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Abstract. We study the model Yi = XiUi, i = 1, . . . , n where the Ui’s are i.i.d. with
β(1, k) density, k ≥ 1, the Xi’s are i.i.d., nonnegative with unknown density f . The sequences
(Xi), (Ui), are independent. We aim at estimating f on R

+ from the observations (Y1, . . . , Yn).
We propose projection estimators using a Laguerre basis. A data-driven procedure is described
in order to select the dimension of the projection space, which performs automatically the bias
variance compromise. Then, we give upper bounds on the L

2-risk on specific Sobolev-Laguerre
spaces. Lower bounds matching with the upper bounds within a logarithmic factor are proved.
The method is illustrated on simulated data. May 30, 2016
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1. Introduction

Consider observations Y1, . . . , Yn such that

(1) Yi = XiUi, i = 1, . . . , n.

where (Xi) are i.i.d. nonnegative random variables with unknown density f , (Ui) are i.i.d. with
β(1, k) density given by fU (u) := ρk(u) = k(1 − u)k−11I[0,1](u), with k ≥ 1 and the sequences
(Xi), (Ui) are independent.

For k = 1, i.e. if Ui has uniform density on [0, 1], model (1) is refered to as the multiplicative
censoring model and has been widely investigated in the past decades. It was first introduced in
Vardi (1989) and covers several important statistical problems, such as estimation under mono-
tonicity constraints or deconvolution of an exponential variable. Such a model is usually applied
in survival analysis (see e.g. van Es et al. (2000)). Numerous papers deal with the estimation
of f by various nonparametric methods. A nonparametric maximum likelihood approach is in-
vestigated in Vardi (1989), Vardi and Zhang (1992), Asgharian et al. (2012). However, in the
latter papers, authors assume that a m-sample of direct observations X1, . . . ,Xm is available in
addition to the Y -sample and the method does not apply to the case m = 0. Using only the
Y -sample, projection methods have been proposed. In Andersen and Hansen (2001), considering
the estimation of f as an inverse problem, the authors apply singular value decomposition in
different bases. Their procedure is not adaptive. Abbaszadeh et al. (2012, 2013) use projection
estimators on wavelets bases to estimate the density f and its derivatives. They provide adap-
tive estimators, upper bounds of the L

p-risks but no lower bounds. Kernel estimators of f and
of the survival function F̄ (x) = 1 − F (x), where F is the cumulative distribution function, are
studied in Brunel et al., (2015). Extensions of model (1) are considered in Chesneau (2013) who
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assumes that the Ui’s are a product of independent uniform variables and the sequence (Xi) is
α-mixing.

In this paper, we consider the extension of the multiplicative sensoring model to the case
where Ui has β(1, k) distribution and propose nonparametric estimators of f built as projection
estimators on a Laguerre basis under the assumption that f ∈ L

2(R+). Laguerre bases, which
are orthonormal bases of L2(R+), are well fitted for nonparametric estimation of R+-supported
functions. Moreover, the support of the density under estimation being hidden by the noise, it is
an advantage to have basis functions with non compact support. These bases have been recently
used by several authors, for instance, in Comte et al. (2015), for Laplace deconvolution of a
signal observed with noise, in Comte and Genon-Catalot (2015), for estimation of the mixing
distribution of a Poisson mixture model, in Mabon (2015), for deconvolution of densities on R

+.
Laguerre bases are related to Sobolev-Laguerre spaces which were introduced in Shen (2000) and
with more details in Bongioanni and Torrea (2007). The regularity properties of a function f
belonging to a Sobolev-Laguerre space are characterized by the rate of decay of the coefficients
of the development of f in the Laguerre basis. The link between projection coefficients and
regularity conditions in these spaces has been described in Comte and Genon-Catalot (2015).
In the present paper, we choose a Laguerre basis and first establish explicit formulae linking
the projection coefficients of fk,Y , the density of Y in model (1), in the Laguerre basis to those

of f . This allows to define a collection (f̂m) of estimators of f . We obtain a L
2-risk bound

for f̂m. Then, we propose a data-driven choice m̂k of the dimension m leading to an adaptive
estimator f̂m̂k

. Using Sobolev-Laguerre regularity spaces, we determine upper bounds for the
rate of convergence of the L

2-risk. Then, we study lower bounds and prove that upper and
lower bounds match up to a logarithmic term. The lower bound on Sobolev-Laguerre balls is
difficult to obtain and follows several technical steps. We start proving it in the case of direct
observations of the Xi’s, that is in the simple density model and then we obtain it for model
(1) when k = 1. To avoid more technical developments, we just indicate how to extend it for all
integer k.

In Section 2, we describe the Laguerre basis, build the projection estimators of f and pro-
vide the upper bound of their L

2-risk. This leads to the adaptive procedure. In Section 3,
we introduce the Sobolev-Laguerre regularity spaces and obtain upper bounds on the rate of
convergence of the projection estimators on Sobolev-Laguerre balls. To prove lower bounds, one
can follow the general scheme described, e.g. in Tsybakov (2009). However, in the considered
situation it is more natural to construct alternatives as finite combinations of Laguerre functions
with coefficients taking values in {0, 1}. Such a construction makes the problem of attributing a
hypothesis to Sobolev-Laguerre ball straightforward. Then the lower bounds are obtained via a
modification of the Hamming distance and a corresponding extension of the Varshamov-Gilbert
bound. In Section 4, we implement the adaptive estimators of f , based on direct observations
X1, . . . ,Xn and on multiplicative censored observations Y1, . . . , Yn for k = 1, 2 and for vari-
ous densities f . The method provides very good results for direct observations, which remain
convincing for censored data. Extensions and concluding remarks are given in Section 5.

2. Projection estimators in the Laguerre basis

2.1. Laguerre basis. Below we denote the scalar product and the L
2-norm on L

2(R+) by:

∀s, t ∈ L
2(R+), 〈s, t〉 =

∫ +∞

0
s(x)t(x)dx, ‖t‖2 =

∫ +∞

0
t2(x)dx.

Consider the Laguerre polynomials (Lj) and the Laguerre functions (ϕj) given by

Lj(x) =

j
∑

k=0

(−1)k
(

j

k

)

xk

k!
, ϕj(x) =

√
2Lj(2x)e

−x1Ix≥0, j ≥ 0.
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The collection (ϕj)j≥0 constitutes a complete orthonormal system on L
2(R+), and is such that

(see Abramowitz and Stegun (1964)):

(2) ∀j ≥ 1, ∀x ∈ R
+, |ϕj(x)| ≤

√
2.

We assume that f ∈ L
2(R+), so that we can develop f on the Laguerre basis:

f =
∑

j≥0

aj(f)ϕj , aj(f) = 〈f, ϕj〉.

Let Sm be the m-dimensional subspace of L2(R+) spanned by (ϕ0, ϕ1, . . . , ϕm−1). The function

(3) fm =
m−1
∑

j=0

aj(f)ϕj

is the orthogonal projection of f on Sm. Below, we define estimators âj of aj(f) from the obser-

vations Y1, . . . , Yn. This leads to a collection of projection estimators (f̂m =
∑m−1

j=0 âjϕj ,m ≥ 1).

2.2. Preliminary properties and formulas. Let fk,Y denote the density of Yi given by (1).
A straightforward computation leads to

(4) fk,Y (y) = k

∫ ∞

y

(

1− y

u

)k−1 f(u)

u
du 1Iy≥0.

Moreover, another simple computation yields:

(5) ‖fk,Y ‖ ≤ ‖f‖E( 1√
U1

) < +∞.

Thus, fk,Y belongs to L
2(R+). In this paragraph, we prove that the coefficients (aj(f), j ≥ 0)

are linked with the coefficients (aj(fk,Y ) = 〈fk,Y , ϕj〉, j ≥ 0) of the density fk,Y on the Laguerre
basis by a linear relation. This requires preliminary steps.

Let us remark that a density satisfying (4) is k-monotone, i.e. that (−1)ℓf
(ℓ)
k,Y is nonincreasing

and convex for ℓ = 0, . . . , k−2 if k ≥ 2 and simply nonincreasing if k = 1. This property is proved
in Williamson (1956). Therefore, model (1) covers the case of observations with k-monotone
densities. Note that k-monotone densities are considered in Balabdaoui and Wellner (2007,
2010) or Chee and Wang (2014), from the point of view of estimating fk,Y (not f) under the
k-monotonicity constraint.

In Proposition 2.1 below, we state an inversion formula giving f from fk,Y defined by (4)
proved in Williamson (1956). For convenience of the reader, we give a proof in the appendix.

Proposition 2.1. Let fk,Y and f be linked by formula (4) and set F (x) =
∫ x
0 f(t) dt (resp.

Fk,Y (y) =
∫ y
0 fk,Y (t) dt). Then we have, for any y ≥ 0, for k ≥ 1,

(6) f(y) =
(−1)k

k!
ykf

(k)
k,Y (y),

(7) F (y) = Fk,Y (y)− yfk,Y (y) + · · ·+ (−1)k−1

(k − 1)!
yk−1f

(k−2)
k,Y (y) +

(−1)k

k!
ykf

(k−1)
k,Y (y).

Note that, setting f0,Y = f, F0,Y = F , these formulae contain the case where Yi = Xi (Ui = 1).
So, below, we consider the case k = 0 in our results as the case of direct observations of the
Xi’s. With the two following propositions, we give the links between the coefficients of f and
fk,Y on the Laguerre basis.
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Proposition 2.2. Assume that EXk−1 < +∞. Then, for all j ≥ 0 and k ≥ 1,

(8) aj(f) = 〈f, ϕj〉 =
1

k!
〈fk,Y , (ykϕj)

(k)〉

Proposition 2.2 provides a simple way of defining estimators of aj(f) by replacing the right-
hand side of (8) by its empirical counterpart based on the observed Y -sample. Moreover, the
proof relies explicitly on the fact that the ϕj ’s are not compactly supported. This is due to the
integrations by parts used to obtain the result.
Proposition 2.3 hereafter gives another way of expressing the coefficients and is helpful for

studying the rates of estimators. Define the matrices H
(k)
m with size m× (m+ k) by

H(0)
m = Idm,

and for k ≥ 1,

[H(k)
m ]j,ℓ = hj,kℓ for ℓ = sup((j − k), 1), . . . , j + k, [H(k)

m ]j,ℓ = 0 otherwise,

where

(9) hj,kℓ =

k
∑

p=|ℓ−j|

bj,pℓ

(

k

p

)

1

p!
,

and the (bj,pℓ )’s can be recursively computed by

bj,0ℓ = δℓ,j, bj,p+1
ℓ = −ℓ+ 1

2
bj,pℓ+1 − (p+

1

2
)bj,pℓ +

ℓ

2
bj,pℓ−1 for p ≥ 0.

