated by an orthonormal
basis, the sinus cardinal basis, given by:

@nj(X) = Vmp(mx—j), jE€Z (4.19)
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whereg is defined by (4.12) (see [54], p.22). This can be seen nadtiaiy t
i gxi/m
@ j(X) = T

1 pm
éqﬁlj(x) _ ZT/nmw“Xqu:m.
Je N

Forf ¢ ILZ(R), its orthogonal projectioffiy, on Sy, can be written as

As above, we use thah, j (x) = (1/2m) f’“,?meiux(%j (—u)duto obtain

fm=% amj(f)@nj witham;(f) = (f,qn;).
JEZ

This leads to a third formulation of,’

. . . 1 [ X 10
Gm= jgzam,jq}n,j wherean, | = H/QA(U)%,j(—u)du: Mk;lzk(pm’j(Zk).

Using the development @fn'on the orthonormal basig j);, we have

1Gm|* = _§Z|ém7j|2-
je

Although Sy, is infinite-dimensional, we need not truncate the serie®toputegn,
and||gm||? as we can use the explicit formulae (4.10) and (4.18). Thimjsortant
for practical implementation. Nevertheless, the intrditurcof the basis is crucial
for the proof.

We consider a collectiofiSy,,m=1,...,m,) wherem, is restricted to satisfy
m, < nA and set

o . R ] B 10 ,\ m
m= a;%{?j‘l-ljlnh} (Yn(Gm) + per(m)) with pen(m) = k <ﬂ kzlzk> e

We shall denote by
peny(m) = E(per(m)) = k(E(Z2)/4) 1.

The intuition behind the selection criterion is the follogi The risk can be decom-
posed in two terms:

19— Gml|® = 1|9 — Gml|? + [|gm — Gml|*-

Thel?-orthogonality of the two terms is due to the disjoint supipof their Fourier
transforms. To define the data-driven criterion, we repthegerms of the sum by
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estimators. For the first term which is the bias, we haye gm||2 = ||9]|2— ||gm||%
Noting thatyn(Gm) = —||Gml|% ¥n(Gm) is up to a constant an estimator of the bias.
The variance terri(||gm — Gm||?) is estimated by pgm) where the constamt is a
numerical value to be tuned to avoid under-penalizatioa B®position 4.3). The
valuenirealizes the best compromise between estimated bias amatd variance
terms.

The following theorem shows the adaptivity property of teéreatorgs,.

Theorem 4.1 Assume that (HZ8))-(H3-g)-(H4-g) are fulfilled, that the asymptotic
framework (2.1) holds and thaty< nA. Then there exists a universal constant
such that

E(|lg— Gml|?) < c__inf (Ilg— gml|?+ peny(m))

c'a? pmm o, C’log?(nd)
- /Whu 9" (l2du+ ==

The calibration of the constantis a classical difficulty in such penalized methods.
Most often,k calibrated by numerical simulations (see Section 8).

In what sense i) adaptive? The property is contained in the infimum term of
the risk bound. Suppose thatelongs to a Sobolev regularity clagga,L), with
unknowna andL. In Proposition 4.4, it is proved that:

m
inf o 2, < C(nA —2a/(2a+1)
me{:ll.,...,rrh} (Hg gm” + nA) - ( )

and that m
[ wPlg(w)2du < caZmit s,
—Ty

for some constar®. Thus, the estimator is automatically (for some other contst
C) such that

C’log?(nA
;. €'log“(nd)

E(lg— Gnl) < C [(na) 22240 1 a0 i

If either @ > 1,nA% = O(1)) or (0< a< 1 andnA? = O(1)), then
E(||g— Gal|?) = O((nA) 2/ (2a+1)y,

This rate is obtained without requiring the knowledgaaior L in the procedure.

4.1.4 Proof of Theorem 4.1

To deal with the randomness of the penalty {men the proof is given in two steps.
We define, for somb, 0< b < 1,
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_J|@/ma) ez
PSR ILT) 0 NS w2

so thatE(||gm — gl1) = E([|6n — 9l*Va,) + E([|m — 9l[*Uag)-
Step 1.Study ofE(||Gn — g]|*1g,). By (4.17), we can write

Ya(t) = a(s) = It —gl|>— lIs— gl|* — 2(t — 5, Gm). (4.22)

Fort € Sy, let us introduce the linear processes:

nt) = oo [ PO B ey gy -EGny,  (429)
Rolt) = 5 [ (82(0) ~ Vg (W' (-U)du= (BGn—g.8).  (4.2)

The contrasin(t) admits the following decomposition :
Wo(t) —h(S) = [t =gl — [ls—gl|* — 2vn(t — ) — 2Ra(t — 9), (4.25)

Note thatv, = v, andR, = §n so that they are both real valued.
With a constank, to be given later on, define

| , _
6 (W =E (Zl]]OZHSkn@éuzl) . 6 W=E (Zﬂ'uzﬂmméuzl) (4.26)

and their empirical counterparts

n
uze AR w2
2z <)@ O (W) =1 % Dz o0y € (427)

M s

_l
n

k=1

We splitv, into vél) + vr(,2> with

W0 = 5 (600 -6 w)

—
*
—
|
c
=
o
k=

and 1
2 A2 2 *
W) = 37 [ (62 -7 W)t (~udu
The definition ofgg, implies that
¥n(Gm) + penm) < yn(gm) + penm) (4.28)

where we recall thag,, denotes the orthogonal projectiongbn Sy,
Using (4.25)-(4.28) yields that, forath=1,...,my,
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16— 9% < [lg— gm||?+ per(m) + 2v" (gm — Gm) — per(h)
+2Rn(gm — Gm) + 22 (Gm — G)

Forp, = vr(,l) , vr(,z) ,Rn, we can write

20n(gm—0m) < 2[gm—Gmll  sup  |pn(t)].
t€Sm+Si It =1
Then, we use
2xy < %x2+8y2
and the fact tha®y + Sy C Sy, to obtain
. 3 . N
16m— 91 < 1lg— gml|*+ pen(m) + gllam— Gal2+8  sup  [vi¥(t))>— penrm)
t€Sm+Sh|It]=1

+8 sup [Ra(t)?+8 sup [w(1),
t€Sm, [It]|=1 tEth,HtH:l

3 3 .
< 1+ )llg—gml*+ per(m) + 7 6n — gl
+8< sup [vrﬁ”anzp(m,m)) +8p(m, M) — per(rh)
teSm+Si |t =1 .

+8 sup [Ra®)2+8 sup [P )2
t€Sm, [It)=1 t€Sm, [t[=1

The functionp(m, ") plugged in the last inequality is fixed in the following Lemma

Lemma 4.1 Under the Assumptions of Theorem 4.1, define

mv m
nA

p(m ) = 4E(Z2/A) (4.29)

then, there exists a constant k such that fpekk,/n/lognA,

E( sup - [vi (O - pmm), < .,
t€Sm+Sm, It =1 n

where C is a constant.

Before giving the proof of this Lemma, we finish Step 1. Qp, the following
inequality holds (by bounding the indicator by 1), for anyide ofk:

vm, (1—b)pen,(m) < penm) < (1+ b)pen,(m). (4.30)

Therefore
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1. 7
7/16m—0l*10, < Z/lg—gml*+ (1+b)peny(m) g,

+8< sup [vrﬁ”anzp(m,m))
teSm+SmIt]=1 N

+(8p(m, M) — (1—b)pen, (M) 1g,

+8 sup [Ra(t)2+8 sup [V ()2
teSm, [It=1 t€Sm,[t=1

The constank is now chosen such that
Vm, n{ € {17 EE) n'h}, Sp(mv m) S (17 b)(penh(m) + penh(n{»ﬂ

thatisk > 32/(1—b). In view of (4.29), this gives the choices

32 32 n , m
peny(m) = 5 (Zl/A)—andpeer 1—_Azl =

It follows that

1. 7
2l16m—9l*lla, < 79— gnl*+2pery(m)

+8< sup [vé”(t)]zp(m,m))
t

€St Salt]=1 +
+8  sup [R(DI?+8 sup (W)
tESnn,HtH:]. tESrnnaHtH:l

Using (4.24) and (3.11), we get

sup  R(t) <CAZ/ W|g* (U)2du. (4.31)
t€Sm. -1 s

Forv? (t), we write

2 1 ™ a2 2
E( sup [vé><t>12>s—m2 [ E6? w - 6 w)Pau
€S, [|t]=1 Timh

E(Z{1 7)) k,va) ™
= nA2

EZh)m, _ [EE)/Alm, _ [BZ3)/4]
~ nk2as nk¥Az  —  k2A

sincemy, < nA. We know thafE(Z{})/A] is bounded. 1K2 > Cn/log?(nA), then the
above term is of order IdgnA)/(nA) . With the choice ok, = ky/n/lognA for
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some constark prescribed by Lemma 4.1 , the proof is achieved.

Step 1 can be concluded now. FormalE {1,...,my},

N C
E (IIgm—91*a,) < 719~ gm* +8pemy(m) +

-7'['I'T'¥.| 2
+C2A2/ u2|g*(u)|2du+C37Iog (n4) .
™ nA

Proof of Lemma 4.1\We start by noting that

E( sup  [viY®)2—pmm)) < n; i (©)2— p(m, ).
t€Sn+Sm,[It]=1 1 tES{n+3h{ HtH 1

Fort € Snym = Sn+ Sv, vV (t) can be written as

S5

(fi(Ze) — E(fi(Z))),

1
&

where - v
d<kavd [TV
fi(z) = ———— 4™ (—x)dx
t(2) 2 |-t (=)
We intend to apply the Talagrand inequality (see Appendixthe class
= {fi,t € Sn+ S, [t] =1}.

We have to find the three quantitils H, v.
Letm’ = mvm. Fort € Sy, using Inequality (4.16), we obtain

Kn Klltllo _ knv/m?"
sup| fi (2)| < sup|2mt(z)| < < =M.
ZG]REI (2] < Py AZGRIOI (7)) < A S/
Clearly,
(1) 4112 1 (1)) 2 E(ZZ)m"
E( sup  [vi (t>]>_2 5 Bl - 6w Faus =2

teSn+Syy,lItl=1

Thus we set
E(ZZ)m’
nA?2

H? =

The most delicate term is

Var(i(2)) < 5 242 B (] 220 ka5 (3 el

= 225 [ Al Yt (Xt ()dxdy
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where _
Pa(X) = E(Z%]J\zl\gkm/zelle)~

Using thatt = 3 jez tj @ j With [[t]|? = ¥z t7 =1,

1 * * *
Vr((20) < grazz 3tk // P (= Y) i, (—X) G (y) hxcly

<
- 47TA2<

Now, using Proposition 3.3, we have

N 1/2
X—Y) @y ><p:1.k<y>dxd4> ,

Pa (X A/Z:"\ZKknfe “E(9(z—Z1))dz
This implies that (see (H4-g))
/|pz(z)|2dzg 271/|pA(z)|2dz: ZNAZ/ZZJJ‘Z‘SKM/ZEZ(Q(ZfZl))dz
< 2mA%E (/Zz:uzékn\/zgz(ZZﬂdZ)
< ATAE ( /(x2+zf)gz(x)dx> = 4mA® (M2 +E(2])]9/1%) -

Therefore,

Var(fi(Z1)) < 2A2 (// |pA (x— Y)|2dXdy) v

Fzz(znm"ﬁ“( / 175 (2)d2) 2
< \/W
<

Applying Lemma .1 yields, foe? = 1/2 andp(m,n7) given by (4.29),

E( sup [v,gl><t>]z_p<m,m>> <cl({m_ ecver Ko -wm)

teSn+S,y./lt[=1 N n2A

IN

(M2 + [lgI2E(23)) Y2 =

asp(m, ') = 4H2. We choose

VA G
kn*klog(nA) with kf4

and aamm < nA, we get
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E( sup [vr%”(tnzp(m,nf)) <c1<@e-wﬁ+;>.

teSn+Sy.ltl=1 L nA (An)*log?(nA)
Therefore
m /e GV 1
WZE< sup [vé”anz—p(m,rrf)) sq(zf‘“ nd @) )
=1 \teSntS,.[t)=1 N (n4)3log=(nA)

As Coxe"“2X is decreasing fox > 1/C,, and its maximum is A(eG), we get
Mn
WZ Ve GV < > (eG) 1+ > VeV
=1 VM <1/Cy V' >1/C,
< 1y WZ Ve SV < oo
eG ~1

It follows that

< (1) C
WZIE< sup  [w\ (t)]zp(mvrﬁ)> Sma

teSm+Sy IItl=1 +

and Proposition 4.1 is proved.
Step 2.Study of E([|gn— 9] *Uqg)-
This part is simpler. Using (4.25) and (4.28) yields thvah e {1,...,my},

Gm—9ll? < [lg— gml|*+ penm) + 2va(gm— Gm) — per(i) + 2Rn(gm — Gm)

1 o
< Ilg— gml* +per(m) + 7 | gm — G (4.32)
+8 sup [wn(®)?+8 sup [Ra(t)]2 (4.33)
tE€Sm, [It]=1 t€Sm, [It]=1

Now we apply inequality (4.31) tBy(t) and the Parseval formula for(t), and get

21609l < 3lg— gl + E(per(m)) + [per(m) — E(per(m))]

mh Ty
+i/ 8 (W)~ Bp(w)%du+Ca2 [ (2lg*(w)du
A2 J -, —mm,
Using that pep(m) = E(penm)), we apply the Cauchy-Schwarz inequality and
get:

1/2
1

2
& (per(m) — peny(m)) o ) < {E [(—A > <ZE—E<z%>> ] (P(QF)*2,

nA &
(4.34)
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and we find

1. 3 »
3EIn— alPaag) < ( 310+ peny(m) + ¢ a%nRlal? ) P(c2)
1/2 13 .2 2 ’
+E (ﬂ k;(Zk - E(Zl)>

VY2 (g2 [ 18a(0) - 6a(u)Pu?) FH2(0)

PY?(0f)

Then we apply Proposition 4.2 with= 2 and get forp > 2:

(e waf) ()"

Thus, by takingp = 2,

B2 ((%k;(zﬁ—wz%»Z) <

Applying (4.7) forp = 2 (see Proposition 4.1) gives

ZZk z7)

Thus

4 mh 2. 12 32rmmy, [™h N 4
(g [ 18 - Eaw)Pu) < 35 [™ (18 0) - 6a ) 'd
<C/nﬁ_ SC/
4 n2
asm, < nA. We obtain:

E(||6m— 9l lge) < c(1+n2A)P(Qg)+c’(1+\/%)1@1/2(gg). (4.35)

)

- zzk B(Z2/4)

Lastly, if follows from the Markov inequality that

1 (1/nA)sh_, 72
(Qb)—prO EZ8)

1
= EZ/opr (

We find that, ifE(|Z;|?P) < +o0 andp > 2,

-1

)
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Co 1

F%) < 2 aye ()

(4.36)

Therefore, using (4.35) and the above inequality, if we take4 (i.e.E(Z8) < «),
we get
E(||gm—9l*Uge) < C/(n4).

This ends step 2 and the proof of Theorem 411.

4.2 Estimation on a compact set

In this paragraph, we intend to proceed without Fourierrisies and directly use
the fact that

12 N
A kzlzkézk = Hn (4.37)

approximates the measugg? (dx) = g(x)dx (&, denotes the Dirac measurezit
We use the same contrgg(t) as previously with a different interpretation. Recall
that, for any function such that* is compactly supported,
2 6
—It12 = 2 2B 4

Wh(t) = [1t]° = 5 (3 t).
As éA/A is the Fourier Transform g, (see (4.5)), we now consider, with the same
notation and for any compactly supported functipn

2 n
_ 2 y _ 2~
) = = 20.8) = 812~ 7 5 220

More precisely, we fix a compact intervak= [a, b] C R and focus on the estimation
of

Oa =0l (4.38)

In other words, the estimation is performed in the “time dorthanstead of previ-
ously, the “frequency domain”. We consider a fan(i&y,, m € .4, } of finite dimen-
sional linear subspaces bf(A): Xy = spaf{@,,A € Am} where card/\y) = Dy is
the dimension of,. The set{ @, ,A € A} denotes an orthonormal basisXf. We
shall denote by f ||z = [, f?(u)dufor any functionf.

Form > 1, we define a collectio(fm, m € .#,) of estimators ofja by:

Om= argtg1zin)/n (). (4.39)



26 Fabienne Comte and Valentine Genon-Catalot

4.2.1 Projection spaces and their fundamental properties

We consider projection spaces classically used for deastiynation on a compact
set and satisfying the following conditions:

(M1) (Zm)me.#, is a collection of finite-dimensional linear sub-space&.&fA), with
dimensionDy, such thatvym € .#,,,Dm < nA. For all m, functions inZ, are of
classCl in A, and, satisfy

AP > 0,YME 4, Vt € Zm, [[t]|e0 < Pov/Dillt]|la, and [[t']|a < PoDpt]| -
(4.40)
where]t]|o, = SUBa [t(X)].
(M2) (Zm)me.#, is a collection of nested models, all embedded in a spécbelong-
ing to the collection{m € .#,, 2y C #n). We denote byN, the dimension of
Fndim() = Np (Ym € 40, Dm < Ny < n4).

