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Abstract. In this paper, we propose a new strategy of estimation for the survival function
S, associated to a survival time subject to interval censoring case 2. Our method is based on
a least squares contrast of regression type with parameters corresponding to the coefficients of
the development of S on an orthonormal basis. We obtain a collection of projection estimators
where the dimension of the projection space has to be adequately chosen via a model selection
procedure. For compactly supported bases, we obtain adaptive results leading to general non-
parametric rates. However, our results can be used for non compactly supported bases, a true
novelty in regression setting, and we use specifically the Laguerre basis which is R+-supported
and thus well suited when nonnegative random variables are involved in the model. Simulation
results comparing our proposal with previous strategies show that it works well in a very general
context. A real dataset is considered to illustrate the methodology.
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1. Introduction

Let X1 be a survival time of interest (the time at which the event of interest occurs) with
unknown survival function S, S(x) = P(X1 > x). Our aim is to propose a nonparametric
estimator of S in a setting where X1 is not observed, but subject to interval censoring case 2.
To be more precise, the observations are (Li, Ui, δi)1≤i≤n with

(1) δi =

 −1 if Xi ≤ Li
0 if Li < Xi ≤ Ui
1 if Xi > Ui

We assume that the triples (Li, Ui, δi)1≤i≤n are i.i.d. and that the (Li, Ui) are independent of the
Xi. Note that interval censoring case 1, also called current status data, corresponds to Ui = Li
(or Li = −∞), so that the δis have only two modalities.

We are aware of previous proposals on the topic. First, Turnbull (1976) introduced an iterative
procedure in order to obtain a Non Parametric Maximum Likelihood Estimator (NPMLE) of
the survival function under different censoring and truncation types. Later on, Groeneboom and
Wellner (1992) introduced the iterative convex minorant algorithm based on isotonic regression
theory. Groeneboom (1996) summarizes this as follows: “If one wants to estimate the distribution
function by the nonparametric maximum likelihood estimator (NPMLE), one has to use methods
from isotonic regression theory and convex optimization to even compute the estimator in an
efficient way”, see p.69 therein; see also the chapter by Wellner (1995). In Groeneboom et al.

(2010) it was proved that the resulting estimator has the rate (n log(n))−1/3 for interval-censoring
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case 1. The authors also introduced two smooth estimators: the maximum smoothed likelihood
estimator (MSLE), a general likelihood-based M-estimator that will turn out to be smooth
automatically and the smoothed maximum likelihood estimator (SMLE), obtained by convolving
the discrete NPMLE. For interval censoring case 1, they proved that these estimators reach the
faster rate of convergence n−2/5. Now, the factor 2/5 in these rates should be read as α/(2α+1)
for α = 2, α being the regularity of the function under estimation. For interval-censoring case
2, the NPMLE and SMLE estimators were studied in Groeneboom and Ketelaars (2011) (see
also Geskus and Groeneboom (1999)). For α = 1, it was conjectured that they reach the

rate n−1/3 in the so-called separated case where Li and Ui cannot become arbitrarily close.
In the non-separated case (where the density of (Li, Ui) is positive on the diagonal), it was

conjectured that these estimators achieve the improved rate (n log(n))−1/3. In Birgé (1999) an
explicit histogram estimator was built for interval censoring case 2 which was proved to reach
the rates (n log(n))−1/3 and n−1/3 in the non-separated ans separated cases in Birgé (1999) and
in Groeneboom and Ketelaars (2011).

Other types of smooth estimators have been proposed for interval censored data. For interval
censoring case 1, Brunel and Comte (2009) proposed two adaptive estimators, one of quotient
type and another one of regression type, both using projection methods. They proved the rate
n−α/(2α+1) for their estimators. Note that the regression property was also exploited in similar
context by Yang (2000). For interval censored data case 2, spline methods were introduced
in Kooperberg and Stone (1992) and a smooth alternative to the NPMLE was proposed by
introducing a log-concave constraint in the estimation procedure in Anderson-Bergman and Yu
(2016). However, no theoretical rates were provided for these last two estimators.

In the present work, we propose a least squares contrast minimization method, in the spirit
of Brunel and Comte (2009). First, we derive two naive procedures, one which relies on
the regression equation E[1 − 1δi=−1|Li] = S(Li), and another one based on its counterpart
E[1δi=1|Ui] = S(Ui). We briefly discuss their obvious drawbacks and explain how we elaborate
a method taking both relations into account. We finally define a mixed contrast leading to the
main estimator of the paper. We detail in what sense it improves the estimation.

We also emphasize that the regression method presented here is simple to implement since it
only requires the inversion of an easy-to-compute matrix involved in the definition of the coeffi-
cients of the estimator; the matrix being symmetric positive-definite, the inversion algorithm is
fast. Our results look different from most previous ones because our aim is different: we do not
provide pointwise decomposition of the error nor limiting distribution, but global integrated risk
on a support which can be compact or not. The density weighting our risk avoids the distinction
between separated and non separated cases, and our simulations show that the method is robust
to both. Note that, similarly to Brunel and Comte (2009), we obtain a final estimator of the
survival function taking values between 1 and 0 and a posteriori modified to be decreasing thanks
to the procedure described in Chernozhukov et al. (2009), which is conveniently associated with
a R-package Rearrangement. The need for such final modification may seem a drawback, but
it is known that the risk bound proved for the initial estimator still holds true for the final one.
This is a quite deserving alternative to isotonic regression techniques. Lastly, we provide and
study a model selection procedure that drives to an automatic squared-bias variance tradeoff.
Our estimator does not win the supplementary logarithm in the non-separated case but its rate,
under additional assumptions discussed in Section 2.6, and in particular if the function to es-
timate is regular, automatically adapts to its regularity index whatever the hypothesis on the
joint distribution of (Li, Ui).

The bases used in Brunel and Comte (2009) are compactly supported. This requires to define
the domain of estimation at the very beginning of the procedure. This step is avoided by using
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the Laguerre basis, which is R+-supported. However, this non-compact feature is excluded from
the theoretical framework of Brunel and Comte (2009), as well as from most other papers on
nonparametric least squares regression (see e.g. Baraud, 2002). Therefore, we borrow elements
from a recent work by Comte and Genon-Catalot (2019), to include this possibility in our results.

The plan of the paper is the following. Section 2 describes the bases and projection spaces and
explains the way estimators are built. Non asymptotic risk bounds are then proved, which allow
to discuss asymptotic rates in a rather general setting. Section 3 develops the model selection
strategy and the associated risk bounds. Then we show, in thorough simulation experiments
presented in Section 4 that our estimator works well, especially when using the Laguerre basis, in
comparison with the NPMLE implemented in the prodlim R package, the log-concave estimator
proposed by Anderson-Bergman and Yu (2016) in the logconPH R package and the smoothed
maximum likelihood estimator (SMLE) obtained by convolving the NPMLE with a smoothing
kernel as in Groeneboom and Ketelaars (2011). Real interval censored data on HIV infections
are analyzed in Section 5 using our estimator. Most proofs are gathered in Section 6.

2. Definition and study of projection estimators

We first present the different bases associated with projection estimators defined in the sequel.

2.1. Projection spaces. Consider Σm = Σm(I) = span(ϕ0, . . . , ϕm−1) where (ϕj)0≤j≤m−1

constitutes an orthonormal basis 〈ϕj , ϕk〉 = δj,k with respect to the scalar product 〈u, v〉 =∫
I u(x)v(x)dx. The domain I is the support of the basis and can be an interval [a, b] which

shall be taken equal to [0, 1] for simplicity in the examples below. We will also consider the case
where I = R+ which can be very convenient in this type of problems.

The examples of bases we have in mind are the following.

• Histogram basis with I = [0, 1], defined by hj(x) =
√
m1[j/m,(j+1)/m[ for j = 0, . . . ,m−1.

They can be generalized to piecewise polynomials with given degree r, by rescaling
Q0, . . . , Qr the Legendre basis on each sub-interval [j/m, (j + 1)/m[, j = 0, . . . ,m− 1.
• Trigonometric basis, I = [0, 1], t0(x) = 1[0,1](x), t2j−1(x) =

√
2 cos(2πjx)1[0,1](x),

t2j(x) =
√

2 sin(2πjx)1[0,1](x), for 2j ≤ m − 1. Generally, m is chosen odd and in

this case j = 1, . . . , m−1
2 .

• For the Laguerre basis associated with I = R+, we define the Laguerre polynomials (Pj)
and the Laguerre functions (`j):

(2) Pj(x) =

j∑
k=0

(−1)k
(
j

k

)
xk

k!
, `j(x) =

√
2Pj(2x)e−x1x≥0, j ≥ 0.

The collection (`j)j≥0 is a complete orthonormal system on L2(R+), such that (see

Abramowitz and Stegun, 1964) ∀j ≥ 0, ∀x ∈ R+, |`j(x)| ≤
√

2. A function f ∈ L2(R+)
can be developed f on the Laguerre basis, f =

∑
j≥0 aj(f)`j , aj(f) = 〈f, `j〉.

The general notation for all these bases is (ϕj)j . They all satisfy

(3) ∀m ∈ N \ {0}, sup
x∈I

m−1∑
j=0

ϕ2
j (x) := ‖

m−1∑
j=0

ϕ2
j‖∞ ≤ c2

ϕm,

for some constant cϕ > 0 depending on the basis only. For the histogram basis, and the
trigonometric basis with odd m, we have cϕ = 1 and for the Laguerre basis, c2

ϕ = 2.
The first two bases are compactly supported, and the last one is not. Most regression results

hold with compactly supported bases, a case which is generally exclusively considered. In this
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work, we provide results in the setting of non compactly supported bases, and show empirically
that the Laguerre basis is very relevant for survival function estimation. It has the advantage
that we do not have to choose an estimation support for the basis and thus for the computation
of the coefficients of the function in the basis.

Moreover, we mention that we estimate the survival function rather than the cumulative
distribution function because we need the function under estimation to be possibly square-
integrable on R+, in order to use the Laguerre basis. Note that survival functions in all classical
models are square-integrable on R+. For instance, S(x) = Pλ,k(x)e−λx1R+(x) for a γ(k, λ)

density, Pλ,k being a polynomial depending on λ with degree k − 1, S(x) = e−(x/λ)k1R+(x)

for a Weibull density with parameters k, λ, S(x) = (xm/x)k1[xm,+∞[(x) for xm > 0, k > 1/2

for a Pareto density, the Gompertz-Makeham density S(x) = exp{−λx − α
β (eβx − 1)}1x≥0, for

α, β, λ > 0, are square integrable.

2.2. Notation. Let (Li, Ui, δi)1≤i≤n be a n-sample from model (1). We denote by fU and fL
the densities of U1 and L1 and by f(L,U) the joint density of (L1, U1). We denote by (ϕj)0≤j≤m−1

an orthonormal L2(I, dx) basis as described in section 2.1.
We also use all along the paper the following notation. For any measurable I-supported

functions ψ, ψ̃, we define the weighted L2(I, fZ(x)dx)-norms and scalar products, for Z = L,U ,

(4) ‖ψ‖2Z =

∫
ψ2(x)fZ(x)dx, and 〈ψ, ψ̃〉Z =

∫
ψ(x)ψ̃(x)fZ(x)dx,

as soon as ‖ψ‖2Z < +∞, ‖ψ̃‖2Z < +∞, and their empirical counterparts:

(5) ‖ψ‖2n,Z =
1

n

n∑
i=1

ψ2(Zi), 〈ψ, ψ̃〉n,Z =
1

n

n∑
i=1

ψ(Zi)ψ̃(Zi).