Proposition 2.3. By convention, we set ϕj = 0 if j ≤ −1 and define the column vectors of
coefficients of f on (ϕ0, . . . , ϕm−1) and of fk,Y on (ϕ0, . . . , ϕm+k−1):

~am−1(f) := (aj(f))0≤j≤m−1, ~am+k−1(fk,Y ) = (aj(fk,Y ))0≤j≤m+k−1.

Then,

~am−1(f) = H(k)
m ~am+k−1(fk,Y ).

Moreover, the coefficients hℓj,k satisfy

(10) ∀ℓ ≤ j + k, |hj,kℓ | ≤ C ′
k(j + k)k.

For each k, the coefficients have to be computed. In our simulations (Section 4), we use the two

values k = 1, 2 and the coefficients are the following. For k = 1, [H
(1)
m ]j,ℓ = 0 if ℓ 6= j, j−1, j+1,

(11) [H(1)
m ]j,j−1 = − j

2
, [H(1)

m ]j,j =
1

2
, [H(1)

m ]j,j+1 =
j + 1

2
.

For k = 2, [H
(2)
m ]j,ℓ = 0 if ℓ 6= j, j − 1, j + 1, j − 2, j + 2 and

[H(2)
m ]j,j−2 =

j(j − 1)

8
, [H(2)

m ]j,j−1 = −1

2
j, [H(2)

m ]j,j = −j
2 + j − 1

4
,

[H(2)
m ]j,j+1 =

1

2
(j + 1), [H(2)

m ]j,j+2 =
(j + 1)(j + 2)

8
.

For the study of the risk bounds, we need evaluate two norms of the matrix H
(k)
m . The first one

is the spectral radius ρ(H
(k)
m ) and the second one is the Frobenius norm |H(k)

m |F . We recall their
definitions. The squared spectral radius of the matrix A, ρ2(A) = λmax(A

t A), is equal to the
largest eigenvalue of At A, where At denotes the transpose of A. The Frobenius squared norm
of A is given by |A|2F = Tr(At A) where Tr(M) is the trace of matrix M . The following result
is deduced from Proposition 2.3.
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Corollary 2.1. For m ≥ 1 and k ≥ 0, there exist constants c(k), C(k) depending on k only,
such that

c(k)m2k+1 ≤ |H(k)
m |2F ≤ mρ2(H(k)

m ) ≤ C(k)m(m+ k)2k.

2.3. Projection estimator and upper risk bound. Proposition 2.3 leads us to define a
collection of projection estimators of f by:

(12) f̂m =
m−1
∑

j=0

âjϕj , ~̂am−1 = (âj)0≤j≤m−1 = H(k)
m
~̂am+k−1(Y ), m ≥ 1

where ~̂am+k−1(Y ) = [(âj(Y ))0≤j≤m+k−1] and âj(Y ) is defined by

(13) âj(Y ) :=
1

n

n
∑

i=1

ϕj(Yi).

Note that, by Proposition 2.2, we have the other formula: âj = (1/n)
∑n

i=1
1
k!(y

kϕj)
(k)(Yi). The

following proposition gives the risk bound for the estimator f̂m.

Proposition 2.4. Let f̂m, fm be given by (12) and (3). Then we have, for all k,m ≥ 0,

E(‖f̂m − f‖2) ≤ ‖f − fm‖2 + 2
[(m+ k)ρ2(H

(k)
m )] ∧ [‖fk,Y ‖∞|H(k)

m |2F ]
n

,

where x ∧ y = inf(x, y). Moreover, it holds

E(‖f̂m − f‖2) ≤ ‖f − fm‖2 + ζk
(m+ k)2k+1

n

with ζk = 2[(2k + 1)C ′
k]

2 where C ′
k is the constant in Proposition 2.2, formula (10).

Let us discuss the two terms in the infimum appearing in the first bound of Proposition 2.4.

In light of Corollary 2.1, we have |H(k)
m |2F ≤ mρ2(H

(k)
m ) but ‖fk,Y ‖∞ may be infinite. On the

other hand, the two terms have the same order, given in second inequality of Proposition 2.4.

2.4. Adaptive estimation. The risk bound decomposition of Proposition 2.4 classically in-
volves a squared bias term ‖f − fm‖2 =∑j≥m a

2
j (f) which is decreasing with m and a variance

term of order m2k+1/n which is increasing with m. Therefore, to select relevantly m, we have to
perform a compromise. This can be done asymptotically by evaluating rates of convergence (see
below), or, as we do now, on finite sample by a model section strategy. In view of the discussion
on the risk bound, we define for k ≥ 0,

(14) m̂k = arg min
m∈M

(k)
n

(

−‖f̂m‖2 + penk(m)
)

, penk(m) = κ
mρ2(H

(k)
m )

n
,

where
M(k)

n = {m ∈ N
∗, mρ2(H(k)

m ) ≤ n}.
Note that the definition of m̂k mimicks the squared-bias variance compromise as −‖f̂m‖2 is an
estimator of −‖fm‖2 which is, up to the constant ‖f‖2, equal to ‖f − fm‖2 and penk(m) is

proportional to the variance term. As H
(k)
m is explicit, the computation of ρ2(H

(k)
m ) is obtained

by a numerical algorithm (function eigs applied to (H
(k)
m )t (H

(k)
m ) in Matlab).

Theorem 2.1. Assume that E(1/X) < +∞. Let f̂m be given by (12) and m̂k by (14). There
exists a constant κ0 such that for any κ ≥ κ0, we have

E(‖f̂m̂k
− f‖2) ≤ C1 inf

m∈M
(k)
n

(

‖f − fm‖2 + penk(m)
)

+
C2

n
.

where C1 is a numerical constant (C1 = 4 suits) and C2 depends on k and E(1/X).
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It follows from Theorem 2.1 that the estimator f̂m̂k
is adaptive in the sense that its risk auto-

matically realizes the squared bias-variance compromise.
The constant κ0 provided by the proof is generally not optimal; finding the optimal theoretical

value of κ in the penalty is far from easy (see for instance Birgé and Massart (2007) in a
Gaussian regression model). This is why it is standard to calibrate the value κ in the penalty
by preliminary simulations.

3. Rates of convergence on Sobolev-Laguerre balls

We now study the asymptotic point of view to find the dimension mopt which realizes the bias
variance compromise of the risk bound given in Proposition 2.4. We have already identified the
rate of the variance term as m2k+1/n. We now look at the bias term ‖f − fm‖2. Classically,
the bias rate is evaluated by choosing a regularity space for the function f . Sobolev-Laguerre
spaces are well fitted to our framework.

3.1. Sobolev-Laguerre spaces. For s ≥ 0, the Sobolev-Laguerre space with index s (see
Bongioanni and Torrea (2007)) is defined by:

(15) W s = {h : (0,+∞) → R, h ∈ L
2((0,+∞)), |h|2s :=

∑

k≥0

ksa2k(h) < +∞}.

where ak(h) =
∫ +∞
0 h(u)ϕk(u)du. For s integer, the property |h|2s < +∞ can be linked with

regularity properties of the function h. We give details in the Appendix. We define the ball
W s(D) :

W s(D) =
{

h ∈W s, |h|2s ≤ D
}

.

3.2. Upper rates. We can deduce from Proposition 2.4 the rates of convergence of the estimator
on Sobolev-Laguerre balls. For f ∈ W s(D), we have ‖f − fm‖2 =

∑

j≥m a
2
j(f) ≤ Dm−s. This

yields:

Corollary 3.1. Assume that f ∈ W s(D). Let f̂m be given by (12). Then choosing mopt =

[ns+2k+1] gives

E(‖f̂mopt − f‖2) ≤ C(D, s, k)n−s/(s+2k+1)

where C(D, s, k) is a constant depending on D, s and k.

The rate may be interpreted as follows: we have an inverse problem, where s measures the
smoothness and k the ill-posedeness.

For direct observations of X1, . . . ,Xn (k = 0), this rate is the same as the one obtained by
Juditsky and Lambert-Lacroix (2004) for estimation of a density on R, over Hölder classes of
densities.

Faster rates of convergence may be obtained if the bias is smaller. Exponential distributions
provide examples of such a case. If X has exponential distribution E(θ), θ > 0, then the

coefficients are given by ak(f) =
√
2[θ/(θ + 1)] ((θ − 1)/(θ + 1))k and the bias can be explicitly

computed,

‖f − fm‖2 =
∞
∑

k=m

a2k(f) =
θ

2

∣

∣

∣

∣

θ − 1

θ + 1

∣

∣

∣

∣

2m

.

Then the bias is exponentially decreasing and the rate of convergence is of order [log(n)]2k+1/n
for mopt = log(n)/ρ, ρ = | log[|(θ − 1)/(θ + 1)|]|. The result can be extended to Gamma
and mixed Gamma densities, see Comte and Genon-Catalot (2015), Mabon (2015). Thus, the
Laguerre basis method provides excellent rates for the class of mixed gamma densities.

Nevertheless, we stress that the adaptive procedure does not require any knowledge on the
rate of the bias and still automatically realizes the finite sample bias-variance compromise and
also automatically reaches the best possible asymptotic rate.
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m̄X = 4.02 (1.44) m̄Y,1 = 3.06 (0.31) m̄Y,2 = 3.42 (0.76)
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Figure 1. True density f of Model (i) (Gamma distribution) in bold (blue). 50 esti-

mators of f , left: from direct observation of X in dotted (red); middle: from observation

of Y = XU with U ∼ U([0, 1]), in dotted (green); right: from observation of Y = XU

with U ∼ β(1, 2), in dotted (green). First line: n = 400. Second line: n = 2000. Above

each plot, m̄X (resp. m̄Y,1, resp m̄Y,2) is the mean of the selected dimensions from X

(resp. from Y ) with standard deviation in parenthesis.

So far, we have used that the ϕjs are bounded. However, Szegö (1975) p.198 and p. 241. gives

the following asymptotic bound: ∀a > 0, supx>a |ϕj(x)| ≤ Cj−1/4. Therefore, for densities with

support [a,+∞[ with a > 0, we have
∑

j0≤j≤mE(ϕ2
j (Y1)) ≤ C ′m1/2 and the variance term of f̂m

has order O(m2k+1/2/n) instead of O(m2k+1/n). By choosing mopt = [ns+2k+(1/2)], the upper

rate becomes on this restricted class of densities, of order O(n−s/(s+2k+(1/2))). Lower bounds for
this class would require a completely different proof.

3.3. Lower bounds. We prove that the upper rate obtained in Proposition 3.1 is optimal on
Sobolev-Laguerre balls. This reveals unexpectedly difficult. We first treat the case k = 0 (Ui = 1,
direct observations of Xi). Then, we deal with k = 1 and give indications on how to extend the
result to all k > 1. The upper bound matches the lower bound up to a logarithmic term.