Inequality (4.40) is often referred to as therm connectiomproperty of the pro-
jection spaces and is the basic tool to obtain the adequdéz of the risk bound.
This inequality should be compared with inequality 4.16 vehtbe cut-off parame-
ter plays the role of the dimension. It follows from Lemma 110], that (4.40) is
equivalent to

3D >0,| Y @l < PiDm. (4.41)
AEAM
Functions of the spaces, are considered as functions @nequal to zero outside
A.

Here are the examples we have in view, and that we describeAwit [0, 1] for
simplicity. They satisfy assumptions (M1) and (M2).

[T] Trigonometric spaceggenerated byw = 101, @j(X) = \/icos{zmx)lj[oyl] (x)
and @ m+1(X) = v2sin(2mjx) g 1y(x) for j = 1,....m, Dy = 2m+ 1 and.#, =
{1,...,[nA/2] —1}.

[W] Dyadic wavelet generated spaceith regularityr > 2 and compact support,
as described e.g. in [38]. The generating basis is of cditinB, = 2™ and
me n={1,2,...,[log(nA)/2] —1}.

4.2.2 Integrated risk on a compact set

Now, we have (see (4.39))

~ ~ o 1 n
Gm = Z a,@ with 8, = ) Z Zvor (Zy). (4.42)
AEAm nA &

And, for anyt € 2,

Va(t) = 112 = 2(t, Gm) = ||t — G| — || Gim|*.
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(for functions with support ird, ||.|| = ||.||la and{.,.)a = {.,.)). Let gm denote the
orthogonal projection ofja on >, now given by

gn= 3 @@ with & = [ 1g0dx= (L ga= (.9

AEAmM

At this stage, note that the “time domain approach” diffecsrf the “frequency
domain approach” only through the projection spaces. Fapktity, we use the
same notatiorg, to define the orthogonal projection gk on >,. The contrast
decomposition is the same

Walt) = ¥a(S) = It = gll* — lIs— gl — 2vn(t — ) — 2Rn(t —s), (4.43)

where the same,, R, can be written now

nit) = = 3 (248(Z0) — ezt (). (4.49)
k=1
and 1
Rult) = 7 E(Z11(20) — [ t(¥g(dlx (4.45)

This remainder term is ruled by the following proposition.
Proposition 4.5 Let t € >, and assume thgH1-g)and (H3-g) hold.
1) If L := [u?|g*(u)|>du < +oo, then

Ra(®)] < A|t]lallgll2LY?/V2m

2) If g is bounded|R(t)| < C@y||t||sADm where C depends ojfg||1, ||9]], ||9]/«
and A.
3) Otherwise:

[Ra(t)| < C|[t[|a(/ADm+ ADm), (4.46)
where C depends dfg||1, ||g|| and A. If ™2 < 1, |Ry(t)| = O(v/ADm).

Proof. First, we know thalR,(t) = (1/2n) [(¢a(u) — 1)g*(u)t*(—u)du. Thus, if
[U?|g*(u)|du < 4o, if follows from (3.11) that

R() A2||g||1 </| g'( )2< A(2||9)||1/ WG (u 2du/|t w)2du.

Noting that [t*(—u)[>du= 2r1]|t||? = 271]|t||% gives 1).
For the two other cases, using Proposition 3.3, we have, &ofunction with
supportA = [a, by

b—-Z

1E(th (Z1)) /t )EQ(z— Z;)dz= IE(/ 1t(x+Zl)g(x)dx).
A a-7y
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Thus
b-z;

Rol) = 5[ tx g0 [ txg00d0.

On(|Z1| > b—a), [a—Z1,b—Z3] N [a,b] = 0 and we use the bound

,Zl

[Ra(t)] < 2]t]wlg]1-

We apply the Markov inequality, the norm connection (4.400 ghe inequality
E|Z;| < Al|g||1 (see Proposition 3.2) to obtain:

E(lzi) _ 24||9]|$v/DmA It
b—a — b—a '

E (Ujzy>b-alRa(t)]) < 2|[t]]wllgll1 (4.47)

On(|Z1] <b—a), [a—Z1,b—2Z3]N[a,b] # 0. Assume for instance that0Z; <
b—a. Then,

R = [t zigoaxs [T 0020 —t)gax- [ t9giax

~Z; -7

To study the middle term, we use the fact thetC* on [a, b].
b-24
T B (Boczcoa [ (106420 ~t(00)gX0)
a
b-7; 1
=E <21].|0<21<b_a/ /0 t/(XJr uZl)dug(x)dx>
a
1 rb-z4
=E (Zl]JO<21<b—a/o (/ t'(x+ uZl)g(x)dx)du)
a

An application of the Cauchy-Schwarz inequality yields
Tl <E|Z4 [t allgll < Pollgllallgll|[t]|aADm.

Next,
ra

a—7;

Here we distinguish between 2) and 3).dfis bounded (case 2)), then, with
E(|Z1]) < A||g|l1 and (4.40), we obtain:

ITo| < [Itllell9l B ([ Za]) < Pollg|eo]I ] 1[It]] a4 v/Din.

Otherwise (case 3)), using the Cauchy-Schwarz inequajijna

T2l <E(/Z))IItlellgll < VE(Z1]) Pov/Dmllt]|allgll
< @o|[t[|av/llgll2/lgll v/ DmA.
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The same bound holds for the last term.
The same study can be done #or b < Z; < 0. Joining all terms, we find that,
if gis bounded
[Rn(t)| < C||t]|aADm.

Otherwise,
|Rn(t)| < C'@l|t||a(\/ADm+ ADm).

The constant€ andC’ depend ora, b, ||g||1 and||g||. Recalling thaDy, < nA, we
have, asA? < 1, that|R,(t)| = O(v/ADp).

Proposition 4.6 Assume thafH1-g)-(H2)2)-(H3-g) hold. The estimato@m of ga
(see (4.39)) satisfies

D
— +KPpas (4.48)

E(Igm— 9l3) < 39— anllE + 16®[E(Z3) /4] =

where g, is the orthogonal projection of gon Z,. The constant K depends on
my, My (see Proposition 3.1) and g. The remainder term satisfies = A2 if

Ju?g*(u)[?du < +oo, p, = A%D3 if g is bounded. Otherwis@,, , = ADp, if
nAZ < 1.

Proof. Relation (4.25) still holds witlv, andR, respectively defined by (4.44) and
(4.45). As for anyt € >y,

It—glI® = llt—glz+ |9z
we get
Y(t) = ¥a(S) = [[t—gllZ— Is— gl A — 2va(t —S) — 2Rn(t —9).
Writing thaty(Gm) — ¥h(9) < ¥h(9m) — ¥(9), we get
16m— 9llA < |gm— 9lIZ + 2Vn(Gm — Gm) + 2Rn(Gm — Gm)-

We have

- 1.
2Vn(Gm—gm) < =||Gm—Oml|2+8  sup [va(1)]?,
tem tlla=1

and the analogous inequality fB,. Using that
1Gm — gmllA < 2119 — gmllz + 2/ Gm— 9l

and some algebra yields:

1 . 3
Slan—0li < Slon—gli+8 sup (®+8 sup [Ry1)2
tezm(ta=1 tezm,t|a=1

To bound the last term, we use Proposition 4.5. Noting theh ¢& >, can be
writtent = ¥ a0 @ With 32 = 1if [|t][a = 1, we get
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E( sup [Vn(t)]2> < Y E(w@P) =3 Eleaf(ZwA(Zl))

teZm,[ta=1 AEAm AEAm
q)ODm
(VA

<BZY F(Z) ;= [EZ)/A] (4.49)
A

We have used (4.41) in the last line. The conclusion of Pritipast.6 follows .

As for Proposition 4.3, we draw the consequences of Prapngit6 on the rate
of convergence of the risk bound. In the setting of this sectihe regularity ofja
must be described by using classical Besov spaces on cosgtact et us recall
that the Besov spac®, » »([0,1]) is defined by:

PBaze([0,1]) = {f € L*([0,1]), |flaz:= fUOICI_“wr(fJ)z < +oo}
>

wherer = [a] + 1 ([.] denotes the integer part), ang( f,t); is ther-th modulus of
smoothness of a functioh< 1.2([0,1]) and is equal to:

@ (1.02= 5P |51, (0,11 120, A4(10 = 5 (1) -0 ¥recrian,

Note that| f|q 2 is a semi-norm with usual associated ndffi
For details, we refer to [23], p.54-57.

Heuristically, a function in%, 2.([0,1]) can be seen as square integrable and
[a]-times differentiable with derivative of ordéo] having a Holder property of
ordera — [a].

a2=[[fll+[fla2

Proposition 4.7 Consider A= [0,1] and X, a space in collectioT] or [W].
Assume thatH1-g), (H2)(2) and (H3-g) hold. Let g 1) € % 2([0,1]), Dm =
(nA)Y/(2a+1) " Assume that we can choodeof the formA = n~2 with ac (0,1)
and:

e a>a/(3a+1),if f[u?gF(u)|?du< +oo,
e a>(a+1)/(3a+2),if gis bounded,
e a>1/2, otherwise.

Then
E(llg—gml3) < K(na)~2a/2a+D),

Proof. In [23], it is proved that, if>y is a space of [T] or [W], and ifg €
PBa2»([0,1]), then
Hg*9m|‘[zo,1] <CDR.

Minimizing D,2% 4+ Din/(nA) leads to the best choid@y, = O((nA)Y(2a+1) for
which the first two terms in (4.48) have the same @g¢gnA )20/ (20+1)y,
Now, we search for the choice 4f= n~2 such that the remainder term satisfies

meA < (nA)—Za/(ZaJrl).
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We distinguish the cases of Proposition 4.5.

If [u?|g*(u)|2du< 4o, p, , = A2 and we finda > a/(3a + 1).

If gis boundedp,,, = A2DZ,and we finda > (a +1)/(3a + 2). Otherwisep,, , =
ADp, and we finda > 1/2.

Note thata > a/(3a + 1) anda > (a +1)/(3a + 2) holds for anya > 0 if
a>1/3 (hencenA < n?/3), anda > 1/2 impliesnA < nl/2,

4.2.3 Adaptive result
Now, to get an adaptive result, we need to define a penaltgibmper(.) and set
m=arg min (yn(Gm) + per(m))
m6<%n

Let

per(m) = o 5 2. pen(m) — E(pertm)) — kE(2}/4) %

Here too, we use the same notation (@8p pen,,(m) as above, although the defini-
tions differ. The following theorem holds:

Theorem 4.2 Assume that assumptiorfsli1-g)-(H2)(12)-(H3-g)and conditions
(M1)-(M2) for the collection of spaces are fulfilled. There exists avargal con-
stantk such that

/

a2 < i a2 <
E(llg—gnlla) <C inf (llg—gmlx+Ppenn(m) +Cp, + 7
wherep, , = A%if [U?|g*(u)[’du < +w, p,, = A?NF if g is bounded. Otherwise,
pn‘A :ANn

Remark 4.3 The moment condition of order 12 in Theorem 4.2 can be wedkene
into a condition of order 8 for basis [T], which is bounded.

A subsection below is devoted to the proof of Theorem 4.2. ¥dride the following
corollary.

Corollary 4.1 Let theZy's be Dy-dimensional linear spaces in collectiofi§ or
[W]. Assume moreover that g belongs#g > ..([0,1]) with r > a > 0 and that we
can choos&l = n~2 with a < [1/3,1[ if [u?|g*(u)[?du< +o, ac [3/5,1[if g is
bounded, and otherwise,&[2/3, 1. Then, under the assumptions of Theorem 4.2,

E(g—gnl®) = O ((na)#%). (4.50)

Remark 4.4 The boundx on r stands for the regularity of the basis functions for
collection [W]. For the trigonometric collection [T], no sh bound is required.
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Proof. We apply results of [23] and Lemma 12 of [6].d#& %y 2.»([0,1]) for some
a > 0, then||g— gm|| is of orderD,,” in the collections [T] and [W]. Thus the
infimum in Theorem 4.2 is reached ,, = O([(nA)Y/(1+29)]), which is less than
nA for a > 0.

Now, we look at the remainder term and find conditiongimplying that

pn,A S (nA)il'

Recall that the maximal dimensidp, of the models collection satisfieé$, < nA.

If [u?|g*(u)|?du< +o0, A% < 1/(nA) holds forA = n~2if ac [1/3,1].

If gis boundedA2N2 < 1/(nA) holds if A%(nA)? < 1/(nA) which givesa €
[3/5,1].

OtherwiseN,A < 1/(nA) holds forA = n~2if a € [2/3,1]. Unfortunately, this also
implies thanA < n?/3 in the first casenA < n%® in the second case and < n'/3
in the third case. Then, we find the standard nonparametecafaconvergence
(nA)—Za/(lJrZa)_

Remark 4.5 In [33], the nonparametric estimation of 1) from a continuous obser-
vation (Lt )ic(o,1] is investigated. The authors use projection methods andljzen
tion to obtain estimators with rate (@ —29/(20+1)) on a Besov clas®y 2.([0,1]).
Moreover, in [31], a minimax bound for the estimation df)nbased on discrete
observations of order @nA)—29/(2a+1)) is obtained. The results can therefore be
compared since rates are identical, except that we do nwhast the same function.

4.2.4 Proof of Theorem 4.2

The proof of Theorem 4.2 is close to the proof of Theorem 4dndé¢ we focus
mainly on the differences. Note that defined in (4.44) can be written as

=}

Vn(t) = (fe(Ze) —E(f(Z1)))

1
N&

k

with f; now given byfi(z) = zt(z) = Zll,cat(2), sincet has compact suppoft As
in step 1 of Theorem 4.1, we are led to the inequality:

1 . 3
EHQm*gHiﬂQb < EHQ*QmH/ZA\Jr 2pen,(m)

8 n(t)]2 = p(m,mf
+ mgﬂ( sup  [vn(t)]"—p(m ))

tEZm+Zm/,HtHA:1 +

+8  sup  [Ra(t))%,
te S ltlla=1

with 8p(m,m) < (1—b)(pen,(m) + pen,(m')), for allme .
It follows from Proposition (4.5) that



Adaptive Estimation for Lévy processes. 33

sup  [Ra(t)]> <Kp,,-

ten,flt]a=1

The functionp(m,m') is chosen in order to ensure the following Lemma.

Lemma 4.2 Under the Assumptions of Theorem 4.2, define

DmVD
p(m,nf) = 4E(Zf/4) == (4.51)
then
2 C
> E| osup [w®P-pmnh)| <o
mestn  \€ZmtZy,lta=1 4 n

where C is a constant.
For the study off(||Gm — gHi]JQg), as in step 2 above, we have the inequality
analogous to (4.32):

1. 3
Slon—al® < Sllga—oml®+pertm +8  sup  [wi(H)*+8 sup  [Ru(t)]*
te. s, |t]a=1 teA, |tfa=1

The bound foi(Qf) is given by (4.36). Proposition 4.5 applies to bouRs(t)]?

byCp,,-
Then we have again

per(m)Ige < peny(m) + (per(m) — pen,(m)) Uoe.
The same bound holds also for the teffifiper(m) — E(pen(m)))lq¢]. We apply

inequality (4.34).
It remains to study the terﬁﬁ(suge%[vn(t)]ZJJQg). We use

1/2
E( sup [vn<t>12ﬂag>S<E sup [Vn(t)]4> FY2(0f).

ten,ftlla=1 ten[ltla=1

Denote by(¢ )xeca, @n orthonormal basis oy, |An| = Nn. We have

2
E( sup [vn(t>]4> —E [( 5 vﬁ(«m))
tEyn,HtHA:l A€Nn

<y 2, MBI @)+ (B @)

AENR

where the last inequality follows from the Rosenthal Indifya1).



34 Fabienne Comte and Valentine Genon-Catalot

If the basis is boundeahf < B, VA, as for instance basis [TB(= 2), we find

KNZ2B2
E| sup [w(t)]*| < 2 [NE(Z{/A)A+n°E?(Z3/A)A%]
te S |ta=1 (na)
K’N2
< n <K/
usingN, < nA.