Clearly, E(‖ψ‖2n,Z) = ‖ψ‖2Z , and E(〈ψ, ψ̃〉n,Z) = 〈ψ, ψ̃〉Z for Z = L,U .
As classical in regression setting, the following matrices and vectors are useful:

(6)

{
Φ

(L)
m = (ϕj(Li))1≤i≤n,0≤j≤m−1, ~δ

(L) = (1− 1δi=−1)1≤i≤n = (1− 1Xi≤Li)1≤i≤n ,

Φ
(U)
m = (ϕj(Ui))1≤i≤n,0≤j≤m−1, ~δ

(U) = (1δi=1)1≤i≤n = (1− 1Xi≤Ui)1≤i≤n ,

and

(7) Ψm,Z = (〈ϕj , ϕk〉Z)1≤j,k≤m , Ψ̂m,Z = (〈ϕj , ϕk〉n,Z) for Z = U,L.

We have Ψm,Z = E(Ψ̂m,Z) for Z = L,U and

Ψ̂m,L =
1

n
tΦ(L)
m Φ(L)

m , Ψ̂m,U =
1

n
tΦ(U)
m Φ(U)

m .

In the sequel, the norm associated to matrices is the operator norm ‖A‖op defined as the
square-root of the largest eigenvalue of the matrix tAA (or A tA). If A is a square symmetric
and nonnegative matrix (i.e. for all vector ~x, t~x Ax ≥ 0), then ‖A‖op is simply the largest of
the eigenvalues of A, which are all nonnegative.

In particular, Ψm,Z and Ψ̂m,Z are symmetric nonnegative matrices. Indeed, for Z = L,U ,

we have t~a Ψm,Z~a = ‖t‖2Z ≥ 0 where t =
∑m−1

j=0 ajϕj , and t~a = (a0, . . . , am−1); analogously,
t~a Ψ̂m,Z~a = ‖t‖2n,Z ≥ 0.
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2.3. Two naive regression estimators. The first idea is to extend the strategy developed in
Brunel and Comte (2009) in presence of case 1 interval censoring. Noticing that

(8) E(1− 1δi=−1|Li) = S(Li)

we can define

Ŝ(L)
m = arg min

t∈Σm
γ(L)
n (t), γ(L)

n (t) =
1

n

n∑
i=1

t2(Li)−
2

n

n∑
i=1

(1− 1δi=−1)t(Li).

This corresponds to the least squares estimator associated with the regression model (8), where
S would be replaced by Sm, the projection of S on Σm and the m explanatory variables would
be (ϕj(Li))1≤i≤n for j = 0, . . . ,m − 1. To understand why the estimator may be suitable, just
compute the expectation of the criterion (which is also its almost sure limit when n tends to
infinity). We have

E(γ(L)
n (t)) = E[t2(L1)]− 2E[E((1− 1X1≤L1)|L1)t(L1)] =

∫
I
t2(x)fL(x)dx− 2E[S(L1)t(L1)]

=

∫
I
(t(x)− S(x))2fL(x)dx−

∫
I
S2(x)fL(x)dx.

Clearly, the resulting term is minimal for t = S and thus, the minimizer of γ
(L)
n is likely to

asymptotically minimize ‖t− S‖2L and to be near of S.
Similarly, relying on the equality E(1δi=1|Ui) = S(Ui), we can set

Ŝ(U)
m = arg min

t∈Σm
γ(U)
n (t), γ(U)

n (t) =
1

n

n∑
i=1

t2(Ui)−
2

n

n∑
i=1

1δi=1t(Ui).

Standard computations analogous to those in linear regression models yield to the following for-

mula, for ~̂a
(Z)
m = t(â

(Z)
0 , . . . , â

(Z)
m−1), Z = L,U , the coordinates of Ŝ

(Z)
m in the basis (ϕj)0≤j≤m−1,

(9) Ŝ(Z)
m (x) =

m−1∑
j=0

â
(Z)
j ϕj(x) with ~̂a(Z)

m =
(
tΦ(Z)
m Φ(Z)

m

)−1
tΦ(Z)
m
~δ(Z)

where Φ
(Z)
m , ~δ(Z) are defined in (6), provided that tΦ

(Z)
m Φ

(Z)
m is invertible. Note that, if the

bases are compactly supported, their supports IZ for Z = L,U depend on the support of the
Li’s denoted by supp(L) or the one of the Ui’s denoted by supp(U): they are chosen such that
IZ ⊂ supp(Z) for Z = L,U . The estimation spaces are thus Σm(IZ), and the basis should
inherit from the same index, but it is omitted for the sake of readability. For the Laguerre basis,
the support of the basis is fixed, IZ = R+.

We can prove the following results, for the two estimators Ŝ
(L)
m and Ŝ

(U)
m .

Proposition 1. For Z = L,U , assume that tΦ
(Z)
m Φ

(Z)
m is invertible almost surely. Let Ŝ

(Z)
m be

the estimator of S on IZ defined by coefficients ~̂a
(Z)
m in the basis ϕ0, . . . , ϕm−1 as given by (9).

Then denoting by SI = S1I , we have

E(‖Ŝ(Z)
m − SIZ‖

2
n,Z) ≤ inf

t∈Σm(IZ)
‖t− SIZ‖

2
Z +

1

4

m

n
.

Remark 1. Note that
∫
IZ
S2(x)fZ(x)dx < +∞, and that inft∈Σm(IZ) ‖t−SIZ‖2Z = ‖S(Z)

m −SIZ‖2Z
where S

(Z)
m is the orthogonal projection of S on Σm(IZ) with respect to the scalar product 〈 · , · 〉Z

where Z = L,U . If moreover S is square-integrable on IZ ∩ supp(Z) and fL and fU are upper



6 O. BOUAZIZ, E. BRUNEL & F. COMTE

bounded, by f
(L)
max and f

(U)
max respectively, we can recover a standard (non-weighted) L2-norm on

IZ ∩ supp(Z) and get, for the bias term

inf
t∈Σm

‖t− SIZ‖
2
Z ≤ f (Z)

max inf
t∈Σm

‖(t− SIZ )1supp(Z)‖2 ≤ f (Z)
max‖S(Z)

m − SIZ‖
2, Z = L,U,

where S
(Z)
m is the standard orthogonal projection of SIZ on Σm(IZ), S

(Z)
m =

∑m−1
j=0 〈S, ϕj〉ϕj .

Let us also briefly discuss about the invertibility assumption. First, in the case of the his-

togram basis, the matrix tΦ
(Z)
m Φ

(Z)
m is diagonal (indeed in that case, ϕjϕk ≡ 0 for j 6= k). For

IZ = [0, 1], it is thus invertible if no bin [j/m, (j+ 1)/m[ is empty, and then explicit formula for
the coefficients is available (see Section 2.7). Now, if a bin is empty, the estimator still can be
defined by choosing any value on this interval: this will not have any impact on the empirical
norm of the estimator, which relies on observed values only. In the case of the Laguerre basis,

it is easy to see that the matrix tΦ
(Z)
m Φ

(Z)
m is a.s. invertible, as soon as m ≥ n.

Moreover, for all bases, Ψ̂m,Z tends to Ψm,Z almost surely, for Z = L,U , when n tends to

infinity. We noticed that t~a Ψm,Z~a = ‖t‖2Z where t =
∑m−1

j=0 ajϕj , for Z = L,U . Assume that IZ

is compact and fZ is lower bounded on IZ by f
(Z)
0 . Then, for t 6= 0, ‖t‖2Z ≥ f

(Z)
0 ‖t‖2 > 0, Z =

L,U . Therefore, Ψm,Z is invertible, which heuristically means that tΦ
(Z)
m Φ

(Z)
m is “asymptotically”

invertible.
Now, by using this strategy, we can see that we take separately two parts of the available

information while we would like to take it completely. Moreover, the estimators will clearly
perform well, but only either on the support of L or on the one of U , and not on both, see
Figure 1.

2.4. Improved estimator. Here, we explain our further investigations in order to obtain an
estimator on a larger interval, in better accordance with all available data.

2.4.1. First step: estimator of differences. For T (x, y) =
∑

1≤j,k≤m aj,kϕj(x)ϕk(y) belonging to

Σm ⊗ Σm, we may also consider, as E(1δi=0|Ui, Li) = S(Li)− S(Ui), the contrast

1

n

n∑
i=1

T 2(Li, Ui)−
2

n

n∑
i=1

1δi=0T (Li, Ui).

In that way, we would take all the observations into account. However, the resulting estimator
would provide an estimator of the bi-variate function G(x, y) = S(x) − S(y), x < y, without
taking its specific form into account: the underlying function is S(.) and it is univariate. However,
due to the curse of dimensionality, the rate associated to the bidimensional problem would be
bad, or at least worse than what we can expect for a univariate function. Now inserting in
addition the specific form of G , we obtain

γ̃n(t) =
1

n

n∑
i=1

[t(Li)− t(Ui)]2 −
2

n

n∑
i=1

1δi=0[t(Li)− t(Ui)].

This contrast has expectation

E[γ̃n(t)] =

∫∫
[t(x)− t(y)−(S(x)−S(y))]2f(L,U)(x, y)dxdy−

∫∫
(S(x)−S(y))2f(L,U)(x, y)dxdy.
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Here, we estimate m coefficients, which may be relevant to recover S, except that the function
is determined up to, at least, an additive constant. Now, the expectation can be re-written:

E[γ̃n(t)] = ‖t− S‖2L + ‖t− S‖2U − 2

∫∫
(t− S)(x)(t− S)(y)f(L,U)(x, y)dxdy

−
∫∫

(S(x)− S(y))2f(L,U)(x, y)dxdy.

The first two right-hand-side terms (‖t−SI‖2L + ‖t−SI‖2U ) correspond to norms that we intend
to simultaneously minimize, with I ⊇ IL ∪ IU . The last term does not depend on the function t
and can be omitted. This is why we tried to kill the third term, of cross-product type. Noticing
that ∫∫

(t− S)(x)(t− S)(y)f(L,U)(x, y)dxdy = E[(t− S)(L1)(t− S)(U1)]

and that, by conditioning by (Ui, Li), we have

E[(t(Ui)− 1δi=1)(t(Li)− 1δi 6=−1)] = E[(t(Ui)− S(Ui))(t(Li)− S(Li))] + E[S(Ui)(1− S(Li))]︸ ︷︷ ︸
independent of function t

we obtain an adequate term to add to the previous contrast.

2.4.2. New estimator. Thus, we corrected the contrast by replacing γ̃n(t) by

1

n

n∑
i=1

[t(Li)− t(Ui)]2 −
2

n

n∑
i=1

1δi=0[t(Li)− t(Ui)] +
2

n

n∑
i=1

(t(Ui)− 1δi=1)(t(Li)− 1δi 6=−1).

This formula can be rewritten

‖t‖2n,U + ‖t‖2n,L −
2

n

n∑
i=1

1δi=1t(Ui)−
2

n

n∑
i=1

1δi 6=−1t(Li) +
2

n

n∑
i=1

1δi=1.

This is how we obtained our main contrast:

(10) γn(t) = ‖t‖2n,U + ‖t‖2n,L −
2

n

n∑
i=1

1δi=1t(Ui)−
2

n

n∑
i=1

1δi 6=−1t(Li).

where ‖t‖2n,U and ‖t‖2n,L are defined by (5). We note that this contrast appears as the sum of
the two previous ones and we straightforwardly obtain the following result.

Proposition 2. Using the norms defined in (4) and (5), we have

E(γn(t)) = ‖t− S‖2U + ‖t− S‖2L − ‖S‖2U − ‖S‖2L.

We set

‖t− S‖2U + ‖t− S‖2L =

∫
(t(x)− S(x))2(fL(x) + fU (x))dx := ‖t− S‖2L+U .

Thus we define our final estimator by

(11) Ŝm = arg min
t∈Σm(I)

γn(t).

