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Pères, 75006 Paris e-mail:valentine.genon-catalot@parisdescartes.fr ; home-
page:http://http://www.math-info.univ-paris5.fr/ ˜ genon/

1



2 Fabienne Comte and Valentine Genon-Catalot

1 Introduction

The aim of this chapter is to present statistical adaptive methods of estimation of
the Lévy measure of a Lévy process,i.e. a continuous time process with station-
ary independent increments whose sample paths are right-continuous with left-hand
limits. We refer to [9] or [58] for a detailed probabilistic study of these processes.
In what follows, we assume that the process is real-valued, discretely observed at
equispaced instants and inference is based on a sample ofn observations.

The distribution of a Lévy process is usually specified by its characteristic triple,
the drift, the Gaussian component and the Lévy measure rather than by the distri-
bution of its independent increments. Indeed, the distributions of increments often
have no closed form formula. This is why statistical references have increasingly
focused on nonparametric methods. In here, we especially develop nonparametric
adaptive methods and rely mainly on the papers [17], [18], [19], [20].

In statistical inference for discretely observed continuous time processes, it is
now classical to distinguish two points of view. In the low frequency point of view,
the sampling interval is kept fixed and asymptotic results are given asn tends to
infinity. In the high frequency (HF) point of view, which is our concern here, the
sampling interval tends to 0 and the total length time where observations are taken
tends to infinity. The HF point of view is simpler and allows toapply to Lévy pro-
cesses several adaptive methods of estimation: deconvolution, projection or kernel
methods.

Section 2 gives notations and preliminary assumptions. In Section 3, moment and
small sample properties are stated. Section 4 deals with pure jump Lévy processes
with finite variation on compact sets and no drift. Section 5 concerns the case of
Lévy processes with no Gaussian component and Section 6 thegeneral case. In
Section 7, the estimation of the drift and Gaussian component coefficients is studied.
Examples are given in Section 8. Estimation procedures are illustrated on simulated
data in Section 9. In Section 10, we describe a specific methodfor the special case
of compound Poisson processes. Section 11 is devoted to bibliographic comments.

2 Notations and preliminary assumptions

Let us introduce some notations and assumptions which are successively considered.
The Lévy process is denoted by(Lt) and the observations are(Lk∆ ,k = 1, . . . ,n)
where∆ is the sampling interval. The statistical procedure is based on thei.i.d.
incrementsZ∆

k = Lk∆ −L(k−1)∆ . We assume that, asn tends to infinity,

∆ = ∆n → 0, and n∆n →+∞. (2.1)

For simplicity, we omit the dependence onn and setZ∆
k = Zk. We assume that the

Lévy measure admits a density denoted byn(.). The characteristic function ofLt is
denoted by
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ϕt(u) = exptψ(u)

where the characteristic exponent is given by

ψ(u) = iub̃− 1
2

u2σ2+

∫

R

(
eiux−1− iux1|x|≤1

)
n(x)dx, (2.2)

with b̃∈ R, σ2 ≥ 0. The Lévy density satisfies the usual assumption:
∫

R
(x2∧1)n(x)dx<+∞. (2.3)

Thus,(Zk,k= 1, . . . ,n) is ani.i.d. sample with characteristic functionϕ∆ . The non-
parametric estimation ofn(.) and the estimation of the other parametersb̃,σ2 are
investigated under different sets of assumptions on the Lévy process. Depending on
the assumptions, we consider the estimation of the following functions:

g(x) = x n(x), ℓ(x) = x2 n(x), p(x) = x3 n(x). (2.4)

2.1 Pure jump case

We first study the estimation ofg, g(x)= xn(x), (hence ofℓ, p) under the assumption:

(H1-g)
∫

R
|x|n(x)dx< ∞, b̃=

∫

|x|≤1
x n(x)dx, σ2 = 0.

When the Lévy process is self-decomposable, the functiong is called the canonical
function and is decreasing (see [3] and [43]). Under (H1-g),the process(Lt) has
finite variation on compact sets, is of pure jump type, with nodrift component.
Formula (2.2) simplifies into

ψ(u) =
∫

R

(
eiux−1

)
n(x)dx, (2.5)

The distribution of(Lt) is therefore completely specified by the knowledge ofn(.)
which describes the jumps behavior. The process(Lt) can be written as

Lt =
∫

]0,t]

∫

R/{0}
xp̂(du,dx) = ∑

s≤t
∆Ls, where ∆Ls = Ls−Ls− , (2.6)

wherep̂(du,dx) = ∑s≥01I∆Ls6=0)δs,∆Ls(du,dx) is the random Poisson measure asso-
ciated with the jumps of(Lt) with intensitydu n(x)dx. Note that (2.6) holds under

the assumption
∫

R
(|x| ∧1)n(x)dx< ∞. Assumption (H1-g) is stronger and ensures

thatE(|Lt |)<+∞ with

E(Lt) = t
∫

R
x n(x)dx.
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2.2 Case of no Gaussian component

Then, we study the estimation ofℓ, ℓ(x) = x2n(x), (hence ofp andg except near the
origin) under the assumption:

(H1-ℓ)
∫

R
x2n(x)dx< ∞, σ2 = 0.

The first part of this assumption, stronger than (2.3) was proposed by [56] and is
useful for statistical inference. First, for allt, EL2

t < +∞. Second,
∫
R(e

iux − 1−
iux)n(x)dx is well defined, consequently the following expression for (2.2) holds:

ψ(u) = iub+
∫

R
(eiux−1− iux)n(x)dx, (2.7)

whereb= b̃+
∫
|x|>1xn(x)dx= EL1 has a statistical meaning (contrary tob̃). Thus,

the sample path can be expressed as:

Lt = bt+Xt , (2.8)

where(Xt) is a centered square integrable pure-jump martingale:

Xt =
∫

]0,t]

∫

R/{0}
x(p̂(du,dx)−du n(x)dx),

and p̂(du,dx) is the random Poisson measure associated with the jumps of(Lt) (or
(Xt)).

2.3 General case

Finally, we study the estimation ofp, p(x) = x3n(x), (hence ofg, ℓ except near the
origin) under the assumption:

(H1-p)
∫
R |x|3n(x)dx< ∞.

Here,E|Lt |3 <+∞,

ψ(u) = iub− 1
2

σ2u2+

∫

R
(eiux−1− iux)n(x)dx, (2.9)

and
Lt = bt+σWt +Xt , (2.10)

with (Xt) as above and(Wt) is a Wiener process independent of(Xt). The estimation
of b in the second case (resp.(b,σ2) in the third case) is detailed in Section 7.

The following notations are used below. Foru : R→ C integrable, we denote its
L1-norm and its Fourier transform respectively by
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‖u‖1 =

∫

R
|u(x)|dx, u∗(y) =

∫

R
eiyxu(x)dx,y∈ R. (2.11)

Whenu,v are square integrable, we denote theL2-norm and theL2 scalar product
by

‖u‖=
(∫

R
|u(x)|2dx

)1/2

, < u,v>=

∫

R
u(x)v(x)dx with zz= |z|2. (2.12)

We recall that, for any integrable and square-integrable functionsu,u1,u2, the fol-
lowing relations hold:

(u∗)∗(x) = 2πu(−x) and〈u1,u2〉= (2π)−1〈u∗1,u∗2〉. (2.13)

The convolution product ofu,v is denoted by:

u⋆ v(x) =
∫

R
u(y)v̄(x− y)dy.

3 Moment and small sample properties

For statistical purposes, the existence of moments of(Lt) is required. This is why
we introduce the following assumption:

(H2-(l)) For l integer,
∫
|x|>1 |x|l n(x)dx< ∞.

According to [58], Section 5.25, Theorem 5.23,E|Lt |l < ∞ is equivalent to (H2-
(l)). Note that the integrability ofn(.) near 0 is in all cases ruled by (2.3) and by
Assumption (H1-g) in the finite variation case.

The following proposition relates the moments ofZ1 = L∆ under (H2-(l )) to the
integrals

ml =

∫

R
xl n(x)dx=

∫

R
xl n(x)dx. (3.1)

Proposition 3.1 1. Assume (H1-g) and (H2-(l)) with l ≥ 2. Then,E(Z1) = ∆m1,
E(Z2

1) = ∆m2+∆2m2
1, and more generally, for2≤ q≤ l,

E(Zq
1) = ∆mq+o(∆).

2. Assume (H2-(l)) with l ≥ 2. Then,E(Z1) = ∆b, E(Z2
1) = ∆(σ2 +m2)+∆2b2.

When l≥ 3 and3≤ q≤ l,

E(Zq
1) = ∆mq+o(∆).

Proof. Assumption (H2-(l )) ensures the existence of moments up to orderl in all
cases.
Under (H1-g) and (H2-(l )), the characteristic exponent (2.5) isl times differentiable



6 Fabienne Comte and Valentine Genon-Catalot

with ψ( j)(0) = i j mj for j ≤ l . Therefore, thej-th order cumulant ofZ1 is κ j = ∆mj .
Denoting byµ j the j-th order moment ofZ1, we have the classical relation between
cumulants and moments:

κ j = µ j −
j−1

∑
i=1

(
j −1
i −1

)
κiµ j−i . (3.2)

We haveκ1 = E(Z1),κ2 = Var(Z1) and by elementary induction, we get the result
for higher order moments.
In the general case, we derivate (2.9) to compute the cumulants ofL1:

ψ ′(0) = ib, ψ ′′(0) =−(σ2+m2), for q≥ 3, ψ(q)(0) = iqmq.

The result follows.

The previous proposition shows that all moments ofZ1 are of orderO(∆).
We now look at absolute moments under different conditions.

Proposition 3.2 1. Assume (H2-(r)) and r> 2. Then,

E|Z1|r = ∆
∫
|x|rn(x)dx+o(∆).

2. Assume (H1-g) and for r≤ 1,
∫ |x|rn(x)dx< ∞. Then,E|Z1|r ≤ ∆

∫ |x|rn(x)dx.
3. Let Lt = BΓt where(Γt) is a pure jump increasing Ĺevy process (subordinator)

with Lévy density nΓ satisfying
∫+∞

0 γ nΓ (γ)dγ < ∞ and(Bt) is a Brownian mo-
tion independent of(Γt). The Ĺevy measure of(Lt) has a density given by

n(x) =
∫ +∞

0
e−x2/2γ 1√

2πγ
nΓ (γ)dγ. (3.3)

If cr =
∫+∞

0 γ r/2nΓ (γ)dγ < ∞ with r ≤ 2, E|L∆ |r ≤ ∆crCr , where Cr = E|X|r , for
X a standard Gaussian variable.

4. Let(Lt) be a Ĺevy process with no Gaussian component. Then, L∆/
√

∆ converges
to 0 as∆ tends to0 in probability and inLr for all r < 2.

Proof. For the first point, we refer to [30].
For the second point, the assumptions and the fact thatr ≤ 1 imply

|Z1|r = |L∆ |r = | ∑
s≤∆

Ls−Ls− |r ≤ ∑
s≤∆

|Ls−Ls− |r .

Taking expectations yields the result.
For the third point, considerf a non-negative function such thatf (0) = 0. We have:

E∑
s≤t

f (Ls−Ls−) = E∑
s≤t

f (BΓs −BΓs− ).
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Thus,∑s≤t E f (BΓs −BΓs− ) = ∑s≤t
∫
R f (x)E

(
e(−x2/2(Γs−Γs− )) 1√

2π(Γs−Γs− )

)
dx. For

all x, we have

E∑
s≤t

(
e(−x2/2(Γs−Γs− )) 1√

2π(Γs−Γs−)

)
= t

∫ +∞

0
e−x2/2γ 1√

2πγ
nΓ (γ)dγ.

Therefore, we get the formula for the Lévy densityn of (Lt ). Moreover,

∫

R
|x|αn(x)dx=Cα

∫ +∞

0
γα/2nΓ (γ)dγ.

ThusE|L∆ |r = CrE(Γ
r/2

∆ ). As r/2 ≤ 1, Γ r/2
∆ = (∑s≤∆ Γs−Γs−)

r/2 ≤ ∑s≤∆ (Γs−
Γs−)

r/2. Taking expectation gives the result.
For the last point, we refer to [5] (Theorem 1, p. 804), see also [1].

Let us now look at small sample properties of the distribution of Z1.

Proposition 3.3 Let P∆ denote the distribution of Z1. Define

µ (l)
∆ = ∆−1xl P∆ (dx), µ (l)(dx) = xl n(x)dx. (3.4)

1. Assume (H1-g). The distributionµ (1)
∆ has a density g∆ given by

g∆ (x) =
∫

g(x− y)P∆(dy) = Eg(x−Z1)

and converges weakly toµ (1) as∆ tends to0.

2. Under (H1-ℓ), µ (2)
∆ converges weakly toµ (2) as∆ tends to0.

3. Under (H1-p),µ (3)
∆ converges weakly toµ (3) as∆ tends to0.

Proof. Recall thatg(x) = x n(x). Under (H1-g),
∫

E|g(x−Z1)|dx= E

∫
|g(x−Z1)|dx=

∫
|g(x)|dx<+∞.

ThusE|g(x− Z1)| < +∞ a.e.(dx), which implies thatE(g(x− Z1)) is a.e. well
defined. Derivatingϕ∆ and using (2.5) yields

∆−1ϕ ′
∆ (u) = i∆−1E(Z1eiuZ1) = ϕ∆ (u)ψ ′(u) (3.5)

where
ψ ′(u) = ig∗(u). (3.6)

Therefore, the Fourier transforms ofµ (1)
∆ , µ (1), P∆ satisfy

(µ (1)
∆ )∗ = (µ (1))∗P∗

∆ .
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Consequently,µ (1)
∆ = µ (1) ⋆P∆ . This gives the result for the density ofµ (1)

∆ . The
weak convergence is a consequence of the fact thatϕ∆ (u) tends to 0 as∆ tends to 0.
Under (H1-ℓ), derivatingϕ∆ a second time yields

∆−1ϕ ′′
∆ (u) = i2∆−1E(Z2

1eiuZ1) = ϕ∆ (u)ψ ′′(u)+∆ϕ∆ (u)(ψ ′(u))2 (3.7)

Now using (2.7) and recalling thatℓ(x) = x2n(x), we obtain:

ψ ′(u) = i

(
b+

∫

R
(eiux−1)x n(x)dx

)
, ψ ′′(u) = i2ℓ∗(u). (3.8)

Therefore,
∆−1E(Z2

1eiuZ1) =−∆−1ϕ ′′
∆ (u)→ ℓ∗(u).

Henceµ (2)
∆ =⇒ µ (2) as∆ → 0.

Under (H1-p), derivating a third timeϕ∆ , we get:

∆−1ϕ ′′′
∆ (u) = i3∆−1E(Z3

1eiuZ1)

= ϕ∆ (u)ψ ′′′(u)+3∆ϕ∆(u)ψ ′(u)ψ ′′(u)+∆2ϕ∆ (u)(ψ ′(u))3 (3.9)

with, using (2.9) andp(x) = x3n(x),

ψ ′(u) = i

(
b+ iuσ2+

∫

R
(eiux−1)x n(x)dx

)
, ψ ′′(u) = i2(σ2+ ℓ∗(u)),

and
ψ ′′′(u) = i3p∗(u). (3.10)

This shows that

∆−1E(Z3
1eiuZ1) = i−3∆−1ϕ ′′′

∆ (u)→ p∗(u).

Therefore,µ (3)
∆ =⇒ µ (3) as∆ → 0.

Note that the Lévy measure can always be obtained as a limit:for every fixeda> 0,
(1/∆)P∆ (dx) converges vaguely on|x| > a as∆ → 0 to n(x)dx, seee.g.[9], p. 39,
ex. 5.1.

The following elementary proposition gives the rate of convergence to 0 ofϕ∆ .

Proposition 3.4 1. Under (H1-g), we have:

|ϕ∆ (u)−1| ≤ |u|∆‖g‖1. (3.11)

2. If
∫
R x2n(x)dx<+∞,

|ϕ∆ (u)−1| ≤ ∆ |u|(c(u)+σ2|u|)

where c(u) = |b|+ |∫ u
0 |ℓ∗(v)|dv|. If ℓ∗ is integrable onR, then
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|ϕ∆ (u)−1| ≤ ∆ |u|(|b|+ ‖ℓ∗‖1+ |u|σ2). (3.12)

Proof. By the Taylor formula,

ϕ∆ (u)−1= uϕ
′
∆ (cuu) = iu∆ϕ∆ (cuu)ψ ′(cuu),

for somecu ∈ (0,1).
Under (H1-g),|ψ ′(u)|= |g∗(u)| ≤ ‖g‖1 (see (3.6)). Inequality (3.11) follows.

For the second point, we use (3.10) and the relationeiux − 1 = ix
∫ u

0 eivxdv to
obtain:

ψ ′(u) = ib−uσ2−
∫

R
(

∫ u

0
eivxdv)x2 n(x)dx= ib−uσ2−

∫ u

0
ℓ∗(v)dv.

This gives the two inequalities.

4 Adaptive estimation in the pure jump case

We consider now a Lévy process(Lt ) discretely observed with sampling interval
∆ under the asymptotic framework (2.1) and assume that (H1-g)holds and that the
characteristic exponent is

ψ(u) =
∫

R

(
eiux−1

)
n(x)dx. (4.1)

For the estimation ofg(x) = xn(x), (H1-g), (H2-(l)) for an integerl to be precised in
each proposition or theorem and the following additional assumptions are required.

(H3-g) The functiong belongs toL2(R).
(H4-g) M2 :=

∫
x2g2(x)dx<+∞.

Assumptions (H1-g) and (H2-(l)) are moment assumptions for thei.i.d. observed
random variables(Zk = Lk∆ −L(k−1)∆ ,k= 1, . . . ,n) (see Section 3, Proposition 3.1).
Under (H1-g), (H2-(l)) for l > 1 implies (H2-(k)) for k≤ l .

Noting that

‖g‖2
1 := (

∫
|g(x)|dx)2 ≤

∫
(1+ |x|)2g2(x)dx

∫
dx

(1+ |x|)2 ,

we see that (H3-g)-(H4-g) imply (H1-g).
Let us describe the ideas on which rely the statistical strategies: estimation ofg

by a deconvolution approach, estimation ofg on a compact subset ofR and kernel
estimation ofg.
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4.1 Deconvolution approach

The first strategy is based on deconvolution. By (H1-g), derivating ϕ∆ yields the
following expression for the Fourier transform ofg:

g∗(u) =−iψ ′(u) =−i
∆−1ϕ ′

∆ (u)

ϕ∆ (u)
. (4.2)

As the r.h.s. depends on the distribution of the observations, this relation suggests to
estimateg∗ and then build an estimator ofg by Fourier inversion, thus relating the
Lévy density estimation with deconvolution.
Let us make a short parenthesis to clarify the standard deconvolution problem. Sup-
pose that observationsYi = Xi + εi , i = 1, . . . ,n are available where the two samples
(Xi) and (εi) are independent, composed ofi.i.d. random variables, theXi ’s have
density fX and theεi ’s have densityfε . The random variables of interest are the
Xi ’s and theεi ’s are an observation noise called observation error. If theFourier
transform of the noise distribution is never null, the relation

f ∗X =
f ∗Y
f ∗ε

suggests to estimate the r.h.s. and deduce an estimator offX by Fourier inversion. A
key distinction appears at this stage. Either the noise distribution is known (decon-
volution with known errors distribution) or it is not (deconvolution with unknown
errors distribution). The latter problem is clearly more difficult than the former. With
known errors distribution, only the estimation off ∗Y is required. This is usually done
by using an empirical estimator. With unknown errors distribution, the estimation of
f ∗ε is also required. This raises lots of difficulties. Detailedreferences are given and
discussed in Section 11.
The link between deconvolution and estimation ofg is now clear. Formula (4.2)
shows thatg∗(u) is a quotient of two unknown Fourier transforms. The numerator
is

∆−1θ∆ (u) := −i∆−1ϕ ′
∆ (u) = ∆−1EZke

iuZk = g∗∆ (u), (4.3)

whereg∆ is the density of the measureµ (1)
∆ (see Proposition (3.3)). The denomi-

natorϕ∆ (u) which is non null is the Fourier transform of the distribution P∆ of Z1.
Numerator and denominator being linked with the unknown distribution of Z1, we
are faced with a problem closely related to deconvolution with unknown errors dis-
tributions. In the LF framework, numerator and denominatorhave to be estimated
with the same sample(Zk). References are given in Section 11. The HF frequency
framework provides a simplification. Indeed, asϕ∆ → 1, the estimation of the de-
nominator becomes useless. The price to pay is an additionalterm which is a bias.
Relation (4.2) may be written as:

−i∆−1ϕ ′
∆ (u) = g∗(u)+g∗(u)(ϕ∆ (u)−1) = ∆−1E(Zke

iuZk) = ∆−1θ∆ (u). (4.4)
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Simply using an empirical estimator of∆−1ϕ ′
∆ (u) yields an estimator ofg∗(u). Let

us set

θ̂∆ (u) =
1
n

n

∑
k=1

Zke
iuZk, ĝ∗(u) = ∆−1θ̂∆ (u). (4.5)

Note that, using Proposition 3.4, the bias of̂g∗(u) as a pointwise estimator ofg∗(u)
satisfies, under (H1-g),

|E(ĝ∗(u))−g∗(u)|= |∆−1θ∆ (u)−g∗(u)| ≤ |u|∆‖g‖2
1. (4.6)

The following inequalities are useful for the variance of the estimator̂g∗(u).

Proposition 4.1 Under (H1-g) and (H2-(2p)), for p≥ 1, there exists a constant Cp

such that

E(|ĝ∗(u)−E(ĝ∗(u))|2p)≤ Cp

(n∆)p . (4.7)

Note that forp= 1, (4.7) is a simple variance inequality:

E(|ĝ∗(u)−E(ĝ∗(u))|2)≤ 1
n∆

(m2+∆m2
1) =

1
n∆2E(Z

2
1). (4.8)

Proof. For p= 1, (4.8) follows from:

E(|θ̂∆ (u)−θ∆(u)|2) =
1
n

Var(Z1 exp(iuZ1))≤
1
n
E(Z2

1).

For p≥ 1, we apply Rosenthal’s inequality recalled in Appendix (see (.1)):

E
(
|θ̂∆ (u)−θ∆(u)|2p) ≤ C(2p)

n2p

(
n

∑
k=1

E[|Zke
iuZk −E(Zke

iuZk)|2p]

+

(
n

∑
k=1

E|Zke
iuZk −E(Zke

iuZk)|2]
)p)

≤ C′(2p)
n2p (nE(Z2p

1 )+np(E(Z2
1))

p).

Dividing both sides by(n∆)2p and using that all moments have order∆ (Proposition
3.1), we get

E(|ĝ∗(u)−E(ĝ∗(u))|2p)≤C′′(2p)

(
1

(n∆)2p−1 +
1

(n∆)p

)
.

We conclude using thatp≥ 1.

The following inequality for empirical moments holds.

Proposition 4.2 Assume (H1-g). If pl is even, (H2-(pl)) and (H2-(2l)) hold, then
there exists a constant Cp such that
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E

(∣∣∣∣∣
1

n∆

n

∑
k=1

Zl
k−E(Zl

1)

∣∣∣∣∣

p)
≤Cp

(
1

(n∆)p−1 +
1

(n∆)p/2

)
. (4.9)

The proof is almost identical to the proof of Proposition 4.1with the use of Rosen-
thal’s inequality and is omitted.

4.1.1 Definition of a collection of estimators

In this paragraph, we present a collection of estimators(ĝm), indexed by a positive
parameterm that will below be subject to constraints for adaptivity results. Distinct
constructions give rise to this class of estimators, each having its own interest for
interpretation, implementation or theoretical aspects. We start with the simple cut-
off approach.

To build an estimator ofg, we have at our disposal an estimator ofg∗ given by
ĝ∗ = θ̂∆/∆ (see (4.5)). This function is not integrable so that we cannot simply
take its inverse Fourier transform. The cut-off approach consists in introducing a
parameterm> 0, the cut-off parameter, and setting:

ĝm(x) =
1

2π

∫ πm

−πm
e−ixuĝ∗(u)du. (4.10)

This first step provides a collection of estimators(ĝm)m>0. A second step treated
below is to define a data-driven choice ˆmof m to build the final estimator ˆgm̂. A key
feature of ˆgm lies in the relation

ĝ∗m = ĝ∗(u)1I[−πm,πm](u). (4.11)

A second interesting property of ˆgm is that the integral (4.10) is explicit. Introducing

φ(x) =
sin(πx)

πx
(with φ(0) = 1), (4.12)

a simple integration leads to

ĝm(x) =
m
n∆

n

∑
k=1

Zkφ(m(Zk− x)).

Therefore ˆgm may be interpreted as a kernel estimator with kernelφ and bandwidth
1/m. Formula (4.10) allows to study theL2-risk of ĝm for all m. We need to introduce

gm(x) =
1

2π

∫ πm

−πm
e−iuxg∗(u)du,

which is such that

g∗m = g∗1I[−πm,πm] and(g−gm)
∗ = g∗1I[−πm,π ,m]c. (4.13)
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Proposition 4.3 Assume that (H1-g)- (H2-(2))- (H3-g) hold. Then for all positive
m,

E(‖g− ĝm‖2)≤ ‖g−gm‖2+E(Z2
1/∆)

m
n∆

+
‖g‖2

1

2π
∆2
∫ πm

−πm
u2|g∗(u)|2du.

