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Abstract. We study the models Zi = Yi + Vi, Yi = XiUi, i = 1, . . . , n where the Vi’s are
nonnegative, i.i.d. with known density fV , the Ui’s are i.i.d. with β(1, k) density, k ≥ 1, the
Xi’s are i.i.d., nonnegative with unknown density f . The sequences (Xi), (Ui), (Vi) are inde-
pendent. We aim at estimating f on R

+ in the three cases of direct observations (X1, . . . , Xn),
observations (Y1, . . . , Yn), observations (Z1, . . . , Zn). We propose projection estimators using
a Laguerre basis and give upper bounds on the L

2-risks on specific Sobolev-Laguerre spaces.
Lower bounds matching with the upper bounds are proved in the case of direct observation of
X and in the case of observation of Y . A general data-driven procedure is described and proved
to perform automatically the bias variance compromise. The method is illustrated on simulated
data.
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1. Introduction

Consider observations Z1, . . . , Zn such that

(1) Zi = Yi + Vi, Yi = XiUi, i = 1, . . . , n.

where Xi, Ui, Vi are nonnegative random variables, (Xi) are i.i.d. with unknown density f ,
(Ui) are i.i.d., (Vi) are i.i.d., Ui, Vi have known densities and the sequences (Xi), (Ui), Vi) are
independent.
If Vi = 0 and Ui has uniform density on [0, 1], the model Zi = XiUi = Yi is called multiplicative
censoring model and has been widely investigated in the past decades. As detailed in Vardi
(1989), this model covers several important statistical problems, in particular estimation under
monotonicity constraints. In this context, numerous papers deal with the estimation of f whether
by nonparametric maximum likelihood (Vardi (1989), Vardi and Zhang (1992), Asgharian et
al. (2012), by projection methods (Andersen and Hansen (2001), Abbaszadeh et al. (2012,2013))
or kernel methods (Brunel et al., (2015)). We mention that taking logarithm of the Yi allows a
deconvolution method used by some authors (see e.g. van Es et al. (2003)): the method leads
to estimate a distortion of f and cannot be straightforwardly extended to general model (1).
Another approach to the above multiplicative deconvolution problem can be based on the Mellin
transform technique (see Belomestny and Schoenmakers (2015) for a related problem).
On the other hand, density estimation from noisy observations, i.e., estimation of the density fY

Date: January 13, 2016.

1



2 D. BELOMESTNY(1), F. COMTE(2) & V. GENON-CATALOT(3)

of Yi when observing Zi = Yi+Vi is also the subject of a huge number of contributions. For real-
valued random variables, this deconvolution problem is classically solved by Fourier methods.
However, recently, the study of one-sided errors, i.e. Vi ≥ 0, was motivated by applications
in the field of finance (see Jirak et al. (2014)) or in survival models, (see van Es et al. (1998),
Jongbloed (1998)). Specific new approaches have been introduced to deal with deconvolution of
nonnegative random variables. In particular, Mabon (2015) considers the case of Yi, Vi ≥ 0, Vi
with known density fV on R

+ and proposes a projection estimator of fY using a Laguerre basis
of L2(R+) whose properties allow deconvolution of densities on R

+.
In this paper, we consider model (1) and extend the class of distributions for the Ui’s. We
assume that Ui has β(1, k) distribution with a density fU (u) := ρk(u) = k(1−u)k−11I[0,1](u), for
k ≥ 1. Then the random variables Yi = XiUi have density

(2) fk,Y (y) = f ⊙ ρk(y) = k

∫ ∞

y

(

1− y

u

)k−1 f(u)

u
du, y ≥ 0,

where f⊙h denotes the density of XU with X,U independent, X with density f , U with density
h . For k = 1, f ′1,Y (y) = −f(y)/y ≤ 0 for all y ≥ 0 so that f1,Y is a nonincreasing density on

R
+.

More generally, a k-monotone density follows the definition:

Definition 1.1. A density g on [0,+∞[ is k-monotone if (−1)ℓg(ℓ) is nonincreasing and convex
for ℓ = 0, . . . , k − 2 if k ≥ 2 and simply nonincreasing if k = 1.

In particular, it has been proved (see Williamson (1956)) that a k-monotone density g admits
the representation

(3) g(y) = k

∫ ∞

0

(u− y)k−1
+

uk
dF (u) = k

∫ ∞

0

(1− y/u)k−1
+

u
dF (u)

where F is a distribution function R+. Consequently, fk,Y given by (2) is k-monotone with
dF (u) = f(u)du. Therefore, the multiplicative censoring model is a special case of the setting of
k-monotone densities. The problem of estimating f in model (1) is identical to the problem of
reconstructing f for a k-monotone density fk,Y from noisy observations Zi = Yi + Vi. Note that
k-monotone densities have been considered by Balabdaoui and Wellner (2007, 2010) or Chee
and Wang (2014), from the point of view of estimating fk,Y (not f) under the k-monotonicity
constraint.

In this paper, we propose nonparametric estimators of f built as projection estimators on
a Laguerre basis. This basis is related to specific Sobolev-Laguerre spaces which have been
introduced by Shen (2000) and Bongioanni and Torrea (2007). The link between projection
coefficients and regularity conditions in these spaces has been described in Comte and Genon-
Catalot (2015). We consider the three cases: first, the observations are the Xi’s, second the Yi’s
and third the Zi’s. In each case, we propose estimators of f . In the second and third cases, the
estimators are obtained thanks to explicit formulae linking the projection coefficients of fk,Y
(second case) or fZ (third case) in the Laguerre basis, to those of f . We provide risk bounds for
the estimators, allowing to compute upper bounds for the rates of convergence. Then we study
lower bounds: even in the case of direct observations of the Xi’s, that is in the simple density
model, the corresponding lower bound over Sobolev-Laguerre balls is very difficult to establish,
and this is why we start with this supposedly elementary case. Upper and lower bounds match
up to a logarithmic term. Next, we prove a lower bound for the 1-monotone case, almost
matching the upper bound. Lastly, we provide a general adaptive procedure for estimation in
model (1). In Section 2, we describe the basis and the Sobolev-Laguerre spaces together with
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their useful properties. In Section 3, we provide a collection of projection estimators of f from
observations X1, . . . ,Xn, and a straightforward upper bound on the rate of convergence of the
estimator. The difficult part is to establish a lower bound. Section 4 follows the same steps
from observations Y1, . . . , Yn, with new investigations to relate Laguerre projection coefficients
of fk,Y and f . The lower bound for the case k = 1 relies on a clever modification of the Hamming
distance and the Varshamov-Gilbert Lemma (see Tsybakov (2009)). In Section 5, we define a
collection of projection estimators of f from observations Z1, . . . , Zn, together with a general
adaptive procedure which can work in all three cases.