Assuming that tΦ
(L)
m Φ

(L)
m + tΦ

(U)
m Φ

(U)
m is invertible, then the estimator can be computed as

Ŝm =
m∑
j=1

âjϕj ~̂am =

 â0
...

âm−1

 =
[
tΦ(L)
m Φ(L)

m + tΦ(U)
m Φ(U)

m

]−1 (
tΦ(L)
m
~δ(L) + tΦ(U)

m
~δ(U)

)
,
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where Φ
(Z)
m , ~δ(Z) are defined in (6). This formula shows that the estimator uses all the data

and is not the sum of the first two estimators. Note that tΦ
(L)
m Φ

(L)
m + tΦ

(U)
m Φ

(U)
m is in particular

invertible when both tΦ
(L)
m Φ

(L)
m and tΦ

(U)
m Φ

(U)
m are, and this has already been discussed (and

holds true for Laguerre basis and m ≤ n).
The study of the estimator is more tedious, but it is interesting to see that we can prove the

following result.

Proposition 3. Assume that tΦ
(L)
m Φ

(L)
m + tΦ

(U)
m Φ

(U)
m is invertible almost surely. Then, for any

m ∈ {1, . . . , n}, we have

E
(
‖Ŝm − SI‖2n,U + ‖Ŝm − SI‖2n,L

)
≤ inf

t∈Σm(I)

(
‖t− SI‖2L+U

)
+

5

2

m

n
.

We already noticed that
∫
I S

2(x)(fL(x) + fU (x))dx < +∞. Note that the bias is now

inf
t∈Σm(I)

(
‖t− SI‖2U + ‖t− SI‖2L

)
=

∫
(Sm(x)− SI(x))2(fL(x) + fU (x))dx

where Sm is the orthogonal projection of S on Σm(I) with respect to the scalar product 〈., .〉L+
〈., .〉U . Following Remark 1, if fL and fU are bounded by fmax, we get

inf
t∈Σm(I)

(
‖t− SI‖2U + ‖t− SI‖2L

)
≤ 2fmax‖Sm − SI‖2.

Proposition 3 shows that the risk of the estimator Ŝm is bounded by a squared bias term
inft∈Σm(I)

(
‖t− SI‖2L+U

)
, which decreases when m increases, plus a variance term (5/2)(m/n)

increasing with m. A data-driven procedure leading to an adequate compromise is proposed in
Section 3.

2.5. Discussion about separated and non separated cases. Due to our specific empirical

norm a.s. converging to ‖.‖L+U , when n tends to infinity, our estimator Ŝm is expected to
perform well on (supp(L) ∪ supp(U)): this is due to the weight function fL + fU .

This means that if the basis is compactly supported, its support I ⊇ IL ∪ IU is in fact chosen
by the user, and must be taken in accordance. Of course, it is larger than in the two naive
strategies.

For non compactly supported bases such as Laguerre, no support has to be chosen a priori
for the computation of the coefficients of the estimator. However, in the simulations, the errors
of the estimator are computed on an interval [min(Li),max(Ui)] according to the range of the
observations.

Here we want to underline that the separated/non separated cases are behind these support
considerations. In the separated case, there is a hole between the supports of L and U , and
thus a compact set of estimation containing both supports will lead, in the histogram case, to

empty bins (see Section 2.7). Therefore the diagonal matrix tΦ
(L)
m Φ

(L)
m + tΦ

(U)
m Φ

(U)
m fails to

be invertible: only the non-separated case should be considered for such a basis. Analogously,
Birgé (1999) works also in the non-separated case, as he assumes that the joint distribution of
(L1, U1) is lower bounded on the diagonal. This problem does not appear for the compactly
supported trigonometric basis, nor for the global Laguerre basis (in these two cases, the matrix
can be proved to be a.s. invertible).

Moreover, for Laguerre basis, even if the estimation interval is I = R+, the risk is controlled
on supp(L) ∪ supp(U) thanks to the weight function fL + fU . In practice, when considering
this basis, a hole between the supports of L and U does not imply any practical problem in the
procedure (see Figure 1). Heuristically, this means that in the separated case, the procedure
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automatically extrapolates the estimator on the hole, from what has been built on each support of
U and L. This is coherent if the function has indeed a global regularity on the whole nonnegative
real line.

2.6. Discussion about rates. Inequalities provided in Proposition 1 and Proposition 3 can
allow to compute convergence rates of the estimators.

• Consider the compactly supported bases described in Section 2.1 (such as histograms or
piecewise polynomials). Assume that fL and fU are bounded on the support of the basis. The
results stated in Brunel and Comte (2009), Corollary 3.1 p.8, apply here. They imply that the

method provides convergent estimators Ŝ
(Z)

m
(Z)
opt

, with asymptotic rate n−2α/(2α+1) for α the Besov

regularity of SIZ when SIZ belongs to a Besov ball, and m
(Z)
opt = O(n1/(2α+1)) for Z = L,U , and

the same holds for Ŝm on I. Those rates constitute a generalization of the rate n−1/3 corre-
sponding to α = 1 (rates obtained under Lipschitz type assumptions, e.g. in Birgé (1999)) to

rates of order n−α/(2α+1) for a general regularity α which can be larger than one for trigono-
metric bases or piecewise polynomials with degree r ≥ α. As already mentioned this rate can
be improved rate within a logarithmic factor, under a set of assumptions including a condition
of non separation on the joint distribution f(L,U): we do not obtain this improvement.

• For s ≥ 0, Bongioanni and Torrea (2009) defined Sobolev-Laguerre spaces with index s by:

W s = {θ : R+ → R, θ ∈ L2(R+), |θ|2s :=
∑
k≥0

ksa2
k(θ) < +∞}.

where ak(θ) =
∫
R+ θ(x)`k(x)dx. We define the ball W s(D) by

W s(D) =

{
θ ∈W s

L, |θ|2s =
∞∑
k=0

ksa2
k(θ) ≤ D

}
.

For details on these spaces, and especially for regularity properties of functions in these spaces,
see Comte et al. (2015), Section 7.2.
Heuristically, the index α for Besov spaces and s for Laguerre Sobolev spaces correspond to the
regularity order of the function on the domain (a bounded interval in the first case and R+ in
the second). For instance, the survival function associated with a β(a, b) distribution has infinite
regularity on any interval included in ]0, 1[ and regularity b on e.g. [0, 2] or R+.

Now, if fL and fU are upper bounded on I = R+ and SI belongs to W s(D), then the risks of Ŝ
(Z)
m

for Z = L,U and of Ŝm can be bounded by Dm−s + cst m/n, see Proposition 1 (cst = 1/4) and

Proposition 3 (cst = 5/2). Thus, choosing m of order n1/(s+1) yields a risk less than n−s/(s+1)

and the estimators are therefore convergent.
Note that the choices of m proposed in this section are theoretical and not possible in practice

as they depend on unknown regularity parameters.

2.7. Histogram case. In the specific case of histogram basis, the matrices Ψm,Z , Z = L,U , are
diagonal. Thus, invertibility conditions are easy to study and explicit formulas for the estimators
can be given.

We take in this section ϕj = hj for j = 0, . . . ,m− 1, see Section 2.1. We define, the following
cardinalities:

Nj := Card{i ∈ {1, . . . , n}, Li ∈ Ij},Mj := Card{i ∈ {1, . . . , n}, Ui ∈ Ij},
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and

N ′j = Card{i ∈ {1, . . . , n}, Li ∈ Ij and δi = −1},M ′j = Card{i ∈ {1, . . . , n}, Ui ∈ Ij and δi = 1}.

Then 〈ϕj , ϕk〉n,U = 0 if j 6= k and (m/n)Mj if j = k. So Ψ̂m,U = (m/n)diag(M1, . . . ,Mm).

Analogously Ψ̂m,L = (m/n)diag(N1, . . . , Nm). They are invertible if no Mj is null for the first

one, no Nj is null for the second one. The estimator Ŝm relies on the inversion of Ψ̂m,L + Ψ̂m,U

and the matrix is therefore invertible if Mj and Nj are never simultaneously null. We obtain

â
(L)
j =

1√
m

Nj −N ′j
Nj

=
1√
m

(
1−

N ′j
Nj

)
, â

(U)
j =

1√
m

M ′j
Mj

, âj =
1√
m

Nj −N ′j +M ′j
Mj +Nj

.

It is worth underlining that the last estimator in not the sum of the estimators Ŝ
(L)
m and Ŝ

(U)
m

and is different from Birgé’s proposal.

3. Model selection

The choice of m as discussed in Section 2.6 is not possible as it is asymptotic, and depends
on the unknown regularity order (α or s). Instead, we propose a finite sample strategy leading
to a bias-variance compromise.

We proceed with a model selection strategy for the estimator Ŝm, that is a data driven way of
selecting m from the data in a coherent way. Part of the tools we use here are inspired from the
work on standard regression function estimation developed in Comte and Genon-Catalot (2019).
They allow us to provide a generalization of the method presented in Brunel and Comte (2009)
for interval censoring case 1, and dedicated to compactly supported bases. Note that a similar

procedure would be possible for Ŝ
(Z)
m , Z = L,U , we experiment it numerically in section 4, but

do not give theoretical details.
To take into account both compactly and non compactly supported bases, we define the

random collection of models as follows:

(12) M̂n =

{
m ∈ N \ {0},m(‖(Ψ̂m,L + Ψ̂m,U )−1‖2op ∨ 1) ≤ 4c

n

log(n)

}
,

where Ψ̂m,Z for Z = L,U is defined by (7) and

c =

(
6 ∧ 1

‖fL + fU‖∞

)
1

48c2
ϕ

,

with cϕ defined in (3). The theoretical (deterministic) counterpart of this random set is denoted
by Mn and defined by

(13) Mn =

{
m ∈ N \ {0},m(‖(Ψm,L + Ψm,U )−1‖2op ∨ 1) ≤ c

n

log(n)

}
.

We propose to select the model following the rule:

(14) m̂ = arg min
m∈M̂n

[γn(Ŝm) + pen(m)] with pen(m) = κ
m

n
,

where κ is a numerical constant. Relying on results stated in Comte and Genon-Catalot (2019),
we can obtain the following result.



11

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

S
ur

vi
va

l e
st

im
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1. True survival curve (black solid line) SI of aWeibull(2, 2) distribution

and Laguerre basis estimators with sample size n = 1000 : Ŝ
(L)
m̂L

(red dashed line)

built on supp(L), Ŝ
(U)
m̂U

(black longdashed line) built on supp(U) and Ŝm̂ (blue

dotdashed line) built on I = [0, 4] for scenario 4.

Theorem 1. Assume that fU+fL is bounded. Consider a nested collection of models (Σm)m∈Mn

with models satisfying (3), Mn defined by (13), and the estimator defined by (10)-(11) and (14).
Then there exists a value κ0 > 0, such that ∀κ ≥ κ0,

E
[
‖Ŝm̂ − SI‖2L+U

]
≤ C inf

m∈Mn

(
inf
t∈Σm

‖SI − t‖2L+U + κ
m

n

)
+
C ′

n

where C is a numerical constant and C ′ is a constant depending on fL, fU , c.

The procedure is well defined as soon as κ is fixed. Theorem 1 states that there exists a
suitable value κ0. Larger values may also be used, but the larger κ, the larger the risk bound.
Thus, we should choose the smallest admissible value. Moreover, Theorem 1 also implies that
the value κ0 should be the same for the general problem, but the theoretical value of κ0 obtained
in the proofs is too large in practice. This is why we have to find a more relevant all-in-one
value: it is standard to calibrate the value of κ through preliminary simulation experiments and
we explain in the next section how we proceed. Then, it is definitely fixed to this value.

