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Abstract In this paper, our aim is to revisit the nonparametric estimation of
a square integrable density f on R, by using projection estimators on a Her-
mite basis. These estimators are studied from the point of view of their mean
integrated squared error on R. A model selection method is described and
proved to perform an automatic bias variance compromise. Then, we present
another collection of estimators, of deconvolution type, for which we define
another model selection strategy. Although the minimax asymptotic rates of
these two types of estimators are mainly equivalent, the complexity of the
Hermite estimators are usually much lower than the complexity of their de-
convolution (or kernel) counterparts. These results are illustrated through a
small simulation study.
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1 Introduction

Consider an i.i.d. n-sample X1, . . . , Xn from an unknown density f . The non-
parametric estimation of f has been the subject of such a huge number of
contributions in the past decades that it is difficult to make an exhaustive list
of references. Roughly speaking, there are two main approaches to estimate f ,
kernel or projection method. In the projection method which is our concern
here, for f belonging to L2(R), considering an orthonormal basis in L2(R),
estimators are built by estimating a finite number of coefficients of the devel-
opment of f ∈ L2(R) on the basis. Fourier and wavelet bases, for instance, are
commonly used. Bases of orthogonal polynomials are also used for compactly
supported densities (see e.g. Donoho et al. (1996), Birgé and Massart (2007),
and Efromovich (1999), Massart (2007), Tsybakov (2009) for reference books).
For densities with a non compact support included in R+, recent contributions
use bases composed of Laguerre functions (see e.g. Comte and Genon-Catalot
(2015), Belomestny et al. (2016), Mabon (2017)).

To our knowledge, for densities on R, the use of a Hermite basis is only
considered in Schwarz (1967) and Walter (1977). In this paper, we are go-
ing to revisit the nonparametric estimation of f ∈ L2(R) by using projection
estimators on a Hermite basis. To find the minimax asymptotic rates of con-
vergence, authors generally assume that the unknown density belongs to a
function space specifying some regularity properties of f . Here, we consider
the Sobolev-Hermite spaces which are naturally associated with the Hermite
basis and are defined in Bongioanni and Torrea (2006). It turns out that the
Sobolev-Hermite space of regularity index s is included in the classical Sobolev
space with same index. Therefore, we are led to compare the performances of
the projection estimators on the Hermite basis with those of the deconvolution
estimators which are projection estimators on the sine cardinal basis. Decon-
volution estimators have been widely studied mainly for observations with
additive noise and also for direct observations (see e.g. Comte et al. (2008)).
The optimal L2-risk for density estimation on a Sobolev ball with regularity
index s is of order O(n−2s/(2s+1)), see Schipper (1996), Efromovich (2008) and
Efromovich (2009). For densities having a fifth-order moment belonging to a
Sobolev Hermite ball with the same regularity index s, we obtain the same
rate. Therefore, from the asymptotic point of view, no difference can be made
between these two classes of estimators at least for non heavy tailed densities.
Apart from Sobolev spaces, we consider a class of Gaussian mixtures where
Hermite based estimators also achieve the minimax convergence rates. Finally,
we study Hermite projection estimators in a different context, the estimation
of the Lévy density of a Lévy process in the pure-jump case.

While most papers focus on deriving minimax convergence rates, the com-
putational efficiency of the proposed estimator is not often considered. This
issue is especially important for densities with a non compact support. We
prove that the Hermite estimators have usually a much lower complexity than
the deconvolution estimators, resulting in a noteworthy computational gain.
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The plan of the paper is as follows. In Section 2, we present the Hermite
basis, and the L2-risk of the associated projection estimators is studied to-
gether with the possible orders for the variance term. A data-driven choice of
the dimension is proposed and the associated estimator is proved to be realize
adequately the bias-variance tradeoff. In Section 3, results on deconvolution
estimators are presented. Section 4 is devoted to the study of asymptotic rates
of convergence. From this point of view, the two approaches of the previ-
ous sections are proved to be equivalent, except in some special cases. Then,
we compare the complexity of the procedures and conclude that the Hermite
method has a substantial advantage from this point of view. Section 4.6 is
devoted to numerical simulation results, and aims at illustrating the previous
findings. In Section 5, the estimation of the Lévy density is considered in the
same framework as Belomestny et al., 2015, Chapter ”Adaptive estimation for
Lévy processes”. A short conclusion is delivered in Section 6 and proofs are
gathered in Section 7.

2 Projection estimators on the Hermite basis.

2.1 Hermite basis

Below, we denote by ‖.‖ the L2-norm on R and by 〈·, ·〉 the L2-scalar product.
The Hermite polynomial of order j is given, for j ≥ 0, by:

Hj(x) = (−1)jex
2 dj

dxj
(e−x

2

).

Hermite polynomials are orthogonal with respect to the weight function e−x
2

and satisfy:
�
RHj(x)H`(x)e−x

2

dx = 2jj!
√
πδj,` (see e.g. Abramowitz and Ste-

gun (1964)). The Hermite function of order j is given by:

hj(x) = cjHj(x)e−x
2/2, cj =

(
2jj!
√
π
)−1/2

(1)

The sequence (hj , j ≥ 0) is an orthonormal basis of L2(R). The density f to
be estimated can be developed in the Hermite basis f =

∑
j≥0 aj(f)hj where

aj(f) =
�
R f(x)hj(x)dx = 〈f, hj〉.

We define Sm = span(h0, h1, . . . , hm−1) the linear space generated by the

m functions h0, . . . , hm−1 and fm =
∑m−1
j=0 aj(f)hj the orthogonal projection

of f on Sm.

2.2 Hermite estimator and risk bound

Consider a sample X1, . . . , Xn of i.i.d. random variables with density f , be-
longing to L2(R). We define for each m ≥ 0, f̂m =

∑m−1
j=0 âjhj a projection

estimator of f , with âj = n−1
∑n
i=1 hj(Xi), that is, an unbiased estimator of

fm =
∑m−1
j=0 aj(f)hj .
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These estimators are considered in Schwartz (1967) and then in Walter
(1977). As usual, the L2-risk is split into a variance and a square bias term.
We give a more accurate rate for the variance term than in the latter papers.
Indeed, we have the classical decomposition

E(‖f̂m − f‖2) = ‖f − fm‖2 +

m−1∑
j=0

Var(âj) = ‖f − fm‖2 +
1

n

m−1∑
j=0

Var(hj(X1))

≤ ‖f − fm‖2 +
Vm
n
, (2)

where

Vm =

�
R

m−1∑
j=0

h2
j (x)

 f(x)dx = E(

m−1∑
j=0

h2
j (X1)). (3)

The infinite norm of hj satisfies (see Abramowitz and Stegun (1964), Szegö (1975)
p.242):

‖hj‖∞ ≤ Φ0, Φ0 ' 1, 086435/π1/4 ' 0.8160. (4)

Therefore, we have Vm ≤ Φ2
0m, as usual for projection density estimator, see

Massart (2007), Chapter 7. However, more precise properties of the Hermite
functions provide refined bounds:

Proposition 1
(i) There exists constant c such that, for any density f and for any integer m,

Vm ≤ cm5/6.

(ii) If E|X|5 < +∞, then there exists constant c′ such that for any integer m,

Vm ≤ c′m1/2.

(iii) Assume that there exists K > 0 with

|f(x)| ≤ g(x) := α
1

(1 + |x|)a
, for |x| ≥ K and α > 0, a > 1.

Then, there exists c′′ such that, for m large enough, Vm ≤ c′′m
a+2

2(a+1) .

Proposition 1 (i) shows that Vm is at most of order m5/6, a property
obtained in Walter (1977). However (ii)-(iii) show that this order can be
improved depending on additional assumptions on f . At this point, it is worth
stressing that, under the moment assumption of (ii), the rate of variance term
Vm/n is not m/n as usual but m1/2/n. This means that, in this approach, the
role of the dimension is played by m1/2. This fact, together with the regularity
spaces introduced below to evaluate the rate of the bias term, allows to prove
that the Hermite projection estimators is asymptotically equivalent to the sine
cardinal estimators.
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In the next paragraph, we make no assumption on the regularity properties
of f . Moreover, because the variance order depends on assumptions on f , we do
not want to consider it as given unlike in most model selection strategies. Our
proposal of data-driven m leads to an estimator whose L2-risk automatically
realizes the bias-variance trade-off in a non asymptotic way without knowing
the regularity of the function f nor knowing the rate of the variance term.

2.3 Model selection

For model selection, we must estimate the bias and the variance term. Define

Mn = {1, . . . ,mn}, where mn is the largest integer such that m
5/6
n ≤ n/ log(n)

and set

m̂ = arg min
m∈Mn

{−‖f̂m‖2+p̂en(m)}, p̂en(m) = κ
V̂m
n
, V̂m =

1

n

n∑
i=1

m−1∑
j=0

h2
j (Xi),

(5)

where κ is a numerical constant. The quantity −‖f̂m‖2 estimates −‖fm‖2 =
‖f − fm‖2 − ‖f‖2, and we can ignore the (unknown) constant term ‖f‖2.
Usually, the penalty is chosen equal to κΦ2

0m/n, which is the known upper
bound of the variance term, where Φ0 is defined by (4). Here, we know that
this rate is not the adequate one and the fact that the order of Vm varies
according to the assumptions on f justifies that we rather use V̂m, an unbiased
estimator of Vm. We can prove the following result.