2. About Laguerre bases and spaces

2.1. Laguerre basis. Below we denote the scalar product and the L
2-norm on L

2(R+) by:

∀s, t ∈ L
2(R+), 〈s, t〉 =

∫ +∞

0
s(x)t(x)dx, ‖t‖2 =

∫ +∞

0
t2(x)dx.

Consider the Laguerre polynomials (Lj) and the Laguerre functions (ϕj) given by

Lj(x) =

j
∑

k=0

(−1)k
(

j

k

)

xk

k!
, ϕj(x) =

√
2Lj(2x)e

−x1Ix≥0, j ≥ 0.

The collection (ϕj)j≥0 constitutes a complete orthonormal system on L
2(R+), and is such that

(see Abramowitz and Stegun (1964)):

(4) ∀j ≥ 1, ∀x ∈ R
+, |ϕj(x)| ≤

√
2.

For h ∈ L2(R+), we can develop h on the Laguerre basis with:

h =
∑

j≥0

aj(h)ϕj , aj(h) = 〈h, ϕj〉.

Note that, when h is a density,

a0(h) = 〈h, ϕ0〉 =
√
2

∫ +∞

0
h(x)e−xdx > 0.

By convention, we set ϕj = 0 if j ≤ −1 and define the vector of coefficients of h on (ϕ0, . . . , ϕm−1):

~am−1(h) := (aj(h))0≤j≤m−1.

We define the m-dimensional space Sm = span(ϕ0, ϕ1, . . . , ϕm−1). The function

hm =

m−1
∑

j=0

aj(h)ϕj

is the orthogonal projection of h on Sm.

2.2. Sobolev-Laguerre spaces. For s ≥ 0, the Sobolev-Laguerre space with index s (see
Bongioanni and Torrea (2007)) is defined by:

(5) W s = {h : R+ → R, h ∈ L
2(R+),

∑

k≥0

ksa2k(h) < +∞}.

The following results have been proved in Section 7 of Comte and Genon-Catalot (2015). For s
integer, if h : R+ → R belongs to L

2(R+), then

(6) |h|2s :=
∑

k≥0

ksa2k(h) < +∞.
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is equivalent to the property that h admits derivatives up to order s − 1, with h(s−1) being
absolutely continuous and for m = 0, . . . , s− 1, the functions

ξm+1(x) := x(m+1)/2(h(x)ex)(m+1)e−x = x(m+1)/2
m+1
∑

j=0

(

m+ 1

j

)

h(j)(x)

belong to L
2(R+). Moreover, for m = 0, 1, . . . , s− 1,

‖ξm+1‖2 =
∑

k≥m+1

k(k − 1) . . . (k −m)a2k(h).

For h ∈W s with s integer, we set ‖h‖20 = ‖h‖2 and for s ≥ 1

(7) ‖h‖s = ‖ξs‖ = [
∑

k≥s

k(k − 1) . . . (k − s+ 1)a2k(h)]
1/2.

Now we set

‖|h‖|2s :=

s
∑

j=0

‖h‖2j .

Then the following property holds.

Lemma 2.1. When s is integer, the two norms ‖|h‖|s and |h|s are equivalent.

We define the ball W s(D) via (see (5)-(6)):

W s(D)
.
=

{

f ∈W s, |f |2s =
∞
∑

k=0

ksa2k(f) ≤ D

}

.

3. Projection estimator of f in the Laguerre basis when Xi’s are observed

3.1. Upper bound. We assume that f belongs to L
2(R+) and provide for each m ≥ 1, a

projection estimator of f by estimating the coefficients aj(f), j = 0, . . . ,m − 1. In the case
where the Xi’s are observed, we define

âj(X) =
1

n

n
∑

i=1

ϕj(Xi) and f̂Xm =

m−1
∑

j=0

âj(X)ϕj .

Doing so, we obtain an estimator of fm =
∑m−1

j=0 aj(f)ϕj .

We have ‖f̂Xm − f‖2 = ‖f − fm‖2 + ‖f̂Xm − fm‖2 by the Pythagoras Theorem. As (ϕj)j is

orthonormal, we get ‖f̂Xm − fm‖2 =
∑m−1

j=0 (âj(X) − aj(f))
2. Clearly, âj(X) is an unbiased

estimator of aj(f), so we have

E[(âj(X)− aj(f))
2] =

1

n
Var(ϕj(X)) ≤ 1

n
E(ϕ2

j (X)).

Therefore, with (4), we obtain the risk bound:

(8) E(‖f̂Xm − f‖2) ≤ ‖f − fm‖2 + 2
m

n
.

Remark 3.1. The risk bound decomposition given in (8) classically involves a bias term ‖f −
fm‖2 =

∑

j≥m a
2
j(f) which is decreasing with m and a variance term of order m/n which

is increasing with m. Therefore, to evaluate the rate of convergence, we have to perform a
compromise to select relevantly m.
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For f ∈ W s(D), we have ‖f − fm‖2 =
∑

j≥m a
2
j (f) ≤ Dm−s and choosing m = mn =

C0(s,D)n1/(s+1) in the upper bound (8), implies

E(‖f̂Xmn
− f‖2) ≤ C1(s,D)n−s/(s+1)

where Ci(s,D), i = 0, 1 are constants depending on s and D only. What is unexpectedly difficult
is to prove that this rate is optimal on the Sobolev-Laguerre spaces.

Remark 3.2. Faster rates of convergence may be obtained if the bias is smaller. Exponential
distributions provide examples of such a case. If X has exponential distribution E(θ), θ > 0,

then the coefficients are given by ak(f) =
√
2[θ/(θ + 1)] ((θ − 1)/(θ + 1))k and the bias can be

explicitly computed,

‖f − fm‖2 =
∞
∑

k=m

a2k(f) =
θ

2

∣

∣

∣

∣

θ − 1

θ + 1

∣

∣

∣

∣

2m

.