In the general case, we use that @ (X) < [|@ |2 32 ¥2(x) and || T @F e <
D3N, and||@, [|2 < ®3N,, so that

BENNE(Z]/A)A + 0PE? (S (Z2/4)45 (Z4))A%
AEAR

—~

ten,[ltla=1

E( sup [vn(t>]4>§ o

KNn
nA)

N e

IN

—~

[OINZNE(Z]/A)A + P OINZE? (22 /A) A2

IS

~
5o

IN

—~

usingN, < nA.
Using (4.36), we obtairm(supE ymHtHA:l[vn(t)]ZJJQg) < C/(nd) if P(QF) <
1/(nA)? which holds forp = 4 andE(Z8) < + in the first case (bounded basis).

In the general case, we neBQY) < 1/(nA)3 and thusp = 6 andE(Z}?) < +oo .
4.2.5 Proof of Lemma 4.2

Again, we apply the Talagrand (see Appendix) Inequalith®dlass

F ={fi,t € Zm+ 2y} wherefi(z) = Zﬂ%p\t(Z).

We obtain similarly to (4.49)
H2 = [E(Z2)/A]®o(DmV Dpy)/(nA) andM = ba®p+/DmV Dy /A,

whereba = sup,, |2 . Lastly, we find
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Z 1
Var(th(Zl)) < E(Z%t%(24)) /0% = n / zt2(2)E(g(z— Z1))dz
ba|[t]|e
s ( [ ez zoiz)

ba®o(DmV D) /2 - 12
< A% (1) gP(z- 23))

< 2bACDo(Dm\/ Dr’d)l/zHgH
— A :

IN

We denote by = C(DmV Dyy)/2/A with C = 2dgba||g]|.-
Then we get

tEZm—FZn.{,“t“A:l +

+%exp(—\/ﬁ)).

Therefore, aPm < nA, as above

C
MEZ///nE < sup [vn(1))% — p(m,nf)) <

tGZm—FZn{,‘ltHA:l +

This ends the proof of Lemma 4.2.

4.3 Kernel estimators

The fact that(1/(nA))Sk_; Zkéz = [in approximates the measuye? (dx) =
g(x)dx can be used to build kernel estimatorsgpfLet K : R — R be a kernel,
i.e.an integrable function such that

/K(u)du: 1 (4.52)
As it is usual, we assume thidtis an even function. S&,(x) = %K(E) and define
the kernel estimator af with bandwidthh by:
R N 1 &
Gn(X) = Knx fin(3) = —+ kZleKh(X_ Z). (4.53)

The kernel estimator (4.53) can be related to the decorivol@stimator (4.10).
Indeed, let us compute the Fourier transforngaf ~
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10 COX =2 i
On) (U) = —— Z/K—e‘“xdx
(6" () = 35 3 % [ K=

After a change of variable, we obtain (see (4.10)):

D

(Gn)*(u) = % ki Z&"%K* (uh) =
=1

A (U)

Under the assumption thKt* is integrable, we have:

A _ 1 —ixu éﬂ (U) *
Gh(x) = 27_[/9 A K*(uh)du. (4.54)
Thus, the kernel estimatgy, is obtained as the deconvolution estimator (4.10) using
another kernel thap (see (4.12)) and with the correspondeheem~. Moreover,

the inequality

1 n
6091 < 57 > 12d [ K (ui]du
2mA k;

implies thatgp(x) is integrable a&|Zy| < +o by (H1-g).

4.3.1 Mean integrated squared error for fixed bandwidth

To study the MISE of the kernel estimatgy, e precise assumptions on the kernel
K and additional assumptions @n For a > 0, we denote by = |a the largest
integer strictly smaller thaa. The following definition is classical.

Definition 4.1 A kernel K is said to be of order | if functionsrs UK (u), j =
0,1,...,I are integrable and satisfy

/qu(u)du:O,Vj e{1,..1). (4.55)

The assumptions oK are the following.

e (Ker[1]) Forsomex > 0,K is a kernel of order= | a | and |x|¥|K(X)|dXx < +oco.
o (Ker[2]) |K||, < +.
o (Ker[3) K* e L.

Assumptions (Kei]), i = 1,2 are standard assumptions when working on problems
of estimation by kernel methods. As noted above, (Ker[3]nsre specific and
ensures in particular thgh(X) is integrable under (H1-g).

Remark 4.6 To construct a kernel of order |, we may proceed as followsadsk u
an even and integrable function such that iL?(R),u* € LY(R), [u(y)dy= 1 and
[1y[¥|u(y)|dy < oo, and define for any given integer I,
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ey 1/t

K(t) = -1 k+1—u(—) 4.56

-3 () (G (4.56)

The kernel K defined by (4.56) is order | and satisfies (Kei[i}) 1,2,3 (see [48]
and [34]).

The definition of kernels of orddrsatisfying (Ker[1]) is fitted to evaluate the bias
of kernel estimators on Nikol'ski classes of functions.

Definition 4.2 (Nikol'ski class) Leta > 0, L > 0. Let also I= |a | be the largest
integer strictly smaller thara. The Nikol'ski class Mo, L) onR is the set of all
functions f: R —s R such that derivatives®) for j =1,...,1 existand ") verifies:

1/2
(/|f<'>(x+t) — f<'>(x)|2dx) <Lft|* " vt eR. (4.57)

In addition to (H1-g), (H3-g) and some moment assumption-(kJp we may re-
quire thatg belongs ta\(a, L).
The MISE ofg, can be split using the standard bias variance decompasition

E[||6n— gl|?] /E Gn(X dx+/ [Gn(x (x))%dx

The bias needs further decomposition:

EIgn— g% < [ Var(@(x)dx+2 [ (Knxg(x) - gx))%dx
2 / (E[6h(X)] — Knx g(x))2dx
- / Var(Gn(x))dx+ 2 / bR 1 (X)dx+ 2 / bR ,(X)dx
with the usual bias of the kernel method,
bn1(X) = Khxg(x) —g(X), (4.58)
and the bias resulting from the approximationgaf(u) by 1,

b 2(X) = E[Gn(X)] — Kn*g(x). (4.59)

In other words
bn(X) = E[Gn(X)] — g(X) = bn 1(X) + b 2(X). (4.60)
The bias terms are bounded as follows.
Lemma 4.3 Under (Ker[1]) and if ge N(a,L),

[Knxg— 9|2 = [Ibn1)|? < c1h®
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with ¢ = (L/I! [|K(v)[|v|*dV)2.
Assume (Ker[3]), (H1-g), (H3-g) anflu?|g*(u)|°du:= A < 4. Then,

Ibn2)|? < ¢'142
with ¢1 = Al|K12/|g]3/2.

Proof. Assumption (Ker[1]) and the fact thgte N(a,L) standardly imply the in-
equality (see [61])

/bﬁyl(x)dxg c1h??.

Thus, we focus ol o. Under (Ker[3]), by the Fourier inversion formula, we have

for all z,
X—Z o 1 (R VS o uzg —iUX|e *
K<—h )—2n/e hVK*(v)dv= > /e' K*(uh)du.

This shows thatK (%:%)| is bounded. Assumption (H1-g) ensures tfiZ;| <
J19(2)|[dz< 4. Thus, (see (4.3))

bn2(X) = hlﬂE{leC‘ Zl)} LK (X Z> dz
= ET/e‘iX“K*(uh) (% —g*(u)) du.

Therefore, we get, with the Parseval Formula and (4.4),

||bh,2||2=/b§(x)dx=%T/|K*(uh)|2|¢A(u)—1|2|g*(u)|2du.

Now, applying Inequality (3.11) of Proposition 3.4, we get
2A2
ool < TS [ uy 2e2lg () et

Since|K*(uh)| < ||K]|1 < +00, we obtain the announced bound.

Moreover, the variance is controlled as follows:
Lemma 4.4 Under (Ker[2]), (Ker[3]), (H1-g), (H2-(2)) and (H3-g), wedwve

KI?E@}/2)

<
/Var X)]dx oA

Proof. As thez arei.i.d., we have:

L3 5] ().

Var(gh(x)]
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Thus,

Var[gn(x)] < (hlA) E {sz2<er]_)()].

With the Fubini-Tonelli theorem, we get

/Vargh XX < — [Zl/KZ( ) } HKlr\;]i(sz)_

This ends the proof of Lemma 4.4.

Recall thatE(Z?) /A = mp + A% by Proposition 3.1. Lemmas 4.3 et 4.4 lead us to

the following risk bound.

Proposition 4.8 Under (Ker[1]) to (Ker[3]), (H1-g), (H2-(2)), (H3-g) and if V?|g*(Vv)|?dv:=
A < 400, we have

IK|PE(Z2/4)

T (AIKIIEllglF/mA. (4.61)

E([|Gn—9l1?) < 2/lg—g*Knl|2+

If in addition g€ N(a, L), then||g— g Kp||? < ¢1h?® with ¢; given in Lemma 4.3.

4.3.2 Rates of convergence

We seth = h, with h, — 0 andnh, — +o. Recall thatA = A, is such that
limn_ 1. An = 0. Consequently, Anh is negligible compared to/hhA. To obtain

the optimal convergence rate based on the first two terms.®1)4a constraint on
A is necessary. We impoge < 1/(nhA), equivalently

1
A3 < —. 4.62
oh (4.62)

The optimal choice ohy is hopt O ((NA)™ ) and the associated rate has order
(0] ((nA) ) Therefore, we can state:

Proposition 4.9 Under the assumptions of Proposition 4.8 and under conditio
(4.62) the choice p O ((nA)’éaLH) minimizes the risk bound (4.61) and gives

| Grope — 91 = O((na) 241,

4.3.3 Data-driven choice of the bandwidth and adaptive estiator

Now, a being unknown, we must select the bandwidth by a data-divigerion.
For this, adequate estimators of the dominating risk boarndd (see (4.61)) must
be found. Following ideas given in [34] for density estiroatiwe set:
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21 12E(ZE /D)

V(h) = K[| K [P=215=, (4.63)
wherek is a numerical constant that will be precised below. Noté¢¥Ha) is pro-
portional to the bound of Var[gn(x)]dx. In the above definitiorV (h) depends on
the unknown momerEZf. Actually, this moment should be replaced by the empir-
ical meam~1yR_, Z2. This substitution is possible and can be done as in the proof
of Theorem 4.1 by introducing the s&, (see (4.21)) and splitting the proof into
the analogous steps 1 and 2. For the sake of simplicity, wetbmsubstitution and
only deal with the deterministi¢ (h).

The estimation of the bias term relies on iterated kern@hegors. Define

~ . R 1 n
gh,h’ (X) = Kh’ *gh(X) = Kh*gh’ (X) = — Z ZkKh/ *Kh(Z€ — X).
nA &

The idea is to estimate the bifig — K+ g||? by the supremum ofgy — Qh,h/HZ for
h belonging to an adequate s#f. However, this introduces an additional variance
term which must be subtracted and leads to following estomaif the bias term:

A(h) = sup {||Gnw — i[> =V (W)}, (4.64)
Wes#

with 77 = {h;,1 < j <M} andM to be specified later. Finally is chosen by the
following data-driven criterion:

h= arghrgL?{A(h) +V(h)}.

Theorem 4.3 Assume (Ker[1]) to (Ker[3]), (H2-(8))-(H3-g)-(H4-g), anfiv?|g* (V) |2dv:=
A < 4. Considers# such that M< nA,Vhe #,h>1/(nA) and

vC>0, 3 h~Y2exp(—Ch™%2) < 5(C) < +w.
hes?

Then we have

log?(nA)
-

A 2 H 2 2 "
Elllg—G;1°] <C,inf {llg—gxKn[*+V(h)}+C'A%+C" =~

Examples of sets# fitting our assumptions ar¢#” = {1/k.k=1,...,[nA]}, or
A ={27Kk=1,...,log([nA])}.

Remark 4.7 The infimum in the bound of Theorem 4.3 means that the estiigjato
automatically reaches the optimal rate stated in Proposit4.9.

4.3.4 Proof of Theorem 4.3

The goal is to bountL[||g — §||%. To do this, we fixh € 2# and write
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19— GRll < 1185 — Gnall + 1G5 — Gnll + 16— gll-
The definitions ofA(h) andh imply:
19— Gl1* < 3116, — Gnsl*+ 31165 — Gnll* + 316 — 0l
< 3(V(h) +Ah)) +3(A(R) +V(h)) + 3] g — gII?

Again, by definition ofh, A(h) +V (h) < A(h) +V (h). Therefore, rearranging terms
yields
llg— Ggll* < 6(A(N) +V (1) +3]Gn — 91> (4.65)

Consequently,
E[llg— 6517 < BE[A(h)]+6V(h)+3E(||gh—g?)-

The bound foi(||§, — g||?) is given by Proposition 4.8. We have to boubjé\(h)].
Let us setghyy = E[Gny] andgn = E[Gn]. We write,

Ghtv — G = Ghv — Ony — Ov + G + Ohy — O (4.66)
and study the last term of the above decomposition:

ghr (X) — O (X)] = [E[Gn v (X) — Gr (X)]
= [E[Kiy * Gh(X) — G (X)]|
= Ky xE[Gn(X) — 9(X)] + Ky xg(X) — E[Gr (X)]]-

This can be written using notations (4.58)-(4.59)-(4.60),

O (X) — G (X)| = |Kyy xbn(X) + by 2(X)]
< Ky x br(X)[ + [bry 2(X) |

The Young inequality withp = 1,r = g = 2 (see Appendix) and Lemma 4.3 imply:
llgn v — G [ < 2([|Kpy x bn |2+ [[bry 211%) < 2(| Ky [Fl1bnl|* +14%),  (4.67)

wherec; is defined in Lemma 4.3 anKy |1 = ||K]|1.
Then by inserting (4.67) in decomposition (4.66), we find:

A(h) = S#p{H@h,h’ —Gnl> =V ()},
< 3S#p{”@h,h’ —Onhwl?—V(N)/6},
+3Sr:;|p{||@h’ —gw|*—V(N)/6}, +6[K|7l|bn[*+ 12c,4%. (4.68)

The following proposition deals with the first two terms of@8).

Proposition 4.10 Under the assumptions of Theorem 4.3, we have
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R Clog?(nA
E| sup {1y — avl2—v(tv)/e}, | < S2TNA), (4.69)
Wes# nA
and
R C'log?(nA
E | sup (g~ gl -V()/6), | < P aro)
Ve

Before proving Proposition 4.10, we conclude the proof oéditem 4.3. Inequali-
ties (4.69) et (4.70) together with (4.68) imply for BlE 57

C'log’nA

c’'A?.
nA +

Ellg— 631 <C(llg—Knxgl>+V(h) +
So the proof is complet&
Proof of Proposition 4.10.

We only prove (4.70) as (4.69) is analogous and slightly g##gmThe scheme is

similar to the proof of Theorem 4.1. We spt= @,(1” + QE,Z) with

n
G0 = —= 3 ZiKn(x—Z)) 7 i vay: (4.71)

wherecy is a constant to be defined. Consequently,
B |Sup{ I — 02~V (/)| < 22 |supllggy - oy 2~ viK)/12), |
+28 |suplg, ~ i 17 = Ta+ T

We defineeél), 9‘@, é‘fn, éﬂ(z) as in (4.26) and (4.27). Using the relation analogous
to (4.54), we have

1 " A * *
162, - o217 = Mz/|9A<2><u>_ef><u>|2||< (uh)K* (utf) 2du

K
< IKIS [ a2 )~ 662 w2k (u e

Thus
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B 2 2 IIKlli/ A2 iy @ 2] ka2
o= 5 [supley - 61| < g [ (1870 - 67w 7 Ik (unPa

K2 rE(Z21
|| ||1/ 1 {‘Zl‘>kn\/z}|K*(uh)|2du

<
= 2nA2 n
K% / 4 2 IKIZIKIZ o a

< E(Z7)|K*(uh =———"FE(Z
= karzlAs ( 1)| (U )| du nth]A;g ( l)

IKIZIK] - a log*(n4)
< <
> krz]A E(Zl/A> —C nA B

by using the value of,. This ends the study df,. Now we considefl; and write
first

E | supf 1y — ghpl* - <h’>/12}+]s S E {65 - o=V 12t |.

We#
Next we notice " " "
th hh/H2 sup <Qh,h’ _gh,h/at>2
te#(1)

where#(1) = {t € L2NLY(R), ||t|| = 1}. Let Z(1) be a countable subset &f(1)
with closure equal t&#(1). Then

1 1 .
sup (9 Ew)\ *gﬁu,r)wwz = sup (G — Gy
teA(1) te#(1)

and we can apply the Talagrand inequality to the empiricat@ss

Vnk(t) = (Qﬁ, - gﬂ,,t) 217_[/(éA( >( u) — eA(l>(u))K*(uh)K*(uH)t*(u)du

Indeedvnk can also be writtemn x (t) = "~ S [f(Z) — E(f(Z))] with here
fi(2) = Aztova) e 2K (xh)K* (xH)t* (x)dx
‘ 2mA

(see the proof of Lemma 4.1 where an analogous empiricakgmois defined). To
apply Lemma .1, we compute the three quantikie$d? andv. First, fort € %(1),
we have

suplfi(2)] < IEIHIK 2 ( /IK (xH)2dx) /2 < [|K 1| K]|
V4SS

Kn
2mv/A

Next, it is clear that

vV h’A
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E( sup [vn,K<t>12> < 5 [ B8V W) - 6 (W) PIK* (hyK* (utf) Py

teA(1)
EZD)[IKIZIKI2

_uZ?
nhA2 =H"

IN

To computev, we proceed as in the proof of Lemma 4.1. Recall the defirgtion

Pa(X) = ]E(Zfl{\zl\gkn\/Z}eile) =4 /ﬂ{\z\gkm/Z}eisz(g(Z* Z1)).