Remark 4.1 In the above inequality,‖g− gm‖2 is a square bias which decreases
with m, due to the estimation method: gm is estimated instead of g. The second
term bounds the variance of the estimatorĝm and increases with m. As a minimal
condition to bound the variance term, we impose below m≤n∆ . The last term comes
from the fact that we have neglected g∗(u)(ϕ∆ (u)−1) when building the estimator.
It is a bias of the estimating method.

Proof. By the Parseval equality,‖ĝm− g‖2 = ‖ĝ∗m−g∗‖2/(2π). Using definitions
(4.5) and (4.3) yields

E(‖ĝm−g‖2) =
1

2π
[E‖( θ̂∆

∆
− θ∆

∆
)1I[−πm,πm]+(

θ∆
∆

−g∗)1I[−πm,πm]−g∗1I[−πm,π ,m]c‖2]

≤ 1
2π

[
E(‖( θ̂∆

∆
− θ∆

∆
)1I[−πm,πm]‖2)+ ‖(θ∆

∆
−g∗)1I[−πm,πm]‖2

]

+
1

2π
‖g∗1I[−πm,π ,m]c‖2.

By (4.13) and the Parseval equality, the last term is exactly‖g−gm‖2. For the second
term, using (4.4) and (3.11), we have

‖(θ∆
∆

−g∗)1I[−πm,πm]‖2 = ‖(ϕ∆ −1)g∗1I[−πm,πm]‖2 ≤ ∆2‖g‖2
1

∫ πm

−πm
u2|g∗(u)|2du.

Lastly, (4.8) yields

E(‖( θ̂∆
∆

− θ∆
∆

)1I[−πm,πm]‖2) =

∫ πm

−πm
∆−2E(|θ̂∆ (u)−θ∆(u)|2)du≤ 2πmE(Z2

1)

n∆2 .

By gathering the three bounds, we obtain the result.

4.1.2 Rates of convergence

Rates of convergence of theL2-risk can be deduced from Proposition 4.3. In decon-
volution, the regularity classes for rates interpretationare usually Sobolev classes
such as

C (a,L) =

{
g∈ (L1∩L2)(R),

∫
(1+u2)a|g∗(u)|2du≤ L

}
. (4.14)

The following holds:
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Proposition 4.4 Assume that (H1-g)- (H2-(2))- (H3-g) hold and that g belongs to
C (a,L). Assume that m≤ n∆ and in addition to the asymptotic framework (2.1),
that n∆2 ≤ 1. The following rate is obtained by choosing m= O((n∆)1/(2a+1)):

E(‖g− ĝm‖2)≤ O((n∆)−2a/(2a+1)).

If a ≥ 1, then it is enough to have n∆3 = O(1) (instead of n∆2 ≤ 1).

Proof. We evaluate the infimum overm of the risk bound of Proposition 4.3. By
relation (4.13), asg∈ C (a,L), we get

‖g−gm‖2 =
1

2π

∫

|u|≥πm
|g∗(u)|2du≤ L

2π
(πm)−2a.

The optimal compromise between‖g− gm‖2 andm/(n∆), infimum overm of the
sum

‖g−gm‖2+m/(n∆),

i.e. the first two terms in the risk bound of Proposition 4.3), is obtained form−2a ∝
m/(n∆), i.e. m= O((n∆)1/(2a+1)) and leads to the rate(n∆)−2a/(2a+1).
We now look for a condition on∆ implying that the term∆2 ∫ πm

−πmu2|g∗(u)|2duhas
order less than(n∆)−2a/(2a+1).
As g∈ C (a,L), ∫ πm

−πm
u2|g∗(u))|2du≤ Lm2(1−a)+ .

If a≥ 1, the condition∆2 = O(1/(n∆)), i.e. n∆3 = O(1) implies:

∆2
∫ πm

−πm
u2|g∗(u)|2du= O(1/(n∆))

which is negligible. The risk bound order isO(n∆)−2a/(2a+1).
If a ∈ (0,1), we must have at least∆2m2(1−a) ≤ m−2a. Hence,∆2m2 ≤ 1. This is
achieved forn∆2 ≤ 1 asm≤ n∆ . The risk bound order is againO((n∆)−2a/(2a+1)).

Remark 4.2 If n∆2 ≤ 1 and if g is analytic i.e. belongs to a class

A (γ,Q) = { f ,
∫
(eγx+e−γx)2| f ∗(x)|2dx≤ Q},

then the risk is of order O(log(n∆)/(n∆)) (choose m= O(log(n∆))).

4.1.3 Adaptive estimator

In this paragraph, the selection method of a relevant data-driven cut-off parameter
m is described. The choice should lead to an adaptive estimator. An estimator is
adaptive if itsL2-risk attains automatically the best possible rate of convergence to
0 without any knowledge of the regularity ofg.



Adaptive Estimation for Lévy processes. 15

For this, it is convenient to use the property that the estimatorsĝm are projection
estimators, obtained as minimizers of a projection contrast. For positivem, consider
the following closed subspace ofL2(R)

Sm = {t ∈ L2(R),supp(t∗)⊂ [−πm,πm]}. (4.15)

Let us give the main properties of the collection of spaces(Sm). For t ∈ L2(R), let
tm denote its orthogonal projection onSm. The functiontm is characterized by the
fact that

t∗m = t∗1I[−πm,πm].

Hence,

‖t− tm‖2 =
1

2π
‖t∗− t∗m‖2 =

1
2π

∫

|x|≥πm
|t∗(x)|2dx.

The functiongm defined above is thus the orthogonal projection ofg on Sm andĝm

belongs toSm (see (4.11) and (4.13)).
Moreover, fort ∈ Sm, t(x) = (1/2π)

∫ πm
−πme−iuxt∗(u)du, and

|t(x)| ≤ 1
2π

(∫ πm

−πm
|t∗(u)|2du

∫ πm

−πm
|eiux|2du

)1/2

.

Thus
∀t ∈ Sm, ‖t‖∞ := sup

x∈R
|t(x)| ≤

√
m‖t‖. (4.16)

Let, for t ∈ Sm,

γn(t) = ‖t‖2− 1
π

∫ θ̂∆ (u)
∆

t∗(−u)du= ‖t‖2− 2
2π

〈ĝ∗m, t∗〉 (4.17)

= ‖t‖2−2〈ĝm, t〉= ‖t − ĝm‖2−‖ĝm‖2.

Evidently,
ĝm = argmin

t∈Sm
γn(t),

and
γn(ĝm) =−‖ĝm‖2.

Using (4.10) and (4.12), we have

‖ĝm‖2 =
1

2π

∫ πm

−πm

∣∣∣∣∣
θ̂∆ (u)

∆

∣∣∣∣∣

2

du=
m

n2∆2 ∑
1≤k,l≤n

ZkZl φ(m(Zk−Zl)). (4.18)

Finally, it is interesting to stress that the spaceSm is generated by an orthonormal
basis, the sinus cardinal basis, given by:

φm, j(x) =
√

mφ(mx− j), j ∈ Z (4.19)
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whereφ is defined by (4.12) (see [54], p.22). This can be seen noting that:

φ∗
m, j(x) =

eix j/m
√

m
1I[−πm,πm](x). (4.20)

As above, we use thatφm, j(x) = (1/2π)
∫ πm
−πmeiuxφ∗

m, j (−u)du to obtain

∑
j∈Z

φ2
m, j (x) =

1
2π

∫ πm

−πm
|eiux|2du= m.

For f ∈ L2(R), its orthogonal projectionfm onSm can be written as

fm = ∑
j∈Z

am, j( f )φm, j with am, j( f ) = 〈 f ,φm, j 〉.

This leads to a third formulation of ˆgm:

ĝm = ∑
j∈Z

âm, jφm, j whereâm, j =
1

2π∆

∫
θ̂∆ (u)φ∗

m, j(−u)du=
1

n∆

n

∑
k=1

Zkφm, j (Zk).

Using the development of ˆgm on the orthonormal basis(φm, j ) j , we have

‖ĝm‖2 = ∑
j∈Z

|âm, j |2.

AlthoughSm is infinite-dimensional, we need not truncate the series to compute ˆgm

and‖ĝm‖2 as we can use the explicit formulae (4.10) and (4.18). This isimportant
for practical implementation. Nevertheless, the introduction of the basis is crucial
for the proof.

We consider a collection(Sm,m= 1, . . . ,mn) wheremn is restricted to satisfy
mn ≤ n∆ and set

m̂= arg min
m∈{1,...,mn}

(γn(ĝm)+pen(m)) with pen(m) = κ

(
1

n∆

n

∑
k=1

Z2
k

)
m
n∆

.

We shall denote by

penth(m) = E(pen(m)) = κ(E(Z2
1)/∆)

m
n∆

.

The intuition behind the selection criterion is the following. The risk can be decom-
posed in two terms:

‖g− ĝm‖2 = ‖g−gm‖2+ ‖gm− ĝm‖2.

TheL2-orthogonality of the two terms is due to the disjoint supports of their Fourier
transforms. To define the data-driven criterion, we replacethe terms of the sum by
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estimators. For the first term which is the bias, we have‖g−gm‖2 = ‖g‖2−‖gm‖2.
Noting thatγn(ĝm) = −‖ĝm‖2, γn(ĝm) is up to a constant an estimator of the bias.
The variance termE(‖gm− ĝm‖2) is estimated by pen(m) where the constantκ is a
numerical value to be tuned to avoid under-penalization (see Proposition 4.3). The
valuem̂realizes the best compromise between estimated bias and estimated variance
terms.
The following theorem shows the adaptivity property of the estimatorĝm̂.

Theorem 4.1 Assume that (H2-(8))-(H3-g)-(H4-g) are fulfilled, that the asymptotic
framework (2.1) holds and that mn ≤ n∆ . Then there exists a universal constantκ
such that

E(‖g− ĝm̂‖2) ≤ C inf
m∈{1,...,mn}

(
‖g−gm‖2+penth(m)

)

+
C′∆2

2π

∫ πmn

−πmn

u2|g∗(u)|2du+
C” log2(n∆)

n∆
.

The calibration of the constantκ is a classical difficulty in such penalized methods.
Most often,κ calibrated by numerical simulations (see Section 8).
In what sense is ˆgm̂ adaptive? The property is contained in the infimum term of
the risk bound. Suppose thatg belongs to a Sobolev regularity classC (a,L), with
unknowna andL. In Proposition 4.4, it is proved that:

inf
m∈{1,...,mn}

(
‖g−gm‖2+

m
n∆

)
≤C(n∆)−2a/(2a+1)

and that ∫ πmn

−πmn

u2|g∗(u)|2du≤C∆2m2(1−a)+
n ,

for some constantC. Thus, the estimator is automatically (for some other constant
C) such that

E(‖g− ĝm̂‖2)≤C
[
(n∆)−2a/(2a+1)+∆2m2(1−a)+

n

]
+

C” log2(n∆)

n∆
.

If either (a≥ 1, n∆3 = O(1)) or (0< a< 1 andn∆2 = O(1)), then

E(‖g− ĝm̂‖2) = O((n∆)−2a/(2a+1)).

This rate is obtained without requiring the knowledge ofa norL in the procedure.

4.1.4 Proof of Theorem 4.1

To deal with the randomness of the penalty pen(m), the proof is given in two steps.
We define, for someb, 0< b< 1,
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Ωb :=

{∣∣∣∣
(1/n∆)∑n

k=1Z2
k

E(Z2
1/∆)

−1

∣∣∣∣≤ b

}
, (4.21)

so thatE(‖ĝm̂−g‖2) = E(‖ĝm̂−g‖21IΩb)+E(‖ĝm̂−g‖21IΩc
b
).

Step 1.Study ofE(‖ĝm̂−g‖21IΩb). By (4.17), we can write

γn(t)− γn(s) = ‖t −g‖2−‖s−g‖2−2〈t− s, ĝm〉. (4.22)

For t ∈ Sm, let us introduce the linear processes:

νn(t) =
1

2π

∫ θ̂∆ (u)−θ∆(u)
∆

t∗(−u)du= 〈ĝm−Eĝm, t〉, (4.23)

Rn(t) =
1

2π

∫
(ϕ∆ (u)−1)g∗(u)t∗(−u)du= 〈Eĝm−g, t〉. (4.24)

The contrastγn(t) admits the following decomposition :

γn(t)− γn(s) = ‖t −g‖2−‖s−g‖2−2νn(t − s)−2Rn(t − s), (4.25)

Note thatνn = ν̄n andRn = R̄n so that they are both real valued.
With a constantkn to be given later on, define

θ (1)
∆ (u) = E

(
Z11I(|Z1|≤kn

√
∆)e

iuZ1

)
, θ (2)

∆ (u) = E
(

Z11I(|Z1|>kn
√

∆ )e
iuZ1

)
(4.26)

and their empirical counterparts

θ̂ (1)
∆ (u) =

1
n

n

∑
k=1

Zk1I(|Zk|≤kn
√

∆ )e
iuZk, θ̂ (2)

∆ (u) =
1
n

n

∑
k=1

Zk1I(|Zk|>kn
√

∆ )e
iuZk. (4.27)

We splitνn into ν(1)
n +ν(2)

n with

ν(1)
n (t) =

1
2π∆

∫
(θ̂ (1)

∆ (u)−θ (1)
∆ (u))t∗(−u)du,

and

ν(2)
n (t) =

1
2π∆

∫
(θ̂ (2)

∆ (u)−θ (2)
∆ (u))t∗(−u)du.

The definition of ˆgm̂ implies that

γn(ĝm̂)+pen(m̂)≤ γn(gm)+pen(m) (4.28)

where we recall thatgm denotes the orthogonal projection ofg onSm.
Using (4.25)-(4.28) yields that, for allm= 1, . . . ,mn,
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‖ĝm̂−g‖2 ≤ ‖g−gm‖2+pen(m)+2ν(1)
n (gm− ĝm̂)−pen(m̂)

+2Rn(gm− ĝm̂)+2ν(2)
n (gm− ĝm̂)

For ρn = ν(1)
n ,ν(2)

n ,Rn, we can write

2ρn(gm− ĝm̂)≤ 2‖gm− ĝm̂‖ sup
t∈Sm+Sm̂,‖t‖=1

|ρn(t)|.

Then, we use

2xy≤ 1
8

x2+8y2

and the fact thatSm+Sm̂ ⊂ Smn to obtain

‖ĝm̂−g‖2 ≤ ‖g−gm‖2+pen(m)+
3
8
‖gm− ĝm̂‖2+8 sup

t∈Sm+Sm̂,‖t‖=1
[ν(1)

n (t)]2−pen(m̂)

+8 sup
t∈Smn ,‖t‖=1

[Rn(t)]
2+8 sup

t∈Smn,‖t‖=1
[ν(2)

n (t)]2,

‖ĝm̂−g‖2 ≤ (1+
3
4
)‖g−gm‖2+pen(m)+

3
4
‖ĝm̂−g‖2

+8

(
sup

t∈Sm+Sm̂,‖t‖=1
[ν(1)

n (t)]2− p(m,m̂)

)

+

+8p(m,m̂)−pen(m̂)

+8 sup
t∈Smn ,‖t‖=1

[Rn(t)]
2+8 sup

t∈Smn,‖t‖=1
[ν(2)

n (t)]2.

The functionp(m,m′) plugged in the last inequality is fixed in the following Lemma.

Lemma 4.1 Under the Assumptions of Theorem 4.1, define

p(m,m′) = 4E(Z2
1/∆)

m∨m′

n∆
, (4.29)

then, there exists a constant k such that for kn = k
√

n/ logn∆ ,

E( sup
t∈Sm+Sm̂,‖t‖=1

[ν(1)
n (t)]2− p(m,m̂))+ ≤ C

n∆
,

where C is a constant.

Before giving the proof of this Lemma, we finish Step 1. OnΩb, the following
inequality holds (by bounding the indicator by 1), for any choice ofκ :

∀m, (1−b)penth(m)≤ pen(m)≤ (1+b)penth(m). (4.30)

Therefore
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1
4
‖ĝm̂−g‖21IΩb ≤ 7

4
‖g−gm‖2+(1+b)penth(m)1IΩb

+8

(
sup

t∈Sm+Sm̂,‖t‖=1
[ν(1)

n (t)]2− p(m,m̂)

)

+

+(8p(m,m̂)− (1−b)penth(m̂))1IΩb

+8 sup
t∈Smn ,‖t‖=1

[Rn(t)]
2+8 sup

t∈Smn,‖t‖=1
[ν(2)

n (t)]2.

The constantκ is now chosen such that

∀m,m′ ∈ {1, . . . ,mn}, 8p(m,m′)≤ (1−b)(penth(m)+penth(m
′)),

that isκ ≥ 32/(1−b). In view of (4.29), this gives the choices

penth(m) =
32

1−b
E(Z2

1/∆)
m
n∆

and pen(m) =
32

1−b
1

n∆

n

∑
i=1

Z2
i

m
n∆

.

It follows that

1
4
‖ĝm̂−g‖21IΩb ≤ 7

4
‖g−gm‖2+2penth(m)

+8

(
sup

t∈Sm+Sm̂,‖t‖=1
[ν(1)

n (t)]2− p(m,m̂)

)

+

+8 sup
t∈Smn ,‖t‖=1

[Rn(t)]
2+8 sup

t∈Smn,‖t‖=1
[ν(2)

n (t)]2.

Using (4.24) and (3.11), we get

sup
t∈Smn ,‖t‖=1

R2
n(t)≤C∆2

∫ πmn

−πmn

u2|g∗(u)|2du. (4.31)

For ν(2)
n (t), we write

E

(
sup

t∈Smn ,‖t‖=1
[ν(2)

n (t)]2
)

≤ 1
2π∆2

∫ πmn

−πmn

E|θ̂ (2)
∆ (u)−θ (2)

∆ (u)|2du

≤
E(Z2

11I|Z1|>kn
√

∆ )mn

n∆2

≤ E(Z4
1)mn

nk2
n∆3 =

[E(Z4
1)/∆ ]mn

nk2
n∆2 ≤ [E(Z4

1)/∆ ]

k2
n∆

sincemn ≤ n∆ . We know that[E(Z4
1)/∆ ] is bounded. Ifk2

n ≥Cn/ log2(n∆), then the
above term is of order log2(n∆)/(n∆) . With the choice ofkn = k

√
n/ logn∆ for
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some constantk prescribed by Lemma 4.1 , the proof is achieved.

Step 1 can be concluded now. For allm∈ {1, . . . ,mn},

E
(
‖ĝm̂−g‖21IΩb

)
≤ 7‖g−gm‖2+8penth(m)+

C1

n∆

+C2∆2
∫ πmn

−πmn

u2|g∗(u)|2du+C3
log2(n∆)

n∆
.

Proof of Lemma 4.1.We start by noting that

E( sup
t∈Sm+Sm̂,‖t‖=1

[ν(1)
n (t)]2− p(m,m̂))+ ≤

mn

∑
m′=1

E( sup
t∈Sm+Sm′ ,‖t‖=1

[ν(1)
n (t)]2− p(m,m′))+.

For t ∈ Sm∨m′ = Sm+Sm′ , ν(1)
n (t) can be written as

ν(1)
n (t) =

1
n

n

∑
k=1

( ft (Zk)−E( ft(Zk))),

where

ft (z) =
z1I|z|≤kn

√
∆

2π∆

∫ π(m∨m′)

−π(m∨m′)
eixzt∗(−x)dx.

We intend to apply the Talagrand inequality (see Appendix) to the class

F = { ft , t ∈ Sm+Sm′ ,‖t‖= 1}.

We have to find the three quantitiesM, H, v.
Let m” = m∨m′. Fort ∈ Sm” , using Inequality (4.16), we obtain

sup
z∈R

| ft (z)| ≤
kn

2π
√

∆
sup
z∈R

|2πt(z)| ≤ kn‖t‖∞√
∆

≤ kn
√

m”√
∆

:= M.

Clearly,

E

(
sup

t∈Sm+Sm′ ,‖t‖=1
[ν(1)

n (t)]2
)

≤ 1
2π∆2

∫ πm”

−πm”
E|θ̂ (1)

∆ (u)−θ (1)
∆ (u)|2du≤ E(Z2

1)m”
n∆2 .

Thus we set

H2 =
E(Z2

1)m”
n∆2 .

The most delicate term isv.

Var( ft(Z1)) ≤
1

4π2∆2E

(∫∫
Z2

11I|Z1|≤kn
√

∆ ei(x−y)Z1t∗(−x)t∗(y)dxdy

)

=
1

4π2∆2

∫∫
p∗∆ (x− y)t∗(−x)t∗(y)dxdy,
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where
p∗∆ (x) = E(Z2

11I|Z1|≤kn
√

∆ eixZ1).

Using thatt = ∑ j∈Z t jφm” , j with ‖t‖2 = ∑ j∈Z t2
j = 1,

Var( ft (Z1)) ≤
1

4π2∆2 ∑
j ,k∈Z

t j tk

∫∫
p∗∆ (x− y)φ∗

m” , j(−x)φ∗
m” ,k(y)dxdy

≤ 1
4π2∆2

(
∑

j ,k∈Z

∣∣∣∣
∫∫

p∗∆ (x− y)φ∗
m” , j(−x)φ∗

m” ,k(y)dxdy

∣∣∣∣
2
)1/2

,

Now, using Proposition 3.3, we have

p∗∆ (x) = ∆
∫

z1I|z|≤kn
√

∆ eixzE(g(z−Z1))dz.

This implies that (see (H4-g))
∫

|p∗∆ (z)|2dz≤ 2π
∫

|p∆ (z)|2dz= 2π∆2
∫

z21I|z|≤kn
√

∆E
2(g(z−Z1))dz

≤ 2π∆2E

(∫
z21I|z|≤kn

√
∆ g2(z−Z1)dz

)

≤ 4π∆2E

(∫
(x2+Z2

1)g
2(x)dx

)
= 4π∆2(M2+E(Z2

1)‖g‖2) .

Therefore,

Var( ft (Z1)) ≤
1

4π2∆2

(∫∫

[−πm” ,πm” ]2
|p∗∆ (x− y)|2dxdy

)1/2

≤ 1
4π2∆2 (2πm”)1/2(

∫
|p∗∆ (z)|2dz)1/2

≤
√

m”√
2π∆

(
M2+ ‖g‖2E(Z2

1)
)1/2

:= v.

Applying Lemma .1 yields, forε2 = 1/2 andp(m,m′) given by (4.29),

E

(
sup

t∈Sm+Sm′ ,‖t‖=1
[ν(1)

n (t)]2− p(m,m′)

)

+

≤C1

(√
m”

n∆
e−C2

√
m” +

k2
nm”
n2∆

e−C3
√

n/kn

)

asp(m,m′) = 4H2. We choose

kn = k

√
n

log(n∆)
with k=

C3

4

and asm≤ n∆ , we get
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E

(
sup

t∈Sm+Sm′ ,‖t‖=1
[ν(1)

n (t)]2− p(m,m′)

)

+

≤C′
1

(√
m”

n∆
e−C2

√
m” +

1

(∆n)4 log2(n∆)

)
.

Therefore

mn

∑
m′=1

E

(
sup

t∈Sm+Sm′ ,‖t‖=1
[ν(1)

n (t)]2− p(m,m′)

)

+

≤C′
1

(
∑n∆

m′=1

√
m”e−C2

√
m”

n∆
+

1

(n∆)3 log2(n∆)

)
.

As C2xe−C2x is decreasing forx≥ 1/C2, and its maximum is 1/(eC2), we get

mn

∑
m′=1

√
m”e−C2

√
m” ≤ ∑√

m′≤1/C2

(eC2)
−1+ ∑√

m′≥1/C2

√
m′e−C2

√
m′

≤ 1

eC3
2

+
∞

∑
m′=1

√
m′e−C2

√
m′

<+∞.

It follows that

mn

∑
m′=1

E

(
sup

t∈Sm+Sm′ ,‖t‖=1
[ν(1)

n (t)]2− p(m,m′)

)

+

≤ C
n∆

and Proposition 4.1 is proved.✷
Step 2.Study ofE(‖ĝm̂−g‖21IΩc

b
).

This part is simpler. Using (4.25) and (4.28) yields that,∀m∈ {1, . . . ,mn},

‖ĝm̂−g‖2 ≤ ‖g−gm‖2+pen(m)+2νn(gm− ĝm̂)−pen(m̂)+2Rn(gm− ĝm̂)

≤ ‖g−gm‖2+pen(m)+
1
4
‖gm− ĝm̂‖2 (4.32)

+8 sup
t∈Smn ,‖t‖=1

[νn(t)]
2+8 sup

t∈Smn ,‖t‖=1
[Rn(t)]

2. (4.33)

Now we apply inequality (4.31) toRn(t) and the Parseval formula forνn(t), and get

1
2
‖ĝm̂−g‖2 ≤ 3

2
‖g−gm‖2+E(pen(m))+ [pen(m)−E(pen(m))]

+
4

π∆2

∫ πmn

−πmn

|θ̂∆ (u)−θ∆ (u)|2du+C′∆2
∫ πmn

−πmn

u2|g∗(u)|2du.

Using that penth(m) = E(pen(m)), we apply the Cauchy-Schwarz inequality and
get:

E
(
(pen(m)−penth(m))1IΩc

b

)
≤



E



(

1
n∆

n

∑
k=1

(Z2
k −E(Z2

1)

)2






1/2

(P(Ω c
b))

1/2,

(4.34)
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and we find

1
2
E(‖ĝm̂−g‖21IΩc

b
) ≤

(
3
2
‖g‖2+penth(m)+C”∆2m2

n‖g‖2
)
P(Ω c

b)

+E1/2



(

1
n∆

n

∑
k=1

(Z2
k −E(Z2

1)

)2

P1/2(Ω c

b)

+E1/2
(
(

4
π∆2

∫ πmn

−πmn

|θ̂∆ (u)−θ∆(u)|2du)2
)
P1/2(Ω c

b).