Then the bias is exponentially decreasing and the rate of convergence is of order [log(n)]/n for
mn = log(n)/ρ, ρ = | log[|(θ − 1)/(θ + 1)|]|. The result can be extended to Gamma and mixed
Gamma densities, see Comte and Genon-Catalot (2015), Mabon (2015).

3.2. Lower bound. In the section, we prove the following result

Theorem 3.1. Assume that s is an integer, s > 1.
Then for any estimator f̂n built as a measurable function of X1, . . . ,Xn, for any ǫ > 0 and for
n large enough,

sup
f∈W s(D)

Ef

[

‖f̂n − f‖2
]

% ψn, ψn = n−s/(s+1)/ log(1+ǫ)/(s+1)(n).

The proof is based on Theorem 2.7 in Tsybakov (2009), and induces several steps. The main
difficulty of the construction is to ensure that the density alternative proposal is really a density
on R

+, and in particular nonnegative.

Proof of Theorem 3.1. Define f0 as the density

f0(x) =
cα,β

(e+ x)α logβ(e+ x)
1R+(x)

where α > 1, and β = (1 + ǫ)/2 > 1/2 with ǫ < 1, and cα,β is such that
∫

f0 = 1. Note that as
∀x ≥ 0, 1 ≤ log(e+ x) ≤ e+ x, we have, as β < 1,

(9)
cα,β

(e+ x)α+1
≤ f0(x) ≤

cα,β
(e+ x)α

.

Next we consider the functions

fθ(x) := f0(x) + δ

2K
∑

k=K+1

θk−Kϕk(x)

for some δ > 0, K ∈ N and θ = (θ1, . . . , θK) ∈ {0, 1}K .
Lemma 3.1. Let s > 1 be integer. Then f0 and fθ belong to W s(D) provided that α ≥
(s+ 1)/2(> 1) and δ2Ks+1 ≤ D/C for some constant C = C(s) > 0.

Lemma 3.2. Suppose that
∑K

k=1 θk(−1)k = 0 and all partial sums
∑p

k=1 θk(−1)k, p = 1, . . . ,K,

are uniformly bounded by 1, then under the choice δ = δ′K−α log−β(K) for small enough constant
δ′ > 0 not depending on K, we have that fθ is a probability density on R+.
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Next we have for any θ,θ′ ∈ {0, 1}K ,

(10)

∫ ∞

0
(fθ(x)− fθ′(x))2 dx = δ2

K
∑

k=1

(

θk − θ′k
)2

= δ2ρ(θ,θ′),

where ρ(θ,θ′) =
∑K

k=1 1θk 6=θ′k
is the so-called Hamming distance. Now to apply Theorem 2.7

p.101 in Tsybakov (2009), we need to extend the Varshamov-Gilbert bound (see Lemma 2.9 p.
104 in Tsybakov (2009)) as follows.

Lemma 3.3. Fix some even natural number K > 0. There exists a subset {θ(0), . . . ,θ(M)} of

{0, 1}K and a constant A1 > 0, such that θ
(0) = (0, . . . , 0), all partial sums

∑N
k=1 θ

(j)
k (−1)k,

N = 1, . . . ,K, are uniformly bounded by 1,

K
∑

k=1

θ
(j)
k (−1)k = 0 and ρ(θ(j),θ(l)) ≥ A1K,

for all 0 ≤ j < l ≤M. Moreover it holds that

(11) M ≥ 2A2K

for some constant A2 > 0.

Then we have the following Lemma.

Lemma 3.4.

1

M

M
∑

j=1

χ2
(

(f
θ
(j))⊗n, (f0)

⊗n
)

. nδ2Kα+4 and for 0 ≤ j 6= l ≤M, ‖f
θ
(j) − f

θ
(l)‖2 & δ2K.

Now we are in position to end the proof of Theorem 3.2. Under the choices

δ2 = (δ′)2K−2α(logK)−(1+ǫ) and K ≍ (n/ log1+ǫ(n))1/(2α)

using inequality (11), K ≤ logM/(A2 log 2), we get

1

M

M
∑

j=1

χ2
(

(f
θ
(j))⊗n, (f0)

⊗n
)

. logα+4(M)

and

‖f
θ
(j) − f

θ
(l)‖2 & (n/ log1+ǫ)(1−2α)/2α

for all 0 ≤ j 6= l ≤M. Finally, by taking α = (s+1)/2 (recall that α ≥ (s+1)/2) and arbitrary
small ǫ > 0, we derive

‖f
θ
(j) − f

θ
(l)‖2 & (n/ log1+ǫ(n))−s/(s+1) log−(1+ǫ))(n) = n−s/(s+1)[log(n)]−(1+ǫ)/(s+1).

This ends the proof of Theorem 3.2. ✷

4. Projection estimator of f in the Laguerre basis when Yi’s are observed

Now, our aim is to build an estimator of f from the observations Y1, . . . , Yn, still taking into
account that all variables are nonnegative.
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4.1. Preliminary properties and formulas. The construction in this case relies on the fol-
lowing steps.

The inversion formula giving f from fk,Y defined by (2) stated in Proposition 4.1 is given in
Williamson (1956). For convenience of the reader, we give a proof in the appendix.

Proposition 4.1. Let fk,Y and f be linked by Formula (3) and set F (x) =
∫ x
0 f(t) dt (resp.

Fk,Y (y) =
∫ y
0 fk,Y (t) dt). Then we have, for any y ≥ 0, for k ≥ 1,

(12) f(y) =
(−1)k

k!
ykf

(k)
k,Y (y),

(13) F (y) = Fk,Y (y)− yfk,Y (y) + · · ·+ (−1)k−1

(k − 1)!
yk−1f

(k−2)
k,Y (y) +

(−1)k

k!
ykf

(k−1)
k,Y (y).

With the two following Propositions, we give the links between the coefficients of f and fk,Y on
the Laguerre basis which are used for the estimation procedure.