Theorem 1 Assume that f is bounded and that infa≤x≤b f(x) > 0 for some

interval [a, b]. Then there exists κ0 such that, for κ ≥ κ0, the estimator f̂m̂
where m̂ is defined by (5) satisfies

E
(
‖f̂m̂ − f‖2

)
≤ C inf

m∈Mn

(
‖f − fm‖2 + κ

Vm
n

)
+
C ′

n
,

where C is a numerical constant(C = 4 suits) and C ′ is a constant depending
on ‖f‖∞.

The estimator f̂m̂ is adaptive in the sense that its risk bound achieves
automatically the bias-variance compromise, up to a negligible term of order
O(1/n). It follows from the proof that κ0 = 8 is possible. This value of κ0 is
certainly not optimal; finding the optimal theoretical value of κ in the penalty
is not an easy task, even in simple models (see for instance Birgé and Mas-
sart (2007) in a Gaussian regression model). This is why it is standard to
calibrate the value κ in the penalty by preliminary simulations, as we do in
Section 4.6. Actually, the assumption infa≤x≤b f(x) > 0 is due to the fact that
the proof requires the condition

∀m ≥ m0, Vm ≥ 1, and ∀a > 0,
∑

m∈Mn

e−a
√
Vm ≤ A < +∞. (6)

Condition (6) holds, as we can prove:
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Proposition 2 If infa≤x≤b f(x) > 0 for some interval [a, b], then, for m large
enough, Vm ≥ c′′m1/2 where c′′ is a constant.

3 Deconvolution estimators.

As we want to compare the performances of projection estimators on the
Hermite basis to those of projection estimators on the sine cardinal basis, we
recall the definition of the latter estimators, i.e. the deconvolution estimators.
Let ϕ(x) = sin(πx)/(πx) which satisfies ϕ∗(t) = 1[−π,π](t), where ϕ∗ denotes

the Fourier transform of ϕ. The functions (ϕ`,j(x) =
√
`ϕ(`x − j), j ∈ Z)

constitute an orthonormal system in L2(R). The space Σ` generated by this
system is exactly the subspace of L2(R) of functions having Fourier transforms
with compact support [−π`, π`]. The orthogonal projection f̄` of f on Σ`
satisfies f̄∗` = f∗1[−π`,π`]. Therefore,

‖f − f̄`‖2 =
1

2π

�
|t|≥π`

|f∗(t)|2dt. (7)

The projection estimator f̃` of f is defined by:

f̃`(x) =
1

2π

� π`

−π`
e−itx

1

n

n∑
k=1

eitXkdt =
1

n

n∑
k=1

sin(π`(Xk − x))

π(Xk − x)
. (8)

This expression corresponds to the fact that:

f̄` =
1

2π

� π`

−π`
e−itxf∗(t)dt =

∑
j∈Z

a`,jϕ`,j(x), a`,j = 〈f, ϕ`,j〉.

Contrary to f̂m, the estimator f̃` cannot be expressed as the corresponding
sum with the estimated coefficients ã`,j = 1

n

∑n
k=1 ϕ`,j(Xk) as this sum would

be infinite and not defined. To compute it in concrete, one can use (8) or a
truncated version

f̃
(n)
` (x) =

∑
|j|≤Kn

ã`,jϕ`,j(x), ã`,j =
1

n

n∑
k=1

ϕ`,j(Xk),

which creates an additional bias but is comparable to the previous Hermite

estimator. We give the results for f̃` and f̃
(n)
` .

Proposition 3 The estimator f̃` satisfies

E(‖f̃` − f‖2) ≤ ‖f − f̄`‖2 +
`

n
.

If moreover M2 =
�
x2f2(x)dx < +∞, then the estimator f̃

(n)
` satisfies

E(‖f̃ (n)
` − f‖2) ≤ 2‖f − f̄`‖2 +

`

n
+ 4

`2(M2 + 1)

Kn
.
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If ` ≤ n and Kn ≥ n2, the last term is of order O(`/n) and can be associ-
ated to the variance term `/n. Note that condition Kn ≥ n2 implies that the

computation of a large number of coefficients is required for f̃
(n)
` , for large

n. In practice, we take Kn even smaller than n in order to keep reasonable
computation times.
As in the previous case, we can define a data-driven choice of the cutoff pa-
rameter ` and build adaptive estimators:

˜̀= arg min
`≤n
{−‖f̃`‖2 + κ̃

`

n
}, ˜̀

n = arg min
`≤n
{−‖f̃ (n)

` ‖
2 + κ̃

`

n
}, (9)

where κ̃ is a numerical constant. Note that

‖f̃`‖2 =
1

n2

∑
1≤j,k≤n

sin(π`(Xk −Xj))

π(Xk −Xj)
, ‖f̃ (n)

` ‖
2 =

∑
|j|≤Kn

|ã`,j |2.

We give the result for f̃
(n)
` only, as ‖f̃ (n)

` ‖2 is faster to compute if Kn is chosen
in a restricted range, Kn ≤ n, see Section 4.5 and Section 4.6. The following
result holds.

Theorem 2 If Kn ≥ n2 and M2 =
�
x2f2(x)dx < +∞, then there exists a

numerical constant κ̃0 such that, for κ̃ ≥ κ̃0, the estimator f̃
(n)
˜̀
n

where ˜̀
n is

defined by (9) satisfies

E
(
‖f̃ (n)

˜̀
n
− f‖2

)
≤ C1 inf

`≤n

(
‖f − f`‖2 + κ̃

`

n
+
`(M2 + 1)

n

)
+
C2

n
,

where C1 is a numerical constant and C2 is a constant depending on ‖f‖∞.

For f̃˜̀, an analogous risk bound may be obtained, without condition M2 < +∞
and without the term `(M2 + 1)/n in the bound. For Theorem 2, we refer to
Comte et al. (2008), Proposition 5.1, p.97.

4 Comparison of rates of convergence and discussion.

In this section, we compute the rates of convergence that can be deduced from
the optimization of the upper bounds of L2-risks. This requires to assess the
rate of decay of the bias terms ‖f −fm‖2 in the Hermite case, ‖f − f̄`‖2 in the
deconvolution framework. The latter is usually obtained by assuming that the
unknown density f belongs to a Sobolev space. For the former, we consider
the Sobolev-Hermite spaces which are naturally linked with the Hermite basis.
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4.1 Sobolev and Sobolev-Hermite regularity

For s > 0, the Sobolev-Hermite space with regularity s may be defined by:

W s = {f ∈ L2(R), ‖f‖2s,sobherm =
∑
n≥0

nsa2
n(f) < +∞}, (10)

where an(f) = 〈f, hn〉 is the n-th component of f in the Hermite basis. We
refer to Bongioanni and Torrea (2006) for a definition using operator theory.
Let F = {

∑
j∈J ajhj , J ⊂ N, finite } be the set of finite linear combinations of

Hermite functions and C∞c the set of infinitely derivable functions with com-
pact support. The sets C∞c and F are dense in W s. As the Fourier transform
of hn satisfies

h∗n =
√

2πinhn, (11)

f ∈W s if and only if f∗ ∈W s. We now describe W s when s is integer. Let

A+f = f ′ + xf, A−f = −f ′ + xf.

The following result is proved in Bongioanni and Torrea (2006). For sake of
clarity, we give a simplified proof.

Proposition 4 For s integer, the Sobolev-Hermite space W s is equal to:

W s = {f ∈ L2(R), f admits derivatives up to order s,

‖|f‖|s,sobherm =
∑

j1, . . . , jm ∈ {−,+},
1 ≤ m ≤ s

‖Aj1 . . . Ajmf‖+ ‖f‖ < +∞}.

Moreover, the following statements are equivalent: for s integer,

(1) f ∈W s,
(2) f admits derivatives up to order s which satisfy f, f ′, . . . , f (s), xs−`f (`), ` =

0, . . . , s− 1 belong to L2(R).

The two norms ‖f‖s,sobherm and ‖|f‖|s,sobherm are equivalent.
Now, we recall the definition of usual Sobolev spaces. The Sobolev space with
regularity index s is defined by

Ws = {f ∈ L2(R), ‖f‖2s,sob =

�
R

(1 + t2s)|f∗(t)|2dt < +∞}. (12)

If s is integer, then

Ws = {f ∈ L2(R), f admits derivatives up to order s

such that ‖|f‖|2s,sob = ‖f‖2 + ‖f ′‖2 + . . .+ ‖f (s)‖2 < +∞}.

The two norms ‖|.‖|s,sob and ‖.‖s,sob are equivalent. Therefore, for s integer,
W s ⊂ Ws. Morevover, the following properties are proved in Bongioanni and
Torrea (2006): for all s > 0,

– W s  Ws. If f ∈ Ws has compact support, then f ∈W s.
–

f ∈W s ⇒ xsf ∈ L2(R). (13)
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4.2 Rates of convergence.

Now, we look at asymptotic rates of convergence. We first consider rates for
Hermite projection estimators. We already studied the variance rate Vm/n (see
the bounds for Vm in Proposition 1). If f belongs to

W s(L) = {f ∈ L2(R),
∑
n≥0

nsa2
n(f) ≤ L},

then ‖f − fm‖2 ≤ Lm−s. Plugging this and the bounds of Proposition 1 in
Inequality (2) gives the following rates of the L2(R)-risk.