Then we apply Proposition 4.2 withl = 2 and get forp≥ 2:

E

(∣∣∣∣∣
1

n∆

n

∑
k=1

Z2
k −E(Z2

1)

∣∣∣∣∣

p)
≤Cp

(
1

n∆

)p/2

.

Thus, by takingp= 2,

E1/2

(
(

1
n∆

n

∑
k=1

(Z2
k −E(Z2

k))
2

)
≤ C√

n∆
.

Applying (4.7) forp= 2 (see Proposition 4.1) gives

E(|θ̂∆ (u)−θ∆ (u)|4)≤
C∆2

n2 .

Thus

E

(
(

4
π∆2

∫ πmn

−πmn

|θ̂∆ (u)−θ∆(u)|2du)2
)

≤ 32πmn

π2∆4

∫ πmn

−πmn

E(|θ̂∆ (u)−θ∆ (u)|4du)

≤ C′ m
2
n

∆4

∆2

n2 ≤C′

asmn ≤ n∆ . We obtain:

E(‖ĝm̂−g‖21IΩc
b
)≤C

(
1+n2∆4)P(Ω c

b)+C′(1+
1√
n∆

)P1/2(Ω c
b). (4.35)

Lastly, if follows from the Markov inequality that

P(Ω c
b) ≤

1
bpE

(∣∣∣∣
(1/n∆)∑n

k=1Z2
k

E(Z2
1/∆)

−1

∣∣∣∣
p
)

≤ 1

(E(Z2
1/∆)b)p

E

(∣∣∣∣∣
1

n∆

n

∑
k=1

Z2
k −E(Z2

1/∆)

∣∣∣∣∣

p)
.

We find that, ifE(|Z1|2p)<+∞ andp≥ 2,
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P(Ω c
b)≤

Cp

(E(Z2
1/∆)b)p

1

(n∆)p/2
. (4.36)

Therefore, using (4.35) and the above inequality, if we takep= 4 (i.e.E(Z8
1)< ∞),

we get
E(‖ĝm̂−g‖21IΩc

b
)≤C/(n∆).

This ends step 2 and the proof of Theorem 4.1.✷

4.2 Estimation on a compact set

In this paragraph, we intend to proceed without Fourier inversion and directly use
the fact that

1
n∆

n

∑
k=1

ZkδZk = µ̂n (4.37)

approximates the measureµ (1)(dx) = g(x)dx (δz denotes the Dirac measure atz).
We use the same contrastγn(t) as previously with a different interpretation. Recall
that, for any functiont such thatt∗ is compactly supported,

γn(t) = ‖t‖2− 2
2π

〈 θ̂∆
∆

, t∗〉.

As θ̂∆/∆ is the Fourier Transform of̂µn (see (4.5)), we now consider, with the same
notation and for any compactly supported functiont,

γn(t) = ‖t‖2−2〈µ̂n, t〉= ‖t‖2− 2
n∆

n

∑
k=1

Zkt(Zk).

More precisely, we fix a compact intervalA= [a,b]⊂R and focus on the estimation
of

gA := g1IA. (4.38)

In other words, the estimation is performed in the “time domain” instead of previ-
ously, the “frequency domain”. We consider a family(Σm,m∈Mn} of finitedimen-
sional linear subspaces ofL2(A): Σm = span{φλ ,λ ∈ Λm} where card(Λm) = Dm is
the dimension ofΣm. The set{φλ ,λ ∈Λm} denotes an orthonormal basis ofΣm. We
shall denote by‖ f‖2

A =
∫

A f 2(u)du for any functionf .
Form≥ 1, we define a collection(g̃m,m∈ Mn) of estimators ofgA by:

g̃m = arg min
t∈Σm

γn(t). (4.39)
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4.2.1 Projection spaces and their fundamental properties

We consider projection spaces classically used for densityestimation on a compact
set and satisfying the following conditions:

(M1) (Σm)m∈Mn is a collection of finite-dimensional linear sub-spaces ofL2(A), with
dimensionDm such that∀m∈ Mn,Dm ≤ n∆ . For all m, functions inΣm are of
classC1 in A, and, satisfy

∃Φ0 > 0,∀m∈ Mn,∀t ∈ Σm,‖t‖∞ ≤ Φ0
√

Dm‖t‖A, and ‖t ′‖A ≤ Φ0Dm‖t‖A.
(4.40)

where‖t‖∞ = supx∈A |t(x)|.
(M2) (Σm)m∈Mn is a collection of nested models, all embedded in a spaceSn belong-

ing to the collection (∀m∈ Mn,Σm ⊂ Sn). We denote byNn the dimension of
Sn: dim(Sn) = Nn (∀m∈ Mn,Dm ≤ Nn ≤ n∆ ).

Inequality (4.40) is often referred to as thenorm connectionproperty of the pro-
jection spaces and is the basic tool to obtain the adequate order of the risk bound.
This inequality should be compared with inequality 4.16 where the cut-off parame-
ter plays the role of the dimension. It follows from Lemma 1 in[10], that (4.40) is
equivalent to

∃Φ0 > 0,‖ ∑
λ∈Λm

φ2
λ‖∞ ≤ Φ2

0Dm. (4.41)

Functions of the spacesΣm are considered as functions onR equal to zero outside
A.

Here are the examples we have in view, and that we describe with A= [0,1] for
simplicity. They satisfy assumptions (M1) and (M2).
[T] Trigonometric spaces, generated byφ0 = 1[0,1], φ j (x) =

√
2cos(2π jx)1I[0,1](x)

andφ j+m+1(x) =
√

2sin(2π jx)1I[0,1](x) for j = 1, . . . ,m, Dm = 2m+ 1 andMn =
{1, . . . , [n∆/2]−1}.
[W] Dyadic wavelet generated spaceswith regularityr ≥ 2 and compact support,
as described e.g. in [38]. The generating basis is of cardinality Dm = 2m+1 and
m∈ Mn = {1,2, . . . , [log(n∆)/2]−1}.

4.2.2 Integrated risk on a compact set

Now, we have (see (4.39))

g̃m = ∑
λ∈Λm

ãλ φλ with ãλ =
1

n∆

n

∑
k=1

Zkφλ (Zk). (4.42)

And, for anyt ∈ Σm,

γn(t) = ‖t‖2−2〈t, g̃m〉= ‖t− g̃m‖2−‖g̃m‖2.
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(for functions with support inA, ‖.‖ = ‖.‖A and〈., .〉A = 〈., .〉). Let gm denote the
orthogonal projection ofgA on Σm, now given by

gm = ∑
λ∈Λm

aλ φλ with aλ =

∫

A
t(x)g(x)dx= 〈t,g〉A = 〈t,g〉.

At this stage, note that the “time domain approach” differs from the “frequency
domain approach” only through the projection spaces. For simplicity, we use the
same notationgm to define the orthogonal projection ofgA on Σm. The contrast
decomposition is the same

γn(t)− γn(s) = ‖t −g‖2−‖s−g‖2−2νn(t − s)−2Rn(t − s), (4.43)

where the sameνn,Rn can be written now

νn(t) =
1

n∆

n

∑
k=1

(Zkt(Zk)−e(Z1t(Z1)), (4.44)

and

Rn(t) =
1
∆
E(Z1t(Z1))−

∫
t(x)g(x)dx. (4.45)

This remainder term is ruled by the following proposition.

Proposition 4.5 Let t∈ Σm and assume that(H1-g)and(H3-g)hold.
1) If L :=

∫
u2|g∗(u)|2du<+∞, then

|Rn(t)| ≤ ∆‖t‖A‖g‖1L
1/2/

√
2π.

2) If g is bounded,|Rn(t)| ≤ CΦ0‖t‖A∆Dm where C depends on‖g‖1, ‖g‖, ‖g‖∞
and A.
3) Otherwise:

|Rn(t)| ≤CΦ0‖t‖A(
√

∆Dm+∆Dm), (4.46)

where C depends on‖g‖1, ‖g‖ and A. If n∆2 ≤ 1, |Rn(t)|= O(
√

∆Dm).

Proof. First, we know thatRn(t) = (1/2π)
∫
(ϕ∆ (u)− 1)g∗(u)t∗(−u)du. Thus, if∫

u2|g∗(u)|du<+∞, if follows from (3.11) that

R2
n(t)≤

∆2‖g‖2
1

(2π)2

(∫
|ug∗(u)t∗(−u)|du

)2

≤ ∆2‖g‖2
1

(2π)2

∫
u2|g∗(u)|2du

∫
|t∗(−u)|2du.

Noting that
∫ |t∗(−u)|2du= 2π‖t‖2 = 2π‖t‖2

A gives 1).
For the two other cases, using Proposition 3.3, we have, fort a function with

supportA= [a,b]:

1
∆
E(Z1t(Z1)) =

∫ b

a
t(z)Eg(z−Z1)dz= E(

∫ b−Z1

a−Z1

t(x+Z1)g(x)dx).
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Thus

Rn(t) = E(

∫ b−Z1

a−Z1

t(x+Z1)g(x)dx−
∫ b

a
t(x)g(x)dx).

On (|Z1|> b−a), [a−Z1,b−Z1]∩ [a,b] = /0 and we use the bound

|Rn(t)| ≤ 2‖t‖∞‖g‖1.

We apply the Markov inequality, the norm connection (4.40) and the inequality
E|Z1| ≤ ∆‖g‖1 (see Proposition 3.2) to obtain:

E
(
1I|Z1|>b−a |Rn(t)|

)
≤ 2‖t‖∞‖g‖1

E(|Z1|)
b−a

≤ 2Φ0‖g‖2
1

√
Dm∆‖t‖A

b−a
. (4.47)

On(|Z1| ≤ b−a), [a−Z1,b−Z1]∩ [a,b] 6= /0. Assume for instance that 0≤ Z1 ≤
b−a. Then,

Rn(t) =
∫ a

a−Z1

t(x+Z1)g(x)dx+
∫ b−Z1

a
(t(x+Z1)− t(x))g(x)dx−

∫ b

b−Z1

t(x)g(x)dx.

To study the middle term, we use the fact thatt is C1 on [a,b].

T1 := E

(
1I0≤Z1≤b−a

∫ b−Z1

a
(t(x+Z1)− t(x))g(x)dx

)

= E

(
Z11I0≤Z1≤b−a

∫ b−Z1

a

∫ 1

0
t ′(x+uZ1)dug(x)dx

)

= E

(
Z11I0≤Z1≤b−a

∫ 1

0
(

∫ b−Z1

a
t ′(x+uZ1)g(x)dx)du

)

An application of the Cauchy-Schwarz inequality yields

|T1| ≤ E|Z1|‖t ′‖A‖g‖ ≤ Φ0‖g‖1‖g‖‖t‖A∆Dm.

Next,

T2 := E

(
1I0≤Z1≤b−a

∫ a

a−Z1

t(x+Z1)g(x)dx

)
.

Here we distinguish between 2) and 3). Ifg is bounded (case 2)), then, with
E(|Z1|)≤ ∆‖g‖1 and (4.40), we obtain:

|T2| ≤ ‖t‖∞‖g‖∞E(|Z1|)≤ Φ0‖g‖∞‖g‖1‖t‖A∆
√

Dm.

Otherwise (case 3)), using the Cauchy-Schwarz inequality again,

|T2| ≤ E(
√

Z+
1 )‖t‖∞‖g‖ ≤

√
E(|Z1|)Φ0

√
Dm‖t‖A‖g‖

≤ Φ0‖t‖A

√
‖g‖1‖g‖

√
Dm∆ .
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The same bound holds for the last term.
The same study can be done fora−b≤ Z1 ≤ 0. Joining all terms, we find that,

if g is bounded
|Rn(t)| ≤CΦ0‖t‖A∆Dm.

Otherwise,
|Rn(t)| ≤C′Φ0‖t‖A(

√
∆Dm+∆Dm).

The constantsC andC′ depend ona,b, ‖g‖1 and‖g‖. Recalling thatDm ≤ n∆ , we
have, asn∆2 ≤ 1, that|Rn(t)|= O(

√
∆Dm).

Proposition 4.6 Assume that(H1-g)-(H2)(2)-(H3-g)hold. The estimator̃gm of gA

(see (4.39)) satisfies

E(‖g̃m−g‖2
A)≤ 3‖g−gm‖2

A+16Φ0[E(Z
2
1)/∆ ]

Dm

n∆
+Kρm,∆ , (4.48)

where gm is the orthogonal projection of gA on Σm. The constant K depends on
m1, m2 (see Proposition 3.1) and g. The remainder term satisfiesρm,∆ = ∆2 if∫

u2|g∗(u)|2du < +∞, ρm,∆ = ∆2D2
m if g is bounded. Otherwiseρm,∆ = ∆Dm if

n∆2 ≤ 1.

Proof. Relation (4.25) still holds withνn andRn respectively defined by (4.44) and
(4.45). As for anyt ∈ Σm,

‖t−g‖2 = ‖t−g‖2
A+ ‖g‖2

Ac,

we get

γn(t)− γn(s) = ‖t −g‖2
A−‖s−g‖2

A−2νn(t − s)−2Rn(t − s).

Writing thatγn(g̃m)− γn(g)≤ γn(gm)− γn(g), we get

‖g̃m−g‖2
A ≤ ‖gm−g‖2

A+2νn(g̃m−gm)+2Rn(g̃m−gm).

We have

2νn(g̃m−gm)≤
1
8
‖g̃m−gm‖2

A+8 sup
t∈Σm,‖t‖A=1

[νn(t)]
2,

and the analogous inequality forRn. Using that

‖g̃m−gm‖2
A ≤ 2‖g−gm‖2

A+2‖g̃m−g‖2
A

and some algebra yields:

1
2
‖g̃m−g‖2

A ≤ 3
2
‖gm−g‖2

A+8 sup
t∈Σm,‖t‖A=1

[νn(t)]
2+8 sup

t∈Σm,‖t‖A=1
[Rn(t)]

2.

To bound the last term, we use Proposition 4.5. Noting that each t ∈ Σm can be
written t = ∑λ∈Λm tλ φλ with ∑t2

λ = 1 if ‖t‖A = 1, we get
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E

(
sup

t∈Σm,‖t‖A=1
[νn(t)]

2

)
≤ ∑

λ∈Λm

E([νn(φλ )]
2) = ∑

λ∈Λm

1
n∆2 Var(Z1φλ (Z1))

≤ E(Z2
1 ∑

λ
φ2

λ (Z1))
1

n∆2 = [E(Z2
1)/∆ ]

Φ0Dm

n∆
. (4.49)

We have used (4.41) in the last line. The conclusion of Proposition 4.6 follows .

As for Proposition 4.3, we draw the consequences of Proposition 4.6 on the rate
of convergence of the risk bound. In the setting of this section, the regularity ofgA

must be described by using classical Besov spaces on compactsets. Let us recall
that the Besov spaceBα ,2,∞([0,1]) is defined by:

Bα ,2,∞([0,1]) = { f ∈ L2([0,1]), | f |α ,2 := sup
t>0

t−αωr( f , t)2 <+∞}

wherer = [α]+1 ([.] denotes the integer part), andωr( f , t)2 is ther-th modulus of
smoothness of a functionf ∈ L2([0,1]) and is equal to:

ωr( f , t)2 = sup
0<h≤t

‖∆ r
h( f , .)‖2([0,1−rh]), t ≥ 0, ∆ r

h( f ,x)=
r

∑
k=0

(
r
k

)
(−1)r−k f (x+kh).

Note that| f |α ,2 is a semi-norm with usual associated norm‖ f‖α ,2 = ‖ f‖+ | f |α ,2.
For details, we refer to [23], p.54-57.

Heuristically, a function inBα ,2,∞([0,1]) can be seen as square integrable and
[α]-times differentiable with derivative of order[α] having a Hölder property of
orderα − [α].

Proposition 4.7 Consider A= [0,1] and Σm a space in collection[T] or [W] .
Assume that(H1-g), (H2)(2) and (H3-g) hold. Let g[0,1] ∈ Bα,2,∞([0,1]), Dm =

(n∆)1/(2α+1). Assume that we can choose∆ of the form∆ = n−a with a∈ (0,1)
and:

• a≥ α/(3α +1), if
∫

u2|g∗(u)|2du<+∞,
• a≥ (α +1)/(3α +2), if g is bounded,
• a≥ 1/2, otherwise.

Then
E(‖g− g̃m‖2

A)≤ K(n∆)−2α/(2α+1).

Proof. In [23], it is proved that, ifΣm is a space of [T] or [W], and ifg ∈
Bα,2,∞([0,1]), then

‖g−gm‖2
[0,1] ≤CD−2α

m .

Minimizing D−2α
m +Dm/(n∆) leads to the best choiceDm = O((n∆)1/(2α+1)) for

which the first two terms in (4.48) have the same rateO((n∆)−2α/(2α+1)).
Now, we search for the choice of∆ = n−a such that the remainder term satisfies

ρm,∆ ≤ (n∆)−2α/(2α+1).



Adaptive Estimation for Lévy processes. 31

We distinguish the cases of Proposition 4.5.
If
∫

u2|g∗(u)|2du<+∞, ρm,∆ = ∆2 and we finda≥ α/(3α +1).
If g is bounded,ρm,∆ = ∆2D2

m and we finda≥ (α +1)/(3α+2). Otherwise,ρm,∆ =
∆Dm and we finda≥ 1/2.

Note thata ≥ α/(3α + 1) and a ≥ (α + 1)/(3α + 2) holds for anyα ≥ 0 if
a≥ 1/3 (hencen∆ ≤ n2/3), anda≥ 1/2 impliesn∆ ≤ n1/2.

4.2.3 Adaptive result

Now, to get an adaptive result, we need to define a penalty function pen(.) and set

m̃= arg min
m∈Mn

(γn(g̃m)+pen(m))

Let

pen(m) =
κ

n∆

n

∑
k=1

Z2
k

Dm

n∆
, penth(m) = E(pen(m)) = κE(Z2

1/∆)
Dm

n∆
.

Here too, we use the same notation pen(m), penth(m) as above, although the defini-
tions differ. The following theorem holds:

Theorem 4.2 Assume that assumptions(H1-g)-(H2)(12)-(H3-g)and conditions
(M1)-(M2) for the collection of spaces are fulfilled. There exists a universal con-
stantκ such that

E(‖g− g̃m̃‖2
A)≤C inf

m∈Mn

(
‖g−gm‖2

A+penth(m)
)
+Cρn,∆ +

C′

n∆
,

whereρn,∆ = ∆2 if
∫

u2|g∗(u)|2du< +∞, ρn,∆ = ∆2N2
n if g is bounded. Otherwise,

ρn,∆ = ∆Nn.

Remark 4.3 The moment condition of order 12 in Theorem 4.2 can be weakened
into a condition of order 8 for basis [T], which is bounded.

A subsection below is devoted to the proof of Theorem 4.2. We deduce the following
corollary.

Corollary 4.1 Let theΣm’s be Dm-dimensional linear spaces in collections[T] or
[W] . Assume moreover that g belongs toBα ,2,∞([0,1]) with r > α > 0 and that we
can choose∆ = n−a with a∈ [1/3,1[ if

∫
u2|g∗(u)|2du< +∞, a∈ [3/5,1[ if g is

bounded, and otherwise, a∈ [2/3,1[. Then, under the assumptions of Theorem 4.2,

E(‖g− g̃m̃‖2) = O
(
(n∆)−

2α
2α+1

)
. (4.50)

Remark 4.4 The boundα on r stands for the regularity of the basis functions for
collection [W]. For the trigonometric collection [T], no such bound is required.
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Proof. We apply results of [23] and Lemma 12 of [6]. Ifg∈Bα ,2,∞([0,1]) for some
α > 0, then‖g− gm‖ is of orderD−α

m in the collections [T] and [W]. Thus the
infimum in Theorem 4.2 is reached forDmn = O([(n∆)1/(1+2α)]), which is less than
n∆ for α > 0.
Now, we look at the remainder term and find conditions on∆ implying that

ρn,∆ ≤ (n∆)−1.

Recall that the maximal dimensionNn of the models collection satisfiesNn ≤ n∆ .
If
∫

u2|g∗(u)|2du<+∞, ∆2 ≤ 1/(n∆) holds for∆ = n−a if a∈ [1/3,1[.
If g is bounded,∆2N2

n ≤ 1/(n∆) holds if ∆2(n∆)2 ≤ 1/(n∆) which givesa ∈
[3/5,1[.
Otherwise,Nn∆ ≤ 1/(n∆) holds for∆ = n−a if a∈ [2/3,1[. Unfortunately, this also
implies thatn∆ ≤ n2/3 in the first case,n∆ ≤ n2/5 in the second case andn∆ ≤ n1/3

in the third case. Then, we find the standard nonparametric rate of convergence
(n∆)−2α/(1+2α).

Remark 4.5 In [33], the nonparametric estimation of n(.) from a continuous obser-
vation(Lt)t∈[0,T ] is investigated. The authors use projection methods and penaliza-

tion to obtain estimators with rate O(T−2α/(2α+1)) on a Besov classBα ,2,∞([0,1]).
Moreover, in [31], a minimax bound for the estimation of n(.) based on discrete
observations of order O((n∆)−2α/(2α+1)) is obtained. The results can therefore be
compared since rates are identical, except that we do not estimate the same function.

4.2.4 Proof of Theorem 4.2

The proof of Theorem 4.2 is close to the proof of Theorem 4.1. Hence we focus
mainly on the differences. Note thatνn defined in (4.44) can be written as

νn(t) =
1
n

n

∑
k=1

( ft (Zk)−E( ft(Z1)))

with ft now given by ft(z) = zt(z) = z1Iz∈At(z), sincet has compact supportA. As
in step 1 of Theorem 4.1, we are led to the inequality:

1
2
‖g̃m̃−g‖2

A1IΩb ≤ 3
2
‖g−gm‖2

A+2penth(m)

+8 ∑
m′∈Mn

(
sup

t∈Σm+Σm′ ,‖t‖A=1
[νn(t)]

2− p(m,m′)

)

+

+8 sup
t∈Sn,‖t‖A=1

[Rn(t)]
2,

with 8p(m,m′)≤ (1−b)(penth(m)+penth(m
′)), for all m∈ Mn.

It follows from Proposition (4.5) that
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sup
t∈Sn,‖t‖A=1

[Rn(t)]
2 ≤ Kρn,∆ .

The functionp(m,m′) is chosen in order to ensure the following Lemma.

Lemma 4.2 Under the Assumptions of Theorem 4.2, define

p(m,m′) = 4E(Z2
1/∆)

Dm∨Dm′

n∆
, (4.51)

then

∑
m′∈Mn

E

(
sup

t∈Σm+Σm′ ,‖t‖A=1
[νn(t)]

2− p(m,m′)

)

+

≤ C
n∆

,

where C is a constant.

For the study ofE(‖g̃m̃− g‖2
A1IΩc

b
), as in step 2 above, we have the inequality

analogous to (4.32):

1
2
‖ĝm̂−g‖2 ≤ 3

2
‖gA−gm‖2+pen(m)+8 sup

t∈Sn,‖t‖A=1
[νn(t)]

2+8 sup
t∈Sn,‖t‖A=1

[Rn(t)]
2.

The bound forP(Ω c
b) is given by (4.36). Proposition 4.5 applies to bound[Rn(t)]2

by Cρn,∆ .
Then we have again

pen(m)1IΩc
b
≤ penth(m)+ (pen(m)−penth(m))1IΩc

b
.

The same bound holds also for the termE[(pen(m)−E(pen(m)))1IΩc
b
]. We apply

inequality (4.34).
It remains to study the termE(supt∈Sn

[νn(t)]21IΩc
b
). We use

E

(
sup

t∈Sn,‖t‖A=1
[νn(t)]

21IΩc
b

)
≤
(
E sup

t∈Sn,‖t‖A=1
[νn(t)]

4

)1/2

P1/2(Ω c
b).

Denote by(φλ )λ∈Λn an orthonormal basis ofSn, |Λn|= Nn. We have

E

(
sup

t∈Sn,‖t‖A=1
[νn(t)]

4

)
= E



(

∑
λ∈Λn

ν2
n(φλ )

)2



≤ Nn ∑
λ∈Λn

E





(
1

n∆

n

∑
k=1

(Zkφλ (Zk)−E(Zkφλ (Zk)))

)4




≤ KNn

(n∆)4 ∑
λ∈Λn

[
nE[(Z1φλ (Z1))

4]+
(
nE(Z2

1φ2
λ (Z1))

)2
]
,

where the last inequality follows from the Rosenthal Inequality (.1).
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If the basis is bounded,φ2
λ ≤ B, ∀λ , as for instance basis [T] (B= 2), we find

E

(
sup

t∈Sn,‖t‖A=1
[νn(t)]

4

)
≤ KN2

nB2

(n∆)4

[
nE(Z4

1/∆)∆ +n2E2(Z2
1/∆)∆2]

≤ K′N2
n

(n∆)2 ≤ K′

usingNn ≤ n∆ .
In the general case, we use that∑λ φ4

λ (x) ≤ ‖φλ‖2
∞ ∑λ φ2

λ (x) and‖∑λ φ2
λ‖∞ ≤

Φ2
0Nn and‖φλ‖2

∞ ≤ Φ2
0Nn, so that

E

(
sup

t∈Sn,‖t‖A=1
[νn(t)]

4

)
≤ KNn

(n∆)4

[
Φ4

0N2
nnE(Z4

1/∆)∆ +n2E2( ∑
λ∈Λn

(Z2
1/∆)φ2

λ (Z1))∆2

]

≤ KNn

(n∆)4

[
Φ4

0N2
nnE(Z4

1/∆)∆ +n2Φ4
0N2

nE
2(Z2

1/∆)∆2]

≤ K”N3
n

(n∆)2 ≤ K”(n∆)

usingNn ≤ n∆ .