Proposition 4.2. Assume that EXk−1 < +∞. Then, for all j ≥ 0,

(14) aj(f) = 〈f, ϕj〉 =
1

k!
〈fk,Y , (ykϕj)

(k)〉

Proposition 4.3. Define bj,0ℓ = δℓ,j , for p ≥ 0,

(15) bj,p+1
ℓ = −ℓ+ 1

2
bj,pℓ+1 − (p+

1

2
)bj,pℓ +

ℓ

2
bj,pℓ−1, and hj,kℓ =

k
∑

p=|ℓ−j|

bj,pℓ

(

k

p

)

1

p!
.

Define the matrices H
(k)
m with size m×(m+k) by [H

(k)
m ]j,ℓ = hj,kℓ for ℓ = sup((j−k), 1), . . . , j+k,

otherwise [H
(k)
m ]j,ℓ = 0. Then,

~am−1(f) = H(k)
m ~am+k−1(fk,Y ).

Moreover, the coefficients hℓj,k satisfy

(16) ∀ℓ ≤ j + k, |hj,kℓ | ≤ C ′
k(j + k)k.

Example. For instance, for k = 1 (multiplicative censoring model for Yi), h
j,1
ℓ = 0 if ℓ 6=

j, j − 1, j + 1 and

(17) hj,1j−1 = − j
2
, hj,1j =

1

2
, hj,1j+1 =

j + 1

2
,

meaning that a0(f) = (1/2)a0(f1,Y ) + (1/2)a1(f1,Y ) and for j ≥ 1,

aj(f) = − j
2
aj−1(f1,Y ) +

1

2
aj(f1,Y ) +

j + 1

2
aj+1(f1,Y ).

For k = 2,

hj,2j−2 =
j(j − 1)

8
, hj,2j−1 = −1

2
j, hj,2j = −j

2 + j − 1

4
, hj,2j+1 =

1

2
(j+1), hj,2j+2 =

(j + 1)(j + 2)

8
.
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4.2. Projection estimator and upper risk bound. Proposition 4.3 leads us to define a
collection of projection estimators of f by:

(18) f̂m =
m−1
∑

j=0

âjϕj , ~̂am−1 = (âj)0≤j≤m−1 = H(k)
m
~̂am+k−1(Y ), m ≥ 1

where ~̂am+k−1(Y ) = [(âj(Y ))0≤j≤m+k−1] and âj(Y ) is defined by

(19) âj(Y ) :=
1

n

n
∑

i=1

ϕj(Yi).

Note that, by formula (14), we also have the useful formula:

âj = âj(k) =
1

n

n
∑

i=1

1

k!
(ykϕj)

(k)(Yi).

For instance, for k = 1, we get âj(1) = n−1
∑n

i=1[Yiϕ
′
j(Yi) + ϕj(Yi)] and for k = 2, we obtain

âj(2) = (2n)−1
∑n

i=1[Y
2
i ϕj”(Yi) + 4ϕ′

j(Yi) + 2ϕj(Yi)].

Let ρ2(A) = λmax(A
t A) denote the squared spectral radius of the matrix A, i.e. the largest

eigenvalue of At A, where At denotes the transpose of A. We can prove the following risk bound
for the estimator.

Proposition 4.4. Let f̂m be given by (18). Then we have

E(‖f̂m − f‖2) ≤ ‖f − fm‖2 + 2
(m+ k)ρ2(H

(k)
m )

n
.

Moreover, there exists a constant ζk such that

E(‖f̂m − f‖2) ≤ ‖f − fm‖2 + ζk
(m+ k)2k+1

n

with ζk = 2[(2k + 1)C ′
k]

2 where C ′
k is the constant in Proposition 4.2, formula (16).

Remark 3.1 applies to the bound given in Proposition 4.4: the term term is unchanged and
still decreasing with m and the variance term is now of order (m+ k)2k+1/n which is increasing
with m. Therefore, we have to perform a compromise to select relevantly m.

We can deduce from Proposition 4.4 rates of convergence of the estimator on Sobolev-Laguerre
spaces described in Section 2.2.

Corollary 4.1. Assume that f ∈ W s(D). Let f̂m be given by (18). Then choosing mopt =

[ns+2k+1] gives

E(‖f̂mopt − f‖2) ≤ C2(D, s, k)n
−s/(s+2k+1)

where C(D, s, k) is a constant depending on D, s and k.

Remark 3.2 applies here. For exponential, Gamma or mixed Gamma densities f , the bias
is unchanged and exponentially decreasing. Thus, the same choice mn yields a rate of order
[log(n)]2k+1/n.
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4.3. Lower bound in the 1-monotone case. In this section, we prove that the upper bound
obtained in Corollary 4.1 is almost optimal. We consider the case k = 1, but the step from k = 0
(case of direct observation of X) to k = 1 suggests how to get a general result. However, given
technicalities of the proof, we decided to remain with k = 1.

Theorem 4.1. Assume that s is an integer, s > 1 and consider the model Y = XU , for X and
U independent, U ∼ U([0, 1]) with only Y observed.

Then for any estimator f̂n of f the density of X, for any ǫ > 0 and for n large enough,

sup
f∈W s(D)

Ef

[

‖f̂n − f‖2
]

% ψ̃n, ψ̃n = n−(s+ǫ)/(s+ǫ+3).

Remark. We may take ǫ = 0 and have additional log terms, but this would add some techni-
calities again.

Proof of Theorem 4.1. The proof follows the same steps as the proof of Theorem 3.1. First
we define proposals f̃0 and f̃θ for the densities of X1, . . . ,Xn and compute the corresponding
densities fY,0 and fY,θ of Y1, . . . , Yn. Let us choose f̃0 such that

fY,0(x) =

∫ +∞

x

f̃0(u)

u
du = f0(x) =

cα,β

(e+ x)α logβ(e+ x)
1R+(x),

where β = (1 + ǫ)/2, with 0 < ǫ < 1 and α > 1. By derivation, we get

f̃0(x) = −xf ′Y,0(x) = cα,β
x

(e+ x)α+1 logβ+1(e+ x)
[α log(e+ x) + β]1R+(x),

Then we can compute by formula (2) for k = 1, Next, let

f̃θ(x) = f̃0(x) + δ

2K
∑

k=K+1

θk−Kxϕ
′
k(x).

We have, as
∫

ϕk(x)dx =
√
2(−1)k that

∫

xϕ′
k(x)dx = [xϕk(x)]

+∞
0 −

∫ +∞

0
ϕk(x)dx =

√
2(−1)k+1.