Theorem 3.1. Assume that s is an integer, s > 1 and X1, . . . ,Xn are observed. Then for any

estimator f̂n, for any ǫ > 0 and for n large enough,

sup
f∈W s(D)

Ef

[

‖f̂n − f‖2
]

% ψn, ψn = n−s/(s+1)/ log(1+ǫ)/(s+1)(n).

The proof is based on Theorem 2.7 in Tsybakov (2009), and induces several steps. The main
difficulty of the construction is to ensure that the density alternative proposal is really a density
on R

+, and is in particular nonnegative.
Next we consider the case k = 1, but the step from k = 0 (case of direct observation of X)

to k = 1 suggests how to get a general result, see Remark 6.1 in the proof. However, given
technicalities of the proof, we detail only the case k = 1.
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Theorem 3.2. Assume that s is an integer, s > 1 and consider the model Y = XU , for X and
U independent, U ∼ U([0, 1]) with only Y observed.

Then for any estimator f̂n of f the density of X, for any ǫ > 0 and for n large enough,

sup
f∈W s(D)

Ef

[

‖f̂n − f‖2
]

% ψ̃n, ψ̃n = n−s/(s+3)(log n)(1+ǫ)/(1+s/3).

4. Simulation results

We implement the adaptive estimators f̂m̂k
of f based

• on direct observations X1, . . . ,Xn,
• on multiplicative censored observations Y1, . . . , Yn, Yi = XiUi with Ui ∼ U([0, 1]),
• on multiplicative censored observations Y1, . . . , Yn, Yi = XiUi with Ui ∼ β(1, 2).

We consider for f the densities

(i) Gamma(3, 1/2),
(ii) a Gamma mixture: cX with X ∼ 0.4 Gamma(2,1/2)+0.6 Gamma(16,1/4) and c = 5/8.
(iii) Lognormal(0.5, 0.5) (exponential of a Gaussian with mean 0.5 and variance 0.52).
(iv) 5X with X ∼ Beta(4, 5), a beta distribution.

All factors and parameters are chosen to have the true densities with the same scales.
After preliminary simulation experiments, direct estimation is penalized with κ1 = 0.75. For

U following a uniform distribution on [0, 1], we use κ2 = 0.25 and κ3 = 0.025 for U following a
β(1, 2) distribution on [0, 1].

Beam of estimators are given in Figures 1-2 and show clearly the performance of the method
via variability bands. The Laguerre basis provides excellent estimation when using direct data,
and the problem gets more difficult in presence of censoring. Increasing k (we have k = 1 when
U ∼ U([0, 1]) and k = 2 when U ∼ β(1, 2)) makes the problem more difficult. This is why
Gamma mixtures are hard to reconstruct in presence of multiplicative censoring (see Figure 2).
Selected dimensions can be of various orders (between 3 and 12 in our examples) and vary or
be very stable (see the standard deviations).

n = 400 n = 2000
density Kernel Laguerre U([0, 1]) β(1, 2) Kernel Laguerre U([0, 1]) β(1, 2)

γ(3, 1/2) 3.66 3.38 6.9 12.55 1.20 0.58 4.05 4.67
(i) (2.19) (1.35) (7.77) (14.95) (0.47) (0.51) (1.28) (3.21)

Mixed 22.25 6.17 51.07 41.54 12.00 1.82 9.47 12.62
Gamma (ii) (2.69) (1.98) (16.84) (19.50) (1.24) (0.69) (4.29) (5.95)
Lognormale 3.93 2.54 19.54 22.34 1.28 1.13 6.21 7.07

(iii) (2.25) (1.61) (8.42) (19.43) (0.51) (0.45) (2.66) (4.40)
5β(4, 5) 2.51 2.06 11.87 18.52 0.71 0.67 8.21 8.40
(iv) (1.31) (1.64) (8.36) (14.49) (0.36) (0.46) (2.18) (4.56)

Table 1. MISE × 1000 with std × 1000 in parenthesis for 100 estimation of f
with kernel or Laguerre projection estimators in the case of direct observation of
X and with Laguerre projection in case Y = XU is observed and U is U([0, 1])
or β(1, 2).

Table 1 gives the Mean Integrated Squared Error (MISE) for two sample sizes (n = 400
and n = 2000) and the three cases for the same X sample; ISE are computed on the interval
of observation. The kernel estimator implemented for comparison is obtained via the function
ksdensity of Matlab. The projection method is in general better than the kernel estimator,
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m̄X = 12.32 (2.32) m̄Y,1 = 6.72 (0.45) m̄Y,2 = 6.58 (0.50)
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m̄X = 8.58 (2.36) m̄Y,1 = 5.12 (0.48) m̄Y,2 = 5.42 (0.61)
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m̄X = 8.62 (1.55) m̄Y,1 = 4.60 (1.12) m̄Y,2 = 5.58 (1.16)
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Figure 2. True density f of Model (ii) (Mixed Gamma) on the first line, Model (iii)

(Lognormal) on the second line, and Model (iv) on the third line (Beta distribution)

in bold (blue). Left: 50 estimators of f from direct observation of X in dotted (red).

Middle: 50 estimators of f from observation of Y , in dotted (red) with U ∼ U([0, 1]).
Right: 50 estimators of f from observation of Y , in dotted (red) with U ∼ β(1, 2),

n = 2000 in all cases. Above each plot, m̄X (resp. m̄Y,1, resp m̄Y,2) is the mean of the

selected dimensions for X (resp. for Y ) with standard deviation in parenthesis.

with slight improvement for models (iii) and (iv), and a much more important one in the Gamma
and in the mixed Gamma case of models (i) and (ii). This was expected as theoretical rates
are better for Gamma or mixed Gamma when using Laguerre projection method. Clearly, the
inverse problem faced in the multiplicative censoring case makes the problem more difficult and
the MISEs higher.

5. Extensions and concluding remarks

In this paper, we propose a nonparametric adaptive estimator of the density f of Xi in the
model Yi = XiUi where Xi are i.i.d. nonnegative random variables and the sequences (Ui)i and
(Xi)i are independent. We develop the case of Ui ∼ β(1, k) for k ∈ N, where k = 0 corresponds
to the direct observation of the Xi’s (i.e. Ui ≡ 1). Using a Laguerre basis a collection of
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projection estimators is built and a date driven procedure is proposed to select the dimension
of the projection space. The risk bound of the adaptive estimator provides a an automatic bias
variance compromise which is non asymptotic. From the asymptotic point of view, we prove
upper rates over Sobolev Laguerre balls. We obtain lower bounds matching with the previous
rates up to a logarithmic factor, the proof of which requires specific extensions of the classical
scheme.

The method can be extended to other noise distributions. As in Chesneau (2013), we can

consider that Ui = U
(1)
i . . . U

(ℓ)
i with U

(j)
i ’s i.i.d. and uniform. Then denoting the density of Yi

by f
(ℓ)
Y , Proposition 2.3 applies and yields

~am−1(f) = H(1)
m H

(1)
m+1 . . . H

(1)
m+ℓ−1~am+ℓ−1(f

(ℓ)
Y ).

Propositions 2.4 and 2.1 can be generalized without difficulty.
Another possible extension of the noise distribution is to consider that Ui follows a β(r, k)

distribution, r ≥ 1. Indeed, an inversion formula extending Proposition 2.1 holds. Denoting
by fr,k,Y the density of Yi = XiUi with Ui ∼ β(r, k), we can prove (see Section 6) that if
E(1/Xr−1) < +∞

(16) f(x) = (−1)k
xk+r−1

(r + k − 1)(r + k − 2) . . . r

dk

dxk

(

fr,k,Y (x)

xr−1

)

.

Therefore, we can obtain an analogous of Proposition 2.3 and develop a complete study.
It is worth stressing that the model Zi = XiUi + Vi can be treated by our approach. Indeed

Laguerre functions are a convenient tool for deconvolution on R
+, as done in Mabon (2015).

Moreover we provide a precise description of the strategy in the model Zi = XiUi + Vi in
Belomestny et al. (2016).

Another way of treating the subject could be to take the logarithm of (1) and estimate the
density of log(X) by deconvolution (mainly Fourier methods). This method can work for a
large class of noise distributions. On the other hand, the function which is estimated is flog(X),
the density of log(X). The relation fX(x) = flog(X)(log(x))/x implies that the estimator is not
defined in 0 and the integrated risk has to be computed on [a,+∞[, with a > 0. This is a
significant drawback and justifies the use of the Laguerre strategy.

6. Proofs

6.1. Proof of Propositions 2.2 and 2.3 for k = 1. We first look at the case k = 1 before
the general k-monotone case.

Set f1 = f1,Y . We have

〈f1, (yϕj)
′〉 = [f1(y)yϕj(y)]

y=+∞
y=0 +

∫ +∞

0

f(y)

y
× yϕj(y)dy = 〈f, ϕj〉.

This yields (8) for k = 1.

As yϕ′
j(y)e

y =
√
2y[2L′

j(2y)−Lj(2y)] is a polynomial with degree j+1, it can be decomposed

in the Laguerre polynomial basis of degree j + 1. There exist coefficients bj,1ℓ such that

yϕ′
j(y) =

j+1
∑

ℓ=0

bj,1ℓ ϕℓ(y)

and using the specific properties of Laguerre polynomials we can compute the coefficient bj,1ℓ .

Let L
(α)
j be the generalized Laguerre polynomials given by Formula (22.3.9) in Abramowitz and
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Stegun (1964) and Lj = L
(0)
j . By (22.5.17) for m = 1 in Abramowitz and Stegun (1964), we

have

(17) L′
j(x) = −L(1)

j−1(x).

Moreover, Formula (22.7.31) in Abramowitz and Stegun (1964) gives

(18) xL
(1)
j (x) = (j + 1)[Lj(x)− Lj+1(x)],

and Formula (22.7.12) therein

(19) xLj(x) = −(j + 1)Lj+1(x) + (2j + 1)Lj(x)− jLj−1(x).

We have to compute 2yL′
j(2y) − yLj(2y) or tL

′
j(t)− t

2Lj(t). Combining relations (17)-(19), we
get

tL′
j(t)−

t

1
Lj(t) =

j + 1

2
Lj+1(t)−

1

2
Lj(t)−

j

2
Lj−1(t).

Thus, bj,1ℓ = 0 for ℓ 6= j − 1, j, j + 1 and

(20) bj,1j−1 = − j
2
, bj,1j = −1

2
, bj,1j+1 =

j + 1

2
.

Finally,

(21) (yϕj)
′ = ϕj(y) + yϕ′

j(y) = − j
2
ϕj−1(y) +

1

2
ϕj(y) +

j + 1

2
ϕj+1(y).

This gives the result for k = 1. ✷

6.2. Proof of Proposition 2.2 for k ≥ 2.
Let fk = fk,Y . Using (6), we write

〈f, ϕj〉 =
(−1)k

k!