Using (4.36), we obtainE
(

supt∈Sn,‖t‖A=1[νn(t)]21IΩc
b

)
≤ C/(n∆) if P(Ω c

b) ≤
1/(n∆)2 which holds forp= 4 andE(Z8

1) < +∞ in the first case (bounded basis).
In the general case, we needP(Ω c

b)≤ 1/(n∆)3 and thusp= 6 andE(Z12
1 )<+∞ .

4.2.5 Proof of Lemma 4.2

Again, we apply the Talagrand (see Appendix) Inequality to the class

F = { ft , t ∈ Σm+Σm′} where ft (z) =
z1Iz∈At(z)

∆
.

We obtain similarly to (4.49)

H2 = [E(Z2
1)/∆ ]Φ0(Dm∨Dm′)/(n∆) andM = bAΦ0

√
Dm∨Dm′/∆ ,

wherebA = supz∈A |z|. Lastly, we find
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Var

(
Z1

∆
t(Z1)

)
≤ E(Z2

1t2(Z1))/∆2 =
1
∆

∫
zt2(z)E(g(z−Z1))dz

≤ bA‖t‖∞

∆
E

(∫
|t(z)g(z−Z1)|dz

)

≤ bAΦ0(Dm∨Dm′)1/2

∆
E

(
‖t‖

∫
g2(z−Z1)dz

)1/2

≤ 2bAΦ0(Dm∨Dm′)1/2‖g‖
∆

.

We denote byv=C(Dm∨Dm′)1/2/∆ with C= 2Φ0bA‖g‖.
Then we get

E

(
sup

t∈Σm+Σm′ ,‖t‖A=1
[νn(t)]

2− p(m,m′)

)

+

≤ C′
1

(√
Dm∨Dm′

n∆
e−C2

√
Dm∨Dm′

+
1

n∆
exp(−

√
n∆)

)
.

Therefore, asDm ≤ n∆ , as above

∑
m′∈Mn

E

(
sup

t∈Σm+Σm′ ,‖t‖A=1
[νn(t)]

2− p(m,m′)

)

+

≤ C
n∆

.

This ends the proof of Lemma 4.2.✷

4.3 Kernel estimators

The fact that(1/(n∆))∑n
k=1 ZkδZk = µ̂n approximates the measureµ (1)(dx) =

g(x)dx can be used to build kernel estimators ofg. Let K : R → R be a kernel,
i.e.an integrable function such that

∫
K(u)du= 1. (4.52)

As it is usual, we assume thatK is an even function. SetKh(x) =
1
h

K(
x
h
) and define

the kernel estimator ofg with bandwidthh by:

ĝh(x) = Kh ⋆ µ̂n(x) =
1

n∆

n

∑
k=1

ZkKh(x−Zk). (4.53)

The kernel estimator (4.53) can be related to the deconvolution estimator (4.10).
Indeed, let us compute the Fourier transform of ˆgh:
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(ĝh)
∗(u) =

1
n∆h

n

∑
k=1

Zk

∫
K(

x−Zk

h
)eiuxdx.

After a change of variable, we obtain (see (4.10)):

(ĝh)
∗(u) =

1
n∆

n

∑
k=1

Zke
iuZkK∗(uh) =

θ̂∆ (u)
∆

K∗(uh).

Under the assumption thatK∗ is integrable, we have:

ĝh(x) =
1

2π

∫
e−ixu θ̂∆ (u)

∆
K∗(uh)du. (4.54)

Thus, the kernel estimator ˆgh is obtained as the deconvolution estimator (4.10) using
another kernel thanφ (see (4.12)) and with the correspondenceh= m−1. Moreover,
the inequality

|ĝh(x)| ≤
1

2π∆

n

∑
k=1

|Zk|
∫

|K∗(uh)|du

implies that ˆgh(x) is integrable asE|Zk|<+∞ by (H1-g).

4.3.1 Mean integrated squared error for fixed bandwidth

To study the MISE of the kernel estimator ˆgh, we precise assumptions on the kernel
K and additional assumptions ong. For α > 0, we denote byl = ⌊α⌋ the largest
integer strictly smaller thanα. The following definition is classical.

Definition 4.1 A kernel K is said to be of order l if functions u7→ u jK(u), j =
0,1, ..., l are integrable and satisfy

∫
u jK(u)du= 0,∀ j ∈ {1, ..., l}. (4.55)

The assumptions onK are the following.

• (Ker[1]) For someα > 0,K is a kernel of orderl = ⌊α⌋ and
∫ |x|α |K(x)|dx<+∞.

• (Ker[2]) ‖K‖2 <+∞.
• (Ker[3]) K∗ ∈ L1.

Assumptions (Ker[i]), i = 1,2 are standard assumptions when working on problems
of estimation by kernel methods. As noted above, (Ker[3]) ismore specific and
ensures in particular that ˆgh(x) is integrable under (H1-g).

Remark 4.6 To construct a kernel of order l, we may proceed as follows. Choose u
an even and integrable function such that u∈ L2(R),u∗ ∈ L1(R),

∫
u(y)dy= 1 and∫ |y|k|u(y)|dy<+∞, and define for any given integer l,
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K(t) =
l+1

∑
k=1

(
l +1

k

)
(−1)k+11

k
u
( t

k

)
(4.56)

The kernel K defined by (4.56) is order l and satisfies (Ker[i])i = 1,2,3 (see [48]
and [34]).

The definition of kernels of orderl satisfying (Ker[1]) is fitted to evaluate the bias
of kernel estimators on Nikol’ski classes of functions.

Definition 4.2 (Nikol’ski class) Letα > 0, L > 0. Let also l= ⌊α⌋ be the largest
integer strictly smaller thanα. The Nikol’ski class N(α,L) on R is the set of all
functions f:R−→R such that derivatives f( j) for j = 1, . . . , l exist and f(l) verifies:

(∫
| f (l)(x+ t)− f (l)(x)|2dx

)1/2

≤ L|t|α−l ,∀t ∈R. (4.57)

In addition to (H1-g), (H3-g) and some moment assumption (H2-(k)), we may re-
quire thatg belongs toN(α,L).

The MISE ofĝh can be split using the standard bias variance decomposition:

E[‖ĝh−g‖2] =

∫
E[(ĝh(x)−E[ĝh(x)])

2]dx+
∫
(E[ĝh(x)]−g(x))2dx

The bias needs further decomposition:

E[‖ĝh−g‖2] ≤
∫

Var(ĝh(x))dx+2
∫
(Kh ⋆g(x)−g(x))2dx

+2
∫
(E[ĝh(x)]−Kh⋆g(x))2dx

:=
∫

Var(ĝh(x))dx+2
∫

b2
h,1(x)dx+2

∫
b2

h,2(x)dx

with the usual bias of the kernel method,

bh,1(x) = Kh⋆g(x)−g(x), (4.58)

and the bias resulting from the approximation ofϕ∆ (u) by 1,

bh,2(x) = E[ĝh(x)]−Kh⋆g(x). (4.59)

In other words
bh(x) = E[ĝh(x)]−g(x) = bh,1(x)+bh,2(x). (4.60)

The bias terms are bounded as follows.

Lemma 4.3 Under (Ker[1]) and if g∈ N(α,L),

‖Kh⋆g−g‖2 = ‖bh,1‖2 ≤ c1h2α
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with c1 = (L/l !
∫ |K(v)||v|αdv)2.

Assume (Ker[3]), (H1-g), (H3-g) and
∫

u2|g∗(u)|2du := A<+∞. Then,

‖bh,2‖2 ≤ c′1∆2

with c′1 = A‖K‖2
1‖g‖2

1/2π .

Proof. Assumption (Ker[1]) and the fact thatg∈ N(α,L) standardly imply the in-
equality (see [61]) ∫

b2
h,1(x)dx≤ c1h2α .

Thus, we focus onbh,2. Under (Ker[3]), by the Fourier inversion formula, we have
for all z,

K

(
x− z

h

)
=

1
2π

∫
e−i x−z

h vK∗(v)dv=
h

2π

∫
eiuze−iuxK∗(uh)du.

This shows that|K
(

x−z
h

)
| is bounded. Assumption (H1-g) ensures thatE|Z1| ≤∫ |g(z)|dz<+∞. Thus, (see (4.3))

bh,2(x) =
1

h∆
E

[
Z1K

(
x−Z1

h

)]
− 1

h

∫
K

(
x− z

h

)
g(z)dz

=
1

2π

∫
e−ixuK∗(uh)

(
θ∆ (u)

∆
−g∗(u)

)
du.

Therefore, we get, with the Parseval Formula and (4.4),

‖bh,2‖2 =

∫
b2

2(x)dx=
1

2π

∫
|K∗(uh)|2|ϕ∆ (u)−1|2|g∗(u)|2du.

Now, applying Inequality (3.11) of Proposition 3.4, we get

‖bh,2‖2 ≤ ‖g‖2
1∆2

2π

∫
|K∗(uh)|2u2|g∗(u)|2du.

Since|K∗(uh)| ≤ ‖K‖1 <+∞, we obtain the announced bound.

Moreover, the variance is controlled as follows:

Lemma 4.4 Under (Ker[2]), (Ker[3]), (H1-g), (H2-(2)) and (H3-g), we have

∫
Var[ĝh(x)]dx≤ ‖K‖2E(Z2

1/∆)

nh∆
.

Proof. As theZk arei.i.d., we have:

Var[ĝh(x)] = Var

[
1

nh∆

n

∑
k=1

ZkK

(
Zk− x

h

)]
=

1
n(h∆)2 Var

[
Z1K

(
Z1− x

h

)]
.
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Thus,

Var[ĝh(x)]≤
1

n(h∆)2E

[
Z2

1K2
(

Z1− x
h

)]
.

With the Fubini-Tonelli theorem, we get

∫
Var[ĝh(x)]dx≤ 1

n(h∆)2E

[
Z2

1

∫
K2
(

Z1− x
h

)
dx

]
=

‖K‖2E(Z2
1)

nh∆2 .

This ends the proof of Lemma 4.4.

Recall thatE(Z2
1)/∆ = m2+∆m2

1 by Proposition 3.1. Lemmas 4.3 et 4.4 lead us to
the following risk bound.

Proposition 4.8 Under (Ker[1]) to (Ker[3]), (H1-g), (H2-(2)), (H3-g) and if
∫

v2|g∗(v)|2dv:=
A<+∞, we have

E(‖ĝh−g‖2)≤ 2‖g−g⋆Kh‖2+
‖K‖2E(Z2

1/∆)

nh∆
+(A‖K‖2

1‖g‖2
1/π)∆2. (4.61)

If in addition g∈ N(α,L), then‖g−g⋆Kh‖2 ≤ c1h2α with c1 given in Lemma 4.3.

4.3.2 Rates of convergence

We seth = hn with hn → 0 and nhn → +∞. Recall that∆ = ∆n is such that
limn→+∞ ∆n = 0. Consequently, 1/nh is negligible compared to 1/nh∆ . To obtain
the optimal convergence rate based on the first two terms of (4.61), a constraint on
∆ is necessary. We impose∆2 ≤ 1/(nh∆), equivalently

∆3 ≤ 1
nh

. (4.62)

The optimal choice ofhn is hopt ∝ ((n∆)−
1

2α+1 ) and the associated rate has order

O
(
(n∆)−

2α
2α+1

)
. Therefore, we can state:

Proposition 4.9 Under the assumptions of Proposition 4.8 and under condition

(4.62) the choice hopt ∝ ((n∆)−
1

2α+1 ) minimizes the risk bound (4.61) and gives

‖ĝhopt −g‖2 = O((n∆)−
2α

2α+1 ).

4.3.3 Data-driven choice of the bandwidth and adaptive estimator

Now, α being unknown, we must select the bandwidth by a data-drivencriterion.
For this, adequate estimators of the dominating risk bound terms (see (4.61)) must
be found. Following ideas given in [34] for density estimation, we set:
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V(h) = κ‖K‖2
1‖K‖2E(Z

2
1/∆)

nh∆
, (4.63)

whereκ is a numerical constant that will be precised below. Note that V(h) is pro-
portional to the bound of

∫
Var[ĝh(x)]dx. In the above definition,V(h) depends on

the unknown momentEZ2
1. Actually, this moment should be replaced by the empir-

ical meann−1∑n
k=1Z2

k . This substitution is possible and can be done as in the proof
of Theorem 4.1 by introducing the setΩb (see (4.21)) and splitting the proof into
the analogous steps 1 and 2. For the sake of simplicity, we omit the substitution and
only deal with the deterministicV(h).
The estimation of the bias term relies on iterated kernel estimators. Define

ĝh,h′(x) = Kh′ ⋆ ĝh(x) = Kh⋆ ĝh′(x) =
1

n∆

n

∑
k=1

ZkKh′ ⋆Kh(Z
∆
k − x).

The idea is to estimate the bias‖g−Kh⋆g‖2 by the supremum of‖ĝh′ − ĝh,h′‖2 for
h′ belonging to an adequate setH . However, this introduces an additional variance
term which must be subtracted and leads to following estimation of the bias term:

A(h) = sup
h′∈H

{‖ĝh,h′ − ĝh′‖2−V(h′)}
+
, (4.64)

with H = {h j ,1≤ j ≤ M} andM to be specified later. Finally,h is chosen by the
following data-driven criterion:

ĥ= arg min
h∈H

{A(h)+V(h)}.

Theorem 4.3 Assume (Ker[1]) to (Ker[3]), (H2-(8))-(H3-g)-(H4-g),and
∫

v2|g∗(v)|2dv:=
A<+∞. ConsiderH such that M≤ n∆ , ∀h∈ H ,h≥ 1/(n∆) and

∀C> 0, ∑
h∈H

h−1/2exp(−Ch−1/2)≤ Σ(C)<+∞.

Then we have

E[‖g− ĝĥ‖
2]≤C inf

h∈H

{
‖g−g⋆Kh‖2+V(h)

}
+C′∆2+C”

log2(n∆)

n∆
.

Examples of setsH fitting our assumptions areH = {1/k,k= 1, . . . , [n∆ ]}, or
H = {2−k,k= 1, . . . , log([n∆ ])}.

Remark 4.7 The infimum in the bound of Theorem 4.3 means that the estimator ĝĥ
automatically reaches the optimal rate stated in Proposition 4.9.

4.3.4 Proof of Theorem 4.3

The goal is to boundE[‖g− ĝĥ‖2]. To do this, we fixh∈ H and write
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‖g− ĝĥ‖ ≤ ‖ĝĥ− ĝh,ĥ‖+ ‖ĝh,ĥ− ĝh‖+ ‖ĝh−g‖.

The definitions ofA(h) andĥ imply:

‖g− ĝĥ‖
2 ≤ 3‖ĝĥ− ĝh,ĥ‖2+3‖ĝh,ĥ− ĝh‖2+3‖ĝh−g‖2

≤ 3(V(ĥ)+A(h))+3(A(ĥ)+V(h))+3‖ĝh−g‖2

Again, by definition of̂h, A(ĥ)+V(ĥ)≤ A(h)+V(h). Therefore, rearranging terms
yields

‖g− ĝĥ‖2 ≤ 6(A(h)+V(h))+3‖ĝh−g‖2. (4.65)

Consequently,

E[‖g− ĝĥ‖2] ≤ 6E[A(h)]+6V(h)+3E(‖ĝh−g‖2).

The bound forE(‖ĝh−g‖2) is given by Proposition 4.8. We have to boundE[A(h)].
Let us setgh,h′ = E[ĝh,h′ ] andgh = E[ĝh]. We write,

ĝh,h′ − ĝh′ = ĝh,h′ −gh,h′ − ĝh′ +gh′ +gh,h′ −gh′, (4.66)

and study the last term of the above decomposition:

|gh,h′(x)−gh′(x)| = |E[ĝh,h′(x)− ĝh′(x)]|
= |E[Kh′ ⋆ ĝh(x)− ĝh′(x)]|
= |Kh′ ⋆E[ĝh(x)−g(x)]+Kh′ ⋆g(x)−E[ĝh′(x)]|.

This can be written using notations (4.58)-(4.59)-(4.60),

|gh,h′(x)−gh′(x)| = |Kh′ ⋆bh(x)+bh′,2(x)|
≤ |Kh′ ⋆bh(x)|+ |bh′,2(x)|

The Young inequality withp= 1, r = q= 2 (see Appendix) and Lemma 4.3 imply:

‖gh,h′ −gh′‖2 ≤ 2(‖Kh′ ⋆bh‖2+ ‖bh′,2‖2)≤ 2(‖Kh′‖2
1‖bh‖2+ c′1∆2), (4.67)

wherec′1 is defined in Lemma 4.3 and‖Kh′‖1 = ‖K‖1.
Then by inserting (4.67) in decomposition (4.66), we find:

A(h) = sup
h′

{‖ĝh,h′ − ĝh′‖2−V(h′)}
+

≤ 3sup
h′

{‖ĝh,h′ −gh,h′|2−V(h′)/6}
+

+3sup
h′

{‖ĝh′ −gh′|2−V(h′)/6}++6‖K‖2
1‖bh‖2+12c′1∆2. (4.68)

The following proposition deals with the first two terms of (4.68).

Proposition 4.10 Under the assumptions of Theorem 4.3, we have



42 Fabienne Comte and Valentine Genon-Catalot

E

[
sup

h′∈H

{‖ĝh′ −gh′‖2−V(h′)/6}+
]
≤ C log2(n∆)

n∆
, (4.69)

and

E

[
sup

h′∈H

{‖ĝh,h′ −gh,h′‖2−V(h′)/6}
+

]
≤ C′ log2(n∆)

n∆
(4.70)

Before proving Proposition 4.10, we conclude the proof of Theorem 4.3. Inequali-
ties (4.69) et (4.70) together with (4.68) imply for allh∈ H :

E[‖g− ĝĥ‖
2]≤C(‖g−Kh⋆g‖2+V(h))+

C′ log2n∆
n∆

+C′′∆2.

So the proof is complete.✷

Proof of Proposition 4.10.
We only prove (4.70) as (4.69) is analogous and slightly simpler. The scheme is

similar to the proof of Theorem 4.1. We set ˆgh = ĝ(1)h + ĝ(2)h with

ĝ(1)h (x) =
1

n∆

n

∑
j=1

Z jKh(x−Z j)1I{|Z j |≤kn
√

∆}, (4.71)

andg(i)h = E(ĝ(i)h ), ĝ(i)h,h′ = Kh′ ⋆ ĝ(i)h , g(i)h,h′ = E(ĝ(i)h,h′) for i = 1,2. Here,

kn = c0

√
n

log(n∆)

wherec0 is a constant to be defined. Consequently,

E

[
sup
h′

{‖ĝh,h′ −gh,h′‖2−V(h′)/6}
+

]
≤ 2E

[
sup
h′

{‖ĝ(1)h,h′ −g(1)h,h′‖
2−V(h′)/12}

+

]

+2E

[
sup
h′

‖ĝ(2)h,h′ −g(2)h,h′‖
2
]

:= T1+T2

We defineθ (1)
∆ ,θ (2)

∆ , θ̂ (1)
∆ , θ̂ (2)

∆ as in (4.26) and (4.27). Using the relation analogous
to (4.54), we have

‖ĝ(2)h,h′ −g(2)h,h′‖
2 =

1
2π∆2

∫
|θ̂ (2)

∆ (u)−θ (2)
∆ (u)|2|K∗(uh)K∗(uh′)|2du

≤ ‖K‖2
1

2π∆2

∫
|θ̂ (2)

∆ (u)−θ (2)
∆ (u)|2|K∗(uh)|2du

Thus
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T2 = E

[
sup
h′

‖ĝ(2)h,h′ −g(2)h,h′‖
2
]
≤ ‖K‖2

1

2π∆2

∫
E
[
|θ̂ (2)

∆ (u)−θ (2)
∆ (u)|2

]
|K∗(uh)|2du

≤ ‖K‖2
1

2π∆2

∫ E(Z2
11I{|Z1|>kn

√
∆}

n
|K∗(uh)|2du

≤ ‖K‖2
1

2πnk2
n∆3

∫
E(Z4

1)|K∗(uh)|2du=
‖K‖2

1‖K‖2

nhk2
n∆3 E(Z4

1)

≤ ‖K‖2
1‖K‖2

k2
n∆

E(Z4
1/∆)≤C

log2(n∆)

n∆
,

by using the value ofkn. This ends the study ofT2. Now we considerT1 and write
first

E

[
sup
h′

{‖ĝ(1)h,h′ −g(1)h,h′‖
2−V(h′)/12}

+

]
≤ ∑

h′∈H

E
[
{‖ĝ(1)h,h′ −g(1)h,h′‖

2−V(h′)/12}
+

]
.

Next we notice
‖ĝ(1)h,h′ −g(1)h,h′‖

2 = sup
t∈B̄(1)

〈ĝ(1)h,h′ −g(1)h,h′, t〉
2

whereB̄(1) = {t ∈ L2∩L1(R),‖t‖= 1}. Let B(1) be a countable subset of̄B(1)
with closure equal toB̄(1). Then

sup
t∈B̄(1)

〈ĝ(1)h,h′ −g(1)h,h′, t〉
2 = sup

t∈B(1)
〈ĝ(1)h,h′ −g(1)h,h′, t〉

2

and we can apply the Talagrand inequality to the empirical process

νn,K(t) = 〈ĝ(1)h,h′ −g(1)h,h′, t〉=
1

2π

∫
(θ̂ (1)

∆ (u)−θ (1)
∆ (u))K∗(uh)K∗(uh′)t∗(u)du.

Indeed,νn,K can also be writtenνn,K(t) = n−1 ∑n
i=1[ ft (Zi)−E( ft(Zi))] with here

ft(z) =
z1I{|z|≤kn

√
∆}

2π∆

∫
e−ixzK∗(xh)K∗(xh′)t∗(x)dx.

(see the proof of Lemma 4.1 where an analogous empirical process is defined). To
apply Lemma .1, we compute the three quantitiesM,H2 andv. First, fort ∈ B(1),
we have

sup
z∈R

| ft (z)| ≤
kn

2π
√

∆
‖t∗‖‖K‖1(

∫
|K∗(xh′)|2dx)1/2 ≤ ‖K‖1‖K‖ kn√

h′∆
:= M

Next, it is clear that
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E

(
sup

t∈B(1)
[νn,K(t)]

2

)
≤ 1

2π∆2

∫
E(|θ̂ (1)

∆ (u)−θ (1)
∆ (u)|2)|K∗(uh)K∗(uh′)|2du

≤ E(Z2
1)‖K‖2

1‖K‖2

nh′∆2 := H2.

To computev, we proceed as in the proof of Lemma 4.1. Recall the definitions

p∗∆ (x) = E(Z2
11{|Z1|≤kn

√
∆}e

ixZ1) = ∆
∫

z1{|z|≤kn
√

∆}e
ixzE(g(z−Z1)).

We have for allt ∈ B(1),

Var( ft (Z1)) ≤
1

4π2∆2

∫∫
p∗∆ (x− y)K∗(−xh)K∗(−xh′)t∗(−x)K∗(yh)K∗(yh′)t∗(y)dxdy

≤ ‖K‖2
1

4π2∆2

∫∫
|p∗∆ (x− y)K∗(−xh′)t∗(−x)K∗(yh′)t∗(y)|dxdy

≤ ‖K‖2
1

4π2∆2

(∫∫
|p∗∆ (x− y)K∗(−xh′)K∗(yh′)|2dxdy

∫∫
|t∗(−x)t∗(y)|2dxdy

)1/2

Var( ft (Z1)) ≤
‖K‖3

1

2π∆2

(∫∫
|p∗∆ (x− y)K∗(yh′)|2dxdy

)1/2

≤ ‖K‖3
1

2π∆2

(∫
|p∗∆ (z)|2dz

∫
|K∗(yh′)|2dy

)1/2

≤ ‖K‖3
1‖K‖√

2πh′∆2

(∫
|p∗∆ (z)|2dz

)1/2

.

We showed in the proof of Lemma 4.1 that, using Proposition 3.3 and under (H4-g),
∫

|p∗∆ (z)|2dz≤ 4π∆2(M2+E(Z2
1)‖g‖2).

Therefore we get

sup
t∈B(1)

Var( ft (Z1))≤
√

2‖K‖3
1‖K‖(M2+E(Z2

1)‖g‖2)√
h′∆

:= v.

Then, settingV(h′)/12= 4H2, we get

E
[
{‖ĝ(1)h,h′ −g(1)h,h′‖

2−V(h′)/12}
+

]
= E

(
sup

t∈B(1)
ν2

n,K(t)−4H2

)

≤ C1

n∆

(
1√
h′

e−C2/
√

h′ +
k2

n

nh′
e−C3

√
n/kn

)
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Then if the choice ofkn is such thatc0 ≤C3/4, we obtain

E
[
{‖ĝ(1)h,h′ −g(1)h,h′‖

2−V(h′)/12}
+

]
≤ C1

n∆

(
1√
h′

e−C2/
√

h′ +
1

(n∆)4h′ log2(n∆)

)
.

Therefore, using the assumptions onH , i.e.Card(H )≤ n∆ , ∀h′ ∈H ,h′ ≥ 1/(n∆)

and∑h′(h
′)−1/2e−C2/

√
h′ <+∞, if n∆ ≥ e, we obtain

E

[
sup
h′

{‖ĝ(1)h,h′ −g(1)h,h′‖
2−V(h′)/12}

+

]
≤ C

n∆
.