The inequality stated in Theorem 1 shows that the estimator makes an automatic bias-variance

tradeoff, with a data driven selection criterion. The performance of Ŝm̂ is valid on an interval

which is larger than if Ŝ
(Z)
m had been considered, for Z = L or U . The loss of the procedure

lies in the multiplicative constants C (the nearer of 1, the better), and in the restriction on the
collection given in (12) and (13), which must let the optimal choice reachable. We discuss this
in the next remark.

Remark 2. If the basis has compact support I and fU and fL are lower bounded on I by f0,
then we can prove

(15) max(‖Ψ−1
m,U‖

2
op, ‖Ψ−1

m,L‖
2
op) ≤ 1/f2

0 and ‖(Ψm,L + Ψm,U )−1‖2op ≤ 4/f2
0 .
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Thus, it turns out that the collection Mn defined by (13) is simply the set of models m such
that m ≤ Cn/ log(n), which is a very weak constraint. This implies that the adaptive estimator
automatically reaches the best possible rate on Besov-type regularity spaces (see the end of
Sections 2.3 and 2.4) on the domain determined by the support of the basis.

In the case of non compactly supported bases, such as the Laguerre basis which works very
well for survival function estimation, condition in (13) imposes a real restriction on the collection
of models. For optimality issues, theoretical examples and illustrations, we refer to Comte and
Genon-Catalot (2019).

4. Simulation study

Our aim is to compare our new penalized estimator, built using the Laguerre basis defined
by (2), with other available competitors. We consider the log-concave Nonparametric Maxi-
mum Likelihood Estimator (NPMLE) of Anderson-Bergman and Yu (2016) implemented using
the logconPH R package and the unconstrained NPMLE implemented using the prodlim R
package. We also consider the smoothed maximum likelihood estimator (SMLE) obtained by
convolving the NPMLE with a smoothing kernel as in Groeneboom and Ketelaars (2011).

4.1. Models and censoring schemes. We simulated K = 100 samples of size n = 100, 300
and 1000 from the following event time distributions :

• Model 1 : X ∼ Log-N (0, 1) the survival function is S(x) = 0.5(1− erf(log(x)/
√

2)) with

erf(x) = (2/
√
π)
∫ x

0 e
−t2dt.

• Model 2 : X ∼ Weibull(a, b) with shape parameter a = 0.5 and scale parameter b = 2
corresponding to a non log-concave distribution.
• Model 3 : X is distributed as a Beta′(α, β) a beta prime distribution or a beta of type

II with survival function S(x) =
∫ +∞
x uα−1(1 + u)−α−β/(B(α, β))du for x ≥ 0 where

B(α, β) =
∫ 1

0 t
α−1(1 − t)β−1dt is the beta function with α = 5 and β = 2 two shape

parameters.
• Model 4 : X = 6Z with Z ∼ Beta(2, 5) a standard beta distribution admitting the

density function f(x) = Γ(a + b)/(Γ(a)Γ(b))xa−1(1 − x)b−1 for 0 ≤ x ≤ 1 with shape
parameters a = 2 and b = 5.

Note that Model 1 and 4 correspond to log-concave distributions while Model 2 and 3 do not.
We also investigate different schemes for the distribution of the inspection times L and U :

• scenario 1 : L ∼ U([0, 2.5]) and U = U([3, 4]).
• scenario 2 : L ∼ U([0, 1]) and U = L+ U([0, 3]).
• scenario 3 : L,U ∼ U([0, 4]) with the constraint 0 ≤ U − L ≤ 0.1 so that the times L

and U can be very close to each other.
• scenario 4 L ∼ U([0, 1]) and U ∼ U([2, 4]).

We took K = 100 to save computing time, but we checked the consistency of our results: we
experimented on part of our models the larger value K = 500, and observed that the numerical
results were not drastically different (see Table 3 in appendix B) and the conclusions about the
performances of the different competitors remained the same. In scenarios 1 and 4, there is a
hole between the supports of L and U . These scenarios make sense in the context of diseases with
a long-distance follow-up care. On the opposite, the supports of L and U overlap in scenarios 2
and 3.

We illustrate how model selection performs for histogram and Laguerre bases on Figure 2.
We can see the selected estimator among 10 estimators of the collection: on Figure 2 (left/right
respectively) the selected dimension is m̂ = 6 for histogram basis while it is m̂ = 2 for Laguerre
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Figure 2. Model selection for mean squares estimators : Collection of estimators

Ŝ
(Z)
m for dimension m = 1, · · · , 10 (from cyan to dark blue dotted line) and

selected estimator (blue solid line) with m̂ = 6 for histogram basis (left) and
with m̂ = 2 for Laguerre basis (right) both for Model 1, scenario 2 and sample
size n = 300. True survival curve SI (black solid line).

basis. But, in the sequel we choose to compare with competitors the projection estimator in
the Laguerre basis only. Indeed, as mentioned in Section 2.7, histogram estimators are not well-
defined on empty bins and additional conventions should be especially needed to build them
in scenario 1 and 4. Nevertheless, histogram estimators behave well on an estimation interval
without empty bins as shown in Figure 2 (left). Note that we do not apply the a posteriori
monotonization procedure for histogram estimators but the selected estimator for dimension
m̂ = 6 has the adequate monotony property. No correction seems to us neither relevant, nor
obvious in that case.

4.2. About the implementation. First, we have to fix the value of the constant κ in the
penalty term (see (14)). To that aim, we perform preliminary simulation experiments for the
calibration of the value of κ over some models, see Appendix A for details. This leads us to
choose κ = 0.5, a value which is then fixed for all the sequel. This is a small value among
the range of values we explored. But if large values of κ ensure stability of the estimators
(over-penalization), they do not allow to achieve large dimension choices.

To assess the numerical performance of our penalized Least Squares estimator and its com-
petitors, we compute the Mean Integrated Squared Error over a grid. We define a grid t1, · · · , tJ
of J = 100 equispaced points on I = [min(Li),max(Ui)]. It is not always possible to evaluate
the value of the NPMLE on the right of the interval, as for any product-limit estimator, it is
biased and does not go to zero if the greatest observed value of Ui corresponds to δi = 1. So we
made the choice to shorten the grid at the upper bound of the last step of the NPMLE. Roughly
speaking, the grid is shrunken at max(Ui, δi = 1) instead of max(Ui). This choice is rather in
favour of the NPMLE and SMLE but does not degrade significantly the results for the other
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Figure 3. True Survival function SI (black solid line) and bundles of 25 esti-
mators : Anderson-Bergman and Yu estimators (red dot dashed) for Model 2,
scenario 2 on the left and Smoothed Maximum Likelihood estimators (magenta
dot dashed) for Model 1, scenario 4 on the right and Laguerre basis estimators
(blue dashed), for n = 300 at the top and n = 1000 at the bottom.

estimators as far as we see in preliminary trials. For the SMLE, we take the symmetric triweight
kernel and a bandwidth hn = n−1/5 as in Groeneboom and Ketelaars (2011).



15

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

S
ur

vi
va

l e
st

im
at

io
n

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

S
ur

vi
va

l e
st

im
at

io
n

Figure 4. True survival function SI on I = [0, 4] (black solid line), Anderson-
Bergman and Yu estimator (red dotted), our least squares estimators with La-
guerre basis (blue dashed), NPMLE estimator (green step line) and SMLE (ma-
genta dot dashed) for Model 2 in scenario 2 on the left and Model 1 in scenario
4 on the right, both for sample size n = 300.

We generate K = 100 samples for each Model and scenario. The error we computed is defined
as follows:

1

K

K∑
k=1

1

J

J∑
j=1

(
Ŝ[k](tj)− S(tj)

)2
(16)

where Ŝ[k] stands for the estimator of S based on the kth generated sample. This quantity
is the MISE we presented in the tables and the boxplots. We might have normalized by the
length of the interval but this way of computing is standard and allows comparison between the
estimators.

4.3. Results. The values of the Mean Integrated Squared Error MISE×103 are presented in
Table 1 and 2 in Appendix B, with standard deviation in parenthesis and sample sizes 100, 300
and 1000. The results can be visualized through boxplots given in Figures 5 (n = 300) and
6 (n = 1000). Model 1 and 4 match with log-concave distributions and as expected the log-
concave estimator of Anderson-Bergman and Yu gives the best results whatever the scenario for
the inspection times is, but it doesn’t work at all for Model 2 and 3. However, our Least Squares
estimator challenges the NPMLE and SMLE especially for scenario 3 and 4. Even if it performs
a little worse in mean for few models, the Least Squares estimator built with Laguerre basis has
no important failure, contrary the other ones. In fact, on Figure 4, we illustrate typical bad
behaviours of both constrained/unconstrained NPMLEs: the log-concave estimator is very bad
for non log-concave distribution (Figure 4, left) while the NPMLE and SMLE perform badly for
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Figure 5. MISE for sample size n = 300 and K = 100 Monte-Carlo replications.
From top to bottom scenario 1 to 4, from left to right Model 1 to 4. On each
plot, Left: our estimator (MC), Middle: Anderson and Yu estimator (Anderson),
Right: SMLE.

scenario 4 (Figure 4, right) when there is a hole between the supports of L and U . So the Least
Squares estimator seems to be overall the most reliable. This fact is also illustrated on Figure
3 with bundles of estimators. From Figure 5 and 6, we can see that, except for a small number
of extreme error values (which means that model selection failed), the Least Squares estimator
appears to be quite a good compromise for any distribution type of the event time and for any
support of the inspection times.
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Figure 6. MISE for sample size n = 1000 and K = 100 Monte-Carlo repli-
cations. From top to bottom scenario 1 to 4, from left to right Model 1 to 4.
On each plot, Left: our estimator (MC), Middle: Anderson and Yu estimator
(Anderson), Right: SMLE.

Remark 3. A drawback of our estimation procedure is that it doesn’t build a strict estimator
of a survival function. In fact, the penalized estimator may start at a value different than
1 and may fail to be monotone. As it is consistent, this does not happen for large enough
sample sizes. However, we propose an a posteriori transformation to correct these two facts.

We compute first the original penalized estimator Ŝm̂. Then, we reevaluate the coefficients
of our penalized estimator by adding a constraint in the least squares contrast to make the
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estimator be equal to 1 at the origin. The constrained least squares contrast can be expressed
with the Lagrange multiplier γn(t) − λ(t(0) − 1). From a computational point of view, the
procedure is straightforward and leads to a smooth correction of the estimator. We do not
investigate the theoretical properties of the resulting constrained estimator, but a study of its
properties can be found in another context in Comte and Dion (2017). Finally, the procedure
of Chernozhukov et al. (2009) available in the R-package Rearrangement allows to overcome
the possible problem of monotony and can be applied without degrading the rate of the original
estimator. These corrections are applied to the estimators plotted in Figures 1, 3, 4.

5. Application to a real dataset

In this Section we study a dataset from Melbye et al. (1984). In this dataset, a cohort of
homosexual men from two cities in Denmark has been examined for HIV-antibody positivity
on six different dates: December 1981, April 1982, February 1983, September 1984, April 1987,
and May 1989. The dataset comprises a total of 297 people who have been tested at least once.
Among all these people, 26 were diagnosed with infection at the first examination date (which
corresponds to δi = −1), 39 were diagnosed with infection at another examination date (which
corresponds to δi = 0) and 232 were examined without HIV infection (which corresponds to
δi = 1). See also Becker and Melbye (1991) and Carstensen (1996) for more informations on the
dataset.