Therefore
∫

f̃θ(x)dx = 1 under the condition
∑

θk(−1)k = 0, as previously. Thanks to formula
(40), we have

xϕ′
k(x) = −k

2
ϕk−1(x)−

1

2
ϕk(x) +

k + 1

2
ϕk+1(x)

and we can write f̃θ as follows in the (ϕk)k basis:

f̃θ(x) = f̃0(x) + δ

2K+1
∑

k=K

µk(θ)ϕk(x)

with for k = K,K + 1, . . . , 2K + 1,

µk(θ) = −k + 1

2
θk−K+1 −

θk−K

2
+
k

2
θk−K−1

under initial and final conditions θ−1 = θ0 = θK+1 = θK+2 = 0.

Computing
∫ +∞
x f̃θ(u)/u du yields

fY,θ = fY,0(x) + δ

2K
∑

k=K+1

θk−Kϕk(x).
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We stress that by our construction, fY,0 = f0 and fY,θ = fθ, so that χ2(fY,θ, fY,0) = χ2(fθ, f0)
is already computed in the previous section (proof of Theorem 3.1).

Lemma 4.1. Let s integer, s > 1. Then f̃0 and f̃θ belong to W s(D), provided that α ≥
(s+ 1)/2 ≥ 1 and δ2Ks+3 ≤ D/C for some constant C = C(s) > 0.

Next, we have to see under which condition f̃θ ≥ 0.

Lemma 4.2. Suppose that
∑K

k=1 θk(−1)k = 0 and all partial sums
∑p

k=1 θk(−1)k, p = 1, . . . ,K,

are uniformly bounded by 1, then under the choice δ = δ′K−(α+1) log−β for small enough constant
δ′ > 0 not depending on K, we have that f̃θ is a probability density on R+.

Next, we have

(20) ‖f̃θ − f̃θ′‖2 = δ2
2K+1
∑

k=K

(µk(θ)− µk(θ
′))2

Write that for k = K,K + 1, . . . , 2K + 1, we have

µk(θ) = −k
2
(θk−K+1 − θk−K−1)−

θk−K + θk−K+1

2
.

We notice that for j = 0, 1, . . . ,K + 1, we have

|µK+j(θ)− µK+j(θ
′)| ≥ [

K + j

2
− 1] if θj+1 − θj−1 6= θ′j+1 − θ′j−1

since |θj − θ′j + θj+1 − θ′j+1|/2 ≤ 1. Therefore, we get

(21)

2K+1
∑

k=K

(µk(θ)− µk(θ
′))2 ≥ δ2(K/2 − 1)2ρ1(θ,θ

′),

where

ρ1(θ,θ
′) :=

2K
∑

k=K+1

1θk+1−θk−1 6=θ′k+1−θ′k−1
.

Therefore, we need to check that ρ1(., .) is a distance and that the Varshamov-Gilbert Lemma
holds with the Hamming distance replaced by ρ1(., .).

Lemma 4.3. Fix some even natural number K > 0. There exists a subset {θ(0), . . . ,θ(M)} of

{0, 1}K and a constant A1 > 0, such that θ
(0) = (0, . . . , 0), all partial sums

∑k
j=1 θ

(m)
j (−1)j ,

k = 1, . . . ,K, are uniformly bounded by 1,

K
∑

k=1

θ
(m)
k (−1)k = 0 and ρ1(θ

(m),θ(l)) ≥ Ã1K,

for all 0 ≤ m < l ≤M. Moreover it holds that

(22) M ≥ 2Ã2K

for some constant Ã2 > 0.

Next we prove

Lemma 4.4.

1

M

M
∑

j=1

χ2
(

(fY,θ(j))⊗n, (fY,0)
⊗n
)

. nδ2Kα+4 and for 0 ≤ j 6= l ≤M, ‖f̃
θ
(j) − f̃

θ
(l)‖2 & δ2K3.
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Now we end the proof of Theorem 4.1. We choose α = (s+1)/2, δ2 = (δ′)2K−2(α+1) log−(1+ǫ)(K),
K = [n/ log1+ǫ(n)]1/[2(α+1)] and we obtain

1

M

M
∑

j=1

χ2
(

(fY,θ(j))⊗n, (fY,0)
⊗n
)

. logα+4(M).

and

‖f̃
θ
(j) − f̃

θ
(l)‖2 & n−s/(s+3)[log(n)](1+ǫ)/(1+s/3).

Note that δ2Ks+3 = [log(n)]−(1+ǫ) is bounded (constraint from Lemma 4.1). This ends the proof
of Theorem 4.1. ✷

5. Projection estimator of f in the Laguerre basis when Zi’s are observed and

adaptive procedure

5.1. Projection estimator and risk bound. We use the following result proved in Mabon (2015).
Define the m×m triangular matrix Vm = (vi,j)0≤i,j≤m−1 where

(23) vi,j = 2−1/2(〈fV , ϕi−j〉1Ii−j≥0 − 〈fV , ϕi−j−1〉1Ii−j−1≥0),

and the diagonal elements are vi,i = 2−1/2〈fV , ϕ0〉 > 0. We have for all m ≥ 1,

(24) ~am−1(fY ) = (aj(fY ))0≤j≤m−1 = V−1
m [(aj(fZ))0≤j≤m−1] = V−1

m ~am−1(fZ),

If Vi = 0, Vm = Im. Formula (23) relies on a specific property of the Laguerre basis (ϕj) which
can be used in R

+-deconvolution setting:

(25)

∫ x

0
ϕk(u)ϕj(x− u)du =

1√
2
(ϕj+k(x)− ϕj+k+1(x)) ,

(see 22.13.14 in Abramowitz and Stegun (1964)).
The following result is the basement of our estimation procedure.

Proposition 5.1. Define the matrices K
(k)
m with size m× (m+ k) by

K(k)
m := H(k)

m V−1
m+k.

Then,

~am−1(f) = K(k)
m ~am+k−1(fZ).