Proposition 5 Assume that f ∈W s(L) and consider the three cases (i), (ii),
(iii) of Proposition 1.

Case (i) (general case). For mopt = [n1/(s+(5/6))], E(‖f̂mopt
− f‖2) .

n−
s

s+(5/6) .
Case (ii). For mopt = [n1/(s+(1/2))], E(‖f̂mopt

− f‖2) . n−
s

s+1/2 .

Case (iii). For mopt = [n1/(s+(a+2)/(2(a+1))], E(‖f̂mopt
−f‖2) . n−

s
s+(a+2)/[2(a+1)] .

Case (ii) gives the best rate. In view of the constraint on mn in Theorem

1, the adaptive procedure reaches this best rate if m
5/6
opt ≤ n/ log(n), that is

s > 1/3. Note that the rate in case (iii) is strictly better than in case (i) as
(a+ 2)/(a+ 1) < 5/3 as soon as a > 1/2. Cases (ii)− (iii) improve the results
of Schwarz (1967) and Walter (1977).
Now, we can compare the rates to those of projection estimators in the sine
cardinal basis. The following result is deduced from Proposition 3 and (7).

Proposition 6 If

f ∈ Ws(R) = {f ∈ L2(R), ‖f‖2s,sob =

�
R

(1 + t2s)|f∗(t)|2dt ≤ R},

and `opt = n1/(2s+1), we have E(‖f̃`opt
− f‖2) . n−2s/(2s+1). If moreover

Kn ≥ n2, E(‖f̃ (n)
`opt
− f‖2) . n−2s/(2s+1).

In Schipper (1996) it is proved that this rate is minimax optimal (with exact
Pinsker constant) on Sobolev balls (at least for an integer s), see also Efro-
movich (2009) for s < 1/2. Rigollet (2006) uses the blockwise Stein method
to build an adaptive deconvolution estimator, which reaches the optimal rate
with exact constant for any s > 1/2.
Let us compare results of Proposition 6 and of Proposition 5. As W s ⊂ Ws,
see Section 4.1, the comparison is relevant. In case (i), we see that the es-

timator f̃`opt has a better rate than f̂mopt . In case (ii), the estimators have

the same rate. In case (iii), the estimator f̃`opt is slightly better than f̂mopt .
In view of case (ii), the Hermite method is competitive. Indeed the moment
condition for (ii) is not very strong. In this case, sine cardinal estimators with
cut-off parameter ` and Hermite projection estimators on the space Sm are
asymptotically equivalent when ` = m1/2.
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4.3 Rates of convergence in some special cases.

When the density f belongs to W s for all s, we must obtain directly the exact
rate of decay of the bias term. This is possible for Gaussian and some related
densities as one can make an exact computation of the coefficients aj(f). Let

fµ(x) =
1√
2π

exp

(
−1

2
(x− µ)2

)
, (14)

and

fp,σ(x) =
x2p

σ2pC2p
fσ(x) with fσ(x) =

1

σ
√

2π
exp (− x2

2σ2
) and C2p = EX2p,

(15)
for X a standard Gaussian variable. The distribution fp,σ(x)dx is equal to
εG1/2 for ε a symmetric Bernoulli variable, G a Gamma(p + (1/2), 1/(2σ2))
variable, independent of ε.

Proposition 7 Assume that f = fµ. Then for mopt = [(log(n)/ log(2))+eµ2],
we have

E(‖f̂mopt
− fµ‖2) .

√
log n/n.

Assume that f = fσ. Then for mopt = [(logn)/λ] where λ = log
(
σ2+1
σ2−1

)2

, we

have
E(‖f̂mopt

− fσ‖2) .
√

log n/n.

The same result holds for f = fp,σ or any finite mixture of such distributions.

For f = fσ, the estimator f̃` satisfies,

E(‖f̃` − f‖2) .
1

`
exp (−`2/2σ2) + n−1`.

For `opt = σ
√

2 log n, the rate of f̃`opt
is
√

log n/n. The rate is identical to the
one obtained in Proposition 7. The result is analogous for f = fp,σ.
Finally, the Cauchy density will provide a counter-example. Let

f(x) =
1

π(1 + x2)
.

From Proposition 1, case (iii), we take a = 2 and obtain for the variance term
Vm . m2/3. Using Proposition 4, we check that f ∈ W 1, f /∈ W 2. Moreover,
by (13), xsf /∈ W s for s ≥ 3/2. Therefore, f /∈ W 3/2, so the best rate we can
obtain is n−s/s+(2/3) with s < 3/2, for mopt = [n1/(s+(2/3))].

For the sine cardinal method, f∗(t) = exp (−|t|), so that ‖f − f`‖ .
exp (−2π`). Therefore, for `opt = log n/2π, the estimator f̃`opt has a risk with
rate log n/n. This is much better than for the Hermite estimator.

This discussion on rates of convergence points out the interest of the adap-
tive method. Indeed, it automatically realizes the bias-variance compromise
and thus the previous rates are reached without any specific knowledge on f .
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4.4 Rates of convergence for Gaussian mixtures.

Kim (2014) provides optimal rates of convergence for estimating densities that
are mean mixtures of normal distributions, that is for densities f in the class

F = {f : f(x) = φ ? Π(x) =

�
φ(x− u)dΠ(u), Π ∈ P(R)}

where φ denotes the standard normal density and P(R) the set of all probabil-
ity measures on the real line. The minimax optimal rate for the mean square
risk is

√
log(n)/n. Moreover, the sine cardinal estimator f̃` reaches the upper

bound for the L2-risk on the class F , for ` ∝
√

log(n).
We study Hermite projection estimators for mean mixtures of Gaussian

but also for variance mixtures. We consider, as suggested in Kim (2014), the
subclass Fsub(R) = ∪C>0Fsub(C),

Fsub(C) = {f : f(x) = φ ? Π(x) =

�
φ(x− u)dΠ(u), Π ∈ Psub(C)}

where

Psub(C) := {Π ∈ P(R), Π(|u| > t) ≤ C exp(−t2/C) for all positive t}.

Proposition 8 For f ∈ Fsub(C) and mopt = [log(n)(eC+1/ log(2))], we have

E(‖f̂mopt
− f‖2) .

√
log(n)/n.

Now we define the class of variance mixtures that we consider: let v > 1,

G(v) =

{
f : f(x) =

� +∞

0

φ(x/u)

u
dΠ(u), Π([1/v, v]) = 1

}
.

In other words, f ∈ G(v) is the density of σX with X ∼ N (0, 1), σ ∼ Π,
σ ∈ [1/v, v] with σ and X independent.

Proposition 9 For f ∈ G(v), let

ρ0 =

(
v2 − 1

v2 + 1

)2

< 1. (16)

For mopt = [log(n)/| log(ρ0)|], we have

E(‖f̂mopt
− f‖2) .

√
log(n)/n.

In the class of variance mixtures of Gaussians, the lower bound rate is not
known. However, in Ibragimov and Has’minskii (1980), Ibragimov (2001), the
estimation of a density on a compact set [a, b] which is analytical in the vicinity
of [a, b] is considered. The authors prove that the rate log(n)/n, is optimal in
this class. The restricted class given by G(v) considered in Proposition 9 gives
a slightly improved rate, which is coherent with the result of Proposition 7.
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4.5 Complexity

In this paragraph, we compare the Hermite and deconvolution estimators from
another point of view: the computational efficiency.

Consider an estimator f̂n of a function f whose L2-risk can be evaluated
on a ball B(L) of some functional space. Define its complexity Cf̂n(ε) as the

minimal cost of computing f̂n at the observation points X1, . . . , Xn, given that

sup
f∈B(L)

E(‖f̂n − f‖2) ≤ ε2.

Let us compute the complexity of the estimate f̃`opt on the Sobolev ball

Ws(L). As we need to evaluate the function sin(π`·)
π· at all points (Xk −Xj),

1 ≤ k, j ≤ n, the cost of computing f̃`opt
is of order n2. Thus ε2 � n−2s/(2s+1)

yields n � ε−2−1/s so that Cf̃`opt
(ε) � ε−4−2/s as ε→ 0. So even in the case of

infinitely smooth densities, the complexity of the deconvolution estimate can
not be (asymptotically) lower than ε−4. A natural question is whether one
can find an estimate with lower order of complexity. Note that the complexity
would be the same for a kernel estimator on a ball of a Nikol’ski class with
regularity s, see Tsybakov (2009), at least for kernels with a non compact
support used in Ibragimov and Has’minskii (1980).

For the truncated estimator f̃
(n)
`opt

, the cost is of order nKn: indeed, one must

compute the ϕ`,j(Xi) for i = 1, . . . , n and |j| ≤ Kn. Consequently, compared
to the previous one, this estimate is competitive in term of computational cost
as soon as Kn < n (however this choice would contradict Theorem 3.1 where
Kn ≥ n2).

Now, let us look at the projection estimator f̂mopt for f ∈ W s(L). The

cost of computing a projection estimator f̂m at observation points X1, . . . , Xn

corresponds to the cost of computing hj(Xi) for i = 1, . . . , n and j = 0, . . . ,m−
1, i.e. is of order nm. Thus we derive the following proposition.