We have for alt € %#(1),

Var(f(Z1)) < 755 [ Pl (x YIKS (xR (xH)E (- (YK (VH)E (3)dxcly

K
KIL ] o ey (e (K () ) ey

. 12
”,TKZQE (/ Ip3 (X~ y)K xH)K*(yH)|2dxdy// |t*(—x)t*(y)|2dxdy)

I A

I A

/

var(i2) < I8 ([ gy o anay)

3 : 1/2
s ([ @ Pz 1ot oy

KII3IIK . 1/2
< D ([ ma@iez)

We showed in the proof of Lemma 4.1 that, using Propositi@raBd under (H4-g),

IN

[ 1pa(@)dz< ana?(vy + B(Z3) ol
Therefore we get

V2|K[3IK] (M2 +E(Z2)[|9]12)
sup Var(fi(Zy)) < 1 1 =V
te@g) (h(21) < Via

Then, setting/ (') /12 = 4H?, we get

~(1 1
E[{lghy —ounl2-V(h)/12} | =E < sup Vi) - 4H2>
(S
Ci (1 i, K ik
< 2= = 2 _n 3
- n <\/We Jrnh(e
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Then if the choice ok, is such thaty < Cs/4, we obtain

(1) 2 ) C (1 )W 1
2 [{16y ~ gl V()12 | < 1 (wTe " nayniog(na) )

Therefore, using the assumptions#fi, i.e.Card .#’) <nA,vh' € 77,0 >1/(nA)
andzh/(h’)*l/ze*CZ/W < 400, if NA > e, we obtain

A~ / C
E{Srl:pﬂgr(m ghh’||2 (h)/lZ}} nA’

The proof of Proposition 4.10 is complefe.

5 Adaptive estimation with no Gaussian component

In this section, we study the estimation (k) = x?n(x) under (H1¢). We only
treat the deconvolution approach and just give below iritina on the other two
approaches (estimation on a compact set by projectionekestimation).

5.1 Deconvolution approach

In addition to (H1¢), we assume:

(H3-) (e L?(R)

(H4-0) [x8n?(x)dx= [x*/?(x)dx < co.

By (H1-¢), ¢ € L}(R) and the characteristic exponent of the prodéssis given by
formula (2.7). Assumption (H4} is only required for the adaptive result.

5.1.1 Two collections of estimators with cut-off parameter

The deconvolution method requires to define first an estinwdtthe Fourier trans-
form ¢* of ¢£. We propose two estimatofs, ¢* of ¢*. The former has a smaller bias
than the latter but is heavier to implement and more cumbegsto study. Both
provide the same variance order. For the first one, we supgpaseve have at our
disposal a B-sample(Zy)1<k<zn, With Zx = Z& = Lia —L_1)a- Under (H1¢), ¢

is C2. Derivating@, yields

pp(u)
¢a(u)

usinge" — 1= ix ['é"*dv. Derivating again yields

eIUX
b+/ x)dx) =iA( b+|/ £r(v)dv),
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1 ¢"a(u)da(u) — (94(u))? "
£ (u) = —=— =—y"(u). (5.1)
W g W
Splitting the Z-sample into two independent subsamplea observations, we in-
troduce the following empirical unbiased estimatorggfu), ¢, (u), ¢ (u):

. 1 qn ) o )
Py ==y (iZe, =012 q=12
’ M1 G-1)n

Considering the expression 6f in (5.1), we replace, ¢, ¢, in the numerator
by the empirical estimators built on the two independensauiples of siza. In
the denominatonpi is simply replaced by 1. This gives the first estimatof‘of

P =7 (35250~ sZWILW). (5:2)

Hence, using independence of the two subsamples,
EZ* (u) = £*(u) + " (u)($3 (u) — 1). (5.3)
Introducing a cut-off parametem, we define an associated estimatof of

P = = [ g g
m(X) = o 7nme (u)du.

This means theﬁ;ﬁ](u) = @*(u)l[_mmﬂ (u). By integration, the following expression
is available

~ 1 2 sin(rM(Zx + Zj4n— X))
X) = —— 22 — ZuZns i
m(X) = 2z i gn( k n+i) M(Zx+Zjin—X)

This gives a first collection of estimatoté&,, m> 0).
We also define, based on the full sample, the unbiased estiwiapy :

¢(2)(u> _ i Gl (iZ )2eiqu
A - 2n kZl k )

and set

F ) =82, (5.4)
Here, using (5.1), we get
BE(U) = 7 8a(0) = (1) + £ (0)(8a(0) ~ 1) - Apa @)W (W).  (5.5)

Thus,¢* is simpler but has an additional bias term. We set:
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0 _ 1 m |ux* _ 1 sm(rrm(Zk—x))
zm(x)_ﬁ[ & 7 (Wdu = zmz R R

This gives a second collection of estimatéfig, m > 0).
Recall that the characteristic exponentsatisﬁé(ﬂ) =ib— fo £*(v)dv, that we have
setc(u) = b+ ' [€*(v)|dv] and thafd, (u) — 1| < Ajulc(u) (see Proposition 3.4).
If ¢* is integrablec(u) < |b| + [|£*]]1.

The risk with fixed cut-off parameter is ruled by the follogiproposition.

Proposition 5.1 Assume that (H¥)-(H2-(4)) and (H3+%) hold. Then

n 2 m  44% m YY)
E([[em—€]1%) < [[m— 2| +72E(21/A>_+—n. / u“c(u)|£*(u)|“du, (5.7)
—Tm

— m
E(|ltm—£]%) < Hfm—fHZJrE(Zf/A)M
242 rm
+—/ u2c?(u)|[¢* (u) |>’du+CA%Bp, (5.8)
mT J—m
with C a constant, B = (2/m) [ |¢/(u)[*du satisfies B = O(m) if ¢* € L1(R)
and By = O(nm) otherwise.

Proof. The proof follows the same lines as Proposition 4.3 and usgsiBition 3.4.
The Parseval formula gives

1om—£11% = (1/ (2m) 15— €.

As
C(u) = L(u) = (U Wy > rm

is orthogonal ta’, — £ which has its support ifi-7m, 7,
om— €12 = =16 = P+ i Erll?).
27.[ m m m

The first term

1

(/@) " = Ll|* = 1€ = ml|* =

[ lrwdu
|u|>7m
is the classical squared bias term. Next,

Fin(U) = Gin(u) = £ (W) = E(C(W))] + [E(lm(W)) — Ln(W)]
= [Zin(U) — E(G(u))] + [$2 (u) — 1€ () Uy <

Bounding the norm off 7, — ;|2 by twice the sum of the norms of the two elements
of the decomposition, we get
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E(||fm— tm|?)

IN

B (710w - wPdu) + % [ 160 - 1P @l

%(/_n:nVar(é*(u))du) - ﬂnz/j;uzcz(U)IE*(U)|20|u

IN

(see Proposition 3.4 for the upper boundf (u) — 1| and note thalg, (u)| < 1).
Now, we use the decomposition:

AP (u) —E(F* (1)) = (@57 (u) — @ (u))(@55(u) — @5 (u)
+(@5V(U) — B4 (u)) @A (U) + (55w — $a(u))PA ()
— (@2 (u) — B (W) (BL(U) — da(w)
(u)

—(B1(U) — @4 (U)Pa (W) — (B 5(U) — pa(W))pa(w).  (5.9)

Considering each term consecutively and exploiting thepesdence of the sam-
ples, we obtain

2(72 2/92 4 4
varl () < 2 (52 42200 EE) R
E(Z{/A)
= 36#' (5.10)

Thus, (5.7) is proved. Analogously, we have

1

_ mm _ mm _
(im0 < lm— 12+ = [ 157 0~ ¢ w)Pdus 2 [ Var w)au
TJ)—mm TJ—m

For the variance of*(u), we use’* (u) — E¢*(u) = —A*l(qﬁf)(u) — ¢4 (u)). Thus,

Var(£*(u)) < ﬁE(Zf/A).

Next, for the bias of_*(u), we use (see (5.5)):
[EC(u) — £ (u)[? < 21 ()2 $a (u) — 12+ 242| ' (u)[*
Hence, there is an additional term in the risk bound equal to

2 mm
—AZ/ @/ (U)|*du= A%Br. (5.11)
T —m
If ¢* is integrable|y’ (u)| < |b| + ||¢*||1, andBm = O(m). Otherwise,|¢/' (u)|* <
C|u|*, andBy, = O(nP).

Proposition 5.1 allows to find rates of convergence ofltRaisk of estimators
with fixed cut-off parametem for functions¢ belonging to Sobolev classes (4.14).
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Proposition 5.2 Assume that (HZ)-(H2-(4)) and (H3+) hold and that/ belongs
to ¢ (a,L) with a> 1/2. Consider the asymptotic setting (2.1) and assume that
m< nA. If nA2 < 1, then, for the choice m: O((nA)Y(22t1)) we have:

E(||fm—¢]]%) < O((na)~2¥/a+D)),

If a > 1, the condition #? < 1 can be replaced byA® < 1.
If 0 < a< 1/2, the constraint o is nA%3 < 1.
The same results hold fdf,.

Proof. The proof is analogous to the proof of Proposition 4.4. Tret bempromise
between| ¢ — ¢m||? with £ € € (a,L) andm/(nA) leads tom= O((nA)Y(?2+1)) and
yields the orde©((nA)~2/(2at+1)y,

It remains to find constraints afi implying that the other terms in (5.7)-(5.8)
have order less the@((nA)—2/(22+1)) Fora>1/2,

[ewians @y o

Therefore/* is integrable|¢/ (u)| < c(u) < |b| + ||¢*]]1 andBy, = O(m).
The last term in the risk bound (5.7) is less than

-7Im
K2 / W2)6* (u)[du < LAZ(rm) 212+
—mm

If a> 1 andnA® < 1, we haveA?(rm)21-3+ = A2 < (nA) L.

If ac (1/2,1), the inequalityA?m?1-3) < m~22 js equivalent taA?n? < 1. As
m<nA, A2m? < 1 holds ifnA2 < 1. B

For the additional bias term appearing in the risk boundgfwe are in the
caseBny, = O(m). Thus, form= O((nA)Y/(2a+1)) 'mA2 < m~22 holds if mt+2242 =
(nA)A? < 1 which in turn holds ihA3 < 1.

Ifa<1/2,

[ 1 wlav = oguit2).

Hence, the last term in (5.7) is of ordé&?m®—*2 which is less tharm 22 if
A?mP~22 < 1 and thusA?m? < 1. This requiresA®3 < 1. The same holds for
Em.

5.1.2 Data-driven choice of the bandwidth and adaptive estiator

We describe now how to choosein a data-driven way leading to an adaptive es-
timator,i.e. attaining automatically the optimal rate of convergendheuit knowl-
edge of the regularity of the unknown functiérRecall the collection of subspaces
(Sm) of L?(R) defined in (4.15) where each spa&gis generated by the orthonor-
mal basis (4.19).
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For a functiont € Sy, define

1 - ~
RO ) = |t))2— —<lr>= [t[2=2 < .t >,

so that A W
fy=argminly~(t
m gtesln n o (t),
and i (fm) = —||m||2. In the same way, we set
1 — _
2 =||t)2 - <l >= L2 =2 < fm,t >,
and

{m = argmin’; 2,

Explicit expressions of|/m||2 and ||€mL2 are available. We give the formula for
[|4m|? which is less cumbersome thify||:

m

Az ZEZR(M(Zc—2,)). (5.12)

1<kl<2n

2 _
| =

Now, we need to seleehin .#, = {meN,1<m<nA} ={1,...,my}. For the
estimatordy,, we define
m=arg min (—||/m||?+ per(m)) (5.13)
me.#n
with
m/{12_, 12 , 11_,
pen(m) =K <(ﬁ > Zo(= _Z Z)+ Y L

For the estimatoré_m, we define

— . o2 / m 1 2n 4
m=arg min —|leml|“+ & 2 | 7 Z Z: | |- (5.14)
“#n k=1

The following result shows that the above data-driven ad®if the cut-off param-
eter lead to an automatic optimization of the risk.

Theorem 5.1 Assume (H1)-(H2-(16))-(H3-¢)-(H4-¢). If, moreover,/* € LY(R)
and M3 < 1, there exist numerical constartsk’ such that

. Z2 z}
- _ 13 < i _ 2 2,41
E(|[€m— 2] )_Cmg?f (If (|| +K(AE (A)+1E(A ))nA)
2
42 / 20 (u)Pdu+ ¢l M)
nA
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and

E(|m—£]%) < C inf {ll¢~¢ ||2+K']E(Z_f)ﬂ
" T me m AnA

log?(nA
+— / w2 ¥ (u 2du+AZan+CL]ng1 ),

where By, = O(my) (Bm, is defined in Proposition 5.1).

The proof of Theorem 5.1 follows the same steps as Theorerfwétli some more
technical developments) and is therefore omitted. We rtef¢20] (Theorem 3.1)
for details. By computations analogous to those in the pob&roposition 5.2, we
obtain the following Corollary.

Corollary 5.1 Assume that the assumptions of Theorem 5.1 are fulfilledionf,
some positive L, € ' (a,L) ) 2) = O((nA)~2/(2a+1))
provided that #\? < 1. The same holds fdE(||¢z — £/|?). If a > 1, the constraint
nA3 < 1is enough.

5.2 Projection and kernel

Consider a set af observation$Zy). It is possible to use the fact that

2 1 2 5
Hn ' = — Zkéz
nA k; k

approximates the measyné? (dx) = ¢(x)dx. This allows to build as in Section 4.2
and Section 4.3 either estimatorséf) on a compact sek or kernel estimators of

o).

6 Adaptive estimation in the general case

Finally, we study the estimation @i(x) = x3n(x) under (H1-p) and in addition

(H3-p) peL?(R)
(H4-p) [x¥2n?(x)dx= [xCp?(x)dx < oo.

We construct estimators analogousémbased on a sample of sire (Zy)1<k<n,

Z = Lka — Lk-1)a- For this, we need to compute the third derivative of the char
acteristic functionp, (u) = expAy(u) where the characteristic exponeaptu) is
given by formula (2.9):

0.2 (U) = $a (WAYD () + 322 (WY (U) + 23 W)Y (6.1)
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with
. u
W (u) = ib—uo?+ /ix(e‘“x — Dn(x)dx=ib — ug?— / *(vdy,
0

Y'(u) = —0?—r*(u),
P (u) = —ip*(w).

It follows that:
L2 = () + (W) (Ga(W) — 1) +9a(W)[BAY (WY (W) + AH(Y/ (W)

The Fourier transfornp* of pis simply estimated by

[ . 12 i
B (W) = 7857 (u) with $5 () == 3 ()%,
K=1
Therefore,
Ep*(u) — p*(u) = (¢a(u) — 1)p*(u) + 3iAda ()¢’ ()" (u)
+HA2ga () (@' (u))2. 6.2)
By Fourier inversion, we obtain a collection of estimatorghweut-off parametem:
= _ 1 m —|ux—* 7i C X>>
pm(x)fz_[/_ e P (U)du= — z X) . (6.3)

The risk is bounded as follows.
Proposition 6.1 Under (H1-p)-(H2}6) and (H3-p),

_ m
E(/1pm— pII*) < lp— pml® + E(Z2/4) ¢

+C(A2/"m (14 1) p* () [2du+ A%nP + %), (6.4)

where pn(x) = (2rm) 1 [T e~ Xp*(u)du.

Proof. As previously||pm— pl|? = 3(IlP* — Pill?+ | Pin— Pil|®). The variance of
Pm Satisfies

(B Prl®) = 5B B Pl = 5 [ (Var(B(u) + [B(F () - p'(W) ) du

where (2 (25/a)
E(Z8) E(Z8/A
~] < 1/ _ 1 .
We havel(* (u)| < |||l < +eo. Thus,|¢'(u)| < [b+0%+]|¢]|1, | ()| < 0% +]|¢]|1
and by Proposition 3.4¢, (u) — 1| <CAJu|(1+|u|). Inserting these bounds in (6.2)
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implies

[E(p*(u)) — p"(W)] < CA|p*(u)]|ul(L+[u]) +C'A(1+|u]) +C"A%(1+|u])* (6.5)
Gathering the terms gives the announced bound for the rigk,of

We can state the result analogous to the one of Propositin 5.