Proposition 5.1 leads us to define a collection of projection estimators estimator of f by:

(26) f̃m =

m−1
∑

j=0

ãjϕj , ~̃am−1 = (ãj)0≤j≤m−1 = K(k)
m
~̃am+k−1(Z), m ≥ 1

where ~̃am+k−1(Z) = [(ãj(Z))0≤j≤m+k−1] and ãj(Z) is defined by

(27) ãj(Z) :=
1

n

n
∑

i=1

ϕj(Zi).

We can prove the following risk bound for the estimator.

Proposition 5.2. Let f̃m be given by (26). Then we have

E(‖f̃m − f‖2) ≤ ‖f − fm‖2 + 2
(m+ k)ρ2(K

(k)
m )

n
.
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Remark 3.1 still applies here. The bias term is unchanged. The variance term has now order

(m+ k)ρ2(K
(k)
m ) ≤ (m+ k)2k+1ρ2(V−1

m+k)/n, and is increasing with m. Indeed, it is proved that

m 7→ ρ2(V−1
m+k) is increasing (see Mabon (2015)). Therefore, we have to perform a compromise

to select relevantly m.

5.2. Asymptotic rate of convergence of the estimator. We can deduce from Proposition
5.2 rates of convergence of the estimator on Sobolev-Laguerre spaces.

Let us define r ≥ 1 as an integer such that

(28)
djfV (t)

dtj

∣

∣

∣

∣

t=0

=

{

0, if j = 0, ..., r − 2,
Br 6= 0, if j = r − 1.

with r = 1 if fV (0) = B1 6= 0.
Consider the two assumptions

(A1) fV is r times differentiable with f
(r)
V ∈ L1[0,∞).

(A2) Laplace transform LfV (s) of fV has no zeros with nonnegative real parts except for zeros
of the form s = ∞+ ib.

It is proved in Comte et al. that, under (A1)-(A2), we have ρ2(V−1
m ) ≍ Cm2r.

Therefore the following Corollary holds

Corollary 5.1. Assume that f ∈W s(D), and (A1)-(A2) are fulfilled. Let f̃m be given by (26).
Then choosing mopt = [n2r+s+2k+1] gives

E(‖f̃mopt − f‖2) ≤ C(K)n−s/(2r+s+2k+1).

Remark 5.1. If V follows an exponential distribution, then it satisfies assumptions (A1)-(A2)
with r = 1 and more generally, a Gamma(p, θ) density satisfies assumptions (A1)-(A2) with
r = p.

5.3. Adaptive estimation. We can propose a model selection method to select m automati-
cally, aiming at an automatic bias variance compromise. We define

(29) m̃ = arg min
m∈Mn

(

−‖f̃m‖2 + κ
mρ2(K

(k)
m )

n

)

where

Mn = {m ∈ N
∗, mρ2(K(k)

m ) ≤ n}.

If V = 0, the procedure and the result are valid with matrix K
(k)
m replaced by H

(k)
m (i.e. V

(k)
m =

Idm+k, the identity matrix with size (m+ k)× (m+ k). If V = 0 and U = 1 (direct observation

of X), then the procedure and result is valid with k = 0 and H
(0)
m ==Idm.

Theorem 5.1. Let f̃m be given by (26) and m̃ by (29) .There exists a constant κ0 such that for
any κ ≥ κ0, we have

E(‖f̃m̃ − f‖2) ≤ C1 inf
m∈Mn

(

‖f − fm‖2 + pen(m)
)

+
C2

n
.
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m̄X = 3.36 (0.92) m̄Y = 2.94 (0.24) m̄Z = 2.48 (0.50)
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Figure 1. True density f of Model (i) (Gamma distribution) in bold (blue). Left: 50

estimators of f from direct observation of X in dotted (green). Middle: 50 estimators

of f from observation of Y , in dotted (red). Right: 50 estimators of f from observation

of Z, in dotted (magenta). First line: n = 400 and U ∼ U([0, 1]). Second line: n = 2000

and U ∼ U([0, 1]). Third line: n = 2000 and U ∼ β(1, 2). Above each plot, m̄X (resp.

m̄Y , resp m̄Z) is the mean of the selected dimensions for X (resp. for Y , resp. for Z)

with standard deviation in parenthesis.

6. Simulation results

We implement the adaptive estimators f̃m̃ of f based

• on direct observations X1, . . . ,Xn,
• on multiplicative censored observations for k = 1, 2, Y1, . . . , Yn,
• on Z1, . . . , Zn from the complete model (1) with V ∼ E(λ), an exponential variable with
parameter λ (with mean 1/λ, with λ = 2 in the simulations).
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m̄X = 6.48 (0.99) m̄Y = 4 (0.00) m̄Z = 3.66 (0.56)
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0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 2. True density f of Model (ii) (Beta distribution) in bold (blue). Left: 50

estimators of f from direct observation of X in dotted (green). Middle: 50 estimators

of f from observation of Y , in dotted (red). Right: 50 estimators of f from observation

of Z, in dotted (magenta). First line: n = 400 and U ∼ U([0, 1]). Second line: n = 2000

and U ∼ U([0, 1]). Third line: n = 2000 and U ∼ β(1, 2). Above each plot, m̄X (resp.

m̄Y , resp m̄Z) is the mean of the selected dimensions for X (resp. for Y , resp. for Z)

with standard deviation in parenthesis.

For V ∼ E(λ), we have [Vm]i,i = λ/(1 + λ) and

[Vm]i,j = −2λ
(λ− 1)i−j−1

(λ+ 1)(i−j+1)
if j < i

and [Vm]i,j = 0 otherwise.
We consider for f the densities

(i) Gamma(3, 1/2),
(ii) 5 Beta(4, 5),
(iii) a mixture of Gamma: c(0.4 Gamma(2,1/2)+0.6 Gamma(16,1/4)) with c = 5/8.
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m̄X = 11.48 (1.35) m̄Y = 6.66 (0.48) m̄Z = 4.86 (1.48)
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Figure 3. True density f in bold (blue) of Model (iii) (Mixed Gamma distribution)

(first line), Model (iv) (Lognormal distribution) (second line) and f ❀ E(1) (third line),

with n = 2000. U uniform for lines 1 and 2, U ❀ β(1, 2) for line 3. Left: 50 estimators

of f from direct observation of X in dotted (green). Middle: 50 estimators of f from

observation of Y , in dotted (red). Right: 50 estimators of f from observation of Z, in

dotted (magenta). Above each plot, m̄X (resp. m̄Y , resp m̄Z) is the mean of the selected

dimensions for X (resp. for Y , resp. for Z) with standard deviation in parenthesis.