Proposition 10 Assume that f ∈ W s(L) and consider the three cases (i),

(ii), (iii) of Proposition 1. The the complexity of the estimate f̂mopt
is given

by Cf̂ (ε) ∼ ε−2− 2(α+1)
s with α = 5/6, 1/2, (a+ 2)/[2(a+ 1)], respectively.

Proof of Proposition 10. Taking ε2 � n−2s/(2s+1), hence n � ε−2−1/s, and
the three values of mopt given Proposition 5 yield the result. 2

As can be seen, the complexity order of the Hermite-based estimate f̂mopt

is lower than the complexity order of the deconvolution estimate f̃`opt provided
s > α. So in the case of densities with finite fifth moment already for s > 1/2,
our approach leads to estimates with much lower complexity. The difference
between the estimates f̂mopt and f̃`opt

becomes especially pronounced in the
limiting case s → ∞, where Cf̂mopt

(ε) � ε−2 while Cf̃`opt (ε) � ε−4 as ε → 0,

resulting in a huge computational gain.



Sobolev-Hermite nonparametric density estimation 13

Projection estimator Projection estimator Deconvolution estimator
on a compact set A on R on R

Besov ball Sobolev-Hermite Sobolev ball
of B2,s,∞(A) ball W s(L) Ws(L)

ε−2−2/s ε−2−3/s ε−4−2/s

(best case α = 1/2)

Table 1 Complexity for density estimation in different contexts.

For any projection estimator, the cost of computation if of order nmopt

where mopt is the optimal dimension. In the case of a density with compact
support A, if we evaluate the L2-risk of a projection estimator on a Besov ball
of B2,s,∞(A) , we have ε2 � n−2s/(2s+1) with mopt � n1/(2s+1), thus a cost of
order ε−2−2/s, see Barron et al. (1999) for rates and definition of Besov spaces.
All these results are summarized in Table 1.

4.6 Simulation illustrations

In this Section, we propose a few illustrations of the previous theoretical find-
ings. To that aim, we consider several densities, fitting different assumptions
of our setting.

(i) A Gaussian N (0, 1),
(ii) A Gaussian N (0, σ2), σ = 0.5,
(iii) A mixed Gaussian density 0.4N (−3, σ2) + 0.6N (3, σ2), σ = 0.5,
(iv) A Gamma γ(3, 0.5) density,
(v) A mixed Gamma 0.4γ(2, 1/2) + 0.6γ(16, 1/4)

(vi) A beta density β(3, 3),
(vii) A beta density β(3, 6),
(viii) Laplace density f(x) = e−|x|/2,
(ix) A Cauchy density, f(x) = 5/[π(1 + (5x)2)].

Density (i) is proportional to the first basis function h0 and should be
perfectly estimated in the Hermite procedure, densities (vi) and (vii) are com-
pactly supported and density (ix) does not admit any moment (in particular
no fifth moment, so it does not fit case (ii) of Proposition 1). Hermite functions
are recursively computed via (34) and with normalization (1).

We plot in Figure 1 the representation of m 7→ V̂m/
√
m for 1 and 10

samples drawn from densities (i), (iv), (vi), (ix) (see (5)). It seems that the
ratio is stable along the repetitions, and converges to a fixed value, which is
the same in the first three cases. On the contrary, m 7→ V̂m/m

5/6 given for (i)
and (ix) seems to decrease and to tend to zero in any case. It is tempting to
conclude from these plots that the order of Vm is O(m1/2) in a rather general
case.
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Fig. 1 Left: m 7→ V̂m/
√
m for 1 sample of densities (i) (blue line), (iv) (cyan stars), (vi)

(red dashed), (ix) (green x marks) and m 7→ V̂m/m5/6 for 1 sample of densities (i) (blue
dashed) and (ix) (green dash-dot). Right: the same as previously for 10 samples.

We have implemented the Hermite projection estimator f̂m̂ with m̂ given

in (5), f̃
(n)
˜̀
n

with ˜̀
n given by (9) and the kernel estimator given by the function

ksdensity of Matlab. For the model selection steps of the first two estima-
tors, the two constants κ and κ̃ of the procedures have been both calibrated
by preliminary simulations including other densities than the ones mentioned
above (to avoid overfitting): the selected values were κ = κ̃ = 4. We considered
two sample sizes n = 250 and n = 1000, but as the sine cardinal procedure is
rather slow, we only took K250 = K1000 = 100. The theoretical value Kn = n2

is unreachable in practice (the computing time becomes much too large), and
our choice of Kn is consistent with the complexity considerations of Section
4.5.

For mn, we should take (n/ log(n))6/5, which is of order 100 for n = 250
and 400 for n = 1000. We took m250 = m1000 = 200 as a compromise. The
cutoff `π is selected among 100 equispaced values between 0 and 10. For each
distribution, we present in Table 2 the MISE computed over 200 repetitions,
together with the standard deviation. In the three cases, we provide also the
mean (and standard deviations in parenthesis) of the selected dimension (Her-
mite), cutoff (Sine cardinal) or bandwidth (kernel).

We can see from the results of Table 2 that the Hermite and sine cardinal
methods give very similar results, except for the N (0, 1) where the Hermite
projection is much better as expected, as the procedure most of the time
chooses m = 1. The kernel method seems globally less satisfactory. The note-
worthy difference between the first two methods is the computation time: as
the models are nested in the Hermite projection strategy, all coefficients can be
computed once for all, and then the dimension is selected. In the sine cardinal
strategy, each time ` is changed, all the coefficients have to be recalculated.
For instance, when the maximal dimension proposed mn is 50, and Kn is 100,
the elapsed times for 100 simulations is: for n = 250, around 0.5s for Hermite,
41s for sine cardinal; for n = 1000, around 1.2s for Hermite, 137s for sine
cardinal, all times measured on the same personal computer to give an order
of the difference. This is coherent with the lower complexity property of the
Hermite method.
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n = 250 n = 1000
f Hermite Sin. Card. Kernel Hermite Sin. Card. Kernel

(i) 0.5(1.4) 2.0(1.8) 2.9(2.1) 0.1(0.4) 0.6(0.5) 1.1(0.6)

1.08(0.32) 0.77(0.08) 0.35(0.03) 1.08(0.53) 0.87(0.08) 0.27(0.01)

(ii) 4.7(4.7) 4.7(4.9) 6.0(4.2) 1.4(1.3) 1.4(1.4) 2.1(1.3)

8.87(3.69) 1.46(0.21) 0.17(0.01) 11.6(5.1) 1.65(0.24) 0.13(0.005)

(iii) 4.9(2.6) 5.5(2.5) 24.2(14.5) 1.5(0.9) 1.5(0.9) 11.1(3.1)

11.6(1.5) 1.28(0.13) 0.51(0.12) 14.3(2.0) 1.53(0.10) 0.39(0.04)

(iv) 5.6(3.4) 5.3(3.4) 4.6(2.9) 1.8(1.0) 1.8(1.0) 1.9(1.0)

6.28(2.64) 1.25(0.19) 0.27(0.02) 11.9(4.5) 1.7(0.25) 0.21(0.01)

(v) 7.2(3.6) 6.6(2.8) 17.1(2.6) 2.4(0.9) 2.7(0.8) 10.2(1.2)

15.1(2.0) 1.13(0.20) 0.74(0.07) 18.2(2.6) 1.67(0.27) 0.57(0.02)

(vi) 7.2(7.2) 7.3(7.4) 12.8(8.3) 3.2(2.6) 3.3(2.7) 4.8(2.7)

46.5(10.5) 3.14(0.29) 0.07(0.005) 63.3(27.3) 3.6(0.65) 0.05(0.002)

(vii) 17.2(11.3) 19.3(15.6) 19.4(12.2) 5.8(3.1) 6.3(4.1) 7.0(4.0)

104(25.5) 4.77(0.91) 0.05(0.004) 143(13.5) 5.89(0.85) 0.04(0.002)

(viii) 7.4(2.0) 6.7(3.0) 5.5(3.2) 2.6(0.8) 2.5(0.8) 2.3(1.1)

2.5(2.96) 1.03(0.25) 0.36(0.04) 7.8(4.4) 1.42(0.32) 0.27(0.01)

(ix) 21.6(9.1) 21.5(9.3) 18.6(10.6) 6.9(2.9) 6.9(3.0) 7.6(3.9)

65(25) 3.7(0.7) 0.10(0.01) 97(21) 4.71(0.77) 0.08(0.004)

Table 2 Results after 200 iterations of simulations of density (i) to (ix). For each density
(i)-(ix), first line: MISE× 1000 with (std × 1000) in parenthesis; second line: mean of selected
dimension (Hermite), cutoff (sine cardinal) or bandwidth (kernel) with std in parenthesis.

Table 2 also provides the selected dimensions, cutoffs and bandwidths.
As could be expected, m̂ , ˜̀ vary in opposite way, compared to ĥ. Without
surprise also, the selected dimensions and cutoffs increase when the sample
size increases. What is remarkable is the values of the selected dimensions for
β-distributions, which are very large. Globally, we can see that these values are
very different from one distribution to the other. Contrary to the theoretical
result, the Cauchy density is estimated with similar MISEs in the Hermite and
sine cardinal methods.