Proposition 6.2 Assume that (H1-p), (H2J), (H3-p) hold and that p belongs to
% (a,L). If nA1Y7 < 1, then

E(|[pm— p||2) < O((nA)*Za/(zaJrl)).

If a > 1/2, the condition &A’/®> < 1 can be replaced byA¢ < 1.

For the data driven selection of, we must impose here a restricted collection of
models:
Mn={me N/{0},m< vnA := i},

and set
m = arg min (—||pm||® + pen(m)) with per(m) = Kk 1 z8 (6.6)
meMn m nA2 nkzl k) '

The estimatopg satisfies:

Theorem 6.1 Assume (H1-p), (H224)), (H3-p), (H4-p) and A2 < 1. Then, there
exists a numerical constartsuch that (withu, = v nA)

E(||pm— pl|?) < C inf (|p— ||2—|—KE(Z_:|6-)E
Pm—p|") = MM P—Pm A mA

2 rmn ,
+C (A—/ U2(1+ u2>|p*(u>|2dU+AZH§+A4pZ+ M) |
" nA

For the proof, we refer to [20] (Theorem 4.1).

Remark 6.1 We could also build other kinds of estimators using the faat t
-3 1 &3

approximates the measuré® (dx) = p(x)dx.

7 Drift and Gaussian component estimation

Consider the general case where the observed prodass tst+ oW + X with (%)
a centered square integrable pure-jump martinggle: f]o,t] fR/{O} x(p(du,dx) —



54 Fabienne Comte and Valentine Genon-Catalot

du n(x)dx), andp{du,dx) is the random Poisson measure associated with the jumps
of (Lt) (or (%))(see (2.10)). By using empirical means of the ddge(recall that

Z = Lka — Lk-1)4) it is possible to obtain consistent and asymptotically €3&an
estimators ob (I = 1) and, under suitable integrability assumptions on theyLé
density, of[ X n(x)dx for | > 3. But this method fails to estimatefor | = 2.

7.1 Empirical means

Consider a Lévy procegs:) and seZy = Lia —L_1)4 as above. Let us define the
empirical means:

n n . 1 n |
b=— Z Zy, €= nglzk forl > 2. (7.1)

We prove now thal, ¢ ,| > 2 are consistent and asymptotically Gaussian estimators
of the quantitied, ¢;,| > 2 where

Co = 02+/x2n(x)dx, a = /x'n(x)dx, for |1>3.

Proposition 7.1 Assume thaf x2n(x)dx < 4o and the asymptotic framework (2.1).
(i) Under (H2-Q + €)) for some positive,

vnA(b— b) converges in distribution to# (0, cz).

(i) Under (H2-@(l +¢))) for some positive, and if A3 tends td), vnA (¢ —¢)
converges in distribution to/"(0, ¢y ).

Proof. By Proposition 3.1E(Z) = Aband, forl > 2, E(Z}) = Ac, +0(4). There-
fore, b is an unbiased estimator bf Forl > 2, vnA|Eg — ¢ | = vNnAO(A) which
tends to 0 under the additional conditinA® = o(1).

Settingc; = b, € = b, as VaZk Acy +0(4) for | > 1, we havenAVar¢ =
Cy +O(4). Writing

VNA(G —Eg) = (na)~Y? Z ~EZ) = Z Xkns

k=1

itis now enough to prove tha_; E|xn|>¢ tends to 0. By the moment assumption
(H2-(2(1 +¢€))) , we have

§E|X |2+£ < L <E|Z ||(2+£) + |E(ZI)|2+£) < L
2 knl" = e/2plre/2 K K = (na)E/2’

which gives the result.
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7.2 Estimation of the Gaussian component parameter with power
variations

Estimators ofo based on power variations @if;) have been proposed and mostly
studied in the case wher&\ = 1, see [5], [63], [40]. They are studied under the
asymptotic framework (2.1) in [1] and [20]. Consider the figrof estimators ofo
given by

sy A e A L&
O'(r)—[O'n ] Wlth On *mnAr/z kgl|zk|v (72)

wherem, = E|X|" for X a standard Gaussian variable. The following result corscern
only restricted cases.

Proposition 7.2 Consider the asymptotic framework (2.1) and assume thatlr

and m2-" = o(1). Then,/n(G\" — ") converges in distribution to a" (0, g (my /m2 —
1)) for:

(i) (Lt = bt+ oW + ) wherel; is a pure jump process satisfying (H1-g) and

/ [X|"n(x)dx < oo
Ix<1

(if) (Lt = bt+ oW+ X), with X = Br;, where WB,I" are independent processes,
W, B are Brownian motiond, is a subordinator with Evy measure msatisfying

+00
/0 Y2 nr (y)dy < .

In each case,/n(6(r) — a) converges in distribution to a# (0, (a2 /r?) (Mg, /m¢ —
1)).
Remark 7.1 Itis worth noting that the rate of convergence,i® and noty/nA. For
r=1, the estimatoﬁ,ﬁl) is consistent but not asymptotically Gaussian.

Proof. The study of (7.2) relies on the following result which isrstard forr = 2.

Lemma 7.1 Let ¥ = 6t + oW for 8 a constant and consider

s _ 1 o
Y *WKZJYKA*Y(kfl)Ar-

Then, for all r,\/ﬁ(érsr) — og") converges in distribution to a centered Gaussian
distribution with variances® (my /m? — 1) as n tends to infinityd tends to0, nA
tends to infinity, and A2 tends toD.

Proof of (i). Using that, for <1,||Sa +bi|"—|Ta|"| <3 |bi|", we get
n

N - 1
6\ — Ur(lr)| < szl“_kd —Tk-1al',
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Where(rrsr) is built with'Y; = bt + oW as in Lemma 7.1. Thus, applying Proposition
3.2(2),

N - 1
EvAlal) — 61| < At / X" n(x)dx

Sincer < 1, the constrainbA2~" = o(1) can be fulfilled and impliesaA? = o(1).
Hence, the result follows from Lemma 7.1.

Proof of (ii). The proof is analogous to the previous one (using Proposgia
(3)) and is omitted.
AsG(r) = [c”frﬁr)]l/r, we conclude fog(r) by using the delta-method.

Proof of Lemma 7.2We haveE&, = ~E|6vA+0X|", for X a standard Gaus-
sian variable. Thus

E6\) — o =o' (e—QZA/Zo'z B 1) +%e_92A/202/|u|r(e9ux/Z/021>e—2l022 du

o2

w2
Noting thate?V4/9% —1— guy/A/02+AS - & (U6 /02)"AY2 L and thatf |u|"ue 202 du/(0/2T) =
0, we obtain
E& — 0| <ca

Thus, VAEG — 0| = o(1) if /AA = (nA2)Y/2 = o(1). Noting thatE|6+/2A +
oX [ converges tarm, asA tends to 0, we gatvargy') — o2 (my, /m2 — 1).
Finally, we look ayn =n—* <|9\/Z+ 0 (Wa —Wik-1)a)/VA|" —E|6VA + 0X|r) ,

which satisfiesiExg, < ¢/n%. Hence,/n(G1 —Eai"”) converges in distribution
to the centered Gaussian with the announced variance wbitipletes the proof.
a

8 Rates of convergence on examples

In this section, we illustrate on examples the possiblesrafeconvergence of the
estimators ofy andp obtained by Proposition 4.3, Theorem 4.1, Proposition A a
Theorem 4.2 for the estimation gf Proposition 6.1, Theorem 6.1 for the estimation
of p.

8.1 Pure-jump case

The discussion on rates of convergence is different acegrth the estimation
method.
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8.1.1 Rates for the Fourier method on examples

We consider models for which (H1-g) holds.

Example 1.Compound Poisson processes.

LetL; = zi'\'z‘lYi, where(N;) is a Poisson process with constant intensignd
(Yi) is a sequence afi.d. random variables with densitlyindependent of the pro-
cess(N). Then, (L) is a compound Poisson process with characteristic function
(2.5) withn(x) = cf(x) (integrable). Assumptions (H1-g)-(H2}) are equivalent to
e(|Y1]') < ». Assumption (H3-g) is equivalent tf x? 2(x)dx < oo, which holds for
instance if supf (x) < 4+ andE(Y?) < +oo. The distribution oZ; = L, is:

Py (d2) = Py, (d2) = e (5o(dz) +3 () (CA)ndz> . (8.1)

|
s n:

Hence,

Cn72A n—2

i (dz =e <cz f(z)dz+ c?Az ;T f*”(z)dz) (8.2)

As f is any density and)(x) = cxf(x), any type of rate can be obtained. Table 1
summarizes the rates obtained wHeis Gaussian, exponential or uniform.

Density f Gaussian/’(0,1)|Exponential® (1)|Uniform 77 (|0, 1])
g(x)(= exf(x)) = exeX/2/\/2m | exe X dlg- (X) cxlljg g (.x) _
g (u) = ciug*/2 c/(1—iu)? cw
Jjsmm|0* (W2du= || O(me ™) o(m-3) o(m?)
Sui<mm, u|g* (u)|2du= 0o(1) 0o(1) O(my)
Constraint om\ nAd <1 nA3<1 nA2<1
Selectedn = m=4/log(nA)/nl m=0O((nA)¥4) | m=0O((na)¥/?)
Rate— o), | ona) 34y | of(na) )

Table 1 Choice ofmand rates in three compound Poisson exampigs{ nA).

Forinstance, foA = n~2, witha e [1/3, 1], the best risk is of order Id¢?(n) /n?/3
in the Gaussian case and of ordef/2 in the exponential case. In the uniform case
for A =n~2and nowa € [1/2, 1], the best risk is of order /4,

Example 2.The Lévy Gamma process. Let> 0, 3 > 0. The Lévy Gamma process
(Lt) with parameter$f3, a) is a subordinator (increasing Lévy process) such that,
forallt > 0, Ly has distribution Gamma with parametéfs, a), i.e. has density:
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aPt
Bt—1 —0Xq.

I'(Bt)x e x>0- (8.3)

The characteristic function & is equal to:

BA

a
= . 4
oa0= (525 8.4)

The Lévy density is1(x) = Bx te” 1. g so thatg(x) = Be @1l o) satisfies
our assumptions. We have*(u) = B/(a —iu). Table 2 gives the rate of the risk
bound and auxiliary quantities.

Example 2 (continued): Lévy d process.To illustrate other possibilities of rates,
consider a pure jump Lévy proceds) with parameter$d, 8, c) and Lévy density

n(x) = oxX 2 1ePX1, 0.

Assumption (H1-g) holds fod > —1/2. Ford > 1/2, [;7* n(x)dx < 4o, the pro-
cess is a compound Poisson procces.

For 0< 6 <1/2, [ n(x)dx= + andg(x) = xn(x) belongs taL.?(R) NL(R).
This includes the cas®= 1/2 of the Lévy Gamma process.

The case-1/2 < 6 <0 and in particula® = 0, which corresponds to the inverse
Gaussian Lévy process, does not fit in this part.

We have: F511/2)
g (u) = (B—iu)siz

Table 2 shows that foh = n—2, with a< [1/2, 1[, the best risk is of order9/(25+1),

Example 3.The variance Gamma stochastic volatility model (see [52]).

Let (W) be a Brownian motion, and I€¥;) be a Lévy Gamma process, inde-
pendent of W ). Assume that the observed proceskiis= W, . The characteristic
function is given by:

2 AP
¢A(U)=1E(ei”LA)=E(e_%VA):< : ) .

a+¥%
The Lévy measure di;) is equal to:
nc(x) = B(20)"*|x| " exp(—(20)*/?|x]).

The density ofLy, = Z; can be computed as it is a variance mixture of Gaussian
distributions with mixing distribution Gamma(B8A, a):
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fZl (X)

= Vonr (o)

7o

2 qbf4

(20)1/2 1

X

—-BA
)27 K,

59

) A
T BA-3/26- 102 /v+2av) af

———dv

F(B2)
a3 (20)72x)

whereK, is the modified Bessel function (third kind) with indexseee.qg. [51]).
Now with & = (2a)Y?, B = B(2a)Y/4,

g(x) = [§ exp(—ax)Uysp — [3 exp(ax)Uy<o,

B 2idBu
S a24u?

g*(u)

Example 3 (continued).The variance Gamma stochastic volatility model is a spe-
cial case of bilateral Gamma process (see [50]). Considelévy process; with
characteristic function

and Lévy density

a

oW = (oriu)ﬁt (ar’ciliu)l}/t

N(X) = [X| 2 (Be™ (g 1) (X) + B'E" X1 )(X)).

Rates are given in Table (2).

Process Example 2| Ex.2 (continued)] Example 3

0 €]0,1/2] (continued)

‘() — B re+1/2) B B

g'(u) = a—iu B_up 2 |a—u o —iu

Jjuzmlg"(WFdu= || O(1/m) O(1/m?) O(1/m)
Sz, P19° (W)[?du=||  O(my) O(mi~22) O(m,)
Constraint omA nA2<1 nA2 <1 nA2<1

Selectedn = O((na)¥2) | O((na)Y/(@3+1y | O((na)*?)

Rate O((na)~*2)|0((na) 22/ O((na)~+/2)

Table 2 Choice ofmand rates in examples 2, 2 (continued), 3 (continueg)< nA).

8.1.2 Rates for the estimation on a compact set

In all the examples above, it is possible to find a compadhseich thag is of class

C” onA.
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Due to Corollary 4.1, for altr > 0, E(||g— gm|%) = O((nA)~20/(2a+1)) For the
conditions under which this rate arises, three possibdlitiappen:

1. for the compound Poisson process with Gaussian and expahéensity, we
have [ U?|g* (u)|?du < 4,

2. for the compound Poisson process with uniform dengjtthe Lévy Gamma
process and the bilateral Levy Gamma process, we lfiagey* (u)|?du = 4o
andg is bounded.

3. For the Lévys process (see Example 2 (continued)d?|g*(u)|?du = + and
gis not bounded.

ChoosingA = n~@ (see Corollary 4.1), in the first case, the best rate correbpo
ing toa — +oo is of orderO(n~2/3), for the second case, of ord®(n~2/°) and for
the third case of orded(n~%/3).

8.1.3 Comparison

To conclude, we give in Table 3 the best rate that can be adtain each example
according to the method, either Fourier method (with theS@ardinal basis) or the
time domain method (with the Trigonometric basis). The winof the challenge is
always the trigonometric basis. This is because the bmit +o is considered for
the latter basis only. However, on simulations, the Fouriethod performs better.

Process Sinus Cardinal basis  Trigonometric basis
Poisson-Gaussign log!/?(n)n~2/3 n-2/3
Poisson-Exp. n-1/2 n-2/3
Poisson-Unif. n-1/4 n—2/5
Léevy-Gamma n-1/4 n-2/5
Levy-6 n-%/(25+1) 5 € (0,1/2) n-1/3
Bilateral Gamm4 n-/4 n-2/5

Table 3 Comparison of best possible rates with the two methods.

In all cases, rates measured as powers afe slower than in classical density
estimation. The important valuengl, that should be large enough. This means that
A cannot be too small in order to keep a reasonable numbgobservations.

8.2 General case

We consider the previous examples with the addition of & dnfd a Brownian
motion and look at the rates for the estimationpodeduced from Proposition 6.1
and Theorem 6.1. We indicate in which cases the estimatianisfpossible using
the estimatorgr(r).
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Example 1.Drift + Brownian motion+ Compound poisson process.
Let

N
L; = bot + oW + Z% (8.5)
=

whereN; is a Poisson process with constant intensigndy; is a sequence afi.d.
random variables with densitl; independent of the proceds;).

Note thatEL; = b = bg + [xn(x)dx (n(x) = cf(x)). For the estimation of
p(x) = cx3f(x), the rates that can be obtained depend on the dehgitypvided
that f satisfies the assumptions of Theorem 6.1, which are eslighiéae moment
assumptions for the r.v.§. Any order can be obtained as shown in Table 4 where
rates are computed fdra standard Gaussian, an exponential with parameter 1 and
a Beta distribution with parametefs, 3) (for p to be regular enough).

As [ XI"n(x)dx < o for all r < 1 (actually, for allr < 2), estimation ob is possible
usingd (r) for any value of 0< r < 1 (provided thahA?~" = o(1)).

f(x) A(0,1) &(1) B(1,3)
p(X) = cxf (x) 0x3e 053 ¥y | Ox3(1—x)22j0,1(X)
p*(u) 0 (u® — 3u)e~\*/2 01/(1—iu)*|O(1/|uf®) for large|u|.
Szl P* () [2du O((rm)Se (™) O((rm)~7) O((rm)~®)
Sz UH1P* (W) [Pdu o(1) 0(1) 0(1)
th (best choice ofn) \/Iog(nA) — 3loglog(na)/mi| O((na)Y/®) O((na)/6)
Ratel] % (na)-7/8 (nA)-5/6

Table 4 Rates for different "Drift+ Brownian motion +Compound Psig processes”uf, <

Vind).