∫ +∞

0
f
(k)
k (y)(ykϕj(y))dy

and by integration by part we have

〈f, ϕj〉 = −(−1)k

k!

∫ +∞

0
f
(k−1)
k (y)(ykϕj(y))

(1)dy = · · · = (−1)k
(−1)k

k!

∫ +∞

0
fk(y)(y

kϕj(y))
(k)dy

provided that all terms appearing in the integration by parts are null, i.e.:

(22)

[

k
∑

ℓ=1

f
(k−ℓ)
k (y)(ykϕj(y))

(ℓ−1)(−1)ℓ−1

]+∞

0

= 0

Therefore, we obtain Formula (8) after proving that (22) holds.

Proof of (22): Let

S(y) =

k
∑

ℓ=1

f
(k−ℓ)
k (y)(ykϕj(y))

(ℓ−1)(−1)ℓ−1 =

k−1
∑

p=0

f
(p)
k (y)(ykϕj(y))

(k−p−1)(−1)k−p−1.

Using the Leibniz formula and interchanging sums yields

S(y) =
k−1
∑

t=0

ϕ
(t)
j (y)Σt(y)

with

Σt(y) =
k−1−t
∑

p=0

(−1)k−p−1f
(p)
k (y)yp+1+t

(

k + p− 1

t

)

k × (k − 1) . . . × (p+ t+ 2).
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As ϕ
(t)
j (y) is continuous at 0 and tends to 0 at +∞, we only need to prove that Σt(y) tends to

0 at 0 and +∞. We look at the coefficient of ϕ
(0)
j = ϕj :

Σ0(y) = (−1)kk!

k−1
∑

p=0

yp+1(−1)p+1f
(p)
k (y)

1

(p + 1)!
.

By (7), Σ0(y) = (−1)kk!(F (y)− Fk,Y (y)). As F and Fk,Y are continuous c.d.f. on R
+, they are

null at 0 and both tend to 1 at +∞. Therefore, as y tends to 0 and +∞,

Σ0(y) → 0.

For the term Σ1(y), we prove that each term f
(p)
k (y)yp+2, p = 0, . . . , k − 2 tends to 0 at both 0

and +∞. Indeed,

f
(p)
k (y)yp+2 ∝ yp+2

∫ +∞

y

(u− y)k−1−p

uk
f(u)du.

(23) |f (p)k (y)yp+2| .
∫ +∞

y

yp+2

up+1
f(u)du ≤ y

∫ +∞

y
f(u)du

which tends to 0 as y tends to 0. Also,

(24) |f (p)k (y)yp+2| .
∫ +∞

y

yp+2

up+1
f(u)du ≤

∫ +∞

y
uf(u)du

which tends to 0 as y tends to +∞ as E(X) < +∞. We proceed analogously for all terms

Σt(y), t ≤ k− 1. We prove that f
(p)
k (y)yp+t+1, p = 0, . . . , k− t− 1 tends to 0 at both 0 and +∞.

The convergence at 0 is already done. For the convergence at +∞, we use that

(25) |f (p)k (y)yp+t+1| .
∫ +∞

y

yp+t+1

up+1
f(u)du ≤

∫ +∞

y
utf(u)du

which tends to 0 at +∞ by the moment assumption E(Xt) < +∞. The proof of (22) is
complete.✷

6.3. Proof of Proposition 2.3. The function (ykϕj)
(k)/k! belongs to Sj+k, and therefore

admits a decomposition on the basis of the ϕℓ, for ℓ = 0, 1, . . . , j + k:

1

k!
(ykϕj)

(k) =

j+k
∑

ℓ=0

hj,kℓ ϕℓ(y).

This decomposition is obtained as follows. The Leibnitz formula yields:

(26)
1

k!
(ykϕj)

(k) =
k
∑

p=0

(

k

p

)

1

p!
ypϕ

(p)
j .

Next, the development of ypϕ
(p)
j (y) is given in the following lemma.

Lemma 6.1. We have

(27) ypϕ
(p)
j (y) =

j+p
∑

ℓ=0∨(j−p)

bj,pℓ ϕℓ(y),

where bj,0ℓ = δℓ,j and for p ≥ 0,

(28) bj,p+1
ℓ = −ℓ+ 1

2
bj,pℓ+1 − (p +

1

2
)bj,pℓ +

ℓ

2
bj,pℓ−1.
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Moreover

(29) ∀ℓ ≤ j + p, |bj,pℓ | ≤ Cp(j + p)p.

Applying Lemma 6.1, and interchanging sums in (26) yields formula (9). Next, we use Formula
(29) to get

|hj,kℓ | ≤
k
∑

p=|ℓ−j|

Cp(j + p)p
(

k

p

)

1

p!
≤ max

p≤k
(Cp)(j + k + 1)k ≤ C ′

k(j + k)k.

This gives the bound (10).

Proof of Lemma 6.1 Initialization of (27) for p = 0 is obvious. Formula (20) shows that the
induction formula (28) holds for p = 0 (p = 0 to p = 1).

Next, we differentiate (27) and multiply by y, to get

y
(

ypϕ
(p+1)
j (y) + pyp−1ϕ

(p)
j (y)

)

=

p+j
∑

ℓ=0∨j−p

bj,pℓ yϕ′
ℓ(y)

Now using (20), we get

yp+1ϕ
(p+1)
j (y) = −pypϕ(p)

j (y) +

j+p
∑

ℓ=0∨j−p

bj,pℓ

(

− ℓ
2
ϕℓ−1(y)−

1

2
ϕℓ(y) +

ℓ+ 1

2
ϕℓ+1(y)

)

.

Taking into account that −pypϕ(p)
j (y) = −∑j+p

ℓ=0∨(j−p) p b
j,p
ℓ ϕℓ(y) gives formula (28). Inequality

(29) is obtained by straightforward induction. The proof of Proposition 2.2 is now complete. ✷

6.4. Proof of Corollary 2.1. The general inequality |H(k)
m |2F ≤ mρ2(H

(k)
m ) holds for all m ×

(m + k) matrices. For k = 0, H
(0)
m = Im the m ×m identity matrix, and the two above terms

are equal to m. First we prove the upper bound for ρ2(H
(k)
m ), k ≥ 1.

ρ2(H(k)
m ) = sup

x∈Rm+k,‖x‖2=1

xt (H(k)
m )t H(k)

m x = sup
x∈Rm+k,‖x‖2=1

m
∑

j=1

(

j+k
∑

ℓ=(j−k)+

[H(k)
m ]j,ℓxℓ)

2

We consider first m ≥ k and use (10) to get

m
∑

j=1

(

j+k
∑

ℓ=(j−k)+∨1

[H(k)
m ]j,ℓxℓ)

2 ≤ (C ′
k)

2(2k + 1)
m
∑

j=1

(j + k)2k
j+k
∑

ℓ=(j−k)+∨1

x2ℓ

≤ (C ′
k)

2(2k + 1)(m + k)2k
m
∑

j=1

j+k
∑

ℓ=(j−k)+∨1

x2ℓ .

Next write that
m
∑

j=1

j+k
∑

ℓ=(j−k)+∨1

x2ℓ =

k
∑

j=1

j+k
∑

ℓ=1

x2ℓ +

m
∑

j=k+1

j+k
∑

ℓ=j−k

x2ℓ

Interchanging sums yields

m
∑

j=k+1

j+k
∑

ℓ=j−k

x2ℓ =
m+k
∑

ℓ=1

(ℓ+k)∧m
∑

j=(ℓ−k)∨1

x2ℓ ≤ (2k + 1)
m+k
∑

ℓ=1

x2ℓ
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Therefore we get

ρ2(H(k)
m ) ≤ C(k)(m+ k)2k with C(k) = (C ′

k)
2(2k + 1)(3k + 1).

If m < k, the bound obviously holds.

Now we prove the lower bound on |H(k)
m |2F . First

|H(k)
m |2F =

m
∑

j=1

j+k
∑

ℓ=(j−k)+∨1

[H(k)
m ]2j,ℓ ≥

m
∑

j=1

[H(k)
m ]2j,j+k.

Now, Proposition 2.2 yields [H
(k)
m ]j,j+k = hj,kj+k = bj,kj+k/k! and b

j,k
j+k = ((j + k)/2)bj,kj+k−1. Indeed,

coefficients bj,pℓ are zero if ℓ > j + p (see formula (27)). Therefore, as hj,1j+1 = (j + 1)/2, we get,
by elementary induction that

hj,kj+k =
1

k!

(j + 1)(j + 2) . . . (j + k)

2k
.

We obtain

|H(k)
m |2F ≥

m
∑

j=1

(

1

k!

(j + 1)(j + 2) . . . (j + k)

2k

)2

≥ 1

(k!2k)2

m
∑

j=1

(j + 1)2k

≥ 1

(k!2k)2

∫ m

1
x2kdx =

m2k+1

(2k + 1)(k!2k)2
,

which ends the proof. ✷

6.5. Proof of Proposition 2.4. The risk bound of the estimator can be written as follows

‖f̂m − f‖2 = ‖f − fm‖2 + ‖f̂m − fm‖2

where fm =
∑m−1

j=0 aj(f)ϕj is the projection of f on Sm = span(ϕ0, . . . , ϕm−1) and ‖f − fm‖2 is

the usual bias of a projection estimate. Next we have, see (12),

‖f̂m − fm‖2 =
m−1
∑

j=0

(âj − aj(f))
2 = ‖H(k)

m (~̂a(Y )m+k−1 − E(~̂a(Y )m+k−1))‖2.

So,

E(‖f̂m − fm‖2) ≤ ρ2(H(k)
m )E(‖~̂a(Y )m+k−1 − E(~̂a(Y )m+k−1)‖2)

≤ ρ2(H(k)
m )

m+k−1
∑

j=0

Var(âj(Y )) =
1

n
ρ2(H(k)

m )

m+k−1
∑

j=0

Var(ϕj(Y1))

≤ 1

n
ρ2(H(k)

m )
m+k−1
∑

j=0

E(ϕ2
j (Y1))

≤ 2(m+ k)ρ2(H
(k)
m )

n
,
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as
∑m+k−1

j=0 ϕ2
j (x) ≤ 2(m + k), ∀x ∈ R

+. This gives a first bound. For the second one, we can

write, if ‖fY ‖∞ < +∞,

E(‖f̂m − fm‖2) = E

(

∑

ℓ

[

H(k)
m (~̂a(Y )m+k−1 − E(~̂a(Y )m+k−1))

]2

ℓ

)

= E





∑

ℓ





∑

j

[H(k)
m ]ℓ,j [~̂a(Y )m+k−1 − E(~̂a(Y )m+k−1))]j





2



=
∑

ℓ

∑

j,j′

[H(k)
m ]ℓ,j [H

(k)
m ]ℓ,j′cov(âj(Y ), âj′(Y )) =

1

n

∑

ℓ

∑

j,j′

[H(k)
m ]ℓ,j[H

(k)
m ]ℓ,j′cov(ϕj(Y1), ϕj′(Y1))

=
1

n

∑

ℓ

Var





∑

j

[H(k)
m ]ℓ,jϕj(H1)



 ≤ 1

n

∑

ℓ

E









∑

j

[H(k)
m ]ℓ,jϕj(Y1)





2



≤ ‖fY ‖∞
n

∑

ℓ

∫





∑

j

[H(k)
m ]ℓ,jϕj(y)





2

dy =
‖fY ‖∞
n

∑

ℓ

∑

j

[H(k)
m ]2ℓ,j =

‖fY ‖∞
n

|H(k)
m |2F ,

which gives the second part of the bound.