In Figure (2), density and 25 estimators are plotted for models (iii), (vii)
and (ix). Risks and standard deviation for the 25 curves are given above each
plot, together with the mean of the selected dimension, cutoff or bandwidth.
The methods are comparable, even for the Cauchy distribution, except for
the mixtures, where the kernel method fails. The first two lines illustrate the
improvement obtained when increasing n. We note again that the selected
dimensions in the Hermite method are possibly rather high (see the beta and
the Cauchy densities). However, computation time remains very short.

5 Pure jump Lévy processes

We now look at projection Hermite estimators in a different context, namely
the estimation of the Lévy density of a Lévy process.
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Fig. 2 True density f in bold blue for Model (iii) (first two lines), Model (vii) (third line)
and Model (ix) (fourth line), together with 25 estimates (green/grey) with n = 250 (lines
1 and 3) or n = 1000 (lines 2 and 4). First column: Hermite; second column: Sine cardinal;
third column: kernel. Above each plot: MISE× 1000 and std × 1000 in parenthesis, followed
par the mean of selected dimensions, cutoffs and bandwidths (all means over the 25 samples).
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Let (Lt, t ≥ 0) be a real-valued Lévy process, i.e. a process with stationary
independent increments with characteristic function of the form:

φt(u) = E(exp iuLt) = exp tψ(u), ψ(u) =

�
R
(eiux − 1)n(x)dx (17)

where we assume that the Lévy density n(.) satisfies

(H1)

�
R
|x|n(x)dx <∞.

Uner (H1) and (17), the process (Lt) is of pure jump type, has no drift compo-
nent, finite variation on compacts and satisfies E(|Lt|) < +∞ (see e.g. Bertoin,
1996, Chap.1). The distribution of (Lt) is entirely specified by n(.), which de-
scribes the jumps behavior. We assume that the process is discretely observed
with sampling interval ∆ and set (Zk = Z∆k = Lk∆ − L(k−1)∆, k = 1, . . . , n)
which are independent, identically distributed random variables with common
characteristic function φ∆(u). In Belomestny et al. (2015), second chapter,
”Adaptive estimation for Lévy processes”, methods of estimation of the func-
tion

g(x) = xn(x)

in this context are presented and studied under the asymptotic framework of
high frequency data, i.e. the sampling interval ∆ = ∆n tends to 0 while n and
the total length time of observations n∆n tend to infinity.
In here, we consider the same framework and propose estimators of g using the
Hermite functions basis. For simplicity, we omit the index n in notations and
denote∆ = ∆n, Zk = Z∆nk , k = 1, . . . , n. The following additional assumptions
are required.

(H2) The function g belongs to L2(R).
(H3)

�
R |x|

7n(x)dx <∞.

Assumption (H2) is obviously needed for the projection method. Assumption
(H3) implies that E|Z1|7 < +∞. Let P∆ denote the distribution of Z1. In the
above reference, the following property is proved (Proposition 3.3, p.84): the
measure

µ∆(dx) =
1

∆
xP∆(dx) = g∆(x)dx (18)

where g∆(x) = Eg(x− Z1) =
�
g(x− z)P∆(dz) and µ∆(dx) weakly converges

to g(x)dx as ∆→ 0. In view of this property, the measure

µ̂n(dx) =
1

n∆

n∑
k=1

ZkδZk(dx) (19)

will play the role of empirical measure for the estimation of g. By (H2), the
function g can be developped in the Hermite basis:

g =
∑
j≥0

aj(g)hj , aj(g) =

�
g(x)hj(x)dx = 〈g, hj〉.
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We define, for m ≥ 0, the projection estimator ĝm of g on the space Sm by:

ĝm =

m−1∑
j=0

âjhj , âj =
1

n∆

n∑
k=1

Zkhj(Zk). (20)

Now, âj is no more an unbiased estimator of aj(g). For t a function, we set
when it is well defined,

R(t) =
1

∆
E(Z1t(Z1))−

�
t(x)g(x)dx. (21)

Thus, we have Eâj = aj(g) +R(hj). The following holds:

Proposition 11 Assume that (H1)-(H3) hold. Consider for m ≥ 0, the esti-
mator ĝm of g and denote by gm the orthogonal projection of g on Sm. Then

E(‖ĝm − g‖2) ≤ ‖g − gm‖2 +
Vm
n∆

+ ‖g‖21ρm,∆ , (22)

where

Vm :=
1

∆

m−1∑
j=0

E(Z2
1h

2
j (Z1)) ≤ c

(
E(Z2

1 )

∆

√
m+

E(|Z1|7)

∆
log(m)

)
, (23)

and

ρ
m,∆

=


C

2π
∆2 if C :=

�
u2|g∗(u)|2du < +∞,

8‖g‖2∆2m otherwise

(‖g‖1 denotes the L1-norm of g).

First, let us recall some small sample properties of moments and absolute
moments of Z1, see e.g. Belomestny et al. (2015). Under (17), (H1) and (H3),
it holds that

E(Z2
1 )

∆
=

�
x2n(x)dx+ o(1) and

E(|Z1|7)

∆
=

�
|x|7n(x)dx+ o(1), (24)

where o(1) means that the term tends to 0 as ∆ tends to 0 (see Proposition
3.1 and 3.2 p.82-83). Now, let us compare the projection Hermite estimators
(ĝm,m ≥ 0) to the estimators studied in the latter reference. In Section 4.1,
p.87, a deconvolution estimator is studied, given by:

g†` (x) =
1

n∆

n∑
k=1

Zk
sin(π`(Zk − x))

π(Zk − x)
.

Looking at Proposition 4.3, p.90 and Proposition 4.4, p.91, we see that the
sine cardinal estimators and the projection Hermite estimators are equivalent
for ` = m1/2 with the same optimal rates of convergence. Then, in Section 4.2,
p.105, the estimation of g1A where A is a compact subset of R is considered
by a projection method on finite dimensional subspaces of L2(A). Here, on
the contrary, the Hermite method gives better results as can be seen from
Proposition 4.6, p.110. The difference lies in the additional bias term ρ

m,∆

which is smaller.
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6 Concluding remarks

This paper is concerned with the nonparametric estimation of the density of
an i.i.d. sample. Although there is an ocean of papers on this topic, it seems
that the method developped here has not received yet much attention. Un-
der the assumption that the unknown density belongs to L2(R), we build and
study projection estimators using an orthonormal basis composed of Hermite
functions. Usually, for projection estimators, the variance term of the L2-risk
is proportional to the dimension of the projection space. The special feature
of the Hermite function basis is that the variance term is governed by the
square root of the dimension. Moreover, we introduce specific regularity func-
tion spaces to evaluate the order of the bias term, namely, the Sobolev Hermite
spaces. This allows to prove that Hermite estimators are asymptotically equiv-
alent to sine cardinal estimators. From the practical point of view, Hermite
estimators are much faster to compute.

Adaptive estimators are studied, using an appropriate data driven choice
of the dimension.

This paper is only concerned with L2-risks, but Lp-risks have also been
studied by many authors (see the classical reference Donoho et al. (1996)).
Moreover, the L1-approach is especially developped in Devroye and Györfi (1985).
In this setting, adpative estimators have been constructed by Devroye and
Lugosi (2001). The study of Lp-risks with the Hermite approach would be an
interesting field of further investigation.

7 Proofs

7.1 Proof of Propositions 1 and 2

We start by proving Proposition 1.
(i). The following bound comes from Szegö (1975, p.242) where an expression
of C∞ is given:

∀x ∈ R, |hj(x)| ≤ C∞(j + 1)−(1/12), j = 0, 1, . . . . (25)

Therefore, Vm ≤ C2
∞
∑m−1
j=0 (j + 1)−(1/6) ≤ 6

5C
2
∞m

5/6.
(ii). Now, as in Walter (1977), we use the following expression for the Hermite
function hn (see Szegö (1975, p.248)):

hj(x) = λj cos

(
(2j + 1)1/2x− jπ

2

)
+

1

(2j + 1)1/2
ξj(x) (26)

where λj = |hj(0)| if j is even, λj = |h′j(0)|/(2j + 1)1/2 if j is odd and

ξj(x) =

� x

0

sin [(2j + 1)1/2(x− t)] t2hj(t)dt. (27)
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By the Cauchy-Schwarz inequality, ξ2
j (x) ≤

� |x|
0

t4dt
� |x|

0
h2
j (t)dt ≤

|x|5
5 ×

1
2 .

Moreover,

λ2j =
(2j)!1/2

2jj!π1/4
, λ2j+1 = λ2j

√
2j + 1√

2j + 3/2
.

By the Stirling formula and its proof, λ2j ∼ π−1/2j−1/4, λ2j+1 ∼ π−1/2j−1/4

and for all j, there exists constants c1, c2 such that, for all j ≥ 1,

c1
π1/2j1/4

≤ λj ≤
c2

π1/2j1/4
. (28)

Therefore, h2
j (x) ≤ 2

c22
πj1/2

+ 1
2j+1

|x|5
5 . This yields:

�
h2
j (x)f(x)dx ≤ 2

c22
πj1/2

+
1

5(2j + 1)
E|X|5,

which implies Vm . m1/2.
Now we study case (iii). The following bound for hj is given in Markett

(1984, p.190): There exist positive constants C, γ, independent of x and j, such
that, for J = 2j + 1,

|hj(x)| ≤ C(J1/3 + |x2 − J |)−1/4, x2 ≤ 2J,

≤ C exp (−γx2), x2 > 2J.