Our new estimator with Laguerre basis is applied to the dataset using calendar time as the
time scale. In order to deal with the high time values of the dataset which may cause numerical
difficulties, we rescale the observations for the estimator computations. The rescaled sample
(L′i, U

′
i)1≤i≤n is obtained by applying the transformation t 7→ (t−min(Li)) to the original data

(Li, Ui)1≤i≤n. Then, the final curve is plotted in its original scale.
From the collection of models defined in (12), only four different models are allowed. Setting

κ = 0.5 as in the simulation studies, our selection procedure chooses the model m = 4. The
corresponding estimator is displayed in Figure 7 along with three competitors: the NPMLE im-
plemented from the prodlim package, the Anderson-Bergman and Yu estimator implemented
from the logconPH package and the SMLE from Groeneboom and Ketelaars (2011). As de-
scribed in Remark 3, only the constrained and monotone version of our estimators are displayed
in Figure 7.

We also decided to consider a bootstrap estimation strategy. The idea behind this bootstrap
method is to construct an estimator that is robust to model selection. The data (Li, Ui, δi)i=1,...,n

were bootstrapped 5 000 times and for each bootstrap we select a model based on our rule (14)
and we compute the corresponding estimator. A final estimator is then computed by taking the
median over all 5 000 estimators at each time point. The bootstrap estimator is represented on
the left panel of Figure 8 along with the three competitors. This resampling strategy allows us
to provide a robust estimator that averages over all possible models instead of choosing only one
model. In fact, with this bootstrap estimation method, the model m = 2 was chosen in 11% of
cases, the model m = 3 was chosen in 79% of cases and the model m = 4 was chosen in 10%
of cases. Finally, resampling the data allows us to construct 95% pointwise confidence intervals
by taking the 0.975 and 0.025 empirical quantiles at each time point. Our bootstrap estimate
along with its 95% confidence interval is displayed on the right panel of Figure 8.

Our estimators (m̂ = 4 and the bootstrap) are in accordance with the NPMLE. The bootstrap
offers the advantage to provide a smooth and regular estimation of the survival curve. The SMLE
is also smooth but contrary to our bootstrap estimator it exhibits a lot of fluctuations located at
every step of the NPMLE function. Those variations are due to the construction of the SMLE
which is a smooth version of the NPMLE and they probably do not reflect any real variation of
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the survival function of HIV infection. Finally, the Anderson-Bergman and Yu estimator seems
to be biased on these data. For illustration, the chance of being HIV negative among Danish
homosexual men in 1986 is estimated to 35.4% from the Anderson-Bergman and Yu estimator,
to 78.1% from the NPMLE and SMLE and to 76.3% [73.5%, 84.7%] from our bootstrap estimator
(with 95% confidence interval in brackets). The chance of being HIV negative among Danish
homosexual men in 1990 is estimated to 2.7% from the Anderson-Bergman and Yu estimator, to
71.7% from the NPMLE and SMLE and to 73.1% [66.1%, 76.1%] from our bootstrap estimator
(with 95% confidence interval in brackets). To conclude it seems that the Anderson-Bergman and
Yu method is not adapted to this dataset because it implicitly assumes that the time distribution
is log-concave while the NPMLE, SMLE and our estimator work for more general survival
distributions. Our bootstrap estimator is smooth with less fluctuation than the SMLE. As a
result our bootstrap estimator seems to provide the most realistic fit of the data. It also offers
the possibility to construct confidence intervals with no additional cost. We emphasize that our
estimator is fast to compute and the 5 000 bootstrap samples were computed within only a few
seconds. Finally we want to stress that the bootstrapped estimator is not necessarily monotone
even though this was the case on this dataset. In order to guarantee the final bootstrapped
estimator to be monotone the method of Chernozhukov et al. (2009) would have to be applied.
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Figure 7. Survival estimates of HIV infection using the NPMLE (green solid
line), our estimator with Laguerre basis after model selection with m = 4 (blue
dashed line), the log-concave estimator from Anderson-Bergman and Yu (red
dotted line) and the SMLE (red dot dashed line).

6. Proofs

6.1. Proof of Proposition 1. Let Π
(L)
m denote the orthogonal projection (for the scalar product

in Rn) on the subspace { t(t(L1), . . . , t(Ln)), t ∈ Σm(IL)} of Rn and let Π
(L)
m S be the projection
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Figure 8. Survival estimates of HIV infection. Left panel: the NPMLE (green
solid line), our bootstrap estimator with Laguerre basis (blue dashed line), the
log-concave estimator from Anderson-Bergman and Yu (red dotted line) and the
SMLE (red dot dashed line). Right panel: our bootstrap estimator with Laguerre
basis along with its 95% confidence interval.

of t(S(L1), . . . , S(Ln)). Then by Pythagoras,

‖Ŝ(L)
m −SIL‖

2
n,L = ‖Π(L)

m S−SIL‖
2
n,L+‖Ŝ(L)

m −Π(L)
m S‖2n,L = inf

t∈Σm(IL)
‖t−SIL‖

2
n,L+‖Ŝ(L)

m −Π(L)
m S‖2n,L.

By taking the expectation of the above formula, we have

(17) E[‖Ŝ(L)
m − SIL‖

2
n,L] ≤

∫
t∈Σm(IL)

‖t− SIL‖
2
L + E

[
‖Ŝ(L)

m −Π(L)
m S‖2n,L

]
.

Now, we compute and bound E
[
‖Ŝ(L)

m −Π
(L)
m S‖2n,L

]
. We have

~̂
S

(L)

m :=

 Ŝ
(L)
m (L1)

...

Ŝ
(L)
m (Ln)

 = Φ(L)
m
~̂a(L)
m = Φ(L)

m ( tΦ(L)
m Φ(L)

m )−1 tΦ(L)
m
~δ(L).

We set Ξ
(L)
m = Φ

(L)
m ( tΦ

(L)
m Φ

(L)
m )−1 tΦ

(L)
m and note that is corresponds to the matrix of the

orthogonal projection Π
(L)
m . Therefore

Π(L)
m S = Ξ(L)

m S(L) where S(L) = t(S(L1), . . . , S(Ln)).

Therefore, denoting by ~ε(L)(L) = t(ε(L)(L1), . . . , ε(L)(Ln)), where ε(L)(Li) = 1−1δi=−1−S(Li),
we get

‖Ŝ(L)
m −Π(L)

m S‖2n,L = ‖Ξ(L)
m ~ε(L)(L)‖2n,L =

1

n
t~ε(L)(L) tΞ(L)

m Ξ(L)
m ~ε(L)(L) =

1

n
t~ε(L)(L)Ξ(L)

m ~ε(L)(L).
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Now,

E
[
~ε(L)(L)Ξ(L)

m ~ε(L)(L)
]

=
∑

1≤i,k≤n
E
(
ε(L)(Li)ε

(L)(Lk)[Ξ
(L)
m ]i,k

)
=

n∑
i=1

E(ε(L)(Li)
2[Ξ(L)

m ]i,i)

=

n∑
i=1

E(S(Li)(1− S(Li))[Ξ
(L)
m ]i,i)

≤ 1

4

n∑
i=1

E([Ξ(L)
m ]i,i) =

1

4
E
(

Tr(Ξ(L)
m )
)
.

Indeed Ξ
(L)
m is a symmetric positive matrix, so that txΞ

(L)
m x > 0 for all vector x, and thus its

diagonal coefficients are positive. Now Tr(Ξ
(L)
m ) = Tr(( tΦ

(L)
m Φ

(L)
m )−1 tΦ

(L)
m Φ

(L)
m ) = Tr(Im) = m.

Thus

E
[
‖Ŝ(L)

m −Π(L)
m S‖2n,L

]
≤ 1

4

m

n

and plugging this in (17) gives the result of Proposition 1 for Ŝ
(L)
m . The same ideas give the

result for Ŝ
(U)
m . 2

6.2. Proof of Proposition 3. We start by the contrast decomposition: let t, t′ ∈ Σm, then

γn(t)− γn(t′) = ‖t− SI‖2n,U + ‖t− SI‖2n,L − (‖t′ − SI‖2n,U + ‖t′ − SI‖2n,L)

−2νn,U (t− t′)− 2νn,L(t− t′),(18)

where

νn,U (t) =
1

n

n∑
i=1

t(Ui)(1δi=1 − S(Ui)), νn,L(t) =
1

n

n∑
i=1

t(Li)(1δi 6=−1 − S(Li)).

Writing that γn(Ŝm) ≤ γn(Sm) for any Sm ∈ Σm, we get

‖Ŝm−SI‖2n,U +‖Ŝm−SI‖2n,L ≤ ‖Sm−SI‖2n,U +‖Sm−SI‖2n,L+2νn,U (Ŝm−Sm)+2νn,L(Ŝm−Sm).

Denoting by ε(L)(Li) = 1δi 6=−1 − S(Li) and ε(U)(Ui) = 1δi=1 − S(Ui), the inequality writes

E
[
‖Ŝm − SI‖2n,U + ‖Ŝm − SI‖2n,L

]
≤ E

[
‖Sm − SI‖2n,U + ‖Sm − SI‖2n,L

]
+

2

n
E

[
n∑
i=1

(
ε(L)(Li)(Ŝm − Sm)(Li) + ε(U)(Ui)(Ŝm − Sm)(Ui)

)]
≤ ‖Sm − SI‖2U + ‖Sm − SI‖2L

+
2

n
E

[
n∑
i=1

(
ε(L)(Li)Ŝm(Li) + ε(U)(Ui)Ŝm(Ui)

)]
︸ ︷︷ ︸

:=T

(19)

Let us set

(20) Θm = tΦ(L)
m Φ(L)

m + tΦ(U)
m Φ(U)

m .

As we have
T = ( t~ε(L)(L)Φ(L)

m + t~ε(U)(U)Φ(U)
m )Θ−1

m ( tΦ(L)
m
~δ(L) + tΦ(U)

m
~δ(U))

we find

E(T) = E
(

( t~ε(L)(L)Φ(L)
m + t~ε(U)(U)Φ(U)

m )Θ−1
m ( tΦ(L)

m ~ε(L)(L) + tΦ(U)
m ~ε(U)(U))

)
.



22 O. BOUAZIZ, E. BRUNEL & F. COMTE

We get

(21) E(T) := E(TL) + E(TU ) + E(TL,U )

where, by using that E[(ε(L)(Li))
2|Li] = S(Li)(1 − S(Li)) and E[(ε(U)(Ui))

2|Ui] = S(Ui)(1 −
S(Ui)),

TL =
n∑
i=1

S(Li)(1− S(Li))[Φ
(L)
m Θ−1

m
tΦ(L)
m ]i,i, TU =

n∑
i=1

S(Ui)(1− S(Ui))[Φ
(U)
m Θ−1

m
tΦ(U)
m ]i,i

and

TL,U =

n∑
i=1

S(Ui)(1− S(Li))[Φ
(L)
m Θ−1

m
tΦ(U)
m + Φ(U)

m Θ−1
m

tΦ(L)
m ]i,i.

Let us denote by ‖~x‖22,d = x2
1 + · · · + x2

d the euclidean norm of a vector ~x of Rd and by ~ei,d
the i-th canonical basis vector in Rd, that is the d-dimensional vector with all coordinates null
except the i-th which is equal to 1. Then we have, for Z = L,U ,

[Φ(Z)
m Θ−1

m
tΦ(Z)
m ]i,i = t~ei,nΦ(Z)

m Θ−1
m

tΦ(Z)
m ~ei,n = ‖Θ−1/2

m
tΦ(Z)
m ~ei,n‖22,n ≥ 0,

where Θ
−1/2
m is a matrix symmetric square root of Θ−1

m . Thus for Z = L,U , we have

E(TZ) ≤ 1

4
E

(
n∑
i=1

[Φ(Z)
m Θ−1

m
tΦ(Z)
m ]i,i

)
=

1

4
E(Tr(Φ(Z)

m Θ−1
m

tΦ(Z)
m )) =

1

4
E(Tr(Θ−1

m
tΦ(Z)
m Φ(Z)

m )).