The proof of Proposition 4.10 is complete.✷

5 Adaptive estimation with no Gaussian component

In this section, we study the estimation ofℓ(x) = x2n(x) under (H1-ℓ). We only
treat the deconvolution approach and just give below indications on the other two
approaches (estimation on a compact set by projection, kernel estimation).

5.1 Deconvolution approach

In addition to (H1-ℓ), we assume:

(H3-ℓ) ℓ ∈ L2(R)
(H4-ℓ)

∫
x8n2(x)dx=

∫
x4ℓ2(x)dx< ∞.

By (H1-ℓ), ℓ∈ L1(R) and the characteristic exponent of the process(Lt) is given by
formula (2.7). Assumption (H4-ℓ) is only required for the adaptive result.

5.1.1 Two collections of estimators with cut-off parameter

The deconvolution method requires to define first an estimator of the Fourier trans-
form ℓ∗ of ℓ. We propose two estimatorŝℓ∗, ℓ̄∗ of ℓ∗. The former has a smaller bias
than the latter but is heavier to implement and more cumbersome to study. Both
provide the same variance order. For the first one, we supposethat we have at our
disposal a 2n-sample,(Zk)1≤k≤2n, with Zk = Z∆

k = Lk∆ −L(k−1)∆ . Under (H1-ℓ), ϕ∆
is C2. Derivatingϕ∆ yields

ϕ ′
∆ (u)

ϕ∆ (u)
= ∆ψ ′(u) = i∆(b+

∫
eiux−1

x
ℓ(x)dx) = i∆(b+ i

∫ u

0
ℓ∗(v)dv),

usingeiux−1= ix
∫ u

0 eivxdv. Derivating again yields
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ℓ∗(u) =− 1
∆

ϕ”∆ (u)ϕ∆ (u)− (ϕ ′
∆ (u))

2

ϕ2
∆ (u)

=−ψ ′′(u). (5.1)

Splitting the 2n-sample into two independent subsamples ofn observations, we in-
troduce the following empirical unbiased estimators ofϕ∆ (u),ϕ ′

∆ (u),ϕ
′′
∆ (u):

ϕ̂( j)
∆ ,q(u) =

1
n

qn

∑
k=1+(q−1)n

(iZk)
jeiuZk, j = 0,1,2, q= 1,2.

Considering the expression ofℓ∗ in (5.1), we replaceϕ∆ ,ϕ ′
∆ ,ϕ

′′
∆ in the numerator

by the empirical estimators built on the two independent subsamples of sizen. In
the denominator,ϕ2

∆ is simply replaced by 1. This gives the first estimator ofℓ∗:

ℓ̂∗(u) =
1
∆

(
ϕ̂(1)

∆ ,1(u)ϕ̂
(1)
∆ ,2(u)− ϕ̂(2)

∆ ,1(u)ϕ̂
(0)
∆ ,2(u)

)
. (5.2)

Hence, using independence of the two subsamples,

Eℓ̂∗(u) = ℓ∗(u)+ ℓ∗(u)(ϕ2
∆ (u)−1). (5.3)

Introducing a cut-off parameterm, we define an associated estimator ofℓ

ℓ̂m(x) =
1

2π

∫ πm

−πm
e−iuxℓ̂∗(u)du.

This means that̂ℓ∗m(u)= ℓ̂∗(u)1[−πm,πm](u).By integration, the following expression
is available

ℓ̂m(x) =
1

n2∆ ∑
1≤ j ,k≤n

(Z2
k −ZkZn+ j)

sin(πm(Zk+Z j+n− x))

π(Zk+Z j+n− x)
.

This gives a first collection of estimators(ℓ̂m,m> 0).
We also define, based on the full sample, the unbiased estimator of ϕ ′′

∆ :

ϕ̂(2)
∆ (u) =

1
2n

2n

∑
k=1

(iZk)
2eiuZk,

and set

ℓ̄∗(u) =− 1
∆

ϕ̂(2)
∆ (u). (5.4)

Here, using (5.1), we get

Eℓ̄∗(u) =− 1
∆

ϕ”∆ (u) = ℓ∗(u)+ ℓ∗(u)(ϕ∆ (u)−1)−∆ϕ∆(u)(ψ ′(u))2. (5.5)

Thus,ℓ̄∗ is simpler but has an additional bias term. We set:
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ℓ̄m(x) =
1

2π

∫ πm

−πm
e−iuxℓ̄∗(u)du=

1
2n∆

2n

∑
k=1

Z2
k

sin(πm(Zk− x))
π(Zk− x)

. (5.6)

This gives a second collection of estimators(ℓ̄m,m> 0).
Recall that the characteristic exponent satisfiesψ ′(u)= ib−∫ u

0 ℓ∗(v)dv, that we have
setc(u) = |b|+ |∫ u

0 |ℓ∗(v)|dv| and that|ϕ∆ (u)−1| ≤ ∆ |u|c(u) (see Proposition 3.4).
If ℓ∗ is integrable,c(u)≤ |b|+ ‖ℓ∗‖1.

The risk with fixed cut-off parameter is ruled by the following proposition.

Proposition 5.1 Assume that (H1-ℓ)-(H2-(4)) and (H3-ℓ) hold. Then

E(‖ℓ̂m− ℓ‖2)≤ ‖ℓm− ℓ‖2+72E(Z4
1/∆)

m
n∆

+
4∆2

π

∫ πm

−πm
u2c2(u)|ℓ∗(u)|2du, (5.7)

E(‖ℓ̄m− ℓ‖2) ≤ ‖ℓm− ℓ‖2+E(Z4
1/∆)

m
n∆

+
2∆2

π

∫ πm

−πm
u2c2(u)|ℓ∗(u)|2du+C∆2Bm, (5.8)

with C a constant, Bm = (2/π)
∫ πm
−πm|ψ ′(u)|4du satisfies Bm = O(m) if ℓ∗ ∈ L1(R)

and Bm = O(m5) otherwise.

Proof. The proof follows the same lines as Proposition 4.3 and uses Proposition 3.4.
The Parseval formula gives

‖ℓ̂m− ℓ‖2 = (1/(2π))‖ℓ̂∗m− ℓ∗‖2.

As
ℓ∗(u)− ℓ∗m(u) = ℓ∗(u)1I|u|≥πm

is orthogonal tôℓ∗m− ℓ∗m which has its support in[−πm,πm],

‖ℓ̂m− ℓ‖2 =
1

2π
(‖ℓ∗− ℓ∗m‖2+ ‖ℓ∗m− ℓ̂∗m‖2).

The first term

(1/(2π))‖ℓ∗− ℓ∗m‖2 = ‖ℓ− ℓm‖2 =
1

2π

∫

|u|≥πm
|ℓ∗(u)|2du

is the classical squared bias term. Next,

ℓ̂∗m(u)− ℓ∗m(u) = [ℓ̂∗m(u)−E(ℓ̂∗m(u))]+ [E(ℓ̂∗m(u))− ℓ∗m(u)]

= [ℓ̂∗m(u)−E(ℓ̂∗m(u))]+ [ϕ2
∆ (u)−1]ℓ∗(u)1I|u|≤πm.

Bounding the norm of‖ℓ̂∗m−ℓ∗m‖2 by twice the sum of the norms of the two elements
of the decomposition, we get
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E(‖ℓ̂m− ℓm‖2) ≤ 1
π
E

(∫ πm

−πm
|ℓ̂∗(u)−Eℓ̂∗(u)|2du

)
+

1
π

∫ πm

−πm
|ϕ2

∆ (u)−1|2|ℓ∗(u)|2du

≤ 1
π

(∫ πm

−πm
Var(ℓ̂∗(u))du

)
+

4∆2

π

∫ πm

−πm
u2c2(u)|ℓ∗(u)|2du

(see Proposition 3.4 for the upper bound of|ϕ∆ (u)−1| and note that|ϕ∆ (u)| ≤ 1).
Now, we use the decomposition:

∆(ℓ̂∗(u)−E(ℓ̂∗(u))) = (ϕ̂(1)
∆ ,1(u)−ϕ ′

∆ (u))(ϕ̂
(1)
∆ ,2(u)−ϕ ′

∆ (u))

+(ϕ̂(1)
∆ ,1(u)−ϕ ′

∆(u))ϕ
′
∆ (u)+ (ϕ̂(1)

∆ ,2(u)−ϕ ′
∆ (u))ϕ

′
∆ (u)

−(ϕ̂(2)
∆ ,1(u)−ϕ ′′

∆(u))(ϕ̂
(0)
∆ ,2(u)−ϕ∆(u))

−(ϕ̂(2)
∆ ,1(u)−ϕ ′′

∆ (u))ϕ∆ (u)− (ϕ̂(0)
∆ ,2(u)−ϕ∆(u))ϕ ′′

∆ (u). (5.9)

Considering each term consecutively and exploiting the independence of the sam-
ples, we obtain

Var(ℓ̂∗(u)) ≤ 6
∆2

(
E2(Z2

1)

n2 +2
E2(Z2

1)

n
+

E(Z4
1)

n2 +2
E(Z4

1)

n

)

≤ 36
E(Z4

1/∆)

n∆
. (5.10)

Thus, (5.7) is proved. Analogously, we have

E(‖ℓ̄m− ℓ‖2)≤ ‖ℓm− ℓ‖2+
1
π

∫ πm

−πm
|Eℓ̄∗(u)− ℓ∗(u)|2du+

1
π

∫ πm

−πm
Var(ℓ̄∗(u))du

For the variance of̄ℓ∗(u), we use:ℓ̄∗(u)−Eℓ̄∗(u) =−∆−1(ϕ̂(2)
∆ (u)−ϕ ′′

∆ (u)). Thus,

Var(ℓ̄∗(u))≤ 1
2n∆

E(Z4
1/∆).

Next, for the bias of̄ℓ∗(u), we use (see (5.5)):

|Eℓ̄∗(u)− ℓ∗(u)|2 ≤ 2|ℓ∗(u)|2|ϕ∆ (u)−1|2+2∆2|ψ ′(u)|4.

Hence, there is an additional term in the risk bound equal to

2
π

∆2
∫ πm

−πm
|ψ ′(u)|4du= ∆2Bm. (5.11)

If ℓ∗ is integrable,|ψ ′(u)| ≤ |b|+ ‖ℓ∗‖1, andBm = O(m). Otherwise,|ψ ′(u)|4 ≤
C|u|4, andBm = O(m5).

Proposition 5.1 allows to find rates of convergence of theL2-risk of estimators
with fixed cut-off parameterm for functionsℓ belonging to Sobolev classes (4.14).
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Proposition 5.2 Assume that (H1-ℓ)-(H2-(4)) and (H3-ℓ) hold and thatℓ belongs
to C (a,L) with a> 1/2. Consider the asymptotic setting (2.1) and assume that
m≤ n∆ . If n∆2 ≤ 1, then, for the choice m= O((n∆)1/(2a+1)), we have:

E(‖ℓ̂m− ℓ‖2)≤ O((n∆)−2a/(2a+1)).

If a ≥ 1, the condition n∆2 ≤ 1 can be replaced by n∆3 ≤ 1.
If 0< a≤ 1/2, the constraint on∆ is n∆5/3 ≤ 1.
The same results hold for̄ℓm.

Proof. The proof is analogous to the proof of Proposition 4.4. The best compromise
between‖ℓ− ℓm‖2 with ℓ ∈ C (a,L) andm/(n∆) leads tom= O((n∆)1/(2a+1)) and
yields the orderO((n∆)−2a/(2a+1)).

It remains to find constraints on∆ implying that the other terms in (5.7)-(5.8)
have order less thenO((n∆)−2a/(2a+1)). Fora> 1/2,

|
∫ u

0
|ℓ∗(v)|dv| ≤

√
L
∫
(1+ v2)−adv<+∞.

Therefore,ℓ∗ is integrable,|ψ ′(u)| ≤ c(u)≤ |b|+ ‖ℓ∗‖1 andBm = O(m).
The last term in the risk bound (5.7) is less than

K∆2
∫ πm

−πm
u2|ℓ∗(u)|2du≤ L∆2(πm)2(1−a)+.

If a≥ 1 andn∆3 ≤ 1, we have∆2(πm)2(1−a)+ = ∆2 ≤ (n∆)−1.
If a∈ (1/2,1), the inequality∆2m2(1−a) ≤ m−2a is equivalent to∆2m2 ≤ 1. As

m≤ n∆ , ∆2m2 ≤ 1 holds ifn∆2 ≤ 1.
For the additional bias term appearing in the risk bound ofℓ̄m, we are in the

caseBm = O(m). Thus, form= O((n∆)1/(2a+1)), m∆2 ≤ m−2a holds ifm1+2a∆2 =
(n∆)∆2 ≤ 1 which in turn holds ifn∆3 ≤ 1.

If a≤ 1/2,

|
∫ u

0
|ℓ∗(v)|dv|= O(|u|1/2−a).

Hence, the last term in (5.7) is of order∆2m3−4a which is less thanm−2a if
∆2m3−2a ≤ 1 and thus∆2m3 ≤ 1. This requiresn∆5/3 ≤ 1. The same holds for
ℓ̄m.

5.1.2 Data-driven choice of the bandwidth and adaptive estimator

We describe now how to choosem in a data-driven way leading to an adaptive es-
timator,i.e.attaining automatically the optimal rate of convergence without knowl-
edge of the regularity of the unknown functionℓ. Recall the collection of subspaces
(Sm) of L2(R) defined in (4.15) where each spaceSm is generated by the orthonor-
mal basis (4.19).
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For a functiont ∈ Sm, define

Γ (1)
n (t) = ‖t‖2− 1

π
< ℓ̂∗, t∗ >= ‖t‖2−2< ℓ̂m, t >,

so that
ℓ̂m = argmin

t∈Sm
Γ (1)

n (t),

andΓ (1)
n (ℓ̂m) =−‖ℓ̂m‖2. In the same way, we set

Γ (2)
n (t) = ‖t‖2− 1

π
< ℓ̄∗, t∗ >= ‖t‖2−2< ℓ̄m, t >,

and
ℓ̄m = argmin

t∈Sm
Γ (2)

n (t),

Explicit expressions of‖ℓ̂m‖2 and ‖ℓ̄m‖2 are available. We give the formula for
‖ℓ̄m‖2 which is less cumbersome than‖ℓ̂m‖2:

‖ℓ̄m‖2 =
m

4n2∆2 ∑
1≤k,l≤2n

Z2
kZ2

l φ(m(Zk−Zl )). (5.12)

Now, we need to selectm in Mn = {m∈ N,1 ≤ m≤ n∆} = {1, . . . ,mn}. For the
estimatorŝℓm, we define

m̂= arg min
m∈Mn

(
−‖ℓ̂m‖2+pen(m)

)
(5.13)

with

pen(m) = κ
m

n∆2

(
(
1
n

n

∑
k=1

Z2
k)(

1
n

2n

∑
k=n+1

Z2
k)+

1
n

n

∑
k=1

Z4
k

)
.

For the estimators̄ℓm, we define

m̄= arg min
m∈Mn

(
−‖ℓ̄m‖2+κ ′ m

n∆2

(
1
2n

2n

∑
k=1

Z4
k

))
. (5.14)

The following result shows that the above data-driven choices of the cut-off param-
eter lead to an automatic optimization of the risk.

Theorem 5.1 Assume (H1-ℓ)-(H2-(16))-(H3-ℓ)-(H4-ℓ). If, moreover,ℓ∗ ∈ L1(R)
and n∆3 ≤ 1, there exist numerical constantsκ ,κ ′ such that

E(‖ℓ̂m̂− ℓ‖2) ≤ C inf
m∈Mn

(
‖ℓ− ℓm‖2+κ(∆E2(

Z2
1

∆
)+E(

Z4
1

∆
))

m
n∆

)

+
∆2

π

∫ πmn

−πmn

u2|ℓ∗(u)|2du+C
log2(n∆)

n∆
,
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and

E(‖ℓ̄m̄− ℓ‖2) ≤ C inf
m∈Mn

(
‖ℓ− ℓm‖2+κ ′E(

Z4
1

∆
)

m
n∆

)

+
∆2

π

∫ πmn

−πmn

u2|ℓ∗(u)|2du+∆2Bmn +C
log2(n∆)

n∆
,

where Bmn = O(mn) (Bmn is defined in Proposition 5.1).

The proof of Theorem 5.1 follows the same steps as Theorem 4.1(with some more
technical developments) and is therefore omitted. We referto [20] (Theorem 3.1)
for details. By computations analogous to those in the proofof Proposition 5.2, we
obtain the following Corollary.

Corollary 5.1 Assume that the assumptions of Theorem 5.1 are fulfilled. If,for
some positive L,ℓ ∈ C (a,L) with a> 1/2, thenE(‖ℓ̂m̂− ℓ‖2) = O((n∆)−2a/(2a+1))
provided that n∆2 ≤ 1. The same holds forE(‖ℓ̄m̄− ℓ‖2). If a ≥ 1, the constraint
n∆3 ≤ 1 is enough.

5.2 Projection and kernel

Consider a set ofn observations(Zk). It is possible to use the fact that

µ̂ (2)
n =

1
n∆

n

∑
k=1

Z2
kδZk

approximates the measureµ (2)(dx) = ℓ(x)dx. This allows to build as in Section 4.2
and Section 4.3 either estimators ofℓ(.) on a compact setA or kernel estimators of
ℓ(.).

6 Adaptive estimation in the general case

Finally, we study the estimation ofp(x) = x3n(x) under (H1-p) and in addition

(H3-p) p∈ L2(R)
(H4-p)

∫
x12n2(x)dx=

∫
x6p2(x)dx< ∞.

We construct estimators analogous toℓ̄m based on a sample of sizen, (Zk)1≤k≤n,
Zk = Lk∆ −L(k−1)∆ . For this, we need to compute the third derivative of the char-
acteristic functionϕ∆ (u) = exp∆ψ(u) where the characteristic exponentψ(u) is
given by formula (2.9):

ϕ(3)
∆ (u) = ϕ∆ (u)[∆ψ(3)(u)+3∆2ψ ′(u)ψ ′′(u)+∆3(ψ ′(u))3] (6.1)
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with

ψ ′(u) = ib−uσ2+
∫

ix(eiux−1)n(x)dx= ib−uσ2−
∫ u

0
ℓ∗(v)dv,

ψ ′′(u) = −σ2− ℓ∗(u),

ψ(3)(u) = −ip∗(u).

It follows that:

i
∆

ϕ(3)
∆ (u) = p∗(u)+ p∗(u)(ϕ∆ (u)−1)+ iϕ∆(u)[3∆ψ ′(u)ψ ′′(u)+∆2(ψ ′(u))3]

The Fourier transformp∗ of p is simply estimated by

p̄∗(u) =
i
∆

ϕ̂(3)
∆ (u) with ϕ̂(3)

∆ (u) =
1
n

n

∑
k=1

(iZk)
3eiuZk.

Therefore,

Ep̄∗(u)− p∗(u) = (ϕ∆ (u)−1)p∗(u)+3i∆ϕ∆(u)ψ ′(u)ψ ′′(u)

+i∆2ϕ∆ (u)(ψ ′(u))3. (6.2)

By Fourier inversion, we obtain a collection of estimators with cut-off parameterm:

p̄m(x) =
1

2π

∫ πm

−πm
e−iuxp̄∗(u)du=

1
n∆

n

∑
k=1

Z3
k

sin(πm(Zk− x))
π(Zk− x)

. (6.3)

The risk is bounded as follows.

Proposition 6.1 Under (H1-p)-(H2)(6) and (H3-p),

E(‖p̄m− p‖2) ≤ ‖p− pm‖2+E(Z6
1/∆)

m
n∆

+C(∆2
∫ πm

−πm
u2(1+u2)|p∗(u)|2du+∆2m3+∆4m7), (6.4)

where pm(x) = (2π)−1∫ πm
−πme−iuxp∗(u)du.

Proof. As previously,‖p̄m− p‖2 = 1
2π (‖p∗− p∗m‖2+‖p∗m− p̄∗m‖2). The variance of

p̄m satisfies

E(‖p̄m−pm‖2)=
1

2π
E(‖p̄∗m−p∗m‖2)=

1
2π

∫ πm

−πm

(
Var(p̄∗(u))+ |E(p̄∗(u))− p∗(u)|2

)
du,

where

Var(p̄∗(u))≤ E(Z6
1)

n∆2 =
E(Z6

1/∆)

n∆
.

We have|ℓ∗(u)| ≤ ‖ℓ‖1 <+∞. Thus,|ψ ′(u)| ≤ |b|+σ2+‖ℓ‖1, |ψ ′′(u)| ≤ σ2+‖ℓ‖1

and by Proposition 3.4,|ϕ∆ (u)−1| ≤C∆ |u|(1+ |u|). Inserting these bounds in (6.2)
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implies

|E(p̄∗(u))− p∗(u)| ≤C∆ |p∗(u)||u|(1+ |u|)+C′∆(1+ |u|)+C′′∆2(1+ |u|)3 (6.5)

Gathering the terms gives the announced bound for the risk ofp̄m.

We can state the result analogous to the one of Proposition 5.2.

Proposition 6.2 Assume that (H1-p), (H2-(6)), (H3-p) hold and that p belongs to
C (a,L). If n∆11/7 ≤ 1, then

E(‖p̄m− p‖2)≤ O((n∆)−2a/(2a+1)).

If a ≥ 1/2, the condition n∆7/5 ≤ 1 can be replaced by n∆2 ≤ 1.

For the data driven selection ofm, we must impose here a restricted collection of
models:

Mn = {m∈N/{0},m≤
√

n∆ := µn},
and set

m̄= arg min
m∈Mn

(
−‖p̄m‖2+pen(m)

)
with pen(m) = κ

m
n∆2

(
1
n

n

∑
k=1

Z6
k

)
. (6.6)

The estimator ¯pm̄ satisfies:

Theorem 6.1 Assume (H1-p), (H2-(24)), (H3-p), (H4-p) and n∆2 ≤ 1. Then, there
exists a numerical constantκ such that (withµn =

√
n∆ )

E(‖p̄m̄− p‖2) ≤ C inf
m∈Mn

(
‖p− pm‖2+κE(

Z6
1

∆
)

m
n∆

)

+C

(
∆2

π

∫ πµn

−πµn

u2(1+u2)|p∗(u)|2du+∆2µ3
n +∆4µ7

n +
log2(n∆)

n∆

)
.

For the proof, we refer to [20] (Theorem 4.1).

Remark 6.1 We could also build other kinds of estimators using the fact that

µ̂ (3)
n =

1
n∆

n

∑
k=1

Z3
kδZk

approximates the measureµ (3)(dx) = p(x)dx.

7 Drift and Gaussian component estimation

Consider the general case where the observed process isLt =bt+σWt +Xt with (Xt)
a centered square integrable pure-jump martingale:Xt =

∫
]0,t]

∫
R/{0}x(p̂(du,dx)−
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du n(x)dx), andp̂(du,dx) is the random Poisson measure associated with the jumps
of (Lt) (or (Xt))(see (2.10)). By using empirical means of the dataZl

k (recall that
Zk = Lk∆ −L(k−1)∆ ) it is possible to obtain consistent and asymptotically Gaussian
estimators ofb (l = 1) and, under suitable integrability assumptions on the Lévy
density, of

∫
xl n(x)dx for l ≥ 3. But this method fails to estimateσ for l = 2.

7.1 Empirical means

Consider a Lévy process(Lt) and setZk = Lk∆ −L(k−1)∆ as above. Let us define the
empirical means:

b̂=
1

n∆

n

∑
k=1

Zk, ĉl =
1

n∆

n

∑
k=1

Zl
k for l ≥ 2. (7.1)

We prove now that̂b, ĉl , l ≥ 2 are consistent and asymptotically Gaussian estimators
of the quantitiesb, cl , l ≥ 2 where

c2 = σ2+

∫
x2n(x)dx, cl =

∫
xl n(x)dx, for l ≥ 3.

Proposition 7.1 Assume that
∫

x2n(x)dx<+∞ and the asymptotic framework (2.1).
(i) Under (H2-(2+ ε)) for some positiveε,

√
n∆(b̂−b) converges in distribution toN (0,c2).

(ii)Under (H2-(2(l +ε))) for some positiveε, and if n∆3 tends to0,
√

n∆(ĉl −cl )
converges in distribution toN (0,c2l ).

Proof. By Proposition 3.1,E(Zk) = ∆b and, forl ≥ 2,E(Zl
k) = ∆cl +o(∆). There-

fore, b̂ is an unbiased estimator ofb. For l ≥ 2,
√

n∆ |Eĉl − cl |=
√

n∆O(∆) which
tends to 0 under the additional conditionn∆3 = o(1).

Settingc1 = b, ĉ1 = b̂, as VarZl
k = ∆c2l +o(∆) for l ≥ 1, we haven∆Varĉl =

c2l +O(∆). Writing

√
n∆(ĉl −Eĉl ) = (n∆)−1/2

n

∑
k=1

(Zl
k−EZl

k) =
n

∑
k=1

χk,n,

it is now enough to prove that∑n
k=1E|χk,n|2+ε tends to 0. By the moment assumption

(H2-(2(l + ε))) , we have

n

∑
k=1

E|χk,n|2+ε ≤ C

nε/2∆1+ε/2

(
E|Zk|l(2+ε)+ |E(Zl

k)|2+ε
)
≤ C

(n∆)ε/2
,

which gives the result.
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7.2 Estimation of the Gaussian component parameter with power
variations

Estimators ofσ based on power variations of(Lt) have been proposed and mostly
studied in the case wheren∆ = 1, see [5], [63], [40]. They are studied under the
asymptotic framework (2.1) in [1] and [20]. Consider the family of estimators ofσ
given by

σ̂(r) = [σ̂ (r)
n ]1/r with σ̂ (r)

n =
1

mrn∆ r/2

n

∑
k=1

|Zk|r , (7.2)

wheremr =E|X|r for X a standard Gaussian variable. The following result concerns
only restricted cases.