Consider a sequence (aj) such that aj → +∞, aj/
√
j → 0 with J = 2j + 1

large enough to ensure aJ√
J
≤ 1/

√
2, aJ ≥ K. As

�
h2
j (x)dx = 1, aJ <

√
J ,

aJ ≥ K and g is decreasing,�
h2
j (x)f(x)dx ≤ 2C‖f‖∞

� aJ

0

(J1/3 + J − x2)−1/2dx+ g(aJ).

Set x = (J1/3 + J)1/2y in the integral. This yields:

� aJ

0

dx√
J1/3 + J − x2

=

� aJ/(J
1/3+J)1/2

0

dy√
1− y2

= Arcsin(
aJ

(J1/3 + J)1/2
) ≤ 2

aJ√
J
.

as for 0 ≤ x ≤ 1/
√

2, Arcsinx ≤ 2x. Now we choose the sequence (aj) and
consider aj = j1/(2(a+1)). We deduce

�
h2
j (x)f(x)dx . j−a/(2(a+1)), which

leads to
Vm . m

a+2
2(a+1) .2 (29)

Now we turn to the proof of Proposition 2 and we look at the lower bound.
We have, setting c = infa≤x≤b f(x), and using (26),

�
h2
j (x)f(x)dx ≥ c

� b

a

h2
j (x)dx

≥ cλ2
j

� b

a

cos2

(
(2j + 1)1/2x− jπ

2

)
dx

+ c
2λj

(2j + 1)1/2

� b

a

cos

(
(2j + 1)1/2x− jπ

2

)
ξj(x)dx.
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We have j−3/4c1/
√
π ≤ 2λj

(2j+1)1/2
≤ j−3/4

√
2/πc2 and

|
� b

a

cos

(
(2j + 1)1/2x− jπ

2

)
ξj(x)dx| ≤

� b

a

|x|5/2√
10

dx := C.

Thus, the second term is lower bounded by −Cj−3/4c1/
√
π. For the first term,

λ2
j ≥ j−1/2c21/π and

� b

a

cos2

(
(2j + 1)1/2x− jπ

2

)
dx =

1

2
(b− a) +

� b

a

cos
(

2(2j + 1)1/2x− jπ
)
dx

=
1

2
(b− a) +O(

1

j1/2
).

Therefore,
�
h2
j (x)f(x)dx ≥ cj−1/2c21/π

[
b−a

2 +O( 1
j1/2

)
]
−Cj−3/4c1/

√
π. Con-

sequently, for j large enough,
�
h2
j (x)f(x)dx ≥ c′j−1/2. This implies, Vm ≥

c′′m1/2. 2

7.2 Proof of Theorem 1

Let Sm be the space spanned by {h0, . . . , hm−1} and Bm = {t ∈ Sm, ‖t‖ = 1}.
We have f̂m = arg mint∈Sm γn(t) where γn(t) = ‖t‖2 − 2n−1

∑n
i=1 t(Xi) and

γn(f̂m) = −‖f̂m‖2. Now, we write, for two functions t, s ∈ L2(R) ,

γn(t)− γn(s) = ‖t− f‖2 − ‖s− f‖2 − 2νn(t− s)

where

νn(t) =
1

n

n∑
i=1

[t(Xi)− 〈t, f〉].

Then, for any m ∈Mn = {1 ≤ m ≤ mn}, mn ≤ n/ log n, and any fm ∈ Sm,

γn(f̂m̂) + p̂en(m̂) ≤ γn(fm) + p̂en(m).

This yields ‖f̂m̂ − f‖2 ≤ ‖f − fm‖2 + p̂en(m)− p̂en(m̂) + 2νn(f̂m̂ − fm). We
use that

2νn(f̂m̂ − fm) ≤ 4 sup
t∈Bm∨m̂

ν2
n(t) +

1

4
‖f̂m̂ − fm‖2,

and some classical algebra to obtain:

1

2
‖f̂m̂ − f‖2 ≤

3

2
‖f − fm‖2 + p̂en(m) + 4

(
sup

t∈Bm∨m̂
ν2
n(t)− p(m ∨ m̂)

)
+(4p(m ∨ m̂)− pen(m̂)) + (pen(m̂)− p̂en(m̂)). (30)

We can choose p(m) such that

∑
m′∈Mn

E

(
sup

t∈Bm∨m′
ν2
n(t)− p(m ∨m′)

)
+

≤ c

n
. (31)
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Indeed, for this, we apply the Talagrand Inequality (see Klein and Rio (2005)):

E
(

sup
t∈Bm

ν2
n(t)− 4H2

)
+

≤ C1

n

(
v2e−C2

nH2

v2 +
M2

1

n
e−C3

nH
M1

)
where E

(
supt∈Bm ν

2
n(t)

)
≤ Vm

n := H2, supt∈Bm Var(t(X1)) ≤ supt∈Bm E(t2(X1)) ≤
‖f‖∞ := v2 and supt∈Bm supx |t(x)| ≤

√
supx

∑m−1
j=0 h2

j (x) ≤ C ′∞m
5/12 ≤

C ′∞
√
n := M1 (see (25)). Therefore we obtain

E
(

sup
t∈Bm

ν2
n(t)− 4

Vm
n

)
+

≤ C1

n

(
‖f‖∞e−C

′
2Vm + e−C

′
3

√
Vm
)
.

Therefore, with the choice p(m) = 4Vm/n, (31) holds under condition (6)
which is ensured by Proposition 2.
Taking expectation in (30) yields

1

2
E(‖f̂m̂ − f‖2) ≤ 3

2
‖f − fm‖2 + pen(m) + E(4p(m ∨ m̂)− pen(m̂))

+E(pen(m̂)− p̂en(m̂))+ +
c

n
. (32)

Let us define

Y
(m)
i :=

m−1∑
j=0

h2
j (Xi), V̂m =

1

n

n∑
i=1

Y
(m)
i ,

and the set inspired by Bernstein Inequality Ω :={
∀m ∈Mn,

1

n

∣∣∣∣∣
n∑
i=1

(Y
(m)
i − E(Y

(m)
i ))

∣∣∣∣∣ ≤
√

2VmC ′′∞m
5/6

log(n)

n
+ 4C ′′∞m

5/6 log(n)

3n

}

with C ′′∞ := (C ′∞)2 and C ′∞ is the constant appearing in M1 above. We split
the term to study in (32) as follows:

E(pen(m̂)−p̂en(m̂))+ ≤ E [(pen(m̂)− p̂en(m̂))+1Ω ]+E [(pen(m̂)− p̂en(m̂))+1Ωc ] .

On Ω,

|V̂m̂ − Vm̂| ≤
√

2Vm̂C ′′∞m̂
5/6 log(n)/n+ 4C ′′∞m̂

5/6 log(n)/(3n)

≤ 1

2
Vm̂ +

7

3
C ′′∞

m̂5/6 log(n)

n
,

using that 2xy ≤ x2 + y2 applied to
√

2V A = 2
√
V/2
√
A ≤ V/2 + A with

V = Vm̂ and A = C”∞m̂
5/6 log(n)/n. Thus, by definition of Mn,

E [(pen(m̂)− p̂en(m̂))+1Ω ] + ≤ 1

2
E(pen(m̂)) +

c

n
.
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On the other hand, E [(pen(m̂)− p̂en(m̂))+1Ωc ] ≤ 2κP(Ωc). Now, by ap-
plying Bersntein inequality, we get

P(Ωc) ≤
∑

m∈Mn

2e−2 log(n) ≤ c

n
.

Indeed, we have P(|Sn/n| ≥
√

2v2x/n+ bx/(3n)) ≤ 2e−x for Sn =
∑n
i=1(Ui−

E(Ui)), Var(U1) ≤ v2, |Ui| ≤ b. In our case U=Y
(m)
i and v2 = VmC

′′
∞m

5/6,
b = C ′′∞m

5/6 and we took x = 2 log(n).
So Equation (32) becomes

1

2
E(‖f̂m̂ − f‖2) ≤ 3

2
‖f − fm‖2 + pen(m) + E(4p(m ∨ m̂)− pen(m̂))

+
1

2
E(pen(m̂)) +

c

n

≤ 3

2
‖f − fm‖2 + pen(m) + E(4p(m ∨ m̂)− 1

2
pen(m̂)) +

c

n

Now we note that, for κ ≥ 8 := κ0, 4p(m ∨ m̂)− 1
2pen(m̂) ≤ pen(m). Finally,

we get, for all m ∈Mn,

E(‖f̂m̂ − f‖2) ≤ 3‖f − fm‖2 + 4pen(m) +
c

n
,

which ends the proof. 2

7.3 Proof of Proposition 3

The first inequality is standard. Let us study f̃
(n)
` (x). We write that

‖f̃ (n)
` − f‖2 = ‖f̃ (n)

` − Ef̃ (n)
` ‖

2 + ‖E(f̃
(n)
` )− f‖2

≤ ‖f̃ (n)
` − Ef̃ (n)

` ‖
2 + 2‖E(f̃

(n)
` )− f̄`‖2 + 2‖f̄` − f‖2.