It follows that

(22) E(TL + TU ) ≤ 1

4
E(Tr(Θ−1

m ( tΦ(L)
m Φ(L)

m + tΦ(U)
m Φ(U)

m ))) =
1

4
Tr(Im) =

m

4
.

Now we prove that TL,U ≤ m. Let us set D2 = diag(d2
1, . . . , d

2
n) with d2

i = S(Ui)(1− S(Li)).
We have

TL,U = Tr
(
D2(Φ(L)

m Θ−1
m

tΦ(U)
m + Φ(U)

m Θ−1
m

tΦ(L)
m )
)

= Tr
(

Θ−1
m ( tΦ(U)

m D2Φ(L)
m + tΦ(L)

m D2Φ(U)
m )

)
.

Let us denote by Θm,D := tΦ
(L)
m D2Φ

(L)
m + tΦ

(U)
m D2Φ

(U)
m . We remark that, for any vector ~x ∈ Rm,

we have
t~x t(D(Φ(L)

m − Φ(U)
m ) (D(Φ(L)

m − Φ(U)
m )~x = ‖D(Φ(L)

m − Φ(U)
m )~x‖22,n ≥ 0

and the term is also equal to

t~x t(D(Φ(L)
m − Φ(U)

m )) (D(Φ(L)
m − Φ(U)

m ))~x = t~x t
(

Θm,D − ( tΦ(U)
m D2Φ(L)

m + tΦ(L)
m D2Φ(U)

m )
)
~x.

Setting ~x = Θ
−1/2
m ~y, we get

t~y Θ−1/2
m ( tΦ(U)

m D2Φ(L)
m + tΦ(L)

m D2Φ(U)
m )Θ−1/2

m ~y ≤ t~y Θ−1/2
m Θm,DΘ−1/2

m ~y.

Choosing ~y = ~ei,m and summing up the terms over i, we obtain that

Tr
(

Θ−1
m ( tΦ(U)

m D2Φ(L)
m + tΦ(L)

m D2Φ(U)
m )

)
= Tr

(
Θ−1/2
m ( tΦ(U)

m D2Φ(L)
m + tΦ(L)

m D2Φ(U)
m )Θ−1/2

m

)
≤ Tr

(
Θ−1/2
m Θm,DΘ−1/2

m

)
= Tr

(
Θm,DΘ−1

m

)
.

Now, let λ be an eigenvalue of Θm,DΘ−1
m , associated to a nonzero eigenvector ~x, ~x ∈ Rm, we

have

Θ−1
m Θm,D~x = λ~x ⇒ Θm,D~x = λΘm~x⇒ t~xΘm,D~x = λ t~xΘm~x.
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It is easy to see that t~xΘm,D~x ≥ 0 and t~xΘm~x > 0 as Θm is assumed to be invertible, and thus

λ =
t~xΘm,D~x
t~xΘm~x

=
t~z1D

2~z1 + t~z2D
2~z2

t~z1~z1 + t~z2~z2

where ~zk = Φ
(Z)
m ~x ∈ Rn where k = 1 for Z = L and k = 2 for Z = U . It follows that

λ =

∑n
i=1 d

2
i ([~z1]2i + [~z2]2i )∑n

i=1([~z1]2i + [~z2]2i )
≤ 1

since ∀i, d2
i ≤ 1. Now the trace of a square m×m matrix which has all its eigenvalues less than

1 (and is diagonalizable), is less than m. This implies that

(23) TL,U ≤ m.
Gathering (21), (22) and (23), we get that

2

n
E(T) ≤ 5

2

m

n

and plugging this in (19), we obtain, for any Sm ∈ Σm,

E
[
‖Ŝm − SI‖2n,U + ‖Ŝm − SI‖2n,L

]
≤ E

[
‖Sm − SI‖2n,U + ‖Sm − SI‖2n,L

]
+

5

2

m

n
.

Now, using that E
[
‖Sm − SI‖2n,Z

]
= ‖Sm − SI‖2Z for Z = L,U , we obtain the result of Propo-

sition 3. 2

6.3. Proof of Theorem 1. The result is mainly a particular case of Theorem 2 of Comte and
Genon-Catalot (2019), in a simpler case of bounded noise. This is why we only present here a
sketch of proof.

The main tools in the proof of Comte and Genon-Catalot (2019) are the Talagrand Inequality
and Tropp’s (2015) matricial Bernstein Inequality. Both still apply here. For Talagrand, we lose
the independence property of the noise with respect to the regressor, but get a simplified setting
due to the boundedness property of ε(L)(Li) = 1δi 6=−1 − S(Li) and ε(U)(Ui) = 1δi=1 − S(Ui).
For Tropp’s Inequality, it allows to have here the following fundamental Lemma:

Lemma 1. Let (L1, U1), . . . , (Ln, Un) be i.i.d. such that the densities fU and fL are bounded,

supx∈I fZ(x) := ‖fZ‖∞ < +∞ for Z = L,U . Let the basis be such that ‖
∑m−1

j=0 ϕ2
j‖∞ ≤ c2

ϕm.
Then, for all u > 0,

P
[
‖Ψm − Ψ̂m‖op ≥ u

]
≤ 2m exp

(
− n u2/2

2c2
ϕ [(‖fL‖∞ + ‖fU‖∞) + u/3]

)
.

The proof is the same as the proof of Proposition 4 in Comte and Genon-Catalot (2019) with
here the bound c2

ϕm/n in (26) replaced by 2c2
ϕm/n and the bound on νn(Sm), c2

ϕ‖f‖∞m/n
replaced by 2c2

ϕ(‖fL‖∞ + ‖fU‖∞)m/n.

This result is useful to study the set Ωn defined by

(24) Ωn = ∩m∈MnΩm with Ωm =

{∣∣∣∣∣ ‖t‖2n‖t‖2L+U

− 1

∣∣∣∣∣ ≤ 1

2
, ∀t ∈ Σm(I) \ {0}

}
.

where ‖t‖2n = ‖t‖2n,L + ‖t‖2n,U . Indeed Lemma 5 in Comte and Genon-Catalot (2019) can be
written here as follows:

Lemma 2. Under the assumptions of Theorem 1, P(Ωc
n) ≤ c/n4 where c is a positive constant.
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To understand the link between Lemma 1 and Lemma 2, we mention that the main point of
the proof is the equality

P

(
∃t ∈ Σm(I),

∣∣∣∣∣ ‖t‖2n‖t‖2L+U

− 1

∣∣∣∣∣ ≤ 1

2

)

= P

(
sup

t∈Σm(I),‖t‖L+U=1

∣∣∣∣∣ 1n
n∑
i=1

[t2(Li) + t2(Ui)− E(t2(Li) + t2(Ui))]

∣∣∣∣∣ > 1

2

)
,

and the bound

sup
t∈Σm(I),‖t‖L+U=1

∣∣∣∣∣ 1n
n∑
i=1

[t2(Li) + t2(Ui)− E(t2(Li) + t2(Ui))]

∣∣∣∣∣ ≤ ‖Ψ−1
m ‖op‖Ψ̂m −Ψm‖op.

Let us start the proof of Theorem 1 in a simplified context: we consider the estimator Ŝm
with m̂ selected in the non random collection Mn and the empirical norm for the risk. The
step from this to the effective random collection is given in the proof of Theorem 2 of Comte
and Genon-Catalot (2019) as well as the last step to get a risk bound in term of integral norm
weighted by fL + fU . The starting point is the contrast decomposition (18). We use this to
write that, for all m ∈Mn, for all Sm ∈ Σm(I):

γn(Ŝm̂) + pen(m̂) ≤ γn(Sm) + pen(m).

We get

‖Ŝm̂ − SI‖2n,U + ‖Ŝm̂ − SI‖2n,L ≤ ‖Sm − SI‖2n,U + ‖Sm − SI‖2n,L + pen(m)

+2νn,U (Ŝm̂ − Sm) + 2νn,L(Ŝm̂ − Sm)− pen(m̂).(25)

Define

νn(t) = νn,L(t) + νn,U (t) =
1

n

n∑
i=1

[
ε(L)(Li)t(Li) + ε(U)(Ui)t(Ui)

]
and recall that E(‖t‖2n) = E(‖t‖2n,L) + E(‖t‖2n,U ) = ‖t‖2L+U =

∫
t2(x)(fL(x) + fU (x))dx.

In the following, we write Σm for Σm(I), for sake of brevity. Taking expectation of (25) yields

E
(
‖Ŝm̂ − SI‖2n

)
≤ ‖Sm − SI‖2L+U + pen(m)

+2E

(
‖Ŝm̂ − Sm‖L+U sup

t∈Σm+Σm̂,‖t‖L+U=1
|νn(t)|

)
− E(pen(m̂))

≤ ‖Sm − SI‖2L+U + pen(m) +
1

4
E(‖Ŝm̂ − Sm‖2L+U )

+4E

(
sup

t∈Σm+Σm̂,‖t‖L+U=1
ν2
n(t)

)
− E(pen(m̂)),

where we use that 2|ab| ≤ (1/4)a2 + 4b2 for all real numbers a, b. Now we bound separately the
terms on Ωn and Ωc

n where Ωn is defined by (24). We get

E
(
‖Ŝm̂ − SI‖2n1Ωn

)
≤ ‖Sm − SI‖2L+U + pen(m) +

1

4
E
(
‖Ŝm̂ − Sm‖2n1Ωn

)
+4E

(
sup

t∈Σm+Σm̂,‖t‖L+U=1
ν2
n(t)

)
− E(pen(m̂)).
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Thus

1

2
E
(
‖Ŝm̂ − SI‖2n1Ωn

)
≤ 3

2
‖Sm − SI‖2L+U + pen(m)

+4E

(
sup

t∈Σm+Σm̂,‖t‖L+U=1
ν2
n(t)− p(m, m̂)

)
+

+ E(4p(m, m̂)− pen(m̂))

Then we can apply Talagrand inequality to get the Lemma:

Lemma 3. Under the assumptions of Theorem 1, we have

E

(
sup

t∈Σm+Σm̂,‖t‖L+U=1
ν2
n(t)− p(m, m̂)

)
+

≤ c

n

where p(m,m′) = 2(m+m′)/n.

Therefore ∀m,m′, 4p(m,m′) − pen(m′) ≤ pen(m) provided that pen(m) = κm/n with
κ ≥ 8. Thus we get, ∀m ∈Mn, ∀Sm ∈ Σm

E
(
‖Ŝm̂ − SI‖2n1Ωm

)
≤ 3‖Sm − SI‖2L+U + 4pen(m) +

2c

n
.(26)

On the other hand, we need to propose a rough bound for ‖Ŝm̂−SI‖2n in order to control this
term on the set Ωc

n. To that aim, we prove the Lemma

Lemma 4. Under the Assumption of Theorem 1, for all m ∈ Mn, ‖Ŝm − SI‖2n ≤ 18, almost
surely.

It follows from Lemma 4 and Lemma 2, that

(27) E
(
‖Ŝm̂ − SI‖2n1(Ωn)c

)
≤ 3
√

2P[(Ωn)c] ≤ c∗

n
,

where c∗ is a constant. Gathering (26) and (27) gives the first step of the result. 2

Proof of Lemma 3. We obtain the result by applying the following Talagrand concentration
inequality given in Klein and Rio (2005).