(iv) Lognormal(0.5, 0.5) (exponential of a Gaussian with mean 0.5 and variance 0.52).

All factors and parameters are chosen to have the true densities with the same scales.
Direct estimation is penalized with κ1 = 1 in all cases. For U following a uniform distribution

on [0, 1], without additive noise, we use κ2 = 0.25 and with additive noise, we use κ3 = 0.25.
For U following a β(1, 2) distribution on [0, 1], we take κ2 = 0.125 without additive noise and
κ3 = 0.25 with additive noise.

Beam of estimators are given in Figures 1-3 and show clearly the performance of the method
via variability bands. The Laguerre basis provides excellent estimation when using direct data,
and the problem gets more difficult in presence of censoring. Increasing the order k (we took
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k = 1 for U ∼ U([0, 1]) and k = 2 for U ∼ β(1, 2)) makes the problem more difficult. Adding
a nuisance process V creates also additional difficulty, this is why mixture of Gamma’s can be
correctly reconstructed only with multiplicative censoring, for instance (see Figure 3). Selected
dimensions can be of various orders (between 2 and 12 in our examples) and vary or be very
stable (see the null standard deviations).

7. Proofs

7.1. Proof of lemma 2.1. Obviously |h|0 = ‖|h‖|0 and ‖h‖2j ≤ |h|2j for all j. Moreover j 7→ |h|j
is increasing. Therefore ‖|h‖|2s ≤ (s + 1)|h|2s . On the other hand, let bj,s the coefficients such
that

Xs =
s
∑

j=1

bj,sX(X − 1) . . . (X − j + 1).

Then

|h|2s =
s
∑

j=1

bj,s‖h‖2j ≤ A(s)‖|h‖|2s ,

with

(30) A(s) = max(|bj,s|, j = 1, . . . , s). ✷

7.2. Proofs of Lemmas of Section 3.2 (Theorem 3.1).

Proof of Lemma 3.1. Indeed we have

‖f0‖2s =
∫ +∞

0



xs/2
s
∑

j=0

(

s

j

)

f
(j)
0 (x)





2

dx ≤ 2s
s
∑

j=0

(

s

j

)∫ +∞

0

(

xs/2f
(j)
0 (x)

)2
dx.

The “worst” term in the above sum is xs/2(e + x)−α log−β(e + x). Thus, as α ≥ (s + 1)/2 and
β > 1/2,

xs/2f
(j)
0 (x) ∈ L

2(R+)

for j = 0, . . . , s and there exists a constant B(s, α) such tat

‖f0‖2s ≤ B(s, α).

It follows that
|f0|2s ≤ B̃(s, α), B̃(s, α) := (s+ 1)B(s, α)A(s)

where A(s) is defined by (30). We take D/4 ≥ B̃(s, α). Next

|fθ|s ≤ |f0|s + δ

∣

∣

∣

∣

∣

2K
∑

k=K+1

θk−Kϕk

∣

∣

∣

∣

∣

s

.

Let us define for f, g ∈ W s, 〈f, g〉s = (1/2)(|f + g|2s − |f |2s − |g|2s) so that |ϕk|2s = ks and
〈ϕk, ϕℓ〉s = 0 for k 6= ℓ. Therefore

∣

∣

∣

∣

∣

2K
∑

k=1+K

θk−Kϕk

∣

∣

∣

∣

∣

2

s

=

2K
∑

k=1+K

ksθ2k−K ≤
2K
∑

k=1+K

ks

≤
2K
∑

k=1+K

∫ k+1

k
xs ds =

(2K + 1)s+1 − (1 +K)s+1

s+ 1
,
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and

|fθ|2s ≤ 2|f0|2s +Cδ2Ks+1/(s + 1)

for some constant C = C(s) > 0. Hence |fθ|2s ≤ D if δ2Ks+1/(s + 1) ≤ D/(2C). ✷

Proof of Lemma 3.2. First, noting that
∫

ϕk(x)dx =
√
2(−1)k, we have

∫ ∞

0
fθ(x) dx = 1 + δ

2K
∑

k=1+K

θk−K

∫ ∞

0
ϕk(x) dx

= 1 +
√
2δ

2K
∑

k=1+K

θk−K(−1)k = 1,

so that our conditions ensure that
∫∞
0 fθ(x) dx = 1.

Next we prove that fθ is nonnegative, which is surprisingly tricky. We have

fθ(x)/f0(x) = 1 + δ
(e + x)α logβ(e+ x)

cα,β

2K
∑

k=K+1

θk−Kϕk(x).

For any fixed a > 0, for any x ∈ [0, a], we have |fθ(x)/f0(x) − 1| ≤ δK
√
2(e + a)α logβ(e +

a)/cα,β . δK = δ′K1−α log−β(K) which is small as α ≥ (s + 1)/2 > 1. Without loss of
generality, we assume that a > 1.

Thus, in order to prove that fθ is a nonnegative function, it is enough to show that

(31) sup
x>a

∣

∣

∣

∣

∣

xλ logµ(x) ·
2K
∑

k=K+1

θk−Kϕk(x)

∣

∣

∣

∣

∣

. Kλ logµ(K), K → ∞

for any fixed λ > 0, µ > 0 and for sufficiently large a > 0. Then by taking λ = α, µ = β and
δ = δ′K−α log−β(K) for small enough constant δ′ > 0 not depending on K, we get fθ(x) ≥ 0,
x ∈ R+.

We proceed in two steps for the proof of (31). First we study the supremum for large values
of x, 2x ≥ cν, c > 0 and then for intermediate values of x (2a < 2x ≤ bν with b < 1 and
ν = 4K + 2).
Step 1. Suppose that the sequence θ = (θ1, . . . , θK) ∈ {0, 1}K satisfies

∣

∣

∣

∣

∣

m
∑

k=1

θk(−1)k

∣

∣

∣

∣

∣

≤ A

for all m = 1, . . . ,K, and some constant A > 0. Fix some real numbers λ, µ with 0 < λ < K,
and µ > 0, then it holds for any 2x > 4K + 2λ+ 1,

(32)

∣

∣

∣

∣

∣

xλ logµ(x) ·
2K
∑

k=K+1

θk−Kϕk(x)

∣

∣

∣

∣

∣

≤ ACλ,µK
λ logµ(K), K → ∞,

where ϕk(x) =
√
2e−xLk(2x) and the constant Cλ,µ depends only on λ, µ.