The term ‖f̄` − f‖2 is the usual bias term. moreover

E
(
‖f̃ (n)
` − Ef̃ (n)

` ‖
2
)

=
∑
|j|≤Kn

Var(ã`,j) =
1

n

∑
|j|≤Kn

Var(ϕ`,j(X1))

≤ 1

n

∑
|j|≤Kn

E[ϕ2
`,j(X1)] ≤ `

n

because
∑
j∈Z |ϕ`,j(x)|2 ≤ `. This is the standard variance term order.

The new term is

‖E(f̃
(n)
` )− f̄`‖2 =

∑
|j|≥Kn

|a`,j |2 ≤ 2 sup
j
|ja`,j |2

∑
j>Kn

j−2 ≤ 2

Kn
sup
j
|ja`,j |2.

(33)
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We write that ja`,j = j
√
`
�
ϕ(`x− j)f(x)dx =

√
`(I1 + I2) where

I1 = `

�
xϕ(`x− j)f(x)dx, I2 = −

�
(`x− j)ϕ(`x− j)f(x)dx

and we bound I1 and I2.

|I1| ≤ `

√�
|ϕ(`x− j)|2dx

�
x2f2(x)dx =

√
`
√
M2, where M2 =

�
x2f2(x)dx.

On the other hand, |I2| ≤ supu∈R |uϕ(u)|
�
f(x)dx ≤ 1. We obtain:

|ja`,j | ≤ `
√
M2 +

√
` ≤ `(

√
M2 + 1).

Plugging this in (33), we find the bound: ‖E(f̃
(n)
` )− f̄`‖2 ≤ 4`2(M2 + 1)/Kn.

This term is O(`/n) if ` ≤ n and Kn ≥ n2. 2

7.4 Proof of Proposition 4

Using the relations (see e.g. Abramowitz and Stegun (1964)):

2xHn(x) = Hn+1(x) + 2nHn−1(x), H ′n(x) = 2nHn−1(x), n ≥ 1, (34)

we get:
A+hn =

√
2nhn−1, A−hn =

√
2(n+ 1)hn+1.

We deduce:
√

2h′n =
√
n hn−1 −

√
n+ 1hn+1, 2x hn =

√
2(n+ 1) hn+1 +

√
2n hn−1,

(35)
Assume first that f ∈ L2(R), f admits derivatives up to order s, and for
j1, . . . , jm ∈ {−,+} and 1 ≤ m ≤ s, Aj1 . . . Ajmf ∈ L2(R). We prove that∑
n≥0 n

sa2
n(f) < +∞. We do the proof only for f compactly supported and

refer to Bongioanni and Torrea (2006) otherwise.

For the proof, set A−1 = A−, A+1 = A+ so that, for n − j ≥ 0, Ajhn =√
2(n+ dj)hn−j , dj = 0 if j = 1, dj = 1 if j = −1 . Thus, for n − j1 − j2 −

. . .− jm ≥ 0,

Aj1 . . . Ajmhn =
√

2(n+ dj1)× . . .×
√

2(n+ djm)hn−j1−j2−...−jm .

Now, for f compactly supported,

〈Ajf, hn〉 = 〈f,A−jhn〉 =
√

2(n+ d−j)〈f, hn+j〉.

Iterating yields, for n+ j1 + j2 + . . .+ jm ≥ 0,

〈Aj1 . . . Ajmf, hn〉 = 〈f,A−jmA−jm−1
. . . A−j1hn〉

=
∏

1≤k≤m

√
2(n+ d−jk)〈f, hn+j1+j2+...+jm〉.
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Therefore,
∑
n≥0(〈Aj1 . . . Ajmf, hn〉)2 < +∞ is equivalent to∑

n+j1+j2+...+jm≥0

nma2
n+j1+j2+...+jm(f) <∞.

Now assume that
∑
n≥0 na

2
n(f) < +∞. We have f =

∑
n≥0 an(f)hn. We can

write for n1 large enough:

|
n1+n2∑
n=n1

an(f)hn(x)| ≤

(
n1+n2∑
n=n1

n7/6a2
n(f)h2

n(x)

n1+n2∑
n=n1

n−7/6

)1/2

≤ C
n1+n2∑
n=n1

na2
n(f).

Thus, the series for f converges uniformly, f is continuous and satisfies for all
x, f(x) =

∑
n≥0 an(f)hn(x). Therefore, we have:

f(y)− f(x) =
∑
n≥0

an(f)

� y

x

h′n(t)dt

= a0(f)(h0((x)− h0(y)) + 2−1/2
∑
n≥1

an(f)

� y

x

(
√
n hn−1(t)−

√
n+ 1hn+1(t))dt

Set SN (t) =
∑N
n=1 an(f)(

√
n hn−1(t)−

√
n+ 1hn+1(t)) and S(t) =

∑
n≥1 an(f)(

√
n hn−1(t)−√

n+ 1hn+1(t)). The function S(t) is well defined by assumption and SN con-
verges to S in L2(R). Therefore, as N tends to infinity,

� y
x
|SN (t)− S(t)|dt ≤√

y − x‖SN − S‖ → 0. We have proved that

f(y)− f(x) = a0(f)

� y

x

h′0(t)dt+

� y

x

S(t)dt.

Thus, f is absolutely continuous and f ′ = S belongs to L2(R). Analogously,
we prove that xf belongs to L2(R). Thus, A+f,A−f belong to L2(R).
Next, by the same reasoning as above, using that

∑
n n

2an(f) < +∞ the series
for f ′(t) = S(t) is uniformly convergent and f ′(t) is continuous. We proceed
analogously to prove that f ′ is absolutely continuous and that xf ′ and f ′′

belong to L2(R). Iterating the reasoning, we obtain that f admits continuous
derivatives up to s − 1 and that f (s−1) is absolutely continuous and that
f, f ′, . . . , f (s), xk−mf (k−m),m = 0, . . . , s − 1 all belong to L2(R). This shows
that, for j1, . . . , jm ∈ {−,+}, 1 ≤ m ≤ s, Aj1 . . . Ajmf belongs to L2(R). 2

7.5 Proof of Proposition 7

Let fµ be the density N (µ, 1), then

aj(fµ) = 〈fµ, hj〉 =

�
R
hj(x)e−

1
2 (x−µ)2 dx√

2π
=

cj√
2π

�
R
Hj(x)e−

x2

2 −
1
2 (x−µ)2dx

=
cj√
2π
e−

µ2

4

�
R
Hj(x)e−(x−µ2 )

2

dx =
cj√
2π
e−

µ2

4

�
R
Hj(v +

µ

2
)e−v

2

dv.
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Now we use the following formula, obtained by the Talyor formula and the
recurrence relation H ′n = 2nHn−1:

Hj(x+ y) =

n∑
k=0

(
n
k

)
(2x)kHn−k(y).

This yields

aj(fµ) =
cj√
2π
e−

µ2

4

j∑
k=0

(
j
k

)
µj−k

�
R
Hk(v)e−v

2

dv

and
�
RHk(v)e−v

2

dv = (1/(ckc0))〈hk, h0〉 = 0 if k 6= 0. Therefore we get

aj(fµ) =
cj√
2π

µj

c20
e−

µ2

4 =
µj√

2π1/22jj!
e−

µ2

4 . (36)

Then

‖fµ − (fµ)m‖2 =
∑
j≥m

a2
j (fµ) =

e−µ
2/2

2
√
π

∑
j≥m

µ2j

2jj!
=
e−µ

2/2

2
√
π

∑
j≥0

µ2(j+m)

2j+m(j +m)!

≤ 1

2
√
πm!

(
µ2

2

)m
as

1

(m+ j)!
≤ 1

m!j!
.

Using Stirling’s formula, we get

‖fµ − (fµ)m‖2 .
1

2π
√

2m
exp

(
−m log(

2m

eµ2
)

)
.

Thereforemopt = [(log(n)/ log(2))+eµ2] yields ‖fµ−(fµ)mopt
‖2 . 1/(n

√
log(n)).

Combining with Proposition 1, we obtain the first result.
To prove the second result, we use the following proposition.

Proposition 12 Recall that aj(f) =
�
f(x)hj(x)dx. For j ≥ 0, we have:

a2j(fσ) = c2j

(
1

1 + σ2

)1/2
(2j)!

j!

(
σ2 − 1

σ2 + 1

)j
, a2j+1(fσ) = 0.

For n ≥ p, j ≥ 0,

|a2j(fp,σ)| ≤ C(p, σ2)c2j
(2j)!

(j − p)!

∣∣∣∣σ2 − 1

σ2 + 1

∣∣∣∣j−p , a2j+1(fp,σ) = 0.

We can now deduce the risk of f̂m when f = fσ. We have:

a2
2j(fσ) ∼ π−1j−1/2 1

1 + σ2

(
σ2 − 1

σ2 + 1

)2j

. (37)
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Therefore, setting λ = log

[(
σ2+1
σ2−1

)2
]

yields ‖f−fm‖2 . 1√
m

exp (−λm). Com-

bining with Proposition 1, we obtain E(‖f̂m−f‖2) . 1√
m

exp (−λm)+n−1
√
m,

and thus Proposition 7. 2

Proof of Proposition 12. We first compute the coefficients of the centered
Gaussian density. As Hermite polynomials of odd index are odd, the coefficients
with odd index are null. We compute the coefficients with even index. Let

σ̄2 = (1 + σ−2)−1 =
σ2

1 + σ2
. (38)

Note that if 2σ̄2 = 1, i.e. σ2 = 1, the coefficients are null except for n = 0.
We have�

x2pfσ̄(x)dx = C2pσ̄
2p with C2p = 3× 5× 7× . . .× (2p− 1) =

(2p)!