Theorem 2. Consider n ∈ N∗, F a class at most countable of measurable functions, and
(Xi)i∈{1,...,n} a family of real independent random variables. Define, for f ∈ F , νn(f) =

(1/n)
∑n

i=1(f(Xi) − E[f(Xi)]), and assume that there are three positive constants M , H and
v such that sup

f∈F
‖f‖∞ ≤ M , E[sup

f∈F
|νn(f)|] ≤ H, and sup

f∈F
(1/n)

∑n
i=1 Var(f(Xi)) ≤ v. Then for

all α > 0,

E

[(
sup
f∈F
|νn(f)|2 − 2(1 + 2α)H2

)
+

]
≤ 4

b

(
v

n
e−bα

nH2

v +
49M2

bC2(α)n2
e−

√
2bC(α)

√
α

7
nH
M

)
with C(α) = (

√
1 + α− 1) ∧ 1, and b = 1

6 .

Classically, by density arguments, this result can be extended to the case where F is a unit
ball of a linear normed space (as it is needed in our case), after checking that f → νn(f) is
continuous and F contains a countable dense family.
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For our process, we first note that, the collection of models being nested Σm + Σm′ = Σm∨m′ .
Let ϕ̄j be a linear transformation of the basis (ϕj)j orthonormal with respect to the scalar
product weighted by fU + fL (by Gramm-Schmidt orthonormalisation), then

E

(
sup

t∈Σm+Σm′ ,‖t‖L+U=1
ν2
n(t)

)
≤

m∨m′∑
j=1

E(ν2
n(ϕ̄j)) =

1

n

m∨m′∑
j=1

Var
(
ϕ̄j(L1)ε(L)(L1) + ϕ̄j(U1)ε(U)(U1)

)

≤ 2

n

m∨m′∑
j=1

E
(
ϕ̄2
j (L1)(1δ1 6=−1 − S(L1))2 + ϕ̄2

j (U1)(1δ1=1 − S(U1))2
)

≤ 2

n

m∨m′∑
j=1

E(S(L1)(1− S(L1))ϕ̄2
j (L1) + S(U1)(1− S(U1))ϕ̄2

j (U1))

≤ m ∨m′

2n
≤ m+m′

2n
:= H2,

using that x(1 − x) ≤ 1/4 for any x ∈ [0, 1] and E(ϕ̄2
j (U1) + ϕ̄2

j (L1)) = 1 by definition of ϕ̄j .
Next,

sup
t∈Σm+Σm′ ,‖t‖L+U=1

Var
(
t(L1)ε(L)(L1) + t(U1)ε(U)(U1)

)
≤ 2 sup

t∈Σm+Σm′ ,‖t‖L+U=1
E
(
t2(L1) + t2(U1)

)
= 2 := v.

Lastly,

sup
t∈Σm+Σm′ ,‖t‖L+U=1

sup
(x,u)∈R+×R+

|ε(L)(x)t(x) + ε(U)(u)t(u)| ≤ 2 sup
t∈Σm+Σm′ ,‖t‖L+U=1

sup
x∈R+

|t(x)|.

For t =
∑m−1

j=0 ajϕj , we have ‖t‖2U+L = t~aΨm~a = ‖
√

Ψm~a‖22,m, where ~a = t(a0, a1, . . . , an).
Thus, for any m,

sup
t∈Σm,‖t‖U+L=1

sup
x
|t(x)| ≤ cϕ

√
m sup
‖
√

Ψm~a‖2,m=1

‖~a‖m

≤ cϕ
√
m sup
‖~u‖2,m=1

|‖
√

Ψ−1
m ~u‖2,m = cϕ

√
m

√
‖Ψ−1

m ‖op.

Using the definition of Mn, we have

√
m

√
‖Ψ−1

m ‖op ≤
(
m‖Ψ−1

m ‖2op

)1/4
m1/4 ≤

(
c

n

log(n)

)1/4

m1/4.

Now, we get a bound similar to the one in Comte and Genon-Catalot (2019) (with kn = 2) and

M1 = 2cϕ

(
c

n

log(n)

)1/4

(m ∨m′)1/4.

Therefore, applying Talagrand inequality recalled in Theorem 2 gives

E

(
sup

t∈Σm+Σm̂,‖t‖L+U=1
ν2
n(t)− p(m, m̂)

)
+

≤
∑

m′∈Mn

E

(
sup

t∈Σm+Σm′ ,‖t‖L+U=1
ν2
n(t)− p(m,m′)

)
+

≤
∑

m′∈Mn

C1

n

(
e−C2(m∨m′) +

(m ∨m′)1/2

n1/2
e−C3(n(m∨m′))1/4

)

≤ C4

n
,
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for Ci, i = 1, . . . , 4 constants and p(m,m′) = 4H2 (α = 1/2). This ends the proof. 2

Proof of Lemma 4. First recall that ‖Ŝm̂ − SI‖2n = ‖Ŝm̂ − SI‖2n,L + ‖Ŝm̂ − SI‖2n,U and we
prove that the first term is bounded by 3, the other term being similar. Now we consider the
euclidean norm and recalling the definition of the estimator and of Θm (see (20)), we have, for
any m ≤ n:

n ‖Ŝm − SI‖2n,L = ‖Φ(L)
m Θ−1

m ( tΦ(L)
m
~δ(L) + tΦ(U)

m
~δ(U))− ~SI(L)‖22,n

≤ 3[‖Φ(L)
m Θ−1

m
tΦ(L)
m
~δ(L)‖22,n + ‖Φ(L)

m Θ−1
m

tΦ(U)
m
~δ(U)‖22,n + ‖~SI(L)‖22,n]

with ~SI(L) = t(SI(L1), . . . , SI(Ln)). Now we prove that each of the three terms is smaller

than or equal to n. Clearly, this is true for ‖~SI(L)‖22,n = S2
I (L1) + · · · + S2

I (Ln) ≤ n. Next, by
definition of the operator norm, it follows that

‖Φ(L)
m Θ−1

m
tΦ(L)
m
~δ(L)‖22,n ≤ ‖Φ(L)

m Θ−1
m

tΦ(L)
m ‖2op‖~δ(L)‖22,n.

Since Φ
(L)
m Θ−1

m
tΦ

(L)
m is a symmetric positive definite matrix, its operator norm corresponds to its

largest eigenvalue. Let λ be any eigenvalue of Φ
(L)
m Θ−1

m
tΦ

(L)
m associated with an eigenvector ~x:

Φ
(L)
m Θ−1

m
tΦ

(L)
m ~x = λ~x. Multiplying both sides by tΦ

(L)
m , we get, for ~y = tΦ

(L)
m ~x, tΦ

(L)
m Φ

(L)
m Θ−1

m ~y =

λ~y, which means that λ is an eigenvalue of tΦ
(L)
m Φ

(L)
m Θ−1

m . Now setting ~z = ( tΦ
(L)
m Φ

(L)
m )−1/2~y

where S1/2 is a symmetric square root of a symmetric matrix S, we obtain that λ is also an
eigenvalue of

( tΦ(L)
m Φ(L)

m )1/2Θ−1
m ( tΦ(L)

m Φ(L)
m )1/2 =

[
Idm + ( tΦ(L)

m Φ(L)
m )−1/2( tΦ(U)

m Φ(U)
m )( tΦ(L)

m Φ(L)
m )−1/2

]−1
,

where Idm is them×m identity matrix. ClearlyM := ( tΦ
(L)
m Φ

(L)
m )−1/2( tΦ

(U)
m Φ

(U)
m )( tΦ

(L)
m Φ

(L)
m )−1/2

is symmetric positive definite and is diagonalizable in an orthonormal basis as diag(a1, . . . , am)
with ai > 0 for i = 1, . . . ,m. In this basis (I + M)−1 is equal to (1/(1 + a1), . . . , 1/(1 + am)),

and all these eigenvalues are in (0, 1). Therefore λ ≤ 1 and thus ‖Φ(L)
m Θ−1

m
tΦ

(L)
m ‖2op ≤ 1. Conse-

quently, using that all the coordinates of ~δ(L) belong to [−1, 1], we get the second bound

‖Φ(L)
m Θ−1

m
tΦ(L)
m
~δ(L)‖22,n ≤ ‖~δ(L)‖22,n ≤ n.

For the last term, we also start with

‖Φ(L)
m Θ−1

m
tΦ(U)
m
~δ(U)‖22,n ≤ ‖Φ(L)

m Θ−1
m

tΦ(U)
m ‖2op‖~δ(U)‖22,n.

Here the matrix Φ
(L)
m Θ−1

m
tΦ

(U)
m is not symmetric and thus

‖Φ(L)
m Θ−1

m
tΦ(U)
m ‖2op = λmax(Φ(L)

m Θ−1
m

tΦ(U)
m Φ(U)

m Θ−1
m

tΦ(L)
m ),

where λmax(A) stands for the largest eigenvalue of a matrix A and ‖A‖2op = λmax(tAA). As

previously an eigenvalue of Φ
(L)
m Θ−1

m
tΦ

(U)
m Φ

(U)
m Θ−1

m
tΦ

(L)
m is also an eigenvalue of(

Idm + tΦ(U)
m Φ(U)

m ( tΦ(L)
m Φ(L)

m )−1
)−1(

Idm + tΦ(L)
m Φ(L)

m ( tΦ(U)
m Φ(U)

m )−1
)−1

,

as both matrices are equal (note that tΦ
(U)
m Φ

(U)
m ( tΦ

(L)
m Φ

(L)
m )−1 is the inverse of tΦ

(L)
m Φ

(L)
m ( tΦ

(U)
m Φ

(U)
m )−1).

Consider a basis in which the first one is diagonal and of the form Diag(a1, . . . , am), then the
whole matrix is of the form Diag(1/[(1 + a1)(1 + a−1

1 )], . . . , 1/[(1 + am)(1 + a−1
m )]), that is the

eigenvalues are less that 1 as soon as the ai’s are positive. Now let a be an eigenvalue with ~x
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associated eigenvector, that is tΦ
(U)
m Φ

(U)
m ( tΦ

(L)
m Φ

(L)
m )−1~x = a~x. Then tΦ

(U)
m Φ

(U)
m ~y = a tΦ

(L)
m Φ

(L)
m ~y

and taking the scalar product with ~y yields

t~y tΦ(U)
m Φ(U)

m ~y = a t~y tΦ(L)
m Φ(L)

m ~y

that is ‖Φ(U)
m ~y‖22,n = a‖Φ(L)

m ~y‖22,n. Thus a ≥ 0. Lastly a 6= 0 because of invertibility assumptions.

We obtain that ‖Φ(L)
m Θ−1

m
tΦ

(U)
m ‖2op ≤ 1 and thus

‖Φ(L)
m Θ−1

m
tΦ(U)
m
~δ(U)‖22,n ≤ n.

Therefore, gathering the three bounds n for the euclidean norms gives the bound 9 for the
empirical norm and ends the proof.

6.4. Proof of Inequality (15). We already mentioned that t~vΨm,Z~v =
∫
I v

2(x)fZ(x)dx for

Z = L,U and v(x) =
∑m−1

j=0 vjϕj(x) where ~v = t(v0, . . . , vm−1). Thus if ∀x ∈ I, fZ(x) ≥ f0, we

get for any vector ~v ∈ Rd,

t~vΨm,Z~v ≥ f0

∫
I
v2(x)dx = f0

m−1∑
j=0

v2
j .

As a consequence, for any vector ~v ∈ Rd,

t~v(Ψm,L + Ψm,U )~v ≥ 2f0

∫
I
v2(x)dx = 2f0

m−1∑
j=0

v2
j .

all eigenvalues of Ψm,L + Ψm,U are larger than 2f0 and therefore, as they are all positive, the
largest eigenvalue of (Ψm,L + Ψm,U )−1 is smaller that 1/(2f0). 2
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Figure 9. MISE×102 computed forK = 100 samples of the penalized estimators
computed for different values of the constant κ. At the top : X ∼ Exp(1/2), at
the bottom X ∼ Log-N (0, 2) with sample size n = 300 (left) and n = 1000 (right)
in scenario 2 (red circle), scenario 3 (blue square) and scenario 4 (magenta tri-
angle).