Example 2.Drift + Brownian motion + Lévy-Gamma process.

Consider; = bot + oW + It where(l}) is a Lévy gamma process with parameters
(B,a). We haveEL; = b = by + [ xn(x)dx and p(x) = Bx?e~ 1. o. Elementary
computations show (witj, < v/nA):

pi(w)=26/(a—iw? [

|u|>7m

prPdu=ome), [ i (wPdu=0()

—Tln

Therefore the rate for estimatinmis O((nA)~5/6) for a choicemi’= O((nA)Y/8).
As for all r > 0, [X'n(x)dx < o, 0 may be estimated bg(r) for any value of
O<r<1.

Example 2 (continued).Drift + Brownian motion + A specific class of subordina-
tors.
Let Ly = bot + oW + It where([;) is a subordinator of pure jump type with Lévy
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density of the forrm(x) = Bx3~Y2x~1e~ .o with & > —1/2 (thus [ xn(x)dx <

). This class of subordinators includes compound Poissonegsesd > 1/2)
and Lévy Gamma processa&s<£ 1/2). Whend > 0, the functiorxn(x) is both inte-
grable and square integrable (see above). Here, we canaisier the estimation
of pin the case the casel/2 < § < 0 which includes the Lévy Inverse Gaussian
process § = 0). The functionp(x) = x>n(x) can be estimated in presence (or not)
of additional drift and Brownian component. We obtain:

r(d+5/2) 5 25
“(U)=B——F and * ()| 2du= O(m~(20+4)),
p*(u) B(a—iu)5+5/2 Mznm|p (U)[“du=O( )
In the cased < 0, u*|p*(u)|? is not integrable and we have foA? < 1,
82 [ ulp(u)Pdu=A%0(uy) = o(4%?).
|ul<7thin

The best rate for estimatirmis O((nA )~ (25+4)/(25+5)) for a choicem= O((nA )/ (26+9)),
Note thatA%/2 < (nA)~(20+4)/(2+5) for nA2 < 1 and—1/2 < & < 0.

Forr >1/2— 9, [x'n(x)dx < o . Hence, to estimate usingd (r), we must choose
1/2-6<r<1.

Example 3.Drift + Brownian motion + Pure jump martingale.

ConsiderL; = bt+ oW + B; whereW,B,I" are independent process¥g,B are
standard Brownian motions, ardis a pure-jump subordinator with Lévy density
nr(y) = By>~Y/2y~le~9V1,. 4 as above (assumingy> —1). The Lévy density(.)

of (Lt) (and of (X = Bp;)) is linked withnr (see (3.3)) and can be computed:

2B X \5-1
n(x) - \/ETKéil(\/EP(D(\/%) )
whereK, is a Bessel function of third kind (MacDonald function) (s=g.[3]).
Ford =1/2, B, is a symmetric bilateral Lévy Gamma process. Bet 0, By; is
a normal inverse Gaussian Lévy process. The relation @l8ys to check that
the functionp(x) = x>n(x) belongs taL' N1.? and satisfies (H4-p) fod > —3/4.
Moreover:

ooy o (Wr(3+5/2) _ur(5+3/2)
=8 (G o a wat)
Thus, withnA2 < 1,

/H Ip*(u)Pdu=0(m3) and AZ/ W p* (u)|2du= A20( ) = O(4%/2).

|u[<TTtin

The best rate for estimating is O((nA)~%/4) obtained fomi= O((nA)Y/4). We
haveA%? < (nA)~%/* asnA? < 1. As [y/?nr(y)dy < o for r > 1—5/2, the
estimation ofg by & (r) requires - /2 < r < 1. Therefore, we must have> 0.
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9 Simulations

(a0) h = 0.42 (0.04) (b0) h = 065 (0.1) (c0)h=0.08 (0.02)

(al)rh=0.85 (0.05) (b1) = 0.7 (0.09) (c1) = 3.0 (0.66)

(a2) M= 0.91 (0.03.) (b2) i = 0.88 (0.08) (c2) i = 5.26 (0.89)

(a3) Dy, = 5.08 (0.34) (b3) Dy, = 4.8 (0.90) (c3) D = 15.4 (4.9)

Fig. 1 Estimation ofg for a compound Poisson process with Gaussian (first coluBxpenential

& (1) (second column), and uniforr ([0, 1]) (third column)Y;’s, c = 0.5. True (bold black line)
and 50 estimated curves (dotted red), i&ft= 0.2 n = 5000: Kernel estimator (first line), Sinus
Cardinal basis (second line);= 0.05,n = 5.10* Sinus Cardinal basis (third line), trigonometric
basis (fourth line).
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In this section, we illustrate on numerical simulated datagerformance of the
estimators.

9.1 Simulationsin the pure jump case

The adaptive estimation methods of Section 4 were impleatkntthe three cases:
kernel method, deconvolution (Sinus Cardinal basis) atichaton ofg on a com-
pact subset using trigonometric bases. Lévy processesnlamong the examples
given in Section 8.1 were simulated. Precisely,

1. A compound Poisson process with Gaussidf0, 1) Y’s, g(x) = cxexp(—x2/2) //2Tt.
2. A compound Poisson process with Exponenfigl) Yi's, g(x) = cxe *Uy-0.
3. A compound Poisson process with Unifo@n([0, 1]) Yi’s, g(x) = cxlljo 1)(X).
4. ALévy-Gamma process with parametérsf) = (2,0.2), g(x) = Bexp(—ax)ly-o,
5. A Lévy-Gamma process with parametéosf3) = (1,1),
6. A Bilateral Leévy-Gamma process with paramet@sf) = (a’, ') = (2,0.2),
g(x) = Bexp(—ax)Ux=0 — B’ exp(a’x)Ux<o,
7. ABilateral Levy-Gamma process with parameters3) = (2,0.2) and(a’, ') =

(L,1)

The implementation of the adaptive method requires théielon of the constant
K in the penalties. This is a difficulty of the method. In preetithe penalty constant
is usually calibrated by preliminary simulations. Aftersthivas done, the constant
k was taken equal to 1.5 in the kernel method, to 7.5 for the miestation and
to 1 when using the trigonometric basis. The bandwlidtias chosen among 20
equispaced values between 0.01 and 0.75 with a standargi@akernel, to ease
the computation of the iterated kerngl x Kyy. The cut-offm was chosen among
100 equispaced values between 0 and 10. The dimebgiamas chosen among 80
values between 1 and 80. We used in both cases the expres$dtoan @stimators
using their coefficients on the bases. In the Sinus Cardizse cthis avoids high
dimensional matrices manipulations, but the series hawmtyuncated (we kept
coefficientsamj for |j| < Ky with Kp = 15).

Results are given in Figures 1 and 2 where 50 estimated carggsotted on the
same figure to illustrate the weak variability of the estionain Figure 1, estimation
results for compound Poisson processes are plotted. Thdiriesillustrates the
kernel method, the second and third lines give estimatignlt® with the Sinus
Cardinal basis and the fourth line concerns the trigondmbésis. In the first two
lines, we choose& = 50004 = 0.2 (nA = 1000) and in the last two lines, =
5000QA = 0.05 (nA = 2500).

Figure 2 illustrates the estimation of Lévy Gamma modatsthe first two
columns, curves are estimated by Sinus Cardinal basise sl last columns con-
cerns the trigonometric basis.

It is clear from both Figures 1 and 2 that increasiayimproves the result by
showing a thinner variability band. Comparing the last tine$ of Figure 1 and
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the last two columns of Figure 2 amounts to comparing theoperénce of the two
bases. It appears that the Sinus Cardinal must be prefezpedibe the trigonomet-
ric basis has very important edge effects for highly dissywtiio densities: see in
particular the exponential-Poisson, and the Gamma casehwtart with a peak
and end at zero. The kernel and the deconvolution methods teeleave analogous
performances.

On top of each graph in Figures 1 and 2, the mean of the seleateds forh,
m (sinus cardinal basis) or fdds (trigonometric basis) is given with the associ-
ated standard deviation in parentheses. Various valueshaszn by the estimation
procedure, and in each case, the standard deviation exhil@asonable variability.
This is an indication that the constants in the penaltiesadezjuately chosen: too
small constantg imply very unstable choices for the same model, while greate
K's quickly lead to null standard deviations for 50 samplehpalNote also that the
higher the regularity of), the smaller the selected/fi's, its andD’s (which is
coherent with order®(n*(2¢+1)) for a regularitya). The uniform-Poisson case
involves larger values for/h, M, Dy, than the two other Poisson cases, for instance.

9.2 General case and comparisons

In this section, we present numerical results for simuldtedy processes corre-
sponding to Examples 1 and 2 of Section 8.2. For these mottelsfunctions
g(x) = xn(x), £ and p belong tol.! NIL?(R). Thus, we can estimaggwhenbg = 0,

o =0,/ wheno = 0 andp whenao # 0. The estimatorgg, /m, pm using the sinus
cardinal basis were implemented (see (5.6)-(5.14) ang-(6.8)). After prelimi-
nary experiments, the numerical constantg’ appearing in the penalties were set
to 7.5 forg, 4 for ¢ and 3 forp. The cut-offmwas chosen among 100 equispaced
values between 0 and 10.

Figure 3 shows estimated curves for models with jump partiegrfrom com-
pound Poisson processes (see (8.5)) wher¥ thare standard Gaussian, Exponen-
tial £(1), andB(3,3) rescaled orf—4,4]. The intensityc is equal to 0.5.

Figure 4 shows estimated curves for jump part of Leévy Gamnh lalateral
Lévy Gamma type. The bilateral Leévy Gamma process is tfierdhcel; — I’ of
two independent Lévy Gamma processes.

On top of each graph, we give the mean value of the selectedfcufith its
standard deviation in parentheses. This value is surgfhisismall. As expected,
the presence of a Gaussian component deteriorates theasistimwhich remains
satisfactory on the whole.

Generally, authors estimatg.) on a compact set separated from the origin (see
e.g.[31]). Settingn(x) = §(x)/x, we have the obvious inequality

R 1 a4
E([|(f—n)1g/[_aqll’) < L8~ 9.
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(al)f=2.32 (0.39) (a2) = 3.74 (0.64) (a3) D = 13.8 (2.7)

(b1) h=1.85 (0.23) (b2) = 3.58 (0.36) (b3) Dy = 21.3 (3.4)

(c)m=3(0.5) (c2)m= 5.1 (0.64) (c3) Dy, = 26 (3.9)

o o

0.05] “' 0.05]

of e M o e
-1 E -0.1]

. 018

(d1) =2 (0.24) (d2) = 4.12 (0.35) (d3) D = 28.5 (2.8)

Fig. 2 Estimation ofg for a Leévy Gamma process with parameténs 3) = (2,0.2) (first line),
(a,B)=(1,1) (second line), a bilateral Levy Gamma process with parareét, 3) = (a’, ') =
(2,0.2) (third line) and a bilateral Levy Gamma process with paremse(a, ) = (2,0.2),
(a’,B")=(1,1). True (bold black line) and 50 estimated curves (dotted teffyA = 0.2 n= 5000,
Sinus Cardinal basis; centey,= 0.05,n = 5.10%, Sinus Cardinal basis; rightt = 0.05,n = 5.10%,
trigonometric basis.
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Estimation ofg(x) = xn(x) Estimation ofé(x) = x2n(x) Estimation ofp(x) = x3n(x)
bp=0,0=0 bp=0.25,0=0 bp=0.25,0 =0.5
(al)m=0.91 (0.03) (a2) m= 1.01 (0.05) (a3)m=0.86 (0.19)

(b1) M= 0.88 (0.08) (b2) m= 0.62 (0.09) (b3) M= 0.45 (0.09)

(c1) = 0.60 (0.00) (c2)m=0.75 (0.11) (c3)m=0.87 (0.12)

Fig. 3 Variability bands for the estimation gf ¢, p for a compound Poisson process with Gaussian
(first line), Exponentials’(1) (second line) angB(3,3) rescaled or{—4,4] (third line) Y;'s,with
¢ = 0.5. True (bold black line) and 50 estimated curves (dotte}} #e= 0.05,n = 5.10".

Analogous inequalities hold far(X) = £(x) /x? or A(x) = p(x)/x%. In Figure 5, the
estimator ofn(.) deduced by dividing by the correct powenofs plotted, exclud-
ing an interval—a,a] around zero. To obtain correct representatians,0.1 suits
for §(x)/x, a= 0.5 for £(x) /x> anda = 1 for p(x)/x3. The results are satisfactory
and in accordance with the difficulty of estimating) without or with Gaussian
component.

Tables 5 and 6 show the means of the estimation results fof£(L1) = by +
/xn(x)dx (see (7.1)) andr, with standard deviations in parentheses.
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The estimation ob is good in all cases, and especially wheh is large. The
estimation ofo is clearly more difficult, with noticeable differences amting to
the values oh andA. WhenA is not small enough, the estimation can be heavily
biased. In accordance with the theory, whénhsmaller, the estimator af is slightly
better (smaller bias). Table 7 shows the valuesst andnA?~", which should be
small for the performance of the estimator to be satisfgctois worth noting that
o is constantly over-estimated.

Estimation ofg(x) = xn(x) Estimation off(x) = x?n(x) Estimation ofp(x) = x*n(x)
bo=0,0=0 bo = 0.25,0 =0 bo = 0.25,0 = 0.5
(al) = 3.58 (0.36) (a2) = 0.93 (0.09) (a3) M= 0.58 (0.09)

(b1) M= 3.58 (0.27) (b2) m=0.81 (0.11) (b3) M= 0.41 (0.04)

Fig. 4 Variability bands for the estimation @f, ¢, p for jumps from a Lévy-Gamma process with
B =1,a =1 (first line), a bilateral Lévy-Gamma process wifh a) = (0.7,1),(8’,a’) = (1,1)
(second line). True (bold black line) and 50 estimated aifdetted red)A = 0.05,n = 5.10%.

10 Compound Poisson processes

This section is devoted to compound Poisson processes wahéch special case
of Lévy processes with integrable Lévy measure. Compdroigson processes are
widely used in practice especially in queuing and insuraheery (seee.g.[27]
and references therein, [47] or [59]). The results giverelage based on the paper
[16]. One advantage of the approach is to weaken the constran the sampling
interval. Let(X,t > 0) be a compound Poisson process, given by
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Model (n,A) (5.10%,0.05 (5.10%,0.01) (5.10%,10°%) (10%107%)
Poisson b(=1) |1.000(0.02) 0.997 (0.04) 0.995 (0.123) 1.001 (0.280)
Gaussian 6(1/2) 0.602 (0.03) 0.527 (0.002) 0.504 (0.002) 0.504 (0.005)

6(1/4) 0.589 (0.03) 0.521 (0.002) 0.503 (0.002) 0.503 (0.002)

Poisson  b(b=15) |[1.502(0.05) 1.502 (0.051) 1.494 (0.142) 1.461 (0.359)
Exp(1) 6(1/2) 0.611 (0.003) 0.530 (0.003) 0.505 (0.002) 0.505 (0.005)
6(1/4) 0.594 (0.003) 0.522 (0.003) 0.503 (0.002) 0.503 (0.005)

Gamma b(b=2) |2.001(0.02) 2.000(0.05) 1.998(0.177) 2.018 (0.335)
(1,2) 6(1/2) 0.705 (0.004) 0.562 (0.003) 0.512 (0.002) 0.513 (0.005)
6(1/4) 0.677 (0.004) 0.548 (0.003) 0.508 (0.002) 0.508 (0.005)

Bilateral b (b= 1.4286)1.426 (0.035) 1.4286 (0.076) 1.4493 (0.264) 1.405 (0.619)
Gamma 6(1/2) 0.862 (0.005) 0.628 (0.004) 0.526 (0.003) 0.526 (0.006)
0.7,1), (1.1) 0&(1/4) 0.798 (0.004) 0.593 (0.003) 0.516 (0.002) 0.515 (0.006)

Table 5 Estimation of(b, o), bp = 1, the true value df in parenthesisg = 0.5, K = 200 replica-
tions.