2pp!
.

Using that (see e.g. Lebedev (1972), formula (4.9.2) p.60)

H2j(x) =

j∑
k=0

(−1)k(2j)!

k!(2j − 2k)!
(2x)2j−2k,

we obtain:

a2j(fσ) = (2j)!c2j
σ̄

σ

j∑
k=0

(−1)k

k!(2j − 2k)!
22j−2kC2(j−k)σ̄

2(j−k) = c2j
σ̄

σ

(2j)!

j!
(2σ̄2 − 1)j

= c2j

(
1

1 + σ2

)1/2
(2j)!

j!

(
σ2 − 1

σ2 + 1

)j
.

Note that |(σ2 − 1)/(1 + σ2)| < 1.
Analogously,

a2j(fp,σ) =
(2j)!

j!
c2j

( σ̄
σ

)2p+1 j∑
k=0

(−1)kj! 22j−2kσ̄2(j−k)

k!(2j − 2k)!C2p
C2(j−k+p)

=
(2j)!

j!
c2j

( σ̄
σ

)2p+1 j∑
k=0

(−1)kj!

k!(j − k)!
(2σ̄2)j−k

C2(j−k+p)

C2(j−k)C2p

=
(2j)!

j!
c2j

( σ̄
σ

)2p+1 j∑
m=0

(−1)j−mj!

m!(j −m)!
(2σ̄2)m

C2(m+p)

C2mC2p
.

Now, we use the following result which is proved in Chaleyat-Maurel and
Genon-Catalot (2006, Lemma 3.1, p.1459):

C2(m+p)

C2mC2p
=

p∑
r=0

m(m− 1) . . . (m− r + 1)

(
p

r

)
2r

C2r
.
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After some computations, we get:

a2j(fp,σ) =
(2j)!

(j − p)!
c2j

( σ̄
σ

)2p+1

(2σ̄2 − 1)j−pSp where

Sp =

p∑
r=0

(n− p)! p! 2r

(n− r)! j!(p− r)!C2r
(2σ̄2)r(2σ̄2 − 1)p−r.

Therefore,
|Sp| ≤ c(p)

(
2σ̄2 + |2σ̄2 − 1|

)p
,

which allows to bound |a2j(fp,σ)| and ends the proof. 2

7.6 Proof of Proposition 8

Let f ∈ Fsub(C). We have from (36),

aj(f) = 〈hj , f〉 = E(hj(X +M)) where X ∼ N (0, 1),M ∼ Π, and X,M independent,

= E (E(hj(X +M)|M)) =
1√

2π1/22jj!
E(M je−

M2

4 ).

Therefore

2
√
π
∑
j≥m

a2
j (f) =

∑
j≥m

1

j!2j
E2(M je−

M2

4 ) ≤
∑
j≥m

1

j!2j
E(M2je−

M2

2 1M2/2≤λm) + E(1M2/2>λm)

Let us look at the first term of the sum above.

E

∑
j≥m

M2j

j!2j
e−

M2

2 1M2/2≤λm

 = E

(M2

2

)m
e−

M2

2

∑
j≥0

1

(j +m)!

(
M2

2

)j
1M2/2≤λm


≤ E


(
M2

2

)m
m!

e−
M2

2

∑
j≥0

1

j!

(
M2

2

)j
1M2/2≤λm

 = E


(
M2

2

)m
m!

1M2/2≤λm


where we used that 1/(j + m)! ≤ 1/(j! m!). Now, gathering the two terms
again, we get∑
j≥m

a2
j (f) ≤ 1

2π1/2

(
(λm)m

m!
+Π(|u| >

√
2λm)

)
≤ 1

2π1/2

(
(λm)m

m!
+ Ce−2λm/C

)
.

By Stirling’s formula

(λm)m

m!
∼ (λm)m/(

√
2πm(m/e)m) = (λe)m/

√
2πm.

We choose λ = 1/(2e), thus the decrease of the square bias term is exponen-
tially fast. The choice mopt = [a log(n)] with a = eC + 1/ log(2). Combining

this with Proposition 1 gives the rate
√

log(n)/n for the L2-risk of the esti-
mator. 2
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7.7 Proof of Proposition 9

From Proposition 12 and formula (37), we have∑
j≥m

a2
2j(fσ) .

1

π

1

1 + σ2

∑
j≥m

1√
j

(
σ2 − 1

σ2 + 1

)2j

.

Now for f ∈ G(v), we get

‖f − f2m‖2 .
1

π

∑
j≥m

1√
j

� v

1/v

1

1 + u2

(
u2 − 1

u2 + 1

)2j

dΠ(u)

≤ 1

π

1√
m

� v

1/v

1 + u2

4u2

(
u2 − 1

u2 + 1

)2m

dΠ(u) ≤ 1

4π

1√
m

(
1 + v2

)
ρm0

where ρ0 is given by (16). Therefore choosing mopt = [log(n)/| log(ρ0)|] gives

a squared bias of order 1/(n
√

log(n)) and a variance of order
√

log(n)/n, thus

a rate of order
√

log(n)/n.

7.8 Proofs of Proposition 11

Using notation (21), we have:

E(‖ĝm − g‖2) = E(‖ĝm − Eĝm‖2) + ‖E(ĝm)− gm‖2) + ‖gm − g‖2

=

m−1∑
j=0

Var(âj) +

m−1∑
j=0

R2(hj) + ‖gm − g‖2.

First,
∑m−1
j=0 R2(hj) = supt∈Sm,‖t‖=1R

2(t) and the bound for this term follows
from the following Lemma:

Lemma 1 Let t ∈ Sm and assume that (H1) and (H2) hold.
1) If C :=

�
u2|g∗(u)|2du < +∞, then

|R(t)| ≤ ∆‖t‖‖g‖1C1/2/
√

2π.

2) Otherwise:

|R(t)| ≤ 2
√

2‖g‖1‖g‖‖t‖∆
√
m. (39)

On the other hand, we have:

m−1∑
j=0

Var(âj) =
1

n

m−1∑
j=0

Var

(
1

∆
Z1hj(Z1)

)
≤ 1

n∆
Vm.

We need to bound z2h2
j (z). To that aim, we use relation (26) for hj . We bound

ξj(x) given by (27) as in the proof of Proposition 1 by: |ξj(x)|2 ≤ |x|5/10, and
using (28) we obtain for j ≥ 1,

z2h2
j (z) ≤

2c22
π

z2

√
j

+
2

5

|z|7

2j + 1
.
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As a consequence

1

∆
E[Z2

1h
2
j (Z1)] ≤ 2c22

E(Z2
1 )

∆
+

2

5(2j + 1)

E(|Z1|7)

∆
.

The bound on Vm given in (23) follows. 2

Proof of Lemma 1. For case 1), we refer to Comte and Genon-Catalot (2009),
Proposition 4.1 p.4099.
For case 2), we have (see (21) and (18)) for t ∈ Sm,

R(t) =
1

∆
EZ1t(Z1)− 〈t, g〉 =

�
t(z)µ∆(dz)− 〈t, g〉 =

�
t(z)Eg(z − Z1)dz − 〈t, g〉

= E(

�
t(z + Z1)− t(z))g(z)dz = E

(
Z1

� 1

0

du(

�
g(z)t′(z + uZ1)dz)

)
.

Thus,
|R(t)| ≤ E|Z1|‖g‖‖t′‖.

Under (17), (H1), we have

E(|Z1|) ≤ ∆
�
|x|n(x)dx = ∆‖g‖1, (40)

(see Proposition 3.2 p.83 in Belomestny et al., 2015). Now, by Lemma 2 below,
‖t′‖ ≤

√
2m‖t‖ so the proof of Lemma 1 is complete. 2

Lemma 2 ∀m ≥ 0, ∀t ∈ Sm, ‖t′‖2 ≤ 2m‖t‖2.

Proof of Lemma 2. A function t ∈ Sm can be written t =
∑m−1
j=0 ajhj . Thus,

t′ =
∑m−1
j=0 ajh

′
j . We use h′0(x) = −h1(x)/

√
2 and Formula (35) to obtain:

√
2t′(x) = −a0h1(x) +

m−1∑
j=1

aj(
√
jhj−1(x)−

√
j + 1 hj+1(x))

= a1h0(x) + (
√

2a2 − a0)h1(x) +

m−2∑
j=2

(
√
j + 1aj+1 −

√
jaj−1)hj(x)

−am−2

√
m− 1hm−1(x)− am−1

√
mhm(x).

This implies, for m ≥ 2

‖t′‖2 =
1

2

a2
1 + (

√
2a2 − a0)2 +

m−2∑
j=2

(
√
j + 1aj+1 −

√
jaj−1)2 + (m− 1)a2

m−2 +ma2
m−1


≤ 1

2

(
a2

1 + 2a2
0 + 4a2

2)
)

+
m

2

2

m−2∑
j=2

(a2
j+1 + a2

j−1) + a2
m−2 + a2

m−1


≤ 2m

m−1∑
j=0

a2
j = 2m‖t‖2.

For m = 0, 1, the same inequality holds obviously. 2
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