Proposition 7.2 Consider the asymptotic framework (2.1) and assume that r< 1

and n∆2−r = o(1).Then,
√

n(σ̂ (r)
n −σ r) converges in distribution to aN (0,σ2r(m2r/m2

r −
1)) for:
(i) (Lt = bt+σWt +Γt) whereΓt is a pure jump process satisfying (H1-g) and

∫

|x|≤1
|x|rn(x)dx< ∞

.
(ii) (Lt = bt+σWt +Xt), with Xt = BΓt , where W,B,Γ are independent processes,
W,B are Brownian motions,Γ is a subordinator with Ĺevy measure nΓ satisfying

∫ +∞

0
γ r/2 nΓ (γ)dγ < ∞.

In each case,
√

n(σ̂(r)−σ) converges in distribution to aN (0,(σ2/r2)(m2r/m2
r −

1)).

Remark 7.1 It is worth noting that the rate of convergence is
√

n and not
√

n∆ . For

r = 1, the estimator̂σ (1)
n is consistent but not asymptotically Gaussian.

Proof. The study of (7.2) relies on the following result which is standard forr = 2.

Lemma 7.1 Let Yt = θ t +σWt for θ a constant and consider

σ̃ (r)
n =

1

mrn∆ r/2

n

∑
k=1

|Yk∆ −Y(k−1)∆ |r .

Then, for all r,
√

n(σ̃ (r)
n −σ r) converges in distribution to a centered Gaussian

distribution with varianceσ2r(m2r/m2
r −1) as n tends to infinity,∆ tends to0, n∆

tends to infinity, and n∆2 tends to0.

Proof of(i). Using that, forr ≤ 1, ||∑ai +bi|r −|∑ai |r | ≤ ∑ |bi |r , we get

|σ̂ (r)
n − σ̃ (r)

n | ≤ 1

mrn∆ r/2

n

∑
k=1

|Γk∆ −Γ(k−1)∆ |r ,
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whereσ̃ (r)
n is built withYt = bt+σWt as in Lemma 7.1. Thus, applying Proposition

3.2 (2),

E
√

n|σ̂ (r)
n − σ̃ (r)

n | ≤ 1
mr

√
n∆1−r/2

∫
|x|rn(x)dx.

Sincer < 1, the constraintn∆2−r = o(1) can be fulfilled and impliesn∆2 = o(1).
Hence, the result follows from Lemma 7.1.

Proof of (ii). The proof is analogous to the previous one (using Proposition 3.2
(3)) and is omitted.
As σ̂(r) = [σ̂ (r)

n ]1/r , we conclude for̂σ(r) by using the delta-method.

Proof of Lemma 7.1.We haveEσ̃ (r)
n = 1

mr
E|θ

√
∆ +σX|r , for X a standard Gaus-

sian variable. Thus

Eσ̃ (r)
n −σ r =σ r

(
e−θ2∆/2σ2 −1

)
+

1
mr

e−θ2∆/2σ2
∫
|u|r(eθu

√
∆/σ2−1)e−

u2

2σ2
du

σ
√

2π
.

Noting thateθu
√

∆/σ2−1= θu
√

∆/σ2+∆ ∑n≥2
1
n! (uθ/σ2)n∆n/2−1 and that

∫ |u|rue
− u2

2σ2 du/(σ
√

2π)=
0, we obtain

|Eσ̃ (r)
n −σ r | ≤ c∆

Thus,
√

n|Eσ̃ (r)
n − σ r | = o(1) if

√
n∆ = (n∆2)1/2 = o(1). Noting thatE|θ

√
∆ +

σX|k converges toσkmk as∆ tends to 0, we getnVarσ̃ (r)
n → σ2r(m2r/m2

r −1).

Finally, we look atχk,n= n−1
(
|θ
√

∆ +σ(Wk∆ −W(k−1)∆)/
√

∆ |r −E|θ
√

∆ +σX|r
)
,

which satisfiesnEχ4
k,n ≤ c/n3. Hence,

√
n(σ̃ (r)

n −Eσ̃ (r)
n ) converges in distribution

to the centered Gaussian with the announced variance which completes the proof.
✷

8 Rates of convergence on examples

In this section, we illustrate on examples the possible rates of convergence of the
estimators ofg andp obtained by Proposition 4.3, Theorem 4.1, Proposition 4.6 and
Theorem 4.2 for the estimation ofg, Proposition 6.1, Theorem 6.1 for the estimation
of p.

8.1 Pure-jump case

The discussion on rates of convergence is different according to the estimation
method.
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8.1.1 Rates for the Fourier method on examples

We consider models for which (H1-g) holds.

Example 1.Compound Poisson processes.
Let Lt = ∑Nt

i=1Yi , where(Nt) is a Poisson process with constant intensityc and
(Yi) is a sequence ofi.i.d. random variables with densityf independent of the pro-
cess(Nt ). Then,(Lt ) is a compound Poisson process with characteristic function
(2.5) withn(x) = c f(x) (integrable). Assumptions (H1-g)-(H2-(l)) are equivalent to
e(|Y1|l )<∞. Assumption (H3-g) is equivalent to

∫
R x2 f 2(x)dx< ∞, which holds for

instance if supx f (x) <+∞ andE(Y2
1 )<+∞. The distribution ofZ1 = L∆ is:

P∆ (dz) = PZ1(dz) = e−c∆

(
δ0(dz)+ ∑

n≥1

f ∗n(z)
(c∆)n

n!
dz

)
. (8.1)

Hence,

µ (1)
∆ (dz) = e−c∆

(
cz f(z)dz+ c2∆z∑

n≥2

cn−2∆n−2

n!
f ∗n(z)dz

)
(8.2)

As f is any density andg(x) = cx f(x), any type of rate can be obtained. Table 1
summarizes the rates obtained whenf is Gaussian, exponential or uniform.

Density f GaussianN (0,1) ExponentialE (1) Uniform U ([0,1])

g(x)(= cx f(x)) = cxe−x2/2/
√

2π cxe−x1IR+(x) cx1I[0,1](x)

g∗(u) = ciue−u2/2 c/(1− iu)2 c
eiu −1− iueiu

u2∫
|u|≥πm|g∗(u)|2du= O(me−π2m2

) O(m−3) O(m−1)∫
|u|≤πmn

u2|g∗(u)|2du= O(1) O(1) O(mn)

Constraint on∆ n∆3 ≤ 1 n∆3 ≤ 1 n∆2 ≤ 1
Selectedm= m=

√
log(n∆)/π m= O((n∆)1/4) m= O((n∆)1/2)

Rate= O(

√
log(n∆)

n∆
) O((n∆)−3/4) O((n∆)−1/2)

Table 1 Choice ofm and rates in three compound Poisson examples (mn ≤ n∆ ).

For instance, for∆ = n−a, with a∈ [1/3,1[, the best risk is of order log1/2(n)/n2/3

in the Gaussian case and of ordern−1/2 in the exponential case. In the uniform case
for ∆ = n−a and nowa∈ [1/2,1[, the best risk is of ordern−1/4.

Example 2.The Lévy Gamma process. Letα > 0,β > 0. The Lévy Gamma process
(Lt) with parameters(β ,α) is a subordinator (increasing Lévy process) such that,
for all t > 0, Lt has distribution Gamma with parameters(β t,α), i.e.has density:
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αβ t

Γ (β t)
xβ t−1e−αx1x≥0. (8.3)

The characteristic function ofZ1 is equal to:

ϕ∆ (u) =

(
α

α − iu

)β ∆
. (8.4)

The Lévy density isn(x) = βx−1e−αx1I{x>0} so thatg(x) = βe−αx1I{x>0} satisfies
our assumptions. We have:g∗(u) = β/(α − iu). Table 2 gives the rate of the risk
bound and auxiliary quantities.

Example 2 (continued): Lévy δ process.To illustrate other possibilities of rates,
consider a pure jump Lévy process(Lt) with parameters(δ ,β ,c) and Lévy density

n(x) = cxδ−1/2x−1e−β x1x>0.

Assumption (H1-g) holds forδ > −1/2. Forδ > 1/2,
∫ +∞

0 n(x)dx< +∞, the pro-
cess is a compound Poisson procces.
For 0< δ ≤ 1/2,

∫ +∞
0 n(x)dx= +∞ andg(x) = xn(x) belongs toL2(R)∩L1(R).

This includes the caseδ = 1/2 of the Lévy Gamma process.
The case−1/2< δ ≤ 0 and in particularδ = 0, which corresponds to the inverse
Gaussian Lévy process, does not fit in this part.
We have:

g∗(u) = c
Γ (δ +1/2)

(β − iu)δ+1/2
.

Table 2 shows that for∆ = n−a, with a∈ [1/2,1[, the best risk is of ordern−δ/(2δ+1).

Example 3.The variance Gamma stochastic volatility model (see [52]).
Let (Wt) be a Brownian motion, and let(Vt) be a Lévy Gamma process, inde-

pendent of(Wt). Assume that the observed process isLt = WVt . The characteristic
function is given by:

ϕ∆ (u) = E(eiuL∆ ) = E(e−
u2
2 V∆ ) =

(
α

α + u2

2

)∆β

.

The Lévy measure of(Lt) is equal to:

nL(x) = β (2α)1/4|x|−1exp(−(2α)1/2|x|).

The density ofL∆ = Z1 can be computed as it is a variance mixture of Gaussian
distributions with mixing distribution GammaΓ (β ∆ ,α):
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fZ1(x) =
1√
2π

∫ +∞

0
vβ ∆−3/2e−

1
2 (x

2/v+2αv) αβ ∆

Γ (β ∆)
dv

=
2√
2π

αβ ∆

Γ (β ∆)
(
(2α)1/2

|x| )
1
2−β ∆Kβ ∆− 1

2
((2α)1/2|x|)

whereKν is the modified Bessel function (third kind) with indexν (seee.g. [51]).
Now with α̃ = (2α)1/2, β̃ = β (2α)1/4,

g(x) = β̃ exp(−α̃x)1Ix≥0− β̃ exp(α̃x)1Ix<0, g∗(u) =
2iα̃β̃u
α̃2+u2 .

Example 3 (continued).The variance Gamma stochastic volatility model is a spe-
cial case of bilateral Gamma process (see [50]). Consider the Lévy processLt with
characteristic function

ϕt(u) =

(
α

α − iu

)β t( α ′

α ′+ iu

)β ′t

and Lévy density

n(x) = |x|−1(βe−αx1I(0,+∞)(x)+β ′e−α |x|1I(−∞,0)(x)).

Rates are given in Table (2).

Process Example 2 Ex.2 (continued) Example 3
δ ∈]0,1/2[ (continued)

g∗(u) =
β

α − iu
c

Γ (δ +1/2)

(β − iu)δ+1/2

β
α − iu

− β ′

α ′− iu

∫
|u|≥πm|g∗(u)|2du= O(1/m) O(1/m2δ ) O(1/m)∫

|u|≤πmn
u2|g∗(u)|2du= O(mn) O(m2−2δ

n ) O(mn)

Constraint on∆ n∆2 ≤ 1 n∆2 ≤ 1 n∆2 ≤ 1
Selectedm= O((n∆)1/2) O((n∆)1/(2δ+1)) O((n∆)1/2)

Rate O((n∆)−1/2) O((n∆)−2δ/(2δ+1)) O((n∆)−1/2)

Table 2 Choice ofm and rates in examples 2, 2 (continued), 3 (continued) (mn ≤ n∆ ).

8.1.2 Rates for the estimation on a compact set

In all the examples above, it is possible to find a compact setA such thatg is of class
C∞ onA.
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Due to Corollary 4.1, for allα > 0,E(‖g− g̃m̃‖2
A) = O((n∆)−2α/(2α+1)). For the

conditions under which this rate arises, three possibilities happen:

1. for the compound Poisson process with Gaussian and exponential density, we
have

∫
u2|g∗(u)|2du<+∞,

2. for the compound Poisson process with uniform densityf , the Lévy Gamma
process and the bilateral Lévy Gamma process, we have

∫
u2|g∗(u)|2du= +∞

andg is bounded.
3. For the Lévy-δ process (see Example 2 (continued)),

∫
u2|g∗(u)|2du= +∞ and

g is not bounded.

Choosing∆ = n−a (see Corollary 4.1), in the first case, the best rate correspond-
ing toα →+∞ is of orderO(n−2/3), for the second case, of orderO(n−2/5) and for
the third case of orderO(n−1/3).

8.1.3 Comparison

To conclude, we give in Table 3 the best rate that can be obtained on each example
according to the method, either Fourier method (with the Sinus Cardinal basis) or the
time domain method (with the Trigonometric basis). The winner of the challenge is
always the trigonometric basis. This is because the limitα →+∞ is considered for
the latter basis only. However, on simulations, the Fouriermethod performs better.

Process Sinus Cardinal basis Trigonometric basis
Poisson-Gaussian log1/2(n)n−2/3 n−2/3

Poisson-Exp. n−1/2 n−2/3

Poisson-Unif. n−1/4 n−2/5

Lévy-Gamma n−1/4 n−2/5

Lévy-δ n−δ/(2δ+1),δ ∈ (0,1/2) n−1/3

Bilateral Gamma n−1/4 n−2/5

Table 3 Comparison of best possible rates with the two methods.

In all cases, rates measured as powers ofn are slower than in classical density
estimation. The important value isn∆ , that should be large enough. This means that
∆ cannot be too small in order to keep a reasonable numbern of observations.

8.2 General case

We consider the previous examples with the addition of a drift and a Brownian
motion and look at the rates for the estimation ofp deduced from Proposition 6.1
and Theorem 6.1. We indicate in which cases the estimation ofσ is possible using
the estimatorŝσ(r).
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Example 1.Drift + Brownian motion+ Compound poisson process.
Let

Lt = b0t +σWt +
Nt

∑
i=1

Yi (8.5)

whereNt is a Poisson process with constant intensityc andYi is a sequence ofi.i.d.
random variables with densityf , independent of the process(Nt ).

Note thatEL1 = b = b0 +
∫

xn(x)dx (n(x) = c f(x)). For the estimation of
p(x) = cx3 f (x), the rates that can be obtained depend on the densityf provided
that f satisfies the assumptions of Theorem 6.1, which are essentially here moment
assumptions for the r.v.’sYi . Any order can be obtained as shown in Table 4 where
rates are computed forf a standard Gaussian, an exponential with parameter 1 and
a Beta distribution with parameters(1,3) (for p to be regular enough).
As
∫ |x|rn(x)dx< ∞ for all r < 1 (actually, for allr ≤ 2), estimation ofσ is possible

usingσ̂(r) for any value of 0< r < 1 (provided thatn∆2−r = o(1)).

f (x) N (0,1) E (1) β (1,3)

p(x) = cx3 f (x) ∝ x3e−x2 ∝ x3e−x1Ix>0 ∝ x3(1−x)21I[0,1](x)

p∗(u) ∝ (u3−3u)e−u2/2 ∝ 1/(1− iu)4 O(1/|u|3) for large|u|.∫
|u|≥πm|p∗(u)|2du O((πm)5e−(πm)2) O((πm)−7) O((πm)−5)∫

|u|≤πµn
u4|p∗(u)|2du O(1) O(1) O(1)

m̆ (best choice ofm)
√

log(n∆)− 5
2 log log(n∆)/π O((n∆)1/8) O((n∆)1/6)

Rate∝
√

log(n∆)

n∆
(n∆)−7/8 (n∆)−5/6

Table 4 Rates for different ”Drift+ Brownian motion +Compound Poisson processes” (µn ≤√
n∆ ).

Example 2.Drift + Brownian motion + Lévy-Gamma process.
ConsiderLt = b0t +σWt +Γt where(Γt) is a Lévy gamma process with parameters
(β ,α). We haveEL1 = b = b0+

∫
xn(x)dx and p(x) = βx2e−αx1Ix>0. Elementary

computations show (withµn ≤
√

n∆ ):

p∗(u)= 2β/(α− iu)3,
∫

|u|≥πm
|p∗(u)|2du=O(m−5),

∫ πµn

−πµn

u4|p∗(u)|2du=O(1).

Therefore the rate for estimatingp is O((n∆)−5/6) for a choicem̆= O((n∆)1/6).
As for all r > 0,

∫
xrn(x)dx< ∞, σ may be estimated bŷσ(r) for any value of

0< r < 1.

Example 2 (continued).Drift + Brownian motion + A specific class of subordina-
tors.
Let Lt = b0t +σWt +Γt where(Γt) is a subordinator of pure jump type with Lévy
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density of the formn(x) = βxδ−1/2x−1e−αx1Ix>0 with δ >−1/2 (thus
∫

xn(x)dx<
∞). This class of subordinators includes compound Poisson processes (δ > 1/2)
and Lévy Gamma processes (δ = 1/2). Whenδ > 0, the functionxn(x) is both inte-
grable and square integrable (see above). Here, we can also consider the estimation
of p in the case the case−1/2< δ ≤ 0 which includes the Lévy Inverse Gaussian
process (δ = 0). The functionp(x) = x3n(x) can be estimated in presence (or not)
of additional drift and Brownian component. We obtain:

p∗(u) = β
Γ (δ +5/2)

(α − iu)δ+5/2
and

∫

|u|≥πm
|p∗(u)|2du= O(m−(2δ+4)).

In the caseδ ≤ 0, u4|p∗(u)|2 is not integrable and we have forn∆2 ≤ 1,

∆2
∫

|u|≤πµn

u4|p∗(u)|2du= ∆2o(µn) = o(∆3/2).

The best rate for estimatingp is O((n∆)−(2δ+4)/(2δ+5)) for a choicem̆=O((n∆)1/(2δ+5)).
Note that∆3/2 ≤ (n∆)−(2δ+4)/(2δ+5) for n∆2 ≤ 1 and−1/2< δ ≤ 0.
For r > 1/2−δ ,

∫
xrn(x)dx< ∞ . Hence, to estimateσ usingσ̂(r), we must choose

1/2− δ < r < 1.

Example 3.Drift + Brownian motion + Pure jump martingale.
ConsiderLt = bt+σWt +BΓt whereW,B,Γ are independent processes,W,B are
standard Brownian motions, andΓ is a pure-jump subordinator with Lévy density
nΓ (γ) = β γδ−1/2γ−1e−αγ1Iγ>0 as above (assumingδ >−1). The Lévy densityn(.)
of (Lt) (and of(Xt = BΓt )) is linked withnΓ (see (3.3)) and can be computed:

n(x) =
2β√
2π

Kδ−1(
√

2α|x|)( |x|√
2α

)δ−1,

whereKν is a Bessel function of third kind (MacDonald function) (seee.g. [3]).
For δ = 1/2, BΓt is a symmetric bilateral Lévy Gamma process. Forδ = 0, BΓt is
a normal inverse Gaussian Lévy process. The relation (3.3)allows to check that
the functionp(x) = x3n(x) belongs toL1 ∩L2 and satisfies (H4-p) forδ > −3/4.
Moreover:

p∗(u) =−iβ
(

u3Γ (δ +5/2)

(α +u2/2)5/2
−3

uΓ (δ +3/2)

(α +u2/2)3/2

)
.

Thus, withn∆2 ≤ 1,
∫

|u|≥πm
|p∗(u)|2du=O(m−3) and ∆2

∫

|u|≤πµn

u4|p∗(u)|2du=∆2O(µn)=O(∆3/2).

The best rate for estimatingp is O((n∆)−3/4) obtained form̆= O((n∆)1/4)). We
have∆3/2 ≤ (n∆)−3/4 as n∆2 ≤ 1. As

∫
γ r/2nΓ (γ)dγ < ∞ for r > 1− δ/2, the

estimation ofσ by σ̂(r) requires 1− δ/2< r < 1. Therefore, we must haveδ > 0.
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9 Simulations

(a0) ¯̂h= 0.42 (0.04) (b0) ¯̂h= 065 (0.1) (c0) ¯̂h= 0.08 (0.02)
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Fig. 1 Estimation ofg for a compound Poisson process with Gaussian (first column),Exponential
E (1) (second column), and uniformU ([0,1]) (third column)Yi ’s, c= 0.5. True (bold black line)
and 50 estimated curves (dotted red), left∆ = 0.2 n = 5000: Kernel estimator (first line), Sinus
Cardinal basis (second line);∆ = 0.05,n= 5.104: Sinus Cardinal basis (third line), trigonometric
basis (fourth line).



64 Fabienne Comte and Valentine Genon-Catalot

In this section, we illustrate on numerical simulated data the performance of the
estimators.

9.1 Simulations in the pure jump case

The adaptive estimation methods of Section 4 were implemented in the three cases:
kernel method, deconvolution (Sinus Cardinal basis) and estimation ofg on a com-
pact subset using trigonometric bases. Lévy processes chosen among the examples
given in Section 8.1 were simulated. Precisely,

1. A compound Poisson process with GaussianN (0,1)Yi ’s, g(x)= cxexp(−x2/2)/
√

2π.
2. A compound Poisson process with ExponentialE (1)Yi ’s, g(x) = cxe−x1Ix>0.
3. A compound Poisson process with UniformU ([0,1]) Yi ’s, g(x) = cx1I[0,1](x).
4. A Lévy-Gamma process with parameters(α,β )= (2,0.2), g(x)= β exp(−αx)1Ix>0,
5. A Lévy-Gamma process with parameters(α,β ) = (1,1),
6. A Bilateral Lévy-Gamma process with parameters(α,β ) = (α ′,β ′) = (2,0.2),

g(x) = β exp(−αx)1Ix≥0−β ′exp(α ′x)1Ix<0,
7. A Bilateral Lévy-Gamma process with parameters(α,β )= (2,0.2) and(α ′,β ′)=

(1,1)

The implementation of the adaptive method requires the calibration of the constant
κ in the penalties. This is a difficulty of the method. In practice, the penalty constant
is usually calibrated by preliminary simulations. After this was done, the constant
κ was taken equal to 1.5 in the kernel method, to 7.5 for the deconvolution and
to 1 when using the trigonometric basis. The bandwidthĥ was chosen among 20
equispaced values between 0.01 and 0.75 with a standard Gaussian kernel, to ease
the computation of the iterated kernelKh ⋆Kh′ . The cut-offm̂ was chosen among
100 equispaced values between 0 and 10. The dimensionDm̃ was chosen among 80
values between 1 and 80. We used in both cases the expression of the estimators
using their coefficients on the bases. In the Sinus Cardinal case, this avoids high
dimensional matrices manipulations, but the series have tobe truncated (we kept
coefficients ˆam, j for | j| ≤ Kn with Kn = 15).

Results are given in Figures 1 and 2 where 50 estimated curvesare plotted on the
same figure to illustrate the weak variability of the estimator. In Figure 1, estimation
results for compound Poisson processes are plotted. The first line illustrates the
kernel method, the second and third lines give estimation results with the Sinus
Cardinal basis and the fourth line concerns the trigonometric basis. In the first two
lines, we choosen = 5000,∆ = 0.2 (n∆ = 1000) and in the last two lines,n =
50000,∆ = 0.05 (n∆ = 2500).

Figure 2 illustrates the estimation of Lévy Gamma models. In the first two
columns, curves are estimated by Sinus Cardinal basis, while the last columns con-
cerns the trigonometric basis.

It is clear from both Figures 1 and 2 that increasingn∆ improves the result by
showing a thinner variability band. Comparing the last two lines of Figure 1 and
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the last two columns of Figure 2 amounts to comparing the performance of the two
bases. It appears that the Sinus Cardinal must be preferred because the trigonomet-
ric basis has very important edge effects for highly dissymmetric densities: see in
particular the exponential-Poisson, and the Gamma case, which start with a peak
and end at zero. The kernel and the deconvolution methods seem to have analogous
performances.

On top of each graph in Figures 1 and 2, the mean of the selectedvalues forĥ,
m̂ (sinus cardinal basis) or forDm̃ (trigonometric basis) is given with the associ-
ated standard deviation in parentheses. Various values arechosen by the estimation
procedure, and in each case, the standard deviation exhibits a reasonable variability.
This is an indication that the constants in the penalties areadequately chosen: too
small constantsκ imply very unstable choices for the same model, while greater
κ ’s quickly lead to null standard deviations for 50 sample paths. Note also that the
higher the regularity ofg, the smaller the selected 1/ĥ’s, m̂’s andDm̃’s (which is
coherent with ordersO(n1/(2α+1)) for a regularityα). The uniform-Poisson case
involves larger values for 1/ĥ, m̂, Dm̃ than the two other Poisson cases, for instance.

9.2 General case and comparisons

In this section, we present numerical results for simulatedLévy processes corre-
sponding to Examples 1 and 2 of Section 8.2. For these models,the functions
g(x) = xn(x), ℓ andp belong toL1∩L2(R). Thus, we can estimateg whenb0 = 0,
σ = 0, ℓ whenσ = 0 andp whenσ 6= 0. The estimators ˆgm̂, ℓ̄m̄, p̄m̄ using the sinus
cardinal basis were implemented (see (5.6)-(5.14) and (6.3)-(6.6)). After prelimi-
nary experiments, the numerical constantsκ ,κ ′ appearing in the penalties were set
to 7.5 forg, 4 for ℓ and 3 forp. The cut-offm̄ was chosen among 100 equispaced
values between 0 and 10.

Figure 3 shows estimated curves for models with jump part coming from com-
pound Poisson processes (see (8.5)) where theYi ’s are standard Gaussian, Exponen-
tial E (1), andβ (3,3) rescaled on[−4,4]. The intensityc is equal to 0.5.