Model (n,4) |(5.10*,0.05) (5.10*,0.01) (5.10*,10°%) (10*,1079)
Poisson  b(1) [0.999 (0.025) 1.005 (0.059) 0.998 (0.178) 1.025 (0.85)
Gaussian  6(1/2) |1.082 (0.005) 1.026 (0.004) 1.006 (0.004) 1.005 (0.009)

6(1/4) [1.072(0.005) 1.020 (0.005) 1.004 (0.004) 1.003 (0.01)
Poisson b (1.5) [1.510(0.026) 1.498 (0.06) 1.481 (0.190) 1.485 (0.442)
Exp(l)  6(1/2) |1.096 (0.005) 1.030 (0.004) 1.006 (0.004) 1.006 (0.009)
&(1/4) [1.080 (0.005) 1.022 (0.004) 1.003 (0.004) 1.003 (0.010)

Gamma  b(2) [2.00(0.026) 1.995 (0.068) 1.991 (0.196) 2.023 (0.195)
1) &(1/2) |1.172(0.005) 1.062 (0.005) 1.014 (0.004) 1.014 (0.004)
6(1/4) [1.152(0.005) 1.050 (0.005) 1.010 (0.005) 1.010 (0.004)

Bilateral b (1.4286) 1.425 (0.04) 1.431(0.10) 1.429 (0.28) 1.492 (0.63)
Gamma  6(1/2) |1.330 (0.006) 1.136 (0.005) 1.033 (0.005) 1.033 (0.01)
(0.7,1), (1.1) 6(1/4) |1.284 (0.006) 1.105 (0.005) 1.022 (0.005) 1.022 (0.01)

Table 6 Estimation of(b, 0), by = 1, the true value ob in parenthesisg = 1, power variation
method for estimation off, K = 200 replications.

(n,4) |(5.10%,0.05) (5.10%,0.01) (5.10%,10°3) (10%,10°3)

nA 2500 500 50 10

nA2 125 5 0.05 0.01
nA2-1/2 559 50 1.6 0.3
nA2-1/4 264 16 0.3 0.06

Table 7 Values ofn, A, nA, nA2, nA2~" forr = 1/2 andr = 1/4.

Ne
X=7Y &, (10.1)
25
where (§j,j > 1) is a sequence dfi.d. real valued random variables with den-

sity f, (N;) is a Poisson process with intensity> 0, independent of the sequence
(&j,1 > 1). The densityf and the intensityc are unknown. We are interested in
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Estimation ofn(x) = g(x)/x Estimation ofn(x) = h(x)/x? Estimation ofn(x) = p(x)/x>
bp=0,0=0 bp=0.25,0=0 bp=0.25,0=05
(a1) (a2) (a3)

Fig. 5 Variability bands for the estimation of(.)1|_, 4 for a compound Poisson process with
Exponentials’(1) (first line) and Gaussian (second line) jump densities, aih0.1 (first column),

a = 0.5 (second column)a = 1 (third column). In all cases; = 0.5, n = 50000,A = 0.05; 25
estimated curves (thin dotted) and the true (bold line).

adaptive nonparametric estimationfofrom discrete observatior{Xj,, j > 0) and
the resulting estimation of the Lévy densitfx) = cf(x) where the intensitg has
to be estimated too. As compound Poisson processes aresitingh general Lévy
processes, specific methods for estimating the jump digtoib have been investi-
gated. The estimation df is often called decompounding (see for instance, [12],
[28] or [25]). We adopt the point of view of [28] to define thesdiete observations
of the sample patfX).

Recall that the common distribution of the incremexi{s — X_1)4 is equal to

Py, (dx) = &% &(dX) + (1 — & “)ga (x)dx, (10.2)

where &y is the Dirac mass at @, is the conditional density oK, given that
Xa 7é 0:

e (A" im
qAzzl—e*m m! =

m>1

(10.3)

and f*™ denotes then-th convolution power off. As null increments provide no
information on the density, we assume that the sample pathis discretely ob-
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served until exactlyr increments are nonzero. Such observations can be described
as follows. Let

S =inf{j > 1,Xja — X(j-1)a # 0},
S :Inf{] >S—17XjA_X(j—l)A7é0}7i >2, (104)

and set
Zi = Xga — X(s-1)a- (10.5)

(For the sake of simplicity, in this section, we use the sam&tion Z; for the
above increments). Assume that #g’s are observed foy < S,. Thus,(S,Z),i =
1,...,n are observed. Proposition 10.1 gives the joint distributib these obser-
vations. In particular, it is shown thah, ..., Z, is an-sample of the conditional
distribution of X, given thatX, # 0 which has densityg,. Therefore, the estima-
tion of g, is possible using the samplg, ..., Z,. On the other hand, estimators of
ccan be based of&,...,S).

We use the following method to build an estimatoifoiThe operatof — g :=
Pa f can be explicitly inverted. Provided thedd < log 2, the inverse operatcE’rA*l
admits a series development implying that:

(~)™ (e — )"
m cA

f=Plaa)=3 " (10.6)

m>1

Consequently, truncating the above development and kg&pinl terms,f can be

approximated:

K+1/ q\m+1 _1\m

PO S Gt
m cA

m=1

qm. (10.7)

The approximation is valid for smal\. To estimatef, we replace, form =
1,...,K+1, (¢ —1)M/cA by adequate estimators and eagfi by a nonpara-
metric estimator based on the observati¢as j = 1,...,n) given by (10.5). The
interest of the method is that, from timesample of the densitg,, \/n-consistent
nonparametric estimators of the convolution pogggt, for m> 2, can be built (see
e.0.[60]). Here, we adopt the method described in [14]. Of course 2 is fixed
and should not be too large. To simplify notations, we onetdependence ah for
ga and set

a=a, gM=g" (10.8)

First, we deal with the parametric estimationasdind the coefficientsyn(A). Sec-
ond, the estimation af*™is described. Finally, the estimatorsfondcf are given.
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10.1 Parameter estimation

This section concerns the estimationcatnd the coefficientsy(A),m > 1 appear-
ing in the series development (10.6) bf This relies on the joint distribution of
S.Z,i>1.

Proposition 10.1 Let =0 and $,Z,i > 1 be given by (10.4)-(10.5). We have,
foralli > 1,P(S < +w) =1, (S —S-1,Z),i > 1are independent and identically
distributed random couples. Fork 1,

P(S1=kZ1 <x) = WD (1—e )P(Xy < x|Xa #0).

Consequently,ssand 2 are independent, the distribution of & equal to the condi-
tional distribution of % given X, # 0, S has geometric distribution with parameter
1—e%. Moreover, the random variablé$;, Z;,...,S—S1,Z,...,S—S1,Zn)
are independent.

Proof. To obtain the joint distribution ofS;,Z; ) is elementary using that the incre-
mentsXja — X(j_1)a arei.i.d.. The processxij =X+Xja, | > 1) is strong Markov.
We denote byPy its distribution on the canonical spa&e’, denote by(Xj,j > 0)
the canonical process &' and by.Zj = g (X, k < j) the canonical filtration. Let
6 : RN — RN denote the shift operator. Consider the stopping times builthe
canonical proces§ = 0,

S=inf{j >S5 1,X] - Xj_1#0},i > 1,
and let
Zi=Xs —Xs_1.

Because th&'s are built using the incrementX; — X;_1, j > 1), their distributions
underPy are independent of the initial conditionWe haveS =S_1+ S;06s ;.
The proces$Xs ,+j—Xs , = (Xj —Xo) 005 ,,j > 0) is independent of”g_, and
has distributiorPg andz; = Z; 0 85_,. Consequently,

Ex(9(S —S-1)¢(Z)|Fs_y) = Eo(¢(S)P(21))-

By iterate conditioning, we get the result.

Let us now turn to the estimation of,(4) for all m> 1 andc. For this, we use
the sampléSy, ..., S,) which is independent of the samgl,, . .., Z,). As we deal
with a semiparametric problem, we need find estimators withgutableL2-risk.
So the simple plug-in of the exact maximum likelihood estionaf c is not suitable.

Proposition 10.2 Assume that € [c, ¢1] with ¢g > 0 and gA < log(2)/2. Let

¢

F(f)::%-mngji (10.9)

and form> 1
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1

Hm = 10.10
O e (10.10)
Define
1 S 1
On = {”ezclA_lS n §1+eco/(2ﬂ)_1}’
cm(4) = Hm(Si/M) 1o, €=F(S/n) 1o, (10.11)
Then,
— 2(m71)
£ (enld) - cn() <G E(E-of< S (10.12)

where G,,C have an explicit expression as functionsgt¢ and m.

Note that the bounds are non asymptotic and the exact valtieeatonstants
Cm,C can be deduced from the proof.

Proof. We start with the estimators of,(4). Let us set

-1
_1_ab_

p(Ay=1-¢€ gt

An elementary computation yields:
X . . 1 1
CA:Iog(XT1) with x:=x(4) = p(A)71+eCA—1>1’
and o .
-1

As the standard maximum likelihood (and unbiased) estintdtd/ p(A) computed
from the sampl€S —S_1,i =1,...,n) is S/n > 1, we are tempted to estimate
Hm(X) by Hn(Ss/n). This is not possible &S,/n may be equal to 1. This is why we
introduce a truncation. Sep=A/(€94/2—1), uy=A /(€4 —1),u=A/(e* —

1). Note that

1+ 2 ax=1+ 7 <1+2 Qu={1+2< % <1+20) (1043)
We have o
Cm(A) —cm(A) = Hn(Sh/n)1g, — Hm(X) = A1 + A2
with
A1 = (Hm(Sh/n) = Hm(X)) Loy,
and

A= 7Hm(X)1Qr<1I.
Oon Qp,
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—x2  sup  (Hn(é)2

Ee[1+9 1+ 0]

(Hm(Sn/n) — Hm(x)) < (

S|P

As
/ m 1

H = - 5
e (E—1)™ log gy Ty log? £+

we have, for§ € [1+ %71+ %],

/ 2A™ 2
H < = ).
| m(E)| — Coum+l <m+ ulCO>

1

Writing thate?a? — 1 = 2¢c;Ae?%4 for s€ (0,1) and using that@&A < log(2), we
get 1/u; < 4c;. As

E(— —x

n (

A)  n(ed _1)2(N naz)
we obtain, using®® — 1 > cA > cA:

2(m-1) 2(m+1) 2
A ,withcg]%<m+%) .
Co Co

EA] <C,

Then, we have, settingh =up—u>0, ay =u—u; > 0,

P(QS) :P(% < 1+%) +IP’(S” > 1+@)

n A
A S S A
@_AF >a)+PA=——— > a)

n  p4)
- 1 1. AZes 1
<Gt nem 12 n)

:IP(

Thus, noting thatip —u > 1/(2¢;) andu—u; > 1/(4\/500),

where
(401)2(m—l)

Cn=4v2[8c5+cf] —5—
0

The proof is complete witky, = 2(C/,,+ C/})-
We proceed analogously for studyingAs x = 1+ (¢4 —1)~t andcy < ¢ < ¢y,

supF (x) = 2¢;.
X
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The derivativeF’(x) = —(Ax(x— 1)) ! satisfies,

(12 —1)?
SED|F/(X)| = A&ad
Therefore,
€—c)?< (% —x)%4c2A%6"4 1 2¢11qe.
Thus,

2
C
E(6-0)? < 16v2-T +26,P(0f) = .

nG

10.2 Estimation of the m-th convolution power of a density from a
n-sample

This paragraph relies on [14]. Consideridam. sample of variableZ;, ..., Z, with
densityq and characteristic functiog*, the Fourier transform of. As (g*)™ is
the Fourier transform of*™, [14] propose to estimat@y*)™ for all m> 1, by its
empirical counterpair(*(t))™, where:

n .
> eti, (10.15)
=1

Fourier inversion leads to the estimator with cut-aff

o 1 m
*M _ —ItX [ ok m
() = Zn[me (G (1))t (10.16)
The following bounds hold.
Proposition 10.3 Form> 2 and all t,
— i 1 ()2
B@)T) - @O < 6 (1 + T ) (10.17)

wheredéy, is a constant which does not depend on n nor on g, increasitignvand

—

(a)™M(t) = (G(t))™. Consequently,

— 1 d  Jal?
E *M *m2<_/ M 2 el ) 10.1
(log™ = a™1%) = 577 [ (@) Ot En | Tr - (10.18)
Proof. First we state a useful Lemma.

Lemma 10.1 Let (u,v) € C? such thatju] < 1 and |v| < 1. Then, for any integer
m> 1, we have
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U™ — V™| < [u—V|™+ Em|u—V]|V|,
with Ep = (3M—2M— 1) /2.

Proof of Lemma 10.1Form= 1, the desired inequality is obviously satisfied with
Em = 0. Let us now investigate the case> 2. By the binomial formula

V"= r:i (r:)vk(u —y)mk

m—2 m
= (Uu—v)"+ (u—v)kaO <k+ 1)\/‘((uv)m—2—k_
Asjul <landjv|] <1,
U™ — V™| < |u—V|"+Em|u—V||Vv|,
with
Em2m2g<krl)2 %(3”‘72"‘71).

Lemma 10.1 is provedl

It follows from the inequalitie$q*( )| <1,|g*(t)| < ||q||1 =1, Lemma 10.1 and
the elementary inequalitik +y)? +y2 x,y) € R?, that

(@ (0)™ = (a"®)™? < 2(1§" (t) — a" (O "+ EZ" (1) — a"(©) P|a* (1)) -
Then, the Rosenthal Inequality implies the existence ofrestamtC,, > 0 such that
E (|6°(t) = " (t)") < Cm/n"

This implies that

- . 1 1,
B((E O~ (@ O") < én (5 + JIOF). (1019)
This end the proof of (10.17).
For the second inequality, setting
a5 (x) = ] / " (q°(1)Me™dt, xeR (10.20)
d 21T - ’ ) .
we obtain the usual decomposition
E (g™ ™) <2(l6g™ - MR+ E (g™ M), (20.21)

with
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*M *mj|| 2 1 / * 2m
— = t)|°Mdt, 10.22
o™= ™" = 27 fopo 9 ) (10.22)
E (|l o) = 5 | ™ B0~ (o ()" P)et (10.23)
d 27_[ .
and -
| et < i3 = 2mlal3 <C. (10.24)

It follows from (10.21), (10.22) and (10.24) that

— d 1
*xM __ ~xM 2 =
E(”qd H <nm+ / dt) <nm+n)' (10.25)
Plugging (10.25) and (10.22) in (10.21) implies Inequ&(it).18).

We can discuss now the rates of convergence implied by theegiroposition.
Let g™ belongs to the Sobolev clagg(am,Rm) (see (4.14)). Thd.?-risk bound
becomes

o 2
(G- ™) < Rodd 20+ 6 1+ 1),

Choosing a trade-off bandwidéape = Cri™ (?2n+1) 'we get a risk bound fd]E(||qdopt

q||?) of order maxn—2man/(2am+1) n-1) |f 2may/(2am+1) > 1,i.e. 2am(m—1) >
1, the risk rate has ordey/ . This occurs for instance ifi > 2 andam > 1/2.

10.3 Estimation of the jump density

The Sobolev regularities df andq with q= g, are linked. Recall that for any func-
tionh € L1(R) NL2(IR) we denote by the function defined bty = h*1_ g 1)

Proposition 10.4 Let the density f belong t&(a,L) (see (4.14)). Then q defined
by (10.3) and (10.8) belongs #(a,L). In particular,

lall < [I]l.

Proof. Considerf integrable with| f|1 = [|f| and square integrable such that
[(1+x2)3|f*(x)[2dx< L. Then



78 Fabienne Comte and Valentine Genon-Catalot
/ <1+x2>a|q*<x [2dx

m k ,

) w(w)

m!

1772 [ @451 (0l

l

2
e \’ 1 (&)™ < im
<L —cA | 712 ] f
1-e [T \isn ™

2

e exp(cA||f|1)1>

=L =L(A) < 400
<1e‘m [[f]l2 -

As f is adensity||f||1 = 1 andL(A) = L. This implies the announced result fipr

We assume now thate [cp,c1] with c;A < log2/2 and consider the estimator
fi g given by
. K+1(4,)m+l,,a\\/ﬂ\
fea) =3 Cm(4)dg(X). (10.26)

m=1

Wherem is the estimator ofn(4) givenin (10.11).

Proposition 10.5 Assume that € [cp,¢1] with ¢ > 0 and gA < log2/2. Then the
estimatorfy 4 is such that

5 10d 58
E()|fea— 1) < = / 1% (0)]2dt+ = 4+ BAAKT2 L 2K 1007y
211 ] n n
with
f
Ac =6 (K”+|2) (vV/2¢)2K+2, (10.28)
K+1 ma~2(m-—1)
B = 2(K+ (112 f[){Cy+ a7 y Cmt2 nc; S p2m-2y (10.29)

m=2

where G, &y, are the constants appearing respectively in (10.12) and (7).