It follows from Corollary 2.1 that mρ2(H
(k)
m ) and |H(k)

m |2F are both of orders m2k+1, but
the second bound involves ‖fY ‖∞. This term is unknown, difficult to estimate and additional
assumption is required to ensure its finiteness, for instance E(1/X) < +∞ for k = 1. ✷

6.6. Proof of Theorem 2.1. In the proof, we omit the index k in M(k)
n , penk(m) and m̂k.

Let M = maxMn the maximal element of the collection. Let for m ≤M , Sm = {~t ∈ R
M ~t =

(t1, . . . , tm, 0, . . . , 0)} and for any ~t ∈ R
M , let

γn(~t) = ‖~t‖2M − 2〈~t,H(k)
M
~̂aM+k−1(Y )〉M ,

where ‖~x‖2M is the Euclidean norm in R
M and 〈·, ·〉M the associated scalar product. For ~t ∈ Sm,

we denote by ~tm the vector of Rm with them first coordinates of ~t (those which are not necessarily

zero). Thanks to the particular form of the matrices H
(k)
m (band), we have, for ~t ∈ Sm,

〈~t,H(k)
M
~̂aM+k−1(Y )〉M = 〈~tm,H(k)

m
~̂am+k−1(Y )〉m = 〈~tm, ~̂am−1〉m.

Therefore the vector
~̂
f(m) in R

M with m first coordinates ~̂am−1 and following coordinates null

is such that
~̂
f(m) = argmin~t∈Sm

γn(~t) and γn(
~̂
f(m)) = −‖f̂m‖2. Therefore

m̂ = arg min
m∈Mn

γn(
~̂
f(m)) + ˆpen(m)).

Now for m,m′ ∈ Mn, and ~t ∈ Sm, ~s ∈ Sm′ , we have

γn(~t)− γn(~s) = ‖~t− ~fM‖2M − ‖~s − ~fM‖2M − 2〈~t− ~s,H
(k)
M
~̂aM+k−1(Y )− ~fM 〉M

= ‖~t− ~fM‖2M − ‖~s − ~fM‖2M − 2〈~t− ~s,H
(k)
M (~̂aM+k−1(Y )− ~aM+k−1(fY )〉M

where ~fM = (aj(f))0≤j≤M−1. Let us define

νn(~t) = 〈~t,H(k)
M (~̂aM+k−1(Y )− ~aM+k−1(fY )〉M ,

and note that

(30) ‖f̂m − f‖2 = ‖ ~̂f(m) − ~fM‖2M +

∞
∑

j=M

a2j (f), ‖fm − f‖2 = ‖~fm − ~fM‖2M +

∞
∑

j=M

a2j (f).
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By definition of m̂, we have

γn(
~̂
f(m̂)) + pen(m̂) ≤ γn(~fm) + pen(m),

which writes

(31) ‖ ~̂f(m̂) − ~fM‖2M ≤ ‖~fm − ~fM‖2M + pen(m) + 2νn(
~̂
f(m̂) − ~fm)− pen(m̂).

Let B(m̂,m) = {~t ∈ Sm∨m̂, ‖~t‖M = 1} and note that

2νn(
~̂
f(m̂) − ~fm) ≤ 2‖ ~̂f(m̂) − ~fm‖M sup

~t∈B(m̂,m)

|νn(~t)|

≤ 1

4
‖ ~̂f(m̂) − ~fm‖2M + 4 sup

~t∈B(m̂,m)

ν2n(~t)

≤ 1

2
‖ ~̂f(m̂) − ~fM‖2M +

1

2
‖~fm − ~fM‖2M + 4 sup

~t∈B(m̂,m)

ν2n(~t).

We get by plugging this in (31),

1

2
‖ ~̂f(m̂) − ~fM‖2M ≤ 3

2
‖~fm − ~fM‖2M + pen(m) + 4 sup

~t∈B(m̂,m)

ν2n(~t)− pen(m̂)

Let p(m,m′) be such that 4p(m,m′) ≤ pen(m) + pen(m′) and use (30), to get

1

2
‖f̂m̂ − f‖2 ≤ 3

2
‖fm − f‖2 + 2pen(m) + 4

(

sup
~t∈B(m̂,m)

ν2n(~t)− p(m, m̂)

)

+

Now, we have

(32) E





(

sup
~t∈B(m̂,m)

ν2n(~t)− p(m, m̂)

)

+



 ≤ c

n
,

where c depends on k and ‖fY ‖∞ = E(1/X). The proof of (32) follows the line of the proof
of Proposition 7.1 in Mabon (2015) and delivers the value of κ0. Thus, we obtain the result
announced in Theorem 2.1.

6.7. Proof of Theorem 3.1.

6.7.1. Main steps. Define f0 as the density

f0(x) =
cα,β

(e+ x)α logβ(e+ x)
1R+(x)

where α > 1, and β = (1 + ǫ)/2 > 1/2 with ǫ < 1, and cα,β is such that
∫

f0 = 1. Note that as
∀x ≥ 0, 1 ≤ log(e+ x) ≤ e+ x, we have, as β < 1,

(33)
cα,β

(e+ x)α+1
≤ f0(x) ≤

cα,β
(e+ x)α

.

Next we consider the functions

fθ(x) = f0(x) + δ

2K
∑

k=K+1

θk−Kϕk(x)

for some δ > 0, K ∈ N and θ = (θ1, . . . , θK) ∈ {0, 1}K .
Lemma 6.2. Let s integer, s > 1. Then f0 and fθ belong to W s(D) provided that α ≥
(s+ 1)/2(> 1) and δ2Ks+1 ≤ D/C for some constant C = C(s) > 0.
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Lemma 6.3. Suppose that
∑K

k=1 θk(−1)k = 0 and all partial sums
∑p

k=1 θk(−1)k, p = 1, . . . ,K,

are uniformly bounded by 1, then under the choice δ = δ′K−α log−β(K) for small enough constant
δ′ > 0 not depending on K, we have that fθ is a probability density on R+.

Next we have for any θ,θ′ ∈ {0, 1}K ,

(34)

∫ ∞

0
(fθ(x)− fθ′(x))2 dx = δ2

K
∑

k=1

(

θk − θ′k
)2

= δ2ρ(θ,θ′),

where ρ(θ,θ′) =
∑K

k=1 1θk 6=θ′k
is the so-called Hamming distance. Now to apply Theorem 2.7

p.101 in Tsybakov (2009), we need to extend the Varshamov-Gilbert bound (see Lemma 2.9 p.
104 in Tsybakov (2009)) as follows.

Lemma 6.4. Fix some even integer K > 0. There exists a subset {θ(0), . . . ,θ(M)} of {0, 1}K and

a constant A1 > 0, such that θ(0) = (0, . . . , 0), all partial sums
∑N

k=1 θ
(j)
k (−1)k, N = 1, . . . ,K,

are uniformly bounded by 1,

K
∑

k=1

θ
(j)
k (−1)k = 0 and ρ(θ(j), θ(l)) ≥ A1K,

for all 0 ≤ j < l ≤M. Moreover it holds that, for some constant A2 > 0,

(35) M ≥ 2A2K .

Then we have the following Lemma.

Lemma 6.5.

1

M

M
∑

j=1

χ2
(

(f
θ
(j))⊗n, (f0)

⊗n
)

. nδ2Kα+4 and for 0 ≤ j 6= l ≤M, ‖f
θ
(j) − f

θ
(l)‖2 & δ2K.

Now we are in position to end the proof of Theorem 3.3. Under the choices

δ2 = (δ′)2K−2α(logK)−(1+ǫ) and K ≍ (n/ log1+ǫ(n))1/(2α)

using inequality (35), K ≤ logM/(A2 log 2), we get

1

M

M
∑

j=1

χ2
(

(f
θ
(j))⊗n, (f0)

⊗n
)

. logα+4(M)

and
‖f

θ
(j) − f

θ
(l)‖2 & (n/ log1+ǫ(n))(1−2α)/2α

for all 0 ≤ j 6= l ≤M. Finally, by taking α = (s+1)/2 (recall that α ≥ (s+1)/2) and arbitrary
small ǫ > 0, we derive

‖f
θ
(j) − f

θ
(l)‖2 & (n/ log1+ǫ(n))−s/(s+1) log−(1+ǫ))(n) = n−s/(s+1)[log(n)]−(1+ǫ)/(s+1).

This ends the proof of Theorem 3.1. ✷

Proof of Lemma 6.2. We have

‖f0‖2s =
∫ +∞

0



xs/2
s
∑

j=0

(

s

j

)

f
(j)
0 (x)





2

dx ≤ 2s
s
∑

j=0

(

s

j

)∫ +∞

0

(

xs/2f
(j)
0 (x)

)2
dx.

The “worst” term in the above sum is xs/2(e + x)−α log−β(e + x). Thus, as α ≥ (s + 1)/2 and
β > 1/2,

xs/2f
(j)
0 (x) ∈ L

2(R+)



18 D. BELOMESTNY(1), F. COMTE(2) & V. GENON-CATALOT(3)

for j = 0, . . . , s and there exists a constant B(s, α) such tat

‖f0‖2s ≤ B(s, α).

It follows that

|f0|2s ≤ B̃(s, α), B̃(s, α) := (s+ 1)B(s, α)A(s)

where A(s) is defined by (49). We take D/4 ≥ B̃(s, α). Next

|fθ|s ≤ |f0|s + δ

∣

∣

∣

∣

∣

2K
∑

k=K+1

θk−Kϕk

∣

∣

∣

∣

∣

s

.