Figure 4 shows estimated curves for jump part of Lévy Gamma and bilateral
Lévy Gamma type. The bilateral Lévy Gamma process is the differenceΓt −Γ ′

t of
two independent Lévy Gamma processes.

On top of each graph, we give the mean value of the selected cut-off with its
standard deviation in parentheses. This value is surprisingly small. As expected,
the presence of a Gaussian component deteriorates the estimation, which remains
satisfactory on the whole.

Generally, authors estimaten(.) on a compact set separated from the origin (see
e.g.[31]). Settingn̂(x) = ĝ(x)/x, we have the obvious inequality

E(‖(n̂−n)1R/[−a,a]‖2)≤ 1
a2E(‖ĝ−g‖2).
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(a1) ¯̂m= 2.32 (0.39) (a2) ¯̂m= 3.74 (0.64) (a3) D̄m̃ = 13.8 (2.7)
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Fig. 2 Estimation ofg for a Lévy Gamma process with parameters(α ,β ) = (2,0.2) (first line),
(α ,β ) = (1,1) (second line), a bilateral Lévy Gamma process with parameters(α ,β ) = (α ′,β ′) =
(2,0.2) (third line) and a bilateral Lévy Gamma process with parameters (α ,β ) = (2,0.2),
(α ′,β ′) = (1,1). True (bold black line) and 50 estimated curves (dotted red), left ∆ = 0.2 n= 5000,
Sinus Cardinal basis; center,∆ = 0.05,n= 5.104, Sinus Cardinal basis; right∆ = 0.05,n= 5.104,
trigonometric basis.
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Estimation ofg(x) = xn(x) Estimation ofℓ(x) = x2n(x) Estimation ofp(x) = x3n(x)
b0 = 0, σ = 0 b0 = 0.25,σ = 0 b0 = 0.25,σ = 0.5

(a1) ¯̂m= 0.91 (0.03) (a2) ¯̄m= 1.01 (0.05) (a3) ¯̄m= 0.86 (0.19)
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Fig. 3 Variability bands for the estimation ofg, ℓ, p for a compound Poisson process with Gaussian
(first line), ExponentialE (1) (second line) andβ (3,3) rescaled on[−4,4] (third line) Yi ’s,with
c= 0.5. True (bold black line) and 50 estimated curves (dotted red), ∆ = 0.05,n= 5.104.

Analogous inequalities hold for ˆn(x) = ℓ̄(x)/x2 or n̂(x) = p̄(x)/x3. In Figure 5, the
estimator ofn(.) deduced by dividing by the correct power ofx is plotted, exclud-
ing an interval[−a,a] around zero. To obtain correct representations,a= 0.1 suits
for ĝ(x)/x, a = 0.5 for ℓ̄(x)/x2 anda = 1 for p̄(x)/x3. The results are satisfactory
and in accordance with the difficulty of estimatingn(.) without or with Gaussian
component.

Tables 5 and 6 show the means of the estimation results forb = E(L1) = b0+∫
xn(x)dx (see (7.1)) andσ , with standard deviations in parentheses.
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The estimation ofb is good in all cases, and especially whenn∆ is large. The
estimation ofσ is clearly more difficult, with noticeable differences according to
the values ofn and∆ . When∆ is not small enough, the estimation can be heavily
biased. In accordance with the theory, whenr is smaller, the estimator ofσ is slightly
better (smaller bias). Table 7 shows the values ofn∆2 andn∆2−r , which should be
small for the performance of the estimator to be satisfactory. It is worth noting that
σ is constantly over-estimated.

Estimation ofg(x) = xn(x) Estimation ofℓ(x) = x2n(x) Estimation ofp(x) = x3n(x)
b0 = 0, σ = 0 b0 = 0.25,σ = 0 b0 = 0.25,σ = 0.5

(a1) ¯̂m= 3.58 (0.36) (a2) ¯̄m= 0.93 (0.09) (a3) ¯̄m= 0.58 (0.09)
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Fig. 4 Variability bands for the estimation ofg, ℓ, p for jumps from a Lévy-Gamma process with
β = 1,α = 1 (first line), a bilateral Lévy-Gamma process with(β ,α) = (0.7,1), (β ′,α ′) = (1,1)
(second line). True (bold black line) and 50 estimated curves (dotted red),∆ = 0.05,n= 5.104.

10 Compound Poisson processes

This section is devoted to compound Poisson processes whichare a special case
of Lévy processes with integrable Lévy measure. CompoundPoisson processes are
widely used in practice especially in queuing and insurancetheory (seee.g. [27]
and references therein, [47] or [59]). The results given here are based on the paper
[16]. One advantage of the approach is to weaken the constraints on the sampling
interval. Let(Xt , t ≥ 0) be a compound Poisson process, given by
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Model (n,∆) (5.104,0.05) (5.104,0.01) (5.104,10−3) (104,10−3)

Poisson b̂ (b= 1) 1.000 (0.02) 0.997 (0.04) 0.995 (0.123) 1.001 (0.280)
Gaussian σ̂(1/2) 0.602 (0.03) 0.527 (0.002) 0.504 (0.002) 0.504 (0.005)

σ̂(1/4) 0.589 (0.03) 0.521 (0.002) 0.503 (0.002) 0.503 (0.002)
Poisson b̂ (b= 1.5) 1.502 (0.05) 1.502 (0.051) 1.494 (0.142) 1.461 (0.359)
Exp(1) σ̂(1/2) 0.611 (0.003) 0.530 (0.003) 0.505 (0.002) 0.505 (0.005)

σ̂(1/4) 0.594 (0.003) 0.522 (0.003) 0.503 (0.002) 0.503 (0.005)
Gamma b̂ (b= 2) 2.001 (0.02) 2.000 (0.05) 1.998 (0.177) 2.018 (0.335)

(1,1) σ̂(1/2) 0.705 (0.004) 0.562 (0.003) 0.512 (0.002) 0.513 (0.005)
σ̂(1/4) 0.677 (0.004) 0.548 (0.003) 0.508 (0.002) 0.508 (0.005)

Bilateral b̂ (b= 1.4286)1.426 (0.035) 1.4286 (0.076) 1.4493 (0.264) 1.405 (0.619)
Gamma σ̂(1/2) 0.862 (0.005) 0.628 (0.004) 0.526 (0.003) 0.526 (0.006)

(0.7,1), (1.1) σ̂(1/4) 0.798 (0.004) 0.593 (0.003) 0.516 (0.002) 0.515 (0.006)

Table 5 Estimation of(b,σ ), b0 = 1, the true value ofb in parenthesis,σ = 0.5, K = 200 replica-
tions.

Model (n,∆) (5.104,0.05) (5.104,0.01) (5.104,10−3) (104,10−3)

Poisson b̂ (1) 0.999 (0.025) 1.005 (0.059) 0.998 (0.178) 1.025 (0.85)
Gaussian σ̂(1/2) 1.082 (0.005) 1.026 (0.004) 1.006 (0.004) 1.005 (0.009)

σ̂(1/4) 1.072 (0.005) 1.020 (0.005) 1.004 (0.004) 1.003 (0.01)
Poisson b̂ (1.5) 1.510 (0.026) 1.498 (0.06) 1.481 (0.190) 1.485 (0.442)
Exp(1) σ̂(1/2) 1.096 (0.005) 1.030 (0.004) 1.006 (0.004) 1.006 (0.009)

σ̂(1/4) 1.080 (0.005) 1.022 (0.004) 1.003 (0.004) 1.003 (0.010)
Gamma b̂ (2) 2.00 (0.026) 1.995 (0.068) 1.991 (0.196) 2.023 (0.195)

(1,1) σ̂(1/2) 1.172 (0.005) 1.062 (0.005) 1.014 (0.004) 1.014 (0.004)
σ̂(1/4) 1.152 (0.005) 1.050 (0.005) 1.010 (0.005) 1.010 (0.004)

Bilateral b̂ (1.4286) 1.425 (0.04) 1.431 (0.10) 1.429 (0.28) 1.492 (0.63)
Gamma σ̂(1/2) 1.330 (0.006) 1.136 (0.005) 1.033 (0.005) 1.033 (0.01)

(0.7,1), (1.1) σ̂(1/4) 1.284 (0.006) 1.105 (0.005) 1.022 (0.005) 1.022 (0.01)

Table 6 Estimation of(b,σ ), b0 = 1, the true value ofb in parenthesis,σ = 1, power variation
method for estimation ofσ , K = 200 replications.

(n,∆) (5.104,0.05) (5.104,0.01) (5.104,10−3) (104,10−3)
n∆ 2500 500 50 10
n∆2 125 5 0.05 0.01

n∆2−1/2 559 50 1.6 0.3
n∆2−1/4 264 16 0.3 0.06

Table 7 Values ofn,∆ , n∆ , n∆2, n∆2−r for r = 1/2 andr = 1/4.

Xt =
Nt

∑
i=1

ξ j , (10.1)

where(ξ j , j ≥ 1) is a sequence ofi.i.d. real valued random variables with den-
sity f , (Nt) is a Poisson process with intensityc> 0, independent of the sequence
(ξ j , j ≥ 1). The densityf and the intensityc are unknown. We are interested in
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Estimation ofn(x) = g(x)/x Estimation ofn(x) = h(x)/x2 Estimation ofn(x) = p(x)/x3

b0 = 0, σ = 0 b0 = 0.25,σ = 0 b0 = 0.25,σ = 0.5
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Fig. 5 Variability bands for the estimation ofn(.)1I[−a,a]c for a compound Poisson process with
ExponentialE (1) (first line) and Gaussian (second line) jump densities, witha= 0.1 (first column),
a = 0.5 (second column),a = 1 (third column). In all cases,c = 0.5, n = 50000,∆ = 0.05; 25
estimated curves (thin dotted) and the true (bold line).

adaptive nonparametric estimation off from discrete observations(Xj∆ , j ≥ 0) and
the resulting estimation of the Lévy densityn(x) = c f(x) where the intensityc has
to be estimated too. As compound Poisson processes are simpler than general Lévy
processes, specific methods for estimating the jump distribution have been investi-
gated. The estimation off is often called decompounding (see for instance, [12],
[28] or [25]). We adopt the point of view of [28] to define the discrete observations
of the sample path(Xt).

Recall that the common distribution of the incrementsXk∆ −X(k−1)∆ is equal to

PX∆ (dx) = e−c∆ δ0(dx)+ (1−e−c∆)q∆ (x)dx, (10.2)

whereδ0 is the Dirac mass at 0,q∆ is the conditional density ofX∆ given that
X∆ 6= 0:

q∆ = ∑
m≥1

e−c∆

1−e−c∆
(c∆)m

m!
f ⋆ m, (10.3)

and f ⋆ m denotes them-th convolution power off . As null increments provide no
information on the densityf , we assume that the sample pathXt is discretely ob-
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served until exactlyn increments are nonzero. Such observations can be described
as follows. Let

S1 = inf{ j ≥ 1,Xj∆ −X( j−1)∆ 6= 0},
Si = inf{ j > Si−1,Xj∆ −X( j−1)∆ 6= 0}, i ≥ 2, (10.4)

and set
Zi = XSi∆ −X(Si−1)∆ . (10.5)

(For the sake of simplicity, in this section, we use the same notation Zi for the
above increments). Assume that theXj∆ ’s are observed forj ≤ Sn. Thus,(Si ,Zi), i =
1, . . . ,n are observed. Proposition 10.1 gives the joint distribution of these obser-
vations. In particular, it is shown thatZ1, . . . ,Zn is a n-sample of the conditional
distribution ofX∆ given thatX∆ 6= 0 which has densityq∆ . Therefore, the estima-
tion of q∆ is possible using the sampleZ1, . . . ,Zn. On the other hand, estimators of
c can be based on(S1, . . . ,Sn).

We use the following method to build an estimator off . The operatorf → q∆ :=
P∆ f can be explicitly inverted. Provided thatc∆ < log2, the inverse operatorP−1

∆
admits a series development implying that:

f = P−1
∆ (g∆ ) = ∑

m≥1

(−1)m+1

m
(ec∆ −1)m

c∆
q⋆m

∆ . (10.6)

Consequently, truncating the above development and keeping K+1 terms,f can be
approximated:

f ≃
K+1

∑
m=1

(−1)m+1

m
(ec∆ −1)m

c∆
q⋆m

∆ . (10.7)

The approximation is valid for small∆ . To estimate f , we replace, form =
1, . . . ,K + 1, (ec∆ − 1)m/c∆ by adequate estimators and eachq⋆m

∆ by a nonpara-
metric estimator based on the observations(Z j , j = 1, . . . ,n) given by (10.5). The
interest of the method is that, from then-sample of the densityq∆ ,

√
n-consistent

nonparametric estimators of the convolution powerq⋆m
∆ , for m≥ 2, can be built (see

e.g.[60]). Here, we adopt the method described in [14]. Of course, m≥ 2 is fixed
and should not be too large. To simplify notations, we omit the dependence on∆ for
q∆ and set

q := q∆ , q⋆m := q⋆m
∆ . (10.8)

First, we deal with the parametric estimation ofc and the coefficientscm(∆). Sec-
ond, the estimation ofq⋆m is described. Finally, the estimators off andc f are given.
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10.1 Parameter estimation

This section concerns the estimation ofc and the coefficientscm(∆),m≥ 1 appear-
ing in the series development (10.6) off . This relies on the joint distribution of
Si ,Zi , i ≥ 1 .

Proposition 10.1 Let S0 = 0 and Si ,Zi , i ≥ 1 be given by (10.4)-(10.5). We have,
for all i ≥ 1, P(Si < +∞) = 1, (Si −Si−1,Zi), i ≥ 1 are independent and identically
distributed random couples. For k≥ 1,

P(S1 = k,Z1 ≤ x) = e−c(k−1)∆ (1−e−c∆)P(X∆ ≤ x|X∆ 6= 0).

Consequently, S1 and Z1 are independent, the distribution of Z1 is equal to the condi-
tional distribution of X∆ given X∆ 6= 0, S1 has geometric distribution with parameter
1−e−c∆ . Moreover, the random variables(S1,Z1, . . . ,Si−Si−1,Zi , . . . ,Sn−Sn−1,Zn)
are independent.

Proof. To obtain the joint distribution of(S1,Z1) is elementary using that the incre-
mentsXj∆ −X( j−1)∆ arei.i.d.. The process(Xx

j∆ = x+Xj∆ , j ≥ 1) is strong Markov.

We denote byPx its distribution on the canonical spaceRN, denote by(Xj , j ≥ 0)
the canonical process ofRN and byF j = σ(Xk,k ≤ j) the canonical filtration. Let
θ : RN → RN denote the shift operator. Consider the stopping times built on the
canonical processS0 = 0,

Si = inf{ j > Si−1,Xj −Xj−1 6= 0}, i ≥ 1,

and let
Zi = XSi −XSi−1.

Because theSi ’s are built using the increments(Xj −Xj−1, j ≥ 1), their distributions
underPx are independent of the initial conditionx. We haveSi = Si−1+S1◦ θSi−1.
The process(XSi−1+ j −XSi−1 = (Xj −X0)◦θSi−1, j ≥ 0) is independent ofFSi−1 and
has distributionP0 andZi = Z1 ◦θSi−1. Consequently,

Ex(ϕ(Si −Si−1)ψ(Zi)|FSi−1) = E0(ϕ(S1)ψ(Z1)).

By iterate conditioning, we get the result.

Let us now turn to the estimation ofcm(∆) for all m≥ 1 andc. For this, we use
the sample(S1, . . . ,Sn) which is independent of the sample(Z1, . . . ,Zn). As we deal
with a semiparametric problem, we need find estimators with computableL2-risk.
So the simple plug-in of the exact maximum likelihood estimator of c is not suitable.

Proposition 10.2 Assume that c∈ [c0,c1] with c0 > 0 and c1∆ ≤ log(2)/2. Let

F(ξ ) =
1
∆

log
ξ

ξ −1
(10.9)

and for m≥ 1
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Hm(ξ ) =
1

(ξ −1)m log ξ
ξ−1

. (10.10)

Define

Ωn =

{
1+

1
e2c1∆ −1

≤ Sn

n
≤ 1+

1

ec0/(2∆ )−1

}
,

ĉm(∆) = Hm(Sn/n) 1Ωn, ĉ= F(Sn/n) 1Ωn. (10.11)

Then,

E
(

ĉm(∆)− cm(∆)
)2

≤Cm
∆2(m−1)

n
, E(ĉ− c)2 ≤ C

n
, (10.12)

where Cm,C have an explicit expression as functionsof c0,c1 and m.

Note that the bounds are non asymptotic and the exact value ofthe constants
Cm,C can be deduced from the proof.

Proof. We start with the estimators ofcm(∆). Let us set

p(∆) = 1−e−c∆ =
ec∆ −1

ec∆ .

An elementary computation yields:

c∆ = log(
x

x−1
) with x := x(∆) =

1
p(∆)

= 1+
1

ec∆ −1
> 1,

and
(ec∆ −1)m

c∆
= Hm(x).

As the standard maximum likelihood (and unbiased) estimator of 1/p(∆) computed
from the sample(Si −Si−1, i = 1, . . . ,n) is Sn/n ≥ 1, we are tempted to estimate
Hm(x) by Hm(Sn/n). This is not possible asSn/n may be equal to 1. This is why we
introduce a truncation. Setu0 = ∆/(ec0∆/2−1), u1 = ∆/(e2c1∆ −1),u= ∆/(ec∆ −
1). Note that

1+
u1

∆
< x= 1+

u
∆

< 1+
u0

∆
, Ωn = {1+

u1

∆
≤ Sn

n
≤ 1+

u0

∆
}. (10.13)

We have
ĉm(∆)− cm(∆) = Hm(Sn/n)1Ωn −Hm(x) = A1+A2

with
A1 = (Hm(Sn/n)−Hm(x)) 1Ωn,

and
A2 =−Hm(x)1Ωc

n
.

On Ωn,
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(Hm(Sn/n)−Hm(x))
2 ≤ (

Sn

n
− x)2 sup

ξ∈[1+ u1
∆ ,1+

u0
∆ ]

(H
′
m(ξ ))

2.

As

H
′
m(ξ ) =− m

(ξ −1)m+1 log ξ
ξ−1

+
1

ξ (ξ −1)m+1 log2 ξ
ξ−1

,

we have, forξ ∈ [1+ u1
∆ ,1+ u0

∆ ],

|H ′
m(ξ )| ≤

2∆m

c0um+1
1

(
m+

2
u1c0

)
.

Writing thate2c1∆ −1= 2c1∆e2sc1∆ for s∈ (0,1) and using that 2c1∆ ≤ log(2), we
get 1/u1 ≤ 4c1. As

E(
Sn

n
− x)2 =

1− p(∆)

np2(∆)
=

ec∆

n(ec∆ −1)2 (∼
1

n∆2 ),

we obtain, usingec∆ −1≥ c∆ ≥ c0∆ :

EA2
1 ≤C′

m
∆2(m−1)

n
, with C′

m =
4
√

2(4c1)
2(m+1)

c4
0

(
m+

8c1

c0

)2

.

Then, we have, settinga0 = u0−u> 0, a1 = u−u1 > 0,

P(Ω c
n) = P

(
Sn

n
< 1+

u1

∆

)
+P

(
Sn

n
> 1+

u0

∆

)

= P(
∆

p(∆)
−∆

Sn

n
> a1)+P(∆

Sn

n
− ∆

p(∆)
> a0)

≤ (
1

a2
1

+
1

a2
0

)
∆2 ec∆

n(ec∆ −1)2(∼
1
n
).

Thus, noting thatu0−u≥ 1/(2c1) andu−u1 ≥ 1/(4
√

2c0),

EA2
2 ≤ (

1

a2
1

+
1

a2
0

)
(ec∆ −1)2(m−1)ec∆

nc2 ≤C′′
m

∆2(m−1)

n
, (10.14)

where

C′′
m = 4

√
2
[
8c2

0+ c2
1

] (4c1)
2(m−1)

c2
0

.

The proof is complete withCm = 2(C′
m+C′′

m).
We proceed analogously for studyingĉ. As x= 1+(ec∆ −1)−1 andc0 ≤ c≤ c1,

sup
x

F(x) = 2c1.
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The derivativeF ′(x) =−(∆x(x−1))−1 satisfies,

sup
x
|F ′(x)|= (ec1∆ −1)2

∆e2c1∆ .

Therefore,

(ĉ− c)2 ≤ (
Sn

n
− x)24c2

1∆2e4c1∆ +2c11Ωc
n
.

Thus,

E(ĉ− c)2 ≤ 16
√

2
c2

1

nc2
0

+2c1P(Ω c
n) =

C
n
.

10.2 Estimation of the m-th convolution power of a density from a
n-sample

This paragraph relies on [14]. Consider ani.i.d. sample of variablesZ1, . . . ,Zn with
densityq and characteristic functionq∗, the Fourier transform ofq. As (q∗)m is
the Fourier transform ofq⋆m, [14] propose to estimate(q∗)m for all m≥ 1, by its
empirical counterpart(q̃∗(t))m, where:

q̃∗(t) =
1
n

n

∑
j=1

eitZ j , (10.15)

Fourier inversion leads to the estimator with cut-offd,

q̂⋆m
d (x) =

1
2π

∫ πd

−πd
e−itx(q̃∗(t))mdt. (10.16)

The following bounds hold.

Proposition 10.3 For m≥ 2 and all t,

E(| ̂(q∗)m(t)− (q∗)m(t)|2)≤ Em

(
1

nm +
|q∗(t)|2

n

)
(10.17)

whereEm is a constant which does not depend on n nor on q, increasing with m and
̂(q∗)m(t) = (q̃∗(t))m. Consequently,

E(‖q̂⋆m
d −q⋆m‖2)≤ 1

2π

∫

|t|≥πd
|(q⋆m)∗(t)|2dt+Em

(
d
nm +

‖q‖2

n

)
. (10.18)

Proof. First we state a useful Lemma.

Lemma 10.1 Let (u,v) ∈ C2 such that|u| ≤ 1 and |v| ≤ 1. Then, for any integer
m≥ 1, we have
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|um− vm| ≤ |u− v|m+Em|u− v||v|,
with Em = (3m−2m−1)/2.

Proof of Lemma 10.1.For m= 1, the desired inequality is obviously satisfied with
Em = 0. Let us now investigate the casem≥ 2. By the binomial formula

um− vm =
m−1

∑
k=0

(
m
k

)
vk(u− v)m−k

= (u− v)m+(u− v)v
m−2

∑
k=0

(
m

k+1

)
vk(u− v)m−2−k.

As |u| ≤ 1 and|v| ≤ 1,

|um− vm| ≤ |u− v|m+Em|u− v||v|,

with

Em = 2m−2
m−2

∑
k=0

(
m

k+1

)
2−k =

1
2
(3m−2m−1).

Lemma 10.1 is proved.✷

It follows from the inequalities|q̃∗(t)| ≤ 1, |q∗(t)| ≤ ||q||1 = 1, Lemma 10.1 and
the elementary inequality(x+ y)2 ≤ 2(x2+ y2), (x,y) ∈R2, that

|(q̃∗(t))m− (q∗(t))m|2 ≤ 2
(
|q̃∗(t)−q∗(t)|2m+E2

m|q̃∗(t)−q∗(t)|2|q∗(t)|2
)
.

Then, the Rosenthal Inequality implies the existence of a constantCm > 0 such that

E
(
|q̃∗(t)−q∗(t)|2m)≤Cm/nm.

This implies that

E
(
|(q̃∗(t))m− (q∗(t))m|2

)
≤ Em

(
1

nm +
1
n
|q∗(t)|2

)
. (10.19)

This end the proof of (10.17).
For the second inequality, setting

q⋆m
d (x) =

1
2π

∫ πd

−πd
(q∗(t))meitxdt, x∈ R, (10.20)

we obtain the usual decomposition

E
(
‖q̂⋆m

d −q⋆m‖2
)
≤ 2(‖q⋆m

d −q⋆m‖2+E
(
‖ ̂q⋆m

d −q⋆m
d ‖2

)
). (10.21)

with
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‖q⋆m
d −q⋆m‖2 =

1
2π

∫

|t|≥πd
|q∗(t)|2mdt, (10.22)

E
(
‖q̂⋆m

d −q⋆m
d ‖2

)
=

1
2π

∫ πd

−πd
E(|(q̃(t))m− (q∗(t))m|2)dt (10.23)

and ∫ πd

−πd
|q∗(t)|2dt ≤ ||q∗||22 = 2π ||q||22 ≤C. (10.24)

It follows from (10.21), (10.22) and (10.24) that

E
(
‖q̂⋆m

d −q⋆m
d ‖2

)
≤C

(
d
nm +

1
n

∫ πd

−πd
|q∗(t)|2dt

)
≤C

(
d
nm +

1
n

)
. (10.25)

Plugging (10.25) and (10.22) in (10.21) implies Inequality(10.18).

We can discuss now the rates of convergence implied by the above proposition.
Let q⋆m belongs to the Sobolev classC (am,Rm) (see (4.14)). TheL2-risk bound
becomes

E(‖q̂⋆m
d −q⋆m‖2)≤ Rmd−2am+Em

(
d
nm +

‖q‖2

n

)
.

Choosing a trade-off bandwidthdopt=Cnm/(2am+1), we get a risk bound forE(‖q̂⋆m
dopt

−
q‖2) of order max(n−2mam/(2am+1),n−1). If 2mam/(2am+1)≥ 1, i.e.2am(m−1)≥
1, the risk rate has order 1/n. This occurs for instance ifm≥ 2 andam ≥ 1/2.