Proof. Recall thatf* = 3.1 ((—1)™?1/m)cm(4)(q*)™ (see (10.6)-(10.7)). Lety
be such thafy = f* 1|y ) andfk ¢ be such that

* &t (_1)m+1 )\ M
fk.d = L, m] ng - cm(4)(q°)
Define
K+1 m+1 o
fka(X) = Z ( 1% cm(A)ggM(x), with cm(A) = (eCACA1) ,  (10.30)
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so that:
K+1 (_ 1)m+l o

(fea)” =L mam 3 em() (@)™

m=1

We distinguish the first term of this development from thecotbnes and set

m
— ) o () on
fkd=fka +Zfka, with fxq = c1(A)gyt = c1(A)Ga. (10.31)

Analogously, withgq such thatly = q" 1|_ g, )
_ i £ (D) _
fK,d = fK,d Jr%fKﬁ, with fK,d =c1(A)qq (10.32)

The following decomposition of the-norm holds:

— — Q)
I — Feall < IF — fall + 11 fa — ficall + 1% — Fra

20— Z gl + | Tea — Trall,

which involves two bias terms and two stochastic error teifhe first bias term is
the usual deconvolution bias term:

1
I falP =5 [ It
21 [t|>rd
Noting that
* * - _1)m+l *\M
fa — fa =1 md,m) - cm(2)(g)"™,
m=K+2

we get, using thalg*(t)| < 1 and||q|| < || f|| (see Proposition 10.4):

2
dt

2mi|fg — ficall® = [Ifg — f, H2=/ cm(A)(q")™(t)
d Kd m m:ZJrZ m "

nd} @ (—q)mt

rd 1 . 2
<[ (m;ﬂacmmm <t>|> dt
2
gzn|q|2( gzﬁcmw)
mRK+

2m|f|2 [ (6P —1)K+2\?
—<cA>2<K+2>2( 2— e )
_ A f|2(v2ca)*+2
= (K+2)2(2—¢4))2

< 2mAKAKF2?, (10.33)

where in the last line, we have usef2 —e%)? < 1/(2—+/2)?<3ande” -1 <
v/2cA andA is given in (10.28).
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To study the next term, we recall thﬁ(|(q*/)(\t) —(g)(1)[?) < 1/n. Then we
get

2 (1~ fea17) = [ 2 (e @0 - @0l ) o
_ 2miey ()2 _ 4

& - (10.34)

sincecy(A) < V2.
Hereafter, we use inequality (10.17) of Proposition 10.3.

i) (H%fK,d—%Hz)

- (
g/; K+1Kilmzcm (t)|2)dt

< ZmKilfg [cm(A)]? (g &)

K+ ( )m+1 .

This yields, sincem(4) < (v2)™(cA)™ ! andd/n< 1,

—~— D
IE(II«%’fK,d—%’fx,dllz) < TK (10.35)

with o1 c2
+ 2m m-1 g 1
o=k 'S 2 gy (L4 )

nm-

For the last term, we use Proposition 10.2, with the facttﬂlmtestimator@
and(g*)™(t) are independent, and write
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2
K+1 )m+1 P —
(cm(@) — em()) [(a)™(1) ~ (@)

278 (|| fica — fcall?)

e (
o[ (
" (

K+1 md

2
dt)
<2k 5 = {2 (e -cnia))’| [ B [l@0 - @] o

< (@) - en(@))’] [ jorPnar)
Cy,2md

< 2(K+1) {—(— +2m1q||?)
RS e [ b o]

— 2nE
mE(IIfK,d—fK,dHZ)é nK (10.36)

K+l )m+1 (/\

cn(4) —Cn(A) ) (@)"(1)

K+1 >m+l

(cm(8) ~ cnl(a)) (@)™ (1)

Therefore

using thad/n< 1 and

B = 2K+ 1) 1+ o) + 3 T5a% V(g + 2] >]

This ends the proof of the result wibk + Ex < Bx and||q|| < || f].
If f €%(a,L), choosingd = d* 0 n~(22+1) inequality (10.27) yields

E(||fea — f[|?) < Cn /(241 | 5A AK+2 (10.37)

Usually, in high frequency data for continuous time modedtgs are measured in
terms of the total length time of observation which is hereadtp S,A. Evaluating
this random value astends to infinity A tends to 0, we get that

7Sn A n
SnAanAN@nNE.

The total length time of observation is asymptotically egignt ton. FornA2<+2 <
1, the result is comparable to the one obtained in Proposiid with a weaker
constraint oA which now depends oK.
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As in Section 4, we propose an adaptive selection procedurehioosing the
cut-off parameted in a restricted sefl, ..., Ly} with Ly < n. Let

R — d
d= arglgrégrﬂn{ | fk a |+ pen(d)}, with pen(d) = k .

We can prove the following result.

Theorem 10.1 Assume that f is bounded ang K n. There exists a numerical
valueky such that for any larger thankgp, we get,

E(|[ficq—f11%) < 4, min {]If —fall*+ per(d)}

/

B« C
+32AAZKH2 szTK +—. (10.38)

where C is a constant.

Comparing the above inequality with (10.27), we see thae#tgnator is adaptive
as its risk automatically realizes the best compromise éetwthe squared bias term
(first one, inside the min) and the variance term (secondiosi&e the min). The
last two terms are standardly negligible. For the terPA@22<+2, either the sam-
pling intervalA for givenK is tuned to make it negligibled(1/n)) orn, A are given
andK is chosen so thatA?K+2 ~ 1.

Using the estimatoe §iven in (10.11), we can conclude for the Lévy density.

Corollary 10.1 Let n(x) = cf(x) andfix q(x) = (‘:fAK,d(x) with € given in (10.11).
Then under the Assumptions of Theorem 10.1,

A — c
E([|f g —nl?) < 3CE(|If g — fII°) + -

The corollary is straightforwardly obtained by writing
fica—N=c(fca—f)+(@E—0)f+(€—c)(fka—T).

Then the bound follows from Proposition 10.2 and Theorem.10.

Proof of Theorem 10.1e use the subspacesSfintroduced in (4.15) to show that
the estimatorsi},l < L are minimizers of a projection contrast. The difference
here from definition (4.17) is that we need the maximal sffagen the contrast
definition. Let

W(t) = 1t —2(t. Fc ).
Note that, ford < L, andt € Sy, ya(t) = [|t]|2— 2(t, fx 4), and

argmimn(t) = fica, with  ya(fca) =~ ficall”

Now, the steps of Theorem 4.1 can be followed. #af« < L,, s€ & andt € &,
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W(t) = yh(s) = [t — FIP = [|s— F|[?—2(t—s T, — )
and(t—s, f, — f) = (t—s T, — fi,). By definition ofd,
V(T ¢) +pen(d) < ya(fia) + per(d) < ya(fa) + pertd).
Thus, we obtainyd € {1,...,Ln},
Ifeq— Fl1% < Ilfa— f][2+pen(d) + 2(f g— fa, T L, — fL,) — per(d)

1 —
< [lfa— FI12+pertd) + 4]l g — fall

+4  sup  (t,Tyo, — fu)2— per(d) (10.39)
teSy+Sq.litl=1
Then 1 1 1
alfca—fall® < Slifeg— T2+ 51— fall® (10.40)

Now, we use the specific decompositions (10.31) and (10.32):

(t, fictn — fro) = & fin — fion) +(t fo, — fﬂ,&
F BT — B L) + (t fici, — fLo)-
By the Cauchy-Schwarz Inequality and ffif| = 1, we have

(t, Tt — fLn)? < 4l Tl — Tria |2+ 41 2T L, — 2 i Lol

()

4 fr, — fLl?Hat T — fGL)2 (10.42)

Thus, inserting (10.40) and (10.41) in (10.39) yields

1, — 3
5Tca— fIP < SlIfa— f117+16] fic .y — Lo
+16] T L, — T L2+ 16| % Tk L, — Z Fic L, |12+ pen(d)

——(1 -~
+16 sup (t, fK,Ln( - fé%ﬂn>2—per(d)

teS,, g lltlI=1

Here, the bounds of Proposition 10.5 can be applied. Inde@338), (10.35) and
(10.36) are uniform with respect tband imply

kLo — fLall? < AkAZETD E(|| %k L, — 2 i La]|?) < D/,

E(]| k.o — fici?) < Ex/n.



84 Fabienne Comte and Valentine Genon-Catalot

Below, we prove the following inequality which is to be comgéawith Lemma
4.1:
CI
— 10.42
= (10.42)

€SyvarlItl=1

—(1) A
E( sup (1, fiewy fé?&,»zp(d,d)) <
t
+

wherep(d,d’) = 8dVvd'/nand 16(d,d’) < pend) + pend’) as soon ag > Ko =
16 x 8.
Consequently,

E(16p(d,d) — per(d)) < pen(d)
and

fed Bk 3
BT~ 1) < 4l f — fal2+ 4per(d) +32aca2K+2) 4 327K 1 22

Proof of (10.42) We considet € Sy ford* =dVvd' withd,d’ <L, and (see (10.31)
and (10.32))

—@ -
n(t) = (t Tkt — fel,) = C(A){t, 6L, — d) =

Sl

>

S (64(Z0) — B((20)

=1

where
C1

t(2) = 2(7? /t*(u)ei“Zdu:cl(A)t(z).

We apply the Talagrand Inequality (see Appendix). To this,aive compute the
quantitiesM, H, v. First

c (A
sup  sup|yr(z)| < 12(71) 2md* x  sup  ||t*] = cu(A)VdF =M.
teSy«,|t]|=1 2 teSy,|It]=1

The density ofZ; is g which satisfies
1 ()" em
oo< oo< 00«
lalle < 5 a1 Mo <If]

m>1

Therefore,

sup Var(gy(Zy)) <c3(A)x  sup  E(t3(Z1)) < E(A)|[f[|w:=V.
teSy+.|t]=1 teSy+,|t]|=1

Lastly, using the bound in (10.34) and the fact thatfars;-,

@

—~ ~
tfer, — f&)_n> = fka — fﬁé*);

we get
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—()
E( sup vﬁ(t))E( sup (t, fca fé?&&)
teSys, [It)=1 teSys, t|=1

—(1) 2d*
<E <|| fa - f§f3*||2) <= i=H
Therefore, Lemma .1 yields wittf = 1/2,

A *
E( sup VA(t)—4H2) < (e A" L g hevh)
teSye =1 n

for constant#\;, Az, Az depending oty (A) and|| f||.. Now since

Ln

/ /
Z engdvd :dengd_’_ Z engd
d’=1 d<d’<Lp

is bounded by saB, andL,e V" is bounded byBs, we get

E( sup vﬁ(t)—SM
tes,, ¢ ltl=1 n

2 2
)sdzlE( sup  vp(t) —4H) <

teSyaltl=1 n

This ends the proof of (10.42) and thus of Theorem 10.1.

10.4 Simulations

We have implemented the adaptive estimator on differeningkas of jump densi-
ties f, namely,

1. A Gaussiant'(0,1).

2. A mixture of a Gaussian and a Gam|§1a!/(f4, 1)+ %I‘ (3,1).
3. ALaplacel(0,1) with density exp—|x|)/2.

4. AGammd (5,1).

After preliminary experiments the constanis taken equal to 18 and the cut-off
d is selected among 100 equispaced values between 0 and 1@ndider different
values ofA: 0.2,0.5,0.8. For eachA we chooseK such thamAZ$+2 < 1: more
precisely the corresponding valueskofire 25,17 respectively.

Results are given in Figure 6, where 50 estimated curvedatteg on the same
figure to show the small variability of the estimator. We taleample siza = 5000
and an intensityc = 0.5, the first lines give the result fat = 0.2 (K = 2), the
second ford = 0.5 (K =5) and the last foA = 0.8 (K = 17). On top of each graph
we give the mean of selected values tband the associated standard deviation
in parenthesis evaluated over the fifty plots given. It appéaat for eachA the
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estimator reproduces well the estimated density wittelitdriability. Increasind,
and therefor&, does not affect the accuracy nor the variability of thenestor.

d=1.00(0.25)

d=109(0.61)

0.

0.

d=1.26(0.99)

° °
o Ny =

|

s

o

~
o Ny =

|

s

o

~

-2 0 2
d=252(0.79) d=243(0.65) d=257(0.87)
0.4} 0.4 0.4
0.2 0.2] 0.2
of 0 0
-5 0 H -5 0 5 -5 0 5
d=0.65(0.10) d=066(0.18) d=0.76(0.31)
0.2 0.2]
of 0
) 5 10 0 5 10 o 5 10
d=092(0.21) d=091(0.13 d=0.98(0.29)
0.2 0.2] 0.2
0.1 0.1] 0.1}
of 0| of
-5 0 u 5 o 5 1C -5 0 5 10

Fig. 6 Estimation of the jump densit/for a Gaussian/'(0, 1) (first line), Laplacd.(0, 1) second
line, Gamma (5, 1) (third line) and the mixturé.#"(—4,1) + r (3,1) (fourth line) withc = 0.5
andn = 5000. True density (bold black line) and 50 estimated cufeg lines), leftA = 0.2 and
K = 2; middleA = 0.5 andK = 5; right A = 0.8 andK = 17. The valuel is the mean over the 50
selected!’s (with standard deviation in parenthesis).
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11 Bibliographic comments

We give here some bibliographic comments which are far fronaastive and focus
mainly on our text.

Adaptive nonparametric methods have been developed faitgezstimation
from i.i.d. observations: see [24] for wavelet thresholding methd@lsoff [53] for
model selection and contrast penalization methods or [@adlaptive bandwidth
selection in kernel estimation. In the present chapter,ave adapted some of these
approaches for estimating the Lévy density.

Fori.i.d. data contaminated with additive noise, specific methode baen in-
troduced, based on Fourier inversion and called decorieolutethods. In the first
papers, the noise distribution is assumed to be known, s8ef¢2 nonadaptive
kernel, [57] for adaptive wavelet estimator and [22] for jgtilge cut-off selection.
More recently, the case of unknown noise distribution ha&nlmensidered, see [55],
[41], [21], [44]. The estimation of the Lévy density forgprocesses relies on the
explicit form of the characteristic function and thus takespiration in the decon-
volution methods.

Lévy processes have been increasingly used for modelhiag€ial data (see.g.
[11], [52], [26], [2], [8] and [3], [15]). The nonparametristimation of the Lévy
density has been studied for a continuous time observatitreasample path on a
time interval[0, T] with T tending to infinity ([33]) or for discrete time observations
In the latter case, authors distinguish between low frequdata (sampling interval
A is fixed) or high frequency data\(tends to 0). We concentrate in this chapter on
high frequency data setting since it is simpler and allowtwsider several adaptive
estimation methods: deconvolution with cut-off selectioontrast penalization, see
ourworks [17], [19], [20], and also [30], [31], [62] and ad&p kernels (see Section
4.3, and also [7]).

The nonparametric estimation in the case of low frequensgnoiations is more
difficult and closely related to a deconvolution problemhagstimated noise density,
see [56], [35], [13], [18], [36], [45].

Section 10 is specific to compound Poisson processes, widely in insurance
modelling, see [27], and to the problem of decompounding (42]). The dis-
cretized observation is defined as in [28], to take into antthat null increments do
not bring information on the jump density. The present apphds an improvement
of [25].

The chapter only deals with upper risk bounds, but to cheekogtimality of
the estimators, lower bounds are needed: they are providdde high frequency
setting by [31], [7], and in the low frequency setting by [H6], [46], [45]. Lower
bound in the specific case of decompounding is obtained i [25

Acknowledgements If you want to include acknowledgments of assistance pldasehere.

The Talagrand inequality. The result below follows from the Talagrand concentra-
tion inequality given in [49] and arguments in [10] (see thegs of their Corollary
2 page 354).
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Lemma .1 (Talagrand Inequality) Lety....Y, be independent random variables,
let vay (f) = (1/n) 3L, [f(Yi) —E(f(Y))] and let.# be a countable class of uni-
formly bounded measurable functions. Thenddr> 0

> 2 2K1C(e2)e ny
Veraernf | 9O FEEEH
fes n K1n?C?(&?)

4
2 2\y2

— < — | =
E[sup|vn’y(f)| 2(1+2¢%)H L K ( e
with C(€?) = v1+ €21, K; = 1/6, and

sup||flle < M, E[sup|vnyy(f)|} <H, sup
fes fez

fez

i Var(f(Yy)) <w.
K=1

By standard density arguments, this result can be exteindée tase wheré& is a
unit ball of a linear normed space, after checking that v,(f) is continuous and
& contains a countable dense family.

The Rosenthal inequality.(seee.g.[37]) Let (Xi)1<i<n ben independent centered

random variables, such th&{|X;|P) < 4o for an integeip > 1. Then there exists a
constantC(p) such that
p/2

E ( ;x p) <C(p) _iE(lmpH (_iﬂao@) : (1)

The Young inequality. (see [39] Letf be a function belonging t&.P(R) andg
belonging tdL9(R), let p,q,r be real numbersiifl, +] and such that

11 1
S4I=Z41
P g r

Then
Ifxalle <Ifllpll9llg

where f x g is the convolution product anfif||p = [|f(x)|Pdx In particular, for
p=1r=q=2 wehave|f«gl2<|[f]]dl2
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