Let us define for f, g ∈ W s, 〈f, g〉s = (1/2)(|f + g|2s − |f |2s − |g|2s) so that |ϕk|2s = ks and
〈ϕk, ϕℓ〉s = 0 for k 6= ℓ. Therefore

∣

∣

∣

∣

∣

2K
∑

k=1+K

θk−Kϕk

∣

∣

∣

∣

∣

2

s

=
2K
∑

k=1+K

ksθ2k−K ≤
2K
∑

k=1+K

ks

≤
2K
∑

k=1+K

∫ k+1

k
xs ds =

(2K + 1)s+1 − (1 +K)s+1

s+ 1
,

and

|fθ|2s ≤ 2|f0|2s +Cδ2Ks+1/(s + 1)

for some constant C = C(s) > 0. Hence |fθ|2s ≤ D if δ2Ks+1/(s + 1) ≤ D/(2C). ✷

Proof of Lemma 6.3. First, noting that
∫

ϕk(x)dx =
√
2(−1)k, we have

∫ ∞

0
fθ(x) dx = 1 + δ

2K
∑

k=1+K

θk−K

∫ ∞

0
ϕk(x) dx

= 1 +
√
2δ

2K
∑

k=1+K

θk−K(−1)k = 1,

so that our conditions ensure that
∫∞
0 fθ(x) dx = 1.

Next we prove that fθ is nonnegative, which is surprisingly difficult. We have

fθ(x)/f0(x) = 1 + δ
(e + x)α logβ(e+ x)

cα,β

2K
∑

k=K+1

θk−Kϕk(x).

For any fixed a > 0, for any x ∈ [0, a], we have |fθ(x)/f0(x) − 1| ≤ δK
√
2(e + a)α logβ(e +

a)/cα,β . δK = δ′K1−α log−β(K) which is small as α ≥ (s + 1)/2 > 1. Without loss of
generality, we assume that a > 1.

Thus, in order to prove that fθ is a nonnegative function, it is enough to show that

(36) sup
x>a

∣

∣

∣

∣

∣

xλ logµ(x) ·
2K
∑

k=K+1

θk−Kϕk(x)

∣

∣

∣

∣

∣

. Kλ logµ(K), K → ∞

for any fixed λ > 0, µ > 0 and for sufficiently large a > 0. Then by taking λ = α, µ = β and
δ = δ′K−α log−β(K) for small enough constant δ′ > 0 not depending on K, we get fθ(x) ≥ 0,
x ∈ R+.

We proceed in two steps for the proof of (36). First we study the supremum for large values
of x, 2x ≥ cν, ν = 4K + 2, c > 0 and then for intermediate values of x (2a < 2x ≤ bν with
b < 1).
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Step 1. Suppose that the sequence θ = (θ1, . . . , θK) ∈ {0, 1}K satisfies
∣

∣

∣

∣

∣

m
∑

k=1

θk(−1)k

∣

∣

∣

∣

∣

≤ A

for all m = 1, . . . ,K, and some constant A > 0. Fix some real numbers λ, µ with 0 < λ < K,
and µ > 0, then it holds for any 2x > 4K + 2λ+ 1,

(37)

∣

∣

∣

∣

∣

xλ logµ(x) ·
2K
∑

k=K+1

θk−Kϕk(x)

∣

∣

∣

∣

∣

≤ ACλ,µK
λ logµ(K), K → ∞,

where ϕk(x) =
√
2e−xLk(2x) and the constant Cλ,µ depends only on λ, µ.

To prove (37), we first study the case µ = 0 and λ integer.

Lemma 6.6. It holds for any integers n and λ ≤ n,

(38) xλLn(x) =

λ
∑

k=−λ

c
(λ)
k,nLn+k(x),

where the coefficients c
(λ)
k,n can be computed via the relation

c
(λ)
k,n = c

(λ−1)
k,n (2(n + k) + 1)− c

(λ−1)
k−1,n(n + k)− c

(λ−1)
k+1,n(n+ k + 1)

for |k| < λ with c
(0)
k,n = δ0,k and

c
(λ)
λ,n = −cλ−1

λ−1,n(n+ λ), c
(λ)
−λ,n = −cλ−1

−λ+1,n(n− λ+ 1).

Proof. For λ = 0, (38) obviously holds. Suppose that it holds for some λ = K, then due to
formula (19), we have

xK+1Ln(x) =
K
∑

k=−K

c
(K)
k,n xLn+k(x)

=

K
∑

k=−K

c
(K)
k,n [(2(n + k) + 1)Ln+k(x)− (n+ k + 1)Ln+k+1 − (n+ k)Ln+k−1(x)]

=

K
∑

k=−K

c
(K)
k,n (2(n + k) + 1)Ln+k(x)−

K+1
∑

k=−K+1

c
(K)
k−1,n(n+ k)Ln+k

−
K−1
∑

k=−K−1

c
(K)
k+1,n(n+ k + 1)Ln+k(x)

=
K+1
∑

k=−K−1

c
(K+1)
k,n Ln+k(x).

This ends the proof of Lemma 6.6. �

We deduce by induction from Lemma 6.6 the following Corollary.

Corollary 6.1. Each coefficient c
(λ)
k,n in (38) can be represented in the form

(39) c
(λ)
k,n =

∑

r=(r1,...,rλ),ri∈S
λ
λ,1/2

b
(λ)
k,r

λ
∏

i=1

(n+ ri)
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with n ≥ λ, Sλ,1/2 = {−λ, . . . , λ} ∪ {−λ + 1/2, . . . , λ + 1/2} and some coefficients b
(λ)
k,r not

depending on n.

The following property is given e.g. in Muckenhoupt (1970).

Lemma 6.7. Set ν = 4N = 4n+ 2, t = x/ν, then it holds for all x ≥ dν for any d > 0

e−x/2Ln(x) = (−1)n
NN+1/6e−N

n!(−xφ′(t))1/2

[

Ai(−ν2/3φ(t)) +O

(

Ai(−ν2/3φ(t))
x

)]

,

where

φ(t) = − [3γ(t)/2]2/3 , γ(t) =
1

2
(t2 − t)1/2 − 1

2
cosh−1(t1/2)

and Ai(t) is the Airy function (see Abramowitz and Stegun (1964)).

Corollary 6.2. Under conditions of the previous lemma, we have a representation

(40) e−x/2Ln(x) = (−1)nan(x),

where for any x > cν with c > 1 the sequence an is bounded (uniformly in x), positive and
increasing in n for ν = 4n+ 2 ≤ x.

Proof. The function Ai
(

−ν2/3φ(x/ν)
)

/(−xφ′(x/ν))1/2 is monotone increasing in ν for any x ≥
ν = 4n + 2. Moreover, the function NN+1/6e−N/n! is monotone increasing in n. The uniform

boundedness of an(x) follows from the boundedness of
∣

∣e−x/2Ln(x)
∣

∣. �

Proof of Step 1. First we prove (37) for µ = 0 and λ integer. From (38), (39) and (40), we
have

xλ
2K
∑

k=K+1

θk−Ke
−x/2Lk(x) =

∑

r=(r1,...,rλ),ri∈S
λ
λ,1/2

λ
∑

ℓ=−λ

(−1)ℓb
(λ)
ℓ,rΣK(ℓ, r)

with

ΣK(ℓ, r) =

2K
∑

k=K+1

θk−K(−1)kaℓ+k(x)ρ
(λ)
k (r), ρ

(λ)
k (r) =

λ
∏

i=1

(k + ri).

Note that k 7→ ρ
(λ)
k (r)aℓ+k(x) is nonnegative and nondecreasing and aℓ+k(x) is bounded. In-

equality (37) for µ = 0 and λ an integer follows from the next Lemma.

Lemma 6.8. Let K1 < K2 be two integers and let ρn be an increasing sequence of nonnegative
numbers, then for any x > 4K2 + 2, we have

∣

∣

∣

∣

∣

∣

K2
∑

n=K1+1

e−x/2θnρnLn(x)

∣

∣

∣

∣

∣

∣

≤ ρK2aK2(x) max
K1+1≤n≤K2

∣

∣

∣

∣

∣

∣

n
∑

n=K1+1

θn(−1)n

∣

∣

∣

∣

∣

∣

.

Proof. Due to the Abel summation theorem, we get

K2
∑

n=K1+1

e−x/2θnρnLn(x) =

K2
∑

n=K1+1

θnρn(−1)nan(x)

= SK2ρK2aK2(x) +

K2−1
∑

n=K1+1

Sn(ρn+1an+1(x)− ρnan(x)),

where Sn
.
=
∑n

j=K1+1(−1)jθj for n > K1. Since the sequence ρnan(x) is non-decreasing and
non-negative, we get the desired estimate. �
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Now consider the case of λ a real number and write that λ = [λ] + {λ} where {λ} is the
fractional part of λ and belongs to (0, 1). For any 2x > 4K + 2[λ] + 3,

∣

∣

∣

∣

∣

xλ
2K
∑

k=K+1

θk−Kϕk(x)

∣

∣

∣

∣

∣

= |x{λ}−1|
∣

∣

∣

∣

∣

x[λ]+1
2K
∑

k=K+1

θk−Kϕk(x)

∣

∣

∣

∣

∣

≤ (4K + 2λ+ 3){λ}−1AC[λ]+1K
[λ]+1,

and the result follows.
Now we study the case µ > 0 and we want to prove that, for 2x > 4K + 2[λ] + 3,

∣

∣

∣

∣

∣

xλ logµ(x)

2K
∑

k=K+1

θk−Kϕk(x)

∣

∣

∣

∣

∣

. logµ(K)Kλ.

If λ is an integer, we write
∣

∣

∣

∣

∣

[x−1 logµ(x)]xλ+1
2K
∑

k=K+1

θk−Kϕk(x)

∣

∣

∣

∣

∣

.
logµ(K)

K
Kλ+1 = logµ(K)Kλ,

since x 7→ logµ(x)/x is decreasing for x large enough (x > eµ).
If λ is not an integer,

∣

∣

∣

∣

∣

[x{λ}−1 logµ(x)]x[λ]+1
2K
∑

k=K+1

θk−Kϕk(x)

∣

∣

∣

∣

∣

.
logµ(K)

K1−{λ}
K [λ]+1 = logµ(K)Kλ,

since for any ω > 0, x 7→ logµ(x)/xω is decreasing for x large enough (x > eµ/ω). ✷

Step 2. Now we want to prove (37) for x ≤ bν, b < 1, ν = 4K + 2. It holds that (see
Muckenhoupt (1970) p.288)

e−x/2Ln(x) ≍
[

1

2

ψ(x/ν)
x
νψ

′(x/ν)

]1/2
[

J0(νψ(x/ν)) +O

(

x1/

ν3/2
J̃0(νψ(

x

ν
)

)]

for x ≤ bν for some b < 1 and ν = 4n+ 2, where

ψ(t) =
1

2
(t− t2)1/2 +

1

2
arcsin(

√
t),

J0 is the Bessel function and J̃0(u) = 1]0,1](u) + u−1/21u>1. Since

ψ(t)

tψ′(t)
= 2 +

2

3
t+O(t3/2), ψ(t) =

√
t+O

(

t3/2
)

, t→ 0,

it follows from the asymptotic behavior of the Bessel function J0, that

e−x/2Ln(x) = J0
(√
xν
)

(1 + o(1))

=

√

2

π
(xν)−1/4 cos(

π

4
−

√
xν)− 1

4

√

1

2π
(xν)−3/4 sin(

π

4
−

√
xν) +O((xν)−5/4),

provided xν is large. Suppose that x > 1 and λ ≥ 1, then

xλ
2K
∑

n=K+1

e−x/2θnLn(x) =
2K
∑

n=K+1

θnx
λ
cos
[

π
4 −

√

x(4n+ 2)
]

(x(4n + 2))1/4
+Rn(x).