10.3 Estimation of the jump density

The Sobolev regularities off andq with q= q∆ are linked. Recall that for any func-
tion h∈ L1(R)∩L2(R) we denote byhd the function defined byh∗d = h∗1[−πd,πd].

Proposition 10.4 Let the density f belong toC (a,L) (see (4.14)). Then q defined
by (10.3) and (10.8) belongs toC (a,L). In particular,

‖q‖ ≤ ‖ f‖.

Proof. Consider f integrable with‖ f‖1 =
∫ | f | and square integrable such that∫

(1+ x2)a| f ∗(x)|2dx≤ L. Then
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∫
(1+ x2)a|q∗(x)|2dx

=

(
e−c∆

1−e−c∆

)2

∑
m,k≥1

(c∆)m

m!
(c∆)k

k!

∫
(1+ x2)a[ f ∗(x)]m[ f ∗(−x)]kdx

≤
(

e−c∆

1−e−c∆

)2

∑
m,k≥1

(c∆)m

m!
(c∆)k

k!
‖ f‖m+k−2

1

∫
(1+ x2)a| f ∗(x)|2dx

≤ L

(
e−c∆

1−e−c∆

)2
1

‖ f‖2
1

(
∑

m≥1

(c∆)m

m!
‖ f‖m

1

)2

= L

(
e−c∆

1−e−c∆
exp(c∆‖ f‖1)−1

‖ f‖1

)2

:= L(∆)<+∞

As f is a density,‖ f‖1 = 1 andL(∆) = L. This implies the announced result forq.

We assume now thatc ∈ [c0,c1] with c1∆ ≤ log2/2 and consider the estimator
f̂K,d given by

f̂K,d(x) =
K+1

∑
m=1

(−1)m+1

m
ĉm(∆)q̂⋆m

d (x). (10.26)

whereĉm(∆) is the estimator ofcm(∆) given in (10.11).

Proposition 10.5 Assume that c∈ [c0,c1] with c0 > 0 and c1∆ ≤ log2/2. Then the
estimatorf̂K,d is such that

E(‖ f̂K,d − f‖2)≤ 5
2π

∫

|t|≥πd

| f ∗(t)|2dt+
10d
n

+5AK∆2K+2+
5BK

n
, (10.27)

with

AK = 6
‖ f‖2

(K+2)2 (
√

2c)2K+2, (10.28)

BK = 2(K+1)(1+2‖ f‖2){C1+∆2
K+1

∑
m=2

(Cm+2mc2(m−1))Em

m2 ∆2(m−2)}, (10.29)

where Cm,Em are the constants appearing respectively in (10.12) and in (10.17).

Proof. Recall thatf ∗ = ∑m≥1((−1)m+1/m)cm(∆)(q∗)m (see (10.6)-(10.7)). Letfd
be such thatf ∗d = f ∗ 1[−πd,πd] and fK,d be such that

f ∗K,d = 1[−πd,πd]

K+1

∑
m=1

(−1)m+1

m
cm(∆)(q∗)m.

Define

f̃K,d(x) =
K+1

∑
m=1

(−1)m+1

m
cm(∆)q̂⋆m

d (x), with cm(∆) =
(ec∆ −1)m

c∆
, (10.30)
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so that:

( f̃K,d)
∗ = 1[−πd,πd]

K+1

∑
m=1

(−1)m+1

m
cm(∆)(̂q∗)m.

We distinguish the first term of this development from the other ones and set

f̃K,d = f̃K,d
(1)

+ R̃ fK,d, with f̃K,d
(1)

= c1(∆)q̂⋆1
d = c1(∆)q̂d. (10.31)

Analogously, withqd such thatq∗d = q∗ 1[−πd,πd],

fK,d = f (1)K,d +R fK,d, with f (1)K,d = c1(∆)qd (10.32)

The following decomposition of theL2-norm holds:

‖ f − f̂K,d‖ ≤ ‖ f − fd‖+ ‖ fd− fK,d‖+ ‖ f (1)K,d− f̃K,d
(1)‖

+‖R fK,d − R̃ fK,d‖+ ‖ f̃K,d− f̂K,d‖,

which involves two bias terms and two stochastic error terms. The first bias term is
the usual deconvolution bias term:

‖ f − fd‖2 =
1

2π

∫

|t|≥πd

| f ∗(t)|2dt

Noting that

f ∗d − f ∗K,d = 1[−πd,πd]

∞

∑
m=K+2

(−1)m+1

m
cm(∆)(q∗)m,

we get, using that|q∗(t)| ≤ 1 and‖q‖ ≤ ‖ f‖ (see Proposition 10.4):

2π‖ fd − fK,d‖2 = ‖ f ∗d − f ∗K,d‖2 =
∫ πd

−πd

∣∣∣∣∣
∞

∑
m=K+2

(−1)m+1

m
cm(∆)(q∗)m(t)

∣∣∣∣∣

2

dt

≤
∫ πd

−πd

(
∑

m≥K+2

1
m

cm(∆)|q∗(t)|
)2

dt

≤ 2π‖q‖2

(
∑

m≥K+2

1
m

cm(∆)

)2

≤ 2π‖ f‖2

(c∆)2(K+2)2

(
(ec∆ −1)K+2

2−ec∆

)2

≤ 4π‖ f‖2(
√

2c∆)2K+2

((K +2)2(2−e2∆))2 ≤ 2πAK∆2K+2, (10.33)

where in the last line, we have used 1/(2−ec∆)2 ≤ 1/(2−
√

2)2 ≤ 3 andec∆ −1≤√
2c∆ andAK is given in (10.28).
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To study the next term, we recall that,E(|(̂q∗)(t)− (q∗)(t)|2) ≤ 1/n. Then we
get

2πE
(
‖ f (1)K,d − f̃K,d

(1)‖2
)

=

∫ πd

−πd
E

(∣∣∣c1(∆)[(̂q∗)(t)− (q∗)(t)]
∣∣∣
2
)

dt

≤ 2πd[c1(∆)]2

n
≤ 4πd

n
(10.34)

sincec1(∆)≤
√

2.
Hereafter, we use inequality (10.17) of Proposition 10.3.

2πE
(
‖R fK,d − R̃ fK,d‖2

)

=
∫ πd

−πd
E



∣∣∣∣∣
K+1

∑
m=2

(−1)m+1

m
cm(∆)[ ̂(q∗)m(t)− (q∗)m(t)]

∣∣∣∣∣

2

dt

≤
∫ πd

−πd
(K+1)

K+1

∑
m=2

1
m2 [cm(∆)]2E

(
| ̂(q∗)m(t)− (q∗)m(t)|2

)
dt

≤ 2πK
K+1

∑
m=2

Em

m2 [cm(∆)]2
(

d
nm +

‖q‖2

n

)

This yields, sincecm(∆)≤ (
√

2)m(c∆)m−1 andd/n≤ 1,

E
(
‖R fK,d − R̃ fK,d‖2

)
≤ DK

n
(10.35)

with

DK = K
K+1

∑
m=2

2mc2(m−1)Em

m2 ∆2(m−1)
(

1
nm−2 + ‖q‖2

)

For the last term, we use Proposition 10.2, with the fact thatthe estimatorŝcm(∆)

and ̂(q∗)m(t) are independent, and write
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2πE
(
‖ f̃K,d − f̂K,d‖2

)

=

∫ πd

−πd
E



∣∣∣∣∣
K+1

∑
m=1

(−1)m+1

m

(
ĉm(∆)− cm(∆)

)
̂(q∗)m(t)

∣∣∣∣∣

2

dt




≤ 2
∫ πd

−πd
E



∣∣∣∣∣
K+1

∑
m=1

(−1)m+1

m

(
ĉm(∆)− cm(∆)

)
[ ̂(q∗)m(t)− (q∗)m(t)]

∣∣∣∣∣

2

dt




+2
∫ πd

−πd
E



∣∣∣∣∣
K+1

∑
m=1

(−1)m+1

m

(
ĉm(∆)− cm(∆)

)
(q∗)m(t)

∣∣∣∣∣

2

dt




≤ 2(K+1)
K+1

∑
m=1

1
m2

{
E

[(
ĉm(∆)− cm(∆)

)2
]∫ πd

−πd
E
[
| ̂(q∗)m(t)− (q∗)m(t)|2

]
dt

+E

[(
ĉm(∆)− cm(∆)

)2
]∫ πd

−πd
|q∗(t)|2mdt

}

≤ 2(K+1)

{
C1

n
(
2πd

n
+2π‖q‖2)

+
K+1

∑
m=2

Cm∆2(m−1)

m2

[
Em

n

∫ πd

−πd

(
1

nm +
1
n
|q∗(t)|2

)
dt+

1
n
‖q∗‖2

]}
.

Therefore

2πE
(
‖ f̃K,d − f̂K,d‖2

)
≤ 2πEK

n
(10.36)

using thatd/n≤ 1 and

EK = 2(K+1)

[
C1(1+ ‖q‖2)+

K+1

∑
m=2

Cm

m2 ∆2(m−1)
Em(

1
nm−1 +2‖q‖2)

]
.

This ends the proof of the result withDK +EK ≤ BK and‖q‖ ≤ ‖ f‖.

If f ∈ C (a,L), choosingd = d∗ ∝ n−1/(2a+1), inequality (10.27) yields

E(‖ f̂K,d∗ − f‖2)≤Cn−2a/(2a+1)+5AK∆2K+2. (10.37)

Usually, in high frequency data for continuous time models,rates are measured in
terms of the total length time of observation which is here equal toSn∆ . Evaluating
this random value asn tends to infinity,∆ tends to 0, we get that

Sn∆ =
Sn

n
n∆ ∼ ∆

p(∆)
n∼ n

c
.

The total length time of observation is asymptotically equivalent ton. Forn∆2K+2 ≤
1, the result is comparable to the one obtained in Proposition 4.4 with a weaker
constraint on∆ which now depends onK.
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As in Section 4, we propose an adaptive selection procedure for choosing the
cut-off parameterd in a restricted set{1, . . . ,Ln} with Ln ≤ n. Let

d̂ = arg min
1≤d≤Ln

{−‖ f̂K,d‖2+pen(d)}, with pen(d) = κ
d
n
.

We can prove the following result.

Theorem 10.1 Assume that f is bounded and Ln ≤ n. There exists a numerical
valueκ0 such that for anyκ larger thanκ0, we get,

E(‖ f̂K,d̂ − f‖2) ≤ 4 min
1≤d≤Ln

{‖ f − fd‖2+pen(d)}

+32AK∆2K+2+32
BK

n
+

C′

n
, (10.38)

where C′ is a constant.

Comparing the above inequality with (10.27), we see that theestimator is adaptive
as its risk automatically realizes the best compromise between the squared bias term
(first one, inside the min) and the variance term (second one,inside the min). The
last two terms are standardly negligible. For the term 32AK∆2K+2, either the sam-
pling interval∆ for givenK is tuned to make it negligible (O(1/n)) or n, ∆ are given
andK is chosen so thatn∆2K+2 ≃ 1.

Using the estimator ˆc given in (10.11), we can conclude for the Lévy density.

Corollary 10.1 Let n(x) = c f(x) and n̂K,d(x) = ĉ f̂K,d(x) with ĉ given in (10.11).
Then under the Assumptions of Theorem 10.1,

E(‖n̂K,d̂ −n‖2)≤ 3c2E(‖ f̂K,d̂ − f‖2)+
C”
n
.

The corollary is straightforwardly obtained by writing

n̂K,d −n= c( f̂K,d − f )+ (ĉ− c) f +(ĉ− c)( f̂K,d − f ).

Then the bound follows from Proposition 10.2 and Theorem 10.1.
Proof of Theorem 10.1.We use the subspaces ofSd introduced in (4.15) to show that
the estimatorŝfK,d, l ≤ Ln are minimizers of a projection contrast. The difference
here from definition (4.17) is that we need the maximal spaceSLn in the contrast
definition. Let

γn(t) = ‖t‖2−2〈t, f̂K,Ln〉.

Note that, ford ≤ Ln andt ∈ Sd, γn(t) = ‖t‖2−2〈t, f̂K,d〉, and

argmin
t∈Sd

γn(t) = f̂K,d, with γn( f̂K,d) =−‖ f̂K,d‖2.

Now, the steps of Theorem 4.1 can be followed. Ford,d∗ ≤ Ln, s∈ Sd andt ∈ Sd∗:
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γn(t)− γn(s) = ‖t − f‖2−‖s− f‖2−2〈t− s, f̂K,Ln − f 〉

and〈t − s, f̂K,Ln − f 〉= 〈t − s, f̂K,Ln − fLn〉. By definition ofd̂,

γn( f̂K,d̂)+pen(d̂)≤ γn( f̂K,d)+pen(d)≤ γn( fd)+pen(d).

Thus, we obtain,∀d ∈ {1, . . . ,Ln},

‖ f̂K,d̂ − f‖2 ≤ ‖ fd − f‖2+pen(d)+2〈 f̂K,d̂ − fd, f̂K,Ln − fLn〉−pen(d̂)

≤ ‖ fd − f‖2+pen(d)+
1
4
‖ f̂K,d̂ − fd‖2

+4 sup
t∈Sd+Sd̂,‖t‖=1

〈t, f̂K,Ln − fLn〉2−pen(d̂) (10.39)

Then
1
4
‖ f̂K,d̂ − fd‖2 ≤ 1

2
‖ f̂K,d̂ − f‖2+

1
2
‖ f − fd‖2. (10.40)

Now, we use the specific decompositions (10.31) and (10.32):

〈t, f̂K,Ln − fLn〉 = 〈t, f̂K,Ln − f̃K,Ln〉+ 〈t, f̃K,Ln

(1)− f (1)K,Ln
〉

+〈t,R f̃K,Ln −R fK,Ln〉+ 〈t, fK,Ln − fLn〉.

By the Cauchy-Schwarz Inequality and for‖t‖= 1, we have

〈t, f̂K,Ln − fLn〉2 ≤ 4‖ f̂K,Ln − f̃K,Ln‖2+4‖R f̃K,Ln −R fK,Ln‖2

+4‖ fK,Ln − fLn‖2+4〈t, f̃K,Ln

(1)− f (1)K,Ln
〉2. (10.41)

Thus, inserting (10.40) and (10.41) in (10.39) yields

1
2
‖ f̂K,d̂ − f‖2 ≤ 3

2
‖ fd − f‖2+16‖ fK,Ln − fLn‖2

+16‖ f̂K,Ln − f̃K,Ln‖2+16‖R f̃K,Ln −R fK,Ln‖2+pen(d)

+16 sup
t∈Sd∨d̂,‖t‖=1

〈t, f̃K,Ln

(1)− f (1)K,Ln
〉2−pen(d̂)

Here, the bounds of Proposition 10.5 can be applied. Indeed (10.33), (10.35) and
(10.36) are uniform with respect tod and imply

‖ fK,Ln − fLn‖2 ≤ AK∆2(K+2), E(‖R f̃K,Ln −R fK,Ln‖2)≤ DK/n,

and
E(‖ f̂K,Ln − f̃K,Ln‖2)≤ EK/n.
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Below, we prove the following inequality which is to be compared with Lemma
4.1:

E

(
sup

t∈Sd∨d̂,‖t‖=1
〈t, f̃K,Ln

(1)− f (1)K,Ln
〉2− p(d, d̂)

)

+

≤ C′

n
, (10.42)

wherep(d,d′) = 8d∨d′/n and 16p(d,d′)≤ pen(d)+pen(d′) as soon asκ ≥ κ0 =
16×8.

Consequently,
E(16p(d, d̂)−pen(d̂))≤ pen(d)

and

E(‖ f̂K,d̂ − f‖2)≤ 4‖ f − fd‖2+4pen(d)+32AK∆2(K+2)+32
BK

n
+

32C′

n
.

Proof of (10.42).We considert ∈Sd∗ for d∗ = d∨d′ with d,d′ ≤ Ln and (see (10.31)
and (10.32))

νn(t) = 〈t, f̃K,Ln

(1)
− f (1)K,Ln

〉= c1(∆)〈t, q̂Ln −qLn〉=
1
n

n

∑
k=1

(ψt(Zk)−E(ψt(Zk)))

where

ψt(z) =
c1(∆)

2π

∫
t∗(u)eiuzdu= c1(∆)t(z).

We apply the Talagrand Inequality (see Appendix). To this aim, we compute the
quantitiesM,H,v. First

sup
t∈Sd∗ ,‖t‖=1

sup
z
|ψt(z)| ≤

c1(∆)

2π
√

2πd∗× sup
t∈Sd∗ ,‖t‖=1

‖t∗‖= c1(∆)
√

d∗ := M.

The density ofZ1 is q which satisfies

‖q‖∞ ≤ ∑
m≥1

1
ec∆ −1

(c∆)m

m!
‖ f ⋆ m‖∞ ≤ ‖ f‖∞.

Therefore,

sup
t∈Sd∗ ,‖t‖=1

Var(ψt(Z1))≤ c2
1(∆)× sup

t∈Sd∗ ,‖t‖=1
E(t2(Z1))≤ c2

1(∆)‖ f‖∞ := v.

Lastly, using the bound in (10.34) and the fact that fort ∈ Sd∗ ,

〈t, f̃K,Ln

(1)
− f (1)K,Ln

〉= 〈t, f̃K,d∗
(1)

− f (1)K,d∗〉,

we get
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E( sup
t∈Sd∗ ,‖t‖=1

ν2
n(t)) = E

(
sup

t∈Sd∗ ,‖t‖=1
〈t, f̃K,d∗

(1)− f (1)K,d∗〉2

)

≤ E

(
‖ f̃K,d∗

(1)− f (1)K,d∗‖2
)

≤ 2d∗

n
:= H2.

Therefore, Lemma .1 yields withε2 = 1/2,

E( sup
t∈Sd∗ ,‖t‖=1

ν2
n(t)−4H2)≤ A1

n
(e−A2d∗ +e−A3

√
n)

for constantsA1,A2,A3 depending onc1(∆) and‖ f‖∞. Now since

Ln

∑
d′=1

e−A2d∨d′ = de−A2d + ∑
d<d′≤Ln

e−A2d′

is bounded by sayB2 andLne−A3
√

n is bounded byB3, we get

E

(
sup

t∈Sd∨d̂,‖t‖=1
ν2

n(t)−8
d∨ d̂

n

)
≤ ∑

d′
E( sup

t∈Sd∨d′ ,‖t‖=1
ν2

n(t)−4H2)≤ B4

n
.

This ends the proof of (10.42) and thus of Theorem 10.1.✷

10.4 Simulations

We have implemented the adaptive estimator on different examples of jump densi-
ties f , namely,

1. A GaussianN (0,1).
2. A mixture of a Gaussian and a Gamma2

3N (−4,1)+ 1
3Γ (3,1).

3. A LaplaceL(0,1) with density exp(−|x|)/2.
4. A GammaΓ (5,1).

After preliminary experiments the constantκ is taken equal to 17.6 and the cut-off
d̂ is selected among 100 equispaced values between 0 and 10. We consider different
values of∆ : 0.2,0.5,0.8. For each∆ we chooseK such thatn∆2K+2 ≤ 1; more
precisely the corresponding values ofK are 2,5,17 respectively.

Results are given in Figure 6, where 50 estimated curves are plotted on the same
figure to show the small variability of the estimator. We takea sample sizen= 5000
and an intensityc = 0.5, the first lines give the result for∆ = 0.2 (K = 2), the
second for∆ = 0.5 (K = 5) and the last for∆ = 0.8 (K = 17). On top of each graph
we give the mean of selected values ford̂ and the associated standard deviation
in parenthesis evaluated over the fifty plots given. It appears that for each∆ the
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estimator reproduces well the estimated density with little variability. Increasing∆ ,
and thereforeK, does not affect the accuracy nor the variability of the estimator.

d̂ = 1.00(0.25) d̂ = 1.09(0.61) d̂ = 1.26(0.99)
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Fig. 6 Estimation of the jump densityf for a GaussianN (0,1) (first line), LaplaceL(0,1) second
line, GammaΓ (5,1) (third line) and the mixture23N (−4,1)+ 1

3Γ (3,1) (fourth line) withc= 0.5
andn= 5000. True density (bold black line) and 50 estimated curves(red lines), left∆ = 0.2 and
K = 2; middle∆ = 0.5 andK = 5; right ∆ = 0.8 andK = 17. The valued̂ is the mean over the 50
selectedd̂’s (with standard deviation in parenthesis).
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11 Bibliographic comments

We give here some bibliographic comments which are far from exhaustive and focus
mainly on our text.

Adaptive nonparametric methods have been developed for density estimation
from i.i.d. observations: see [24] for wavelet thresholding methods, [6] or [53] for
model selection and contrast penalization methods or [34] for adaptive bandwidth
selection in kernel estimation. In the present chapter, we have adapted some of these
approaches for estimating the Lévy density.

For i.i.d. data contaminated with additive noise, specific methods have been in-
troduced, based on Fourier inversion and called deconvolution methods. In the first
papers, the noise distribution is assumed to be known, see [29] for nonadaptive
kernel, [57] for adaptive wavelet estimator and [22] for adaptive cut-off selection.
More recently, the case of unknown noise distribution has been considered, see [55],
[41], [21], [44]. The estimation of the Lévy density for Lévy processes relies on the
explicit form of the characteristic function and thus takesinspiration in the decon-
volution methods.

Lévy processes have been increasingly used for modelling financial data (seee.g.
[11], [52], [26], [2], [8] and [3], [15]). The nonparametricestimation of the Lévy
density has been studied for a continuous time observation of the sample path on a
time interval[0,T] with T tending to infinity ([33]) or for discrete time observations.
In the latter case, authors distinguish between low frequency data (sampling interval
∆ is fixed) or high frequency data (∆ tends to 0). We concentrate in this chapter on
high frequency data setting since it is simpler and allows toconsider several adaptive
estimation methods: deconvolution with cut-off selection, contrast penalization, see
our works [17], [19], [20], and also [30], [31], [62] and adaptive kernels (see Section
4.3, and also [7]).

The nonparametric estimation in the case of low frequency observations is more
difficult and closely related to a deconvolution problem with estimated noise density,
see [56], [35], [13], [18], [36], [45].

Section 10 is specific to compound Poisson processes, widelyused in insurance
modelling, see [27], and to the problem of decompounding (see [12]). The dis-
cretized observation is defined as in [28], to take into account that null increments do
not bring information on the jump density. The present approach is an improvement
of [25].

The chapter only deals with upper risk bounds, but to check the optimality of
the estimators, lower bounds are needed: they are provided,in the high frequency
setting by [31], [7], and in the low frequency setting by [8],[56], [46], [45]. Lower
bound in the specific case of decompounding is obtained in [25].

Acknowledgements If you want to include acknowledgments of assistance pleasedo it here.

The Talagrand inequality. The result below follows from the Talagrand concentra-
tion inequality given in [49] and arguments in [10] (see the proof of their Corollary
2 page 354).
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Lemma .1 (Talagrand Inequality) Let Y1, . . . ,Yn be independent random variables,
let νn,Y( f ) = (1/n)∑n

i=1[ f (Yi)−E( f (Yi))] and letF be a countable class of uni-
formly bounded measurable functions. Then forε2 > 0

E
[

sup
f∈F

|νn,Y( f )|2−2(1+2ε2)H2
]
+
≤ 4

K1

(
v
n

e−K1ε2 nH2
v +

98M2

K1n2C2(ε2)
e
− 2K1C(ε2)ε

7
√

2
nH
M

)
,

with C(ε2) =
√

1+ ε2−1, K1 = 1/6, and

sup
f∈F

‖ f‖∞ ≤ M, E
[

sup
f∈F

|νn,Y( f )|
]
≤ H, sup

f∈F

1
n

n

∑
k=1

Var( f (Yk))≤ v.

By standard density arguments, this result can be extended to the case whereF is a
unit ball of a linear normed space, after checking thatf 7→ νn( f ) is continuous and
F contains a countable dense family.

The Rosenthal inequality.(seee.g.[37]) Let (Xi)1≤i≤n ben independent centered
random variables, such thatE(|Xi |p)<+∞ for an integerp≥ 1. Then there exists a
constantC(p) such that

E

(∣∣∣∣∣
n

∑
i=1

Xi

∣∣∣∣∣

p)
≤C(p)




n

∑
i=1

E(|Xi |p)+
(

n

∑
i=1

E(X2
i )

)p/2

 . (.1)

The Young inequality. (see [39] Let f be a function belonging toLp(R) andg
belonging toLq(R), let p,q, r be real numbers in[1,+∞] and such that

1
p
+

1
q
=

1
r
+1.

Then
‖ f ∗g‖r ≤ ‖ f‖p ‖g‖q.

where f ∗ g is the convolution product and‖ f‖p
p =

∫
| f (x)|pdx. In particular, for

p= 1, r = q= 2, we have‖ f ∗g‖2 ≤ ‖ f‖1 ‖g‖2.
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31. Figueroa-López J.E. (2009). Nonparametric estimation for Lévy models based on discrete-
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observed Lévy process.J. Nonparametr. Stat.21, 321-343.

36. Gugushvili, S. (2012) Nonparametric inference for discretely sampled Lévy processes.Ann.
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ability and Statistics, 11, 173-196.

41. Johannes, J. (2009) Deconvolution with unknown error distribution.Ann. Statist.37, 2301-
2323.

42. Jongbloed, G. and van der Meulen, F. H. (2006) Parametricestimation for subordinators and
induced OU processes.Scand. J. Statist.33, 825-847.

43. Jongbloed, G., van der Meulen, F. H. and van der Vaart, A. W. (2005) Nonparametric inference
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