Appendix A. Small calibration study

In order to give some explanations on the choice of the value κ = 0.5 in Section 4, we propose a
small study of the effect of the choice of κ on the proposed estimator. So, we compute the MISE
error defined by (16) of our penalized estimator with κ taking different values in the penalty
term pen(m) in (14). As the value of κ must be the same independently of the distribution
of (Xi)1≤i≤n or the sample size n, we choose different distributions and sample sizes. For
illustration, we present here the results for n = 300 and n = 1000, and densities:

• X ∼ Exp(1/2) with density function f(x) = 1
2 exp(−x

2 ), x ≥ 0.
• X = exp(Y ) with Y ∼ N (0, 2) that is X ∼ Log-N (0, 2)

Note that, to avoid overfitting, the densities here are different from the ones chosen in the
simulation study of Section 4. We use scenario 2, 3 and 4 for the generation of the censoring
pair (Li, Ui)1≤i≤n as in the simulation study defined in Section 4.1.

On each picture of Figure 9, we can see that the MISEs have rather the same behaviour for
both distributions of X and both sample sizes. We can identify a range of admissible values of
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κ corresponding to values where the MISE is near its minimum. The value κ = 0.5 seems to be
an adequate compromise.

Appendix B. Numerical results

We give in Table 1 and 2 the numerical results corresponding to the simulations and boxplots
of Section 4. We also add the errors computed for the empirical survival function evaluated with
the whole sample (Xi)1≤i≤n, as a benchmark or a kind of “oracle” estimator which represents
the best we could obtain if we had observed directly the X ′is without censoring, instead of the
intervals [Li, Ui]. We study in Table 3 the effect of the number of replications on the quality of
estimations.
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size n
Event time Models

Log-N (0, 1) Weib(0.5, 2) Beta′(5, 2) Beta(5, 2)

In
sp

ec
ti

on
ti

m
e

S
ce

n
ar

io

100

MC 5.30 (4.83) 4.61 (4.00) 4.43 (4.27) 3.41 (4.27)
AndYu 1.92 (1.53) 14.4 (0.97) 15.0 (1.66) 2.63 (2.44)
NPMLE 7.00 (3.27) 6.76 (3.60) 6.78 (3.77) 8.09 (3.84)
SMLE 4.72 (3.10) 5.08 (3.33) 5.46 (3.71) 5.50 (3.55)
oracle 1.56 (1.36) 2.17 (2.24) 2.18 (2.25) 1.49 (1.20)

sc. 1 :
L ∼ U [0, 2.5],
U ∼ U [3, 4]

300

MC 1.53 (1.12) 2.16 (1.31) 1.36 (1.16) 1.11 (1.00)
AndYu 0.98 (0.44) 14.0 (0.42) 15.0 (4.56) 0.97 (0.91)
NPMLE 3.10 (1.26) 2.77 (1.12) 2.53 (1.04) 3.70 (2.10)
SMLE 2.05 (1.19) 2.06 (1.08) 1.73 (0.93) 2.45 (1.98)
oracle 0.59 (0.64) 0.62 (0.63) 0.47 (0.48) 0.40 (0.35)

1000

MC 0.80 (0.43) 0.92 (0.39) 0.42 (0.33) 0.40 (0.26)
AndYu 0.75 (0.18) 13.8 (0.14) 14.9 (2.75) 0.31 (0.23)
NPMLE 1.28 (0.48) 1.04 (0.31) 1.21 (0.40) 1.61 (0.56)
SMLE 0.84 (0.45) 0.82 (0.33) 0.81 (0.34) 1.06 (0.55)
oracle 0.20 (0.23) 0.18 (0.16) 0.15 (0.16) 0.12 (0.11)

100

MC 5.46 (5.36) 6.87 (7.80) 5.99 (7.21) 2.92 (2.14)
AndYu 2.24 (1.76) 18.0 (3.67) 16.35 (8.21) 2.41 (2.49)
NPMLE 6.48 (3.44) 6.30 (3.52) 8.03 (4.90) 7.85 (4.37)
SMLE 4.57 (3.37) 5.02 (3.37) 6.26 (4.43) 5.38 (4.16)
oracle 1.66 (1.45) 2.20 (2.28) 1.81 (1.76) 1.63 (1.36)

sc. 2 :
L ∼ U [0, 1],
U = L+ U [0, 3]

300

MC 1.36 (1.77) 2.05 (1.77) 2.17 (2.01) 1.48 (1.23)
AndYu 1.17 (0.60) 17.3 (1.84) 14.8 (5.91) 0.81 (0.72)
NPMLE 2.88 (1.22) 2.75 (1.47) 4.08 (2.20) 3.22 (1.23)
SMLE 2.03 (1.22) 2.20 (1.32) 2.99 (1.88) 2.07 (1.15)
oracle 0.61 (0.67) 0.62 (0.62) 0.48 (0.46) 0.43 (0.37)

1000

MC 0.79 (0.30) 1.15 (0.59) 0.95 (0.82) 0.45 (0.22)
AndYu 0.93 (0.30) 16.8 (1.02) 15.3 (3.60) 0.32 (0.26)
NPMLE 1.19 (0.40) 1.19 (0.62) 1.78 (0.99) 1.34 (0.44)
SMLE 0.84 (0.42) 1.00 (0.51) 1.29 (0.81) 0.84 (0.44)
oracle 0.20 (0.23) 0.18 (0.16) 0.15 (0.16) 0.13 (0.12)

Table 1. MISE ×103 and standard deviation in parenthesis for K = 100 sam-
ples, for scenario 1 and 2 : our penalized Least Squares estimator built with
Laguerre basis (MC), the log-concave Anderson-Bergman and Yu’s NPMLE
(AndYu), the unconstrained NPMLE (NPMLE), the smoothed NPMLE (SMLE)
and the ”oracle” empirical survival function.
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size n
Event time Models

Log-N (0, 1) Weib(0.5, 2) Beta′(5, 2) Beta(5, 2)

In
sp

ec
ti

on
ti

m
e

S
ce

n
ar

io

100

MC 7.85 (5.70) 9.63 (7.57) 6.69 (5.85) 5.21 (7.26)
AndYu 3.43 (3.34) 15.4 (2.26) 15.5 (7.24) 3.99 (3.89)
NPMLE 9.81 (5.19) 10.3 (5.94) 8.76 (4.47) 10.5 (5.63)
SMLE 7.09 (5.02) 8.24 (5.67) 6.75 (4.11) 7.52 (5.32)
oracle 1.52 (1.38) 2.30 (2.46) 1.66 (1.43) 1.48 (1.14)

sc. 3 :
L,U ∼ U [0, 4],
U ≥ L and
U − L ≤ 0.1

300

MC 2.05 (1.97) 2.82 (1.98) 2.32 (1.64) 1.93 (1.42)
AndYu 1.42 (0.91) 14.7 (0.84) 15.7 (5.28) 1.37 (1.10)
NPMLE 3.82 (1.55) 3.90 (1.75) 3.58 (1.59) 4.17 (1.50)
SMLE 2.59 (1.52) 3.13 (1.69) 2.62 (1.43) 2.82 (1.44)
oracle 0.56 (0.51) 0.66 (0.58) 0.52 (0.50) 0.45 (0.38)

1000

MC 0.81 (0.35) 1.22 (0.48) 0.88 (0.74) 0.54 (0.42)
AndYu 0.94 (0.29) 14.8 (0.53) 14.9 (3.47) 0.39 (0.29)
NPMLE 1.47 (0.44) 1.51 (0.52) 1.47 (0.58) 1.46 (0.56)
SMLE 1.02 (0.44) 1.20 (0.48) 1.08 (0.53) 0.95 (0.51)
oracle 0.16 (0.13) 0.17 (0.14) 0.20 (0.19) 0.15 (0.12)

100

MC 5.31 (4.92) 4.43 (4.27) 4.18 (3.65) 2.93 (2.93)
AndYu 1.97 (1.83) 15.0 (1.66) 14.5 (6.74) 2.91 (3.05)
NPMLE 10.7 (6.78) 6.78 (3.78) 10.6 (5.30) 17.8 (10.6)
SMLE 8.32 (6.68) 5.46 (3.72) 8.66 (5.04) 14.1 (10.0)
oracle 1.58 (1.37) 2.18 (2.25) 1.84 (1.79) 1.54 (1.24)

sc. 4 :
L ∼ U [0, 1],
U ∼ U [2, 4]

300

MC 1.62 (1.67) 2.04 (1.93) 2.16 (2.82) 1.06 (0.88)
AndYu 1.00 (0.45) 14.6 (0.90) 13.6 (5.28) 1.01 (0.95)
NPMLE 5.42 (4.37) 3.22 (1.63) 6.51 (3.19) 11.7 (6.40)
SMLE 5.14 (4.25) 2.62 (1.60) 5.36 (3.04) 9.69 (5.96)
oracle 0.59 (0.65) 0.62 (0.63) 0.47 (0.48) 0.41 (0.35)

1000

MC 0.99 (0.47) 1.00 (0.49) 0.64 (0.64) 0.54 (0.29)
AndYu 0.75 (0.15) 14.3 (0.37) 13.9 (4.00) 0.46 (0.42)
NPMLE 4.05 (2.24) 1.71 (0.89) 4.48 (1.94) 8.95 (5.11)
SMLE 3.33 (2.19) 1.49 (0.86) 3.84 (1.93) 7.60 (4.83)
oracle 0.20 (0.23) 0.18 (0.16) 0.15 (0.16) 0.13 (0.11)

Table 2. MISE ×103 and standard deviation in parenthesis for K = 100 sam-
ples, for scenario 3 and 4 : our penalized Least Squares estimator built with
Laguerre basis (MC), the log-concave Anderson-Bergman and Yu’s NPMLE
(AndYu), the unconstrained NPMLE (NPMLE), the smoothed NPMLE (SMLE)
and the ”oracle” empirical survival function.
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size n
Log-N (0, 1) (sc. 3) Weib(0.5, 2) (sc. 2)
K = 100 K = 500 K = 100 K = 500

300

MC 2.05 (1.97) 2.18 (2.27) 2.05 (1.77) 2.23 (2.11)
AndYu 1.42 (0.91) 1.44 (0.89) 17.3 (1.84) 17.1 (1.97)
NPMLE 3.82 (1.55) 3.88 (1.58) 2.75 (1.47) 2.82 (1.44)
SMLE 2.59 (1.52) 2.69 (1.55) 2.20 (1.32) 2.28 (1.32)
oracle 0.56 (0.51) 0.54 (0.47) 0.62 (0.62) 0.69 (0.68)

1000

MC 0.81 (0.35) 0.86 (0.44) 1.15 (0.59) 1.17 (0.58)
AndYu 0.94 (0.29) 0.94 (0.29) 16.8 (1.02) 16.7 (1.05)
NPMLE 1.47 (0.44) 1.50 (0.54) 1.19 (0.62) 1.28 (0.73)
SMLE 1.02 (0.44) 1.03 (0.55) 1.00 (0.51) 1.07 (0.63)
oracle 0.16 (0.13) 0.16 (0.14) 0.18 (0.16) 0.20 (0.21)

Table 3. Effect of the number K of replications in the Monte-Carlo study:
MISE ×103 and standard deviation in parenthesis for our penalized Least Squares
estimator built with Laguerre basis (MC), the log-concave Anderson-Bergman
and Yu’s NPMLE (AndYu), the unconstrained NPMLE (NPMLE), the smoothed
NPMLE (SMLE) and the ”oracle” empirical survival function.