Since
2K
∑

n=K+1

1

(4n+ 2)3/4
.

∫ 2K

K

1

(1 + s)3/4
ds . K1/4,
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we have |Rn(x)| . xλ−3/4K1/4 ≤ Kλ for x ≤ K. So we need to investigate the series

SK(x)
.
=

2K
∑

n=K+1

θnx
λ
cos
[

π
4 −

√

x(4n+ 2)
]

(x(4n + 2))1/4
.

It is clear that we can restrict our attention to the case x > K
λ−3/4
λ−1/4 , because if xλ−1/4 ≤ Kλ−3/4,

then

|SK(x)| ≤ xλ−1/4
2K
∑

n=K+1

1

(4n + 2)1/4
. xλ−1/4K3/4 ≤ Kλ.

Now, as SK(x) is a harmonic sum, its asymptotic behaviour can be analysed using the Mellin

transform approach, which yields that |SK(x)| ≤ Kλ for x > K
λ−3/4
λ−1/4 . This yields (37) for µ = 0

and 2x < 4K + 2. The case µ 6= 0 is here straightforward. This ends the proof of Step 2. ✷

Therefore (36) is proved so the proof of Lemma 6.3 is complete. ✷

Proof of Lemma 6.4. Set for any j ∈ N0 = {1, 2, . . . , },

Θ2j :=

{

(θ1, . . . , θ2j) ∈ {0, 1}2j :
2l
∑

k=1

θk(−1)k = 0, l = 1, . . . , j

}

,

then it obviously holds
∣

∣Θ2(j+1)

∣

∣ = 2 |Θ2j| , |Θ2| = 1.

Indeed

Θ2(j+1) = {(θ1, . . . , θ2j , 0, 0); (θ1, . . . , θ2j , 1, 1), (θ1, . . . , θ2j) ∈ Θ2j} .
Thus

|Θ2j | = 2j .

And, for any sequence θ ∈ Θ2j, it holds
∣

∣

∣

∑l
k=1 θk(−1)k

∣

∣

∣
≤ 1 for any l = 1, . . . , 2k. Hence the set

ΩK
.
=

{

(θ1, . . . , θK) ∈ {0, 1}K :

∣

∣

∣

∣

∣

l
∑

k=1

θk(−1)k

∣

∣

∣

∣

∣

≤ 1, l = 1, . . . ,K,
K
∑

k=1

θk(−1)k = 0

}

satisfies |ΩK | ≥ 2K/2 for all even K. Next we follow the proof of the Varshamov-Gilbert bound
(see Tsybakov (2009)) applied to the set ΩK and get that for any even K ≥ 16 there exists a

subset {θ(0), . . . ,θ(M)} of ΩK such that

ρ(θ(j),θ(l)) ≥ K/16, 0 ≤ j < l ≤M,

and M ≥ 2K/16. ✷

Proof of Lemma 6.5. Equality (34) and Lemma 6.4 imply ‖f
θ
(j) − f

θ
(l)‖2 ≥ A1δ

2K, for
0 ≤ j 6= l ≤M .

From (33), we have

χ2(fθ, f0) =

∫ ∞

0

(fθ(x)− f0(x))
2

f0(x)
dx

≤ C1

∫ ∞

0
(fθ(x)− f0(x))

2 dx+ C2

∫ ∞

0

(

x(α+1)/2fθ(x)− x(α+1)/2f0(x)
)2

dx
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for some constants C1, C2 > 0. First
∫ ∞

0
(fθ(x)− f0(x))

2 dx = δ2
K
∑

k=1

θ2k ≤ δ2K

Next, using the relation (19), we derive that for (α+ 1)/2 integer,

x(α+1)/2(fθ(x)− f0(x)) = δ

2K+(α+1)/2
∑

k=K+1−(α+1)/2

ψ(k,K,α,θ)ϕk(x)

where |ψ(k,K,α,θ)| . K(α+1)/2. Now, with the orthonormality of the system {ϕk} , we get

χ2(fθ, f0) . δ2Kα+2, K → ∞
uniformly in θ ∈ {0, 1}K .

If (α+1)/2 is not an integer, splitting the last integral between 0 and 1 and 1 and ∞, we get
a bound δ2Kα0+1 where α0 is the smallest even integer larger than α+ 1. Therefore,

χ2(fθ, f0) . δ2Kα+4, K → ∞
uniformly in θ ∈ {0, 1}K and we get Lemma 6.5. ✷

6.8. Proof of Theorem 3.2. The proof follows the same steps as the proof of Theorem 3.1.
First we define proposals f̃0 and f̃θ for the densities ofX1, . . . ,Xn and compute the corresponding
densities fY,0 and fY,θ of Y1, . . . , Yn. Let us choose f̃0 such that

fY,0(x) =

∫ +∞

x

f̃0(u)

u
du = f0(x) =

cα,β

(e+ x)α logβ(e+ x)
1R+(x),

where β = (1 + ǫ)/2, with 0 < ǫ < 1 and α > 1. By derivation, we get

f̃0(x) = −xf ′Y,0(x) = cα,β
x

(e+ x)α+1 logβ+1(e+ x)
[α log(e+ x) + β]1R+(x),

Then we can compute by formula (4) for k = 1, Next, let

f̃θ(x) = f̃0(x) + δ
2K
∑

k=K+1

θk−Kxϕ
′
k(x).

We have, as
∫

ϕk(x)dx =
√
2(−1)k that

∫

xϕ′
k(x)dx = [xϕk(x)]

+∞
0 −

∫ +∞

0
ϕk(x)dx =

√
2(−1)k+1.

Therefore
∫

f̃θ(x)dx = 1 under the condition
∑

θk(−1)k = 0, as previously. Thanks to formula
(21), we have

xϕ′
k(x) = −k

2
ϕk−1(x)−

1

2
ϕk(x) +

k + 1

2
ϕk+1(x)

and we can write f̃θ as follows in the (ϕk)k basis:

f̃θ(x) = f̃0(x) + δ

2K+1
∑

k=K

µk(θ)ϕk(x)

with for k = K,K + 1, . . . , 2K + 1,

µk(θ) = −k + 1

2
θk−K+1 −

θk−K

2
+
k

2
θk−K−1

under initial and final conditions θ−1 = θ0 = θK+1 = θK+2 = 0.
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Computing
∫ +∞
x f̃θ(u)/u du yields

fY,θ = fY,0(x) + δ
2K
∑

k=K+1

θk−Kϕk(x).

We stress that by our construction, fY,0 = f0 and fY,θ = fθ, so that χ2(fY,θ, fY,0) = χ2(fθ, f0)
is already computed in the previous section (proof of Theorem 3.1).

Lemma 6.9. Let s integer, s > 1. Then f̃0 and f̃θ belong to W s(D), provided that α ≥
(s+ 1)/2 ≥ 1 and δ2Ks+3 ≤ D/C for some constant C = C(s) > 0.

Next, we have to see under which condition f̃θ ≥ 0.

Lemma 6.10. Suppose that
∑K

k=1 θk(−1)k = 0 and all partial sums
∑p

k=1 θk(−1)k, p = 1, . . . ,K,

are uniformly bounded by 1, then under the choice δ = δ′K−(α+1) log−β(K) for small enough

constant δ′ > 0 not depending on K, we have that f̃θ is a probability density on R+.

Next, we have

(41) ‖f̃θ − f̃θ′‖2 = δ2
2K+1
∑

k=K

(µk(θ)− µk(θ
′))2

Write that for k = K,K + 1, . . . , 2K + 1, we have

µk(θ) = −k
2
(θk−K+1 − θk−K−1)−

θk−K + θk−K+1

2
.

We notice that for j = 0, 1, . . . ,K + 1, we have

|µK+j(θ)− µK+j(θ
′)| ≥ [

K + j

2
− 1] if θj+1 − θj−1 6= θ′j+1 − θ′j−1

since |θj − θ′j + θj+1 − θ′j+1|/2 ≤ 1. Therefore, we get

(42)
2K+1
∑

k=K

(µk(θ)− µk(θ
′))2 ≥ (K/2 − 1)2ρ1(θ,θ

′),

where

ρ1(θ,θ
′) :=

2K
∑

k=K+1

1θk+1−θk−1 6=θ′k+1−θ′k−1
.

Therefore, we need to check that ρ1(., .) is a distance and that the Varshamov-Gilbert Lemma
holds with the Hamming distance replaced by ρ1(., .).

Lemma 6.11. Fix some even integer K > 0. There exists a subset {θ(0), . . . , θ(M)} of {0, 1}K
and a constant A1 > 0, such that θ(0) = (0, . . . , 0), all partial sums

∑k
j=1 θ

(m)
j (−1)j , k = 1, . . . ,K,

are uniformly bounded by 1,

K
∑

k=1

θ
(m)
k (−1)k = 0 and ρ1(θ

(m), θ(l)) ≥ Ã1K,

for all 0 ≤ m < l ≤M. Moreover it holds that, for some constant Ã2 > 0,

(43) M ≥ 2Ã2K .

Next we prove
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Lemma 6.12.

1

M

M
∑

j=1

χ2
(

(fY,θ(j))⊗n, (fY,0)
⊗n
)

. nδ2Kα+4 and for 0 ≤ j 6= l ≤M, ‖f̃
θ
(j) − f̃

θ
(l)‖2 & δ2K3.

Now we end the proof of Theorem 3.2. We choose α = (s+1)/2, δ2 = (δ′)2K−2(α+1) log−(1+ǫ)(K),

K = [n/ log1+ǫ(n)]1/[2(α+1)] and we obtain

1

M

M
∑

j=1

χ2
(

(fY,θ(j))⊗n, (fY,0)
⊗n
)

. logα+4(M).

and
‖f̃

θ
(j) − f̃

θ
(l)‖2 & n−s/(s+3)[log(n)](1+ǫ)/(1+s/3).

Note that δ2Ks+3 = [log(n)]−(1+ǫ) is bounded (constraint from Lemma 6.9). This ends the proof
of Theorem 3.2. ✷
Proof of Lemma 6.9. For f̃0 we follow the same line as in the proof of Lemma 6.2 and omit
the details. Next f̃θ belongs to W s(D) if δ2

∑2K+1
k=K µ2k(θ)k

s ≤ D/4 i.e. for C = C(s) a constant,

δ2Ks+3 ≤ D/C. ✷

Proof of Lemma 6.10. First note that f̃0(0) = f̃θ(0) = 0 and f̃ ′0(0) = cα,β(α + β)/eα+1 > 0
and

f̃ ′θ(0) = f̃ ′0(0) + δ

2K
∑

k=K+1

θk−Kϕ
′
k(0) = c̃α − δ

√
2

2K
∑

k=K+1

(2k + 1)θk−K .

Now f̃ ′
θ
(0) > 0 if δK2 << 1. Under this condition, f̃θ is nonnegative on an interval [0, a], a > 0.

For x > a, we follow the arguments in the proof of Lemma 6.3 for each of the three terms
involved in the definition of µk(θ). Thus we must prove that

sup
x>a

∣

∣

∣

∣

∣

xλ logµ(e+ x)

2K+1
∑

k=K

θk−Kkϕk(x)

∣

∣

∣

∣

∣

. Kλ+1 logµ(K).

This is obtained as previously (just change ρ
(λ)
k (r) into kρ

(λ)
k (r), see Step 1 of the proof of Lemma

6.3). Then by taking λ = α, µ = β and δ = δ′K−α−1 log−β(K) for small enough constant δ′ > 0

not depending on K, we get f̃θ(x) ≥ 0, x ∈ R+. ✷

Proof of Lemma 6.11. Let

Θ = {(θ0, . . . , θ2K+1), θ0 = θ1 = 0, θj ∈ {0, 1}, for j = 2, . . . , 2K + 1}.
We prove that ρ1(., .) is a distance on Θ. Due to the initial conditions θ0 = θ1 = 0, ρ1(θ,θ

′) = 0
implies that θ = θ

′.
For θ ∈ Θ, we separate θ = (θ0, . . . , θ2K+1) as θ

(even) := (θ2j , 0 ≤ j ≤ K) and θ
(odd)

accordingly. Let ρ2(ω, ω
′) =

∑K
k=0 1ωk+1−ωk 6=ω′

k+1−ω′

k
, then

ρ1(θ,θ
′) = ρ2((θ)

(even), (θ′)
(even)

) + ρ2((θ)
(odd), (θ′)(odd)).

Now we can check that ρ2 satisfies the triangular inequality on Ω = {(ω0, . . . , ωK), ω0 = 0, ωj ∈
{0, 1}, j = 1, . . . ,K}. For ǫ, ǫ′ ∈ {−1, 0, 1}, we note that

1ǫ 6=ǫ′ =
1

2

(

|ǫ− ǫ′|+ ||ǫ| − |ǫ′||
)

= d(ǫ, ǫ′)

where d(., .) satisfies the triangular inequality. Setting ǫk = ωk+1 − ωk, we get that ρ2(ω, ω
′) =

∑K
k=0 d(ǫk, ǫ

′
k) satisfies the triangular inequality on Ω.

Thus, it is enough to prove the Lemma for the set Ω and the distance ρ2.
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Following the proof of the Varshamov-Gilbert Lemma as given in Tsybakov, this amounts to
proving that for ω(0) = (0, . . . , 0) ∈ Ω, Card({(ωk) ∈ Ω, ρ2(ω, ω

(0)) = i}) =
(K
i

)

. Let

Am,i := Card({ω ∈ Ω,

K
∑

k=0

1ωk+1−ωk=0 = i}).

Note that

AK,i = Card({ω ∈ Ω, ω1 − ω0 = 0,

K
∑

k=1

1ωk+1−ωk=0 = i− 1})

+Card({ω ∈ Ω, ω1 − ω0 = 1,
K
∑

k=1

1ωk+1−ωk=0 = i})

= Card({ω ∈ Ω, ω0 = 0, ω1 = 0
K
∑

k=1

1ωk+1−ωk=0 = i− 1})

+Card({ω ∈ Ω, ω0 = 0, ω1 = 1,

K
∑

k=1

1ωk+1−ωk=0 = i}) = AK−1,i−1 +AK−1,i.

As A1,0 = A1,1 = 1, we deduce AK,i =
(K
i

)

by the definition of the binomial coefficients. ✷

Proof of Lemma 6.12. The first inequality follows from Lemma 6.5 and fY,θ = fθ and
fY,0 = f0. The second inequality follows from (41), (42) and Lemma 6.11. ✷

Remark 6.1. For k > 1, we choose fk,Y,0(x) = fY,0 and deduce fX,0, via formula (6). Similarly

we set fk,Y,θ = fY,0 + δ
∑2K

j=K+1 θj−Kϕj . This leads to fX,θ = fX,0 + δ
∑2K

j=K+1−k νj(θ)ϕj , with

νj(θ) to be computed. The proof can be completed analogously but with more tedious computa-
tions.

6.9. Proof of Formula (16). We have

fU(u) =
1

B(r, k)
ur−1(1− u)k−11I[0,1](u) where

1

B(r, k)
=

(r + k − 1)(r + k − 2) . . . r

(k − 1)!
,

and thus

fr,k,Y (y) =
yr−1

B(r, k)

∫ +∞

y

(

1− y

v

)k−1 f(v)

vr−1

dv

v
.

If we define

θY (y) =
fr,k,Y (y)

yr−1
, θX(x) =

1

kB(r, k)

f(x)

xr−1

we have the analogous of relation (4)

(44) θY (y) = k

∫ +∞

y

(

1− y

v

)k−1
θX(v)

dv

v
.

Noting that E(1/U r−1) = 1/(kB(r, k)), under the assumption E(1/Xr−1) < +∞, we have
∫ +∞
0 θY (y)dy =

∫ +∞
0 θX(x)dx. Therefore, relation (44) implies (see formula (6) in Proposition

2.1) θX(x) = ((−1)k/k!)xkθ
(k)
Y (x). This gives Formula (16). ✷
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7. Appendix

7.1. Proof of (6) and (7). For simplicity, set fk,Y = fk. For k = 1, f1(y) =
∫ +∞
y (f(u)/u)du1y≥0.

Derivating yields the first equality in (6). Integrating between 0 and y gives the second equality
which implies:

(45) lim
y→0

y f1(y) = lim
y→+∞

y f1(y) = 0.

To get (6), we proceed by induction and prove that, for any p such that 1 ≤ p ≤ k − 1,

(46)
dp

dyp
[fk(y)] = (−1)pk × · · · × (k − p)

k−1−p
∑

j=0

(

k − 1− p

j

)

(−y)j
∫ +∞

y

f(u)

uj+p+1
du.

The formula is true for p = 0 as (4) implies

fk(y) = k

k−1
∑

j=0

(

k − 1

j

)

(−y)j
∫ +∞

y

f(u)

uj+1
du.

Now if we admit the formula for order p, we can deduce that, derivating once more,

dp+1

dyp+1
[fk(y)] = (−1)pk × · · · × (k − p)







k−1−p
∑

j=1

(

k − 1− p

j

)

(−1)j(jyj−1)

∫ +∞

y

f(u)

uj+p+1
du

+

k−1−p
∑

j=0

(

k − 1− p

j

)

(−1)j+1yj
f(y)

yj+p+1







.

The last sum is equal to

−f(y)
yp+1

k−1−p
∑

j=0

(

k − 1− p

j

)

(−1)j = −f(y)
yp+1

(1− 1)k−1−p = 0

and for the first one, we note that

j

(

k − 1− p

j

)

= (k − 1− p)

(

k − 2− p

j − 1

)

so that we get

dp+1

dyp+1
[fk(y)] = (−1)pk× · · · × (k− p)× (k− p− 1)

k−1−p
∑

j=1

(

k − 2− p

j − 1

)

(−1)jyj−1

∫ +∞

y

f(u)

uj+p+1
du

and setting j′ = j − 1 in the sum gives the result at order p + 1. Therefore Formula (46) is
proved for all p = 0, . . . k − 1. Taking p = k − 1 and derivating once more gives Formula (6).

To obtain (7), we integrate (6) between 0 and y. The successive integrations by part give the
result provided that, for ℓ = 0, . . . , k,

yk−ℓf
(k−ℓ−1)
k (y) → 0, as y → 0.

For this notice that, as for u ≥ y ≥ 0, u− y ≤ u and y/u ≤ 1,

|yk−ℓf
(k−ℓ−1)
k (y)| ∝ yk−ℓ

∫ +∞

y

(u− y)k−1−(k−ℓ−1))

uk
f(u)du ≤ y

∫ +∞

y

f(u)

u
du.

The r.h.s. above is equal to yf1(y) and tends to 0 as y tends to 0 by (45).✷
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7.2. Norms in Sobolev-Laguerre spaces. For s ≥ 0, the Sobolev-Laguerre space with index
s (see Bongioanni and Torrea (2007)) is defined in (15). The following results have been proved
in Section 7 of Comte and Genon-Catalot (2015). For s integer, if h : (0,+∞) → R belongs to
L
2((0,+∞)),

(47) |h|2s :=
∑

k≥0

ksa2k(h) < +∞.

is equivalent to the property that h admits derivatives up to order s− 1, with h(s−1) absolutely
continuous and for m = 0, . . . , s− 1, the functions

x(m+1)/2(hex)(m+1)e−x = x(m+1)/2
m+1
∑

j=0

(

m+ 1

j

)

h(j)

belong to L
2((0,+∞)). Moreover, for m = 0, 1, . . . , s− 1,

‖x(m+1)/2(hex)(m+1)e−x‖2 =
∑

k≥m+1

k(k − 1) . . . (k −m)a2k(h).

For h ∈W s with s integer, we set ‖h‖20 = ‖h‖2 and for s ≥ 1

(48) ‖h‖s = ‖xs/2
s
∑

j=0

(

s

j

)

h(j)‖ = [
∑

k≥s

k(k − 1) . . . (k − s+ 1)a2k(h)]
1/2, ‖|h‖|2s :=

s
∑

j=0

‖h‖2j .

Then the following property holds.

Lemma 7.1. When s is integer, the two norms ‖|h‖|s and |h|s are equivalent.

Proof of lemma 7.1. Obviously |h|0 = ‖|h‖|0 and ‖h‖2j ≤ |h|2j for all j. Moreover j 7→ |h|j is

increasing. Therefore ‖|h‖|2s ≤ (s+ 1)|h|2s . On the other hand, let bj,s the coefficients such that
Xs =

∑s
j=1 bj,sX(X − 1) . . . (X − j + 1). Then |h|2s =

∑s
j=1 bj,s‖h‖2j ≤ A(s)‖|h‖|2s , with

(49) A(s) = max(|bj,s|, j = 1, . . . , s). ✷
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