To prove (32), we first study the case µ = 0 and λ integer.

Lemma 7.1. It holds for any integers n and λ ≤ n,

(33) xλLn(x) =

λ
∑

k=−λ

c
(λ)
k,nLn+k(x),
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where the coefficients c
(λ)
k,n can be computed via the relation

c
(λ)
k,n = c

(λ−1)
k,n (2(n + k) + 1)− c

(λ−1)
k−1,n(n + k)− c

(λ−1)
k+1,n(n+ k + 1)

for |k| < λ with c
(0)
k,n = δ0,k and

c
(λ)
λ,n = −cλ−1

λ−1,n(n+ λ), c
(λ)
−λ,n = −cλ−1

−λ+1,n(n− λ+ 1).

Proof. For λ = 0 the relation (33) obviously holds. Suppose that it holds for some λ = K, then
due to a well known formula

xLn(x) = (2n+ 1)Ln(x)− (n + 1)Ln+1 − nLn−1(x),

we have

xK+1Ln(x) =
K
∑

k=−K

c
(K)
k,n xLn+k(x)

=

K
∑

k=−K

c
(K)
k,n [(2(n + k) + 1)Ln+k(x)− (n+ k + 1)Ln+k+1 − (n+ k)Ln+k−1(x)]

=

K
∑

k=−K

c
(K)
k,n (2(n + k) + 1)Ln+k(x)−

K+1
∑

k=−K+1

c
(K)
k−1,n(n+ k)Ln+k

−
K−1
∑

k=−K−1

c
(K)
k+1,n(n+ k + 1)Ln+k(x)

=

K+1
∑

k=−K−1

c
(K+1)
k,n Ln+k(x).

This ends the proof of Lemma 7.1. �

We deduce by induction from Lemma 7.1 the following Corollary.

Corollary 7.1. Each coefficient c
(λ)
k,n in (33) can be represented in the form

(34) c
(λ)
k,n =

∑

r=(r1,...,rλ),ri∈S
λ
λ,1/2

b
(λ)
k,r

λ
∏

i=1

(n+ ri)

with n ≥ λ, Sλ,1/2 = {−λ, . . . , λ} ∪ {−λ + 1/2, . . . , λ + 1/2} and some coefficients b
(λ)
k,r not

depending on n.

The following property is given e.g. in Muckenhoupt (1970).

Lemma 7.2. Set ν = 4N = 4n+ 2, t = x/ν, then it holds for all x ≥ dν for any d > 0

e−x/2Ln(x) = (−1)n
NN+1/6e−N

n!(−xφ′(t))1/2

[

Ai(−ν2/3φ(t)) +O

(

Ai(−ν2/3φ(t))
x

)]

,

where

φ(t) = − [3γ(t)/2]2/3 , γ(t) =
1

2
(t2 − t)1/2 − 1

2
cosh−1(t1/2)

and Ai(t) is the Airy function (see Abramowitz and Stegun (1964)).
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Corollary 7.2. Under conditions of the previous lemma, we have a representation

(35) e−x/2Ln(x) = (−1)nan(x),

where for any x > cν with c > 1 the sequence an is bounded (uniformly in x), positive and
increasing in n for 4n+ 2 ≤ x.

Proof. The function Ai
(

−ν2/3φ(x/ν)
)

/(−xφ′(x/ν))1/2 is monotone increasing in ν for any x ≥
ν = 4n + 2. Moreover, the function NN+1/6e−N/n! is monotone increasing in n. The uniform

boundedness of an(x) follows from the boundedness of
∣

∣e−x/2Ln(x)
∣

∣. �

Proof of Step 1. First we prove (32) for µ = 0 and λ integer. From (33), (34) and (35), we
have

xλ
2K
∑

k=K+1

θk−Ke
−x/2Lk(x) =

∑

r=(r1,...,rλ),ri∈S
λ
λ,1/2

λ
∑

ℓ=−λ

(−1)ℓb
(λ)
ℓ,rΣK(ℓ, r)

with

ΣK(ℓ, r) =

2K
∑

k=K+1

θk−K(−1)kaℓ+k(x)ρ
(λ)
k (r), ρ

(λ)
k (r) =

λ
∏

i=1

(k + ri).

Note that k 7→ ρ
(λ)
k (r)aℓ+k(x) is nonnegative and nondecreasing and aℓ+k(x) is bounded. In-

equality (32) for µ = 0 and λ an integer follows from the next Lemma.

Lemma 7.3. Let K1 < K2 be two natural numbers and let ρn be an increasing sequence of
nonnegative numbers, then for any x > 4K2 + 2, we have

∣

∣

∣

∣

∣

∣

K2
∑

n=K1+1

e−x/2θnρnLn(x)

∣

∣

∣

∣

∣

∣

≤ ρK2aK2(x) max
K1+1≤n≤K2

∣

∣

∣

∣

∣

∣

n
∑

n=K1+1

θn(−1)n

∣

∣

∣

∣

∣

∣

.

Proof. Due to the Abel summation theorem, we get

K2
∑

n=K1+1

e−x/2θnρnLn(x) =

K2
∑

n=K1+1

θnρn(−1)nan(x)

= SK2ρK2aK2(x) +

K2−1
∑

n=K1+1

Sn(ρn+1an+1(x)− ρnan(x)),

where Sn
.
=
∑n

j=K1+1(−1)jθj for n > K1. Since the sequence ρnan(x) is non-decreasing and
non-negative, we get the desired estimate. �

Now consider the case of λ a real number and write that λ = [λ] + {λ} where {λ} is the
fractional part of λ and belongs to (0, 1). For any 2x > 4K + 2[λ] + 3,

∣

∣

∣

∣

∣

xλ
2K
∑

k=K+1

θk−Kϕk(x)

∣

∣

∣

∣

∣

= |x{λ}−1|
∣

∣

∣

∣

∣

x[λ]+1
2K
∑

k=K+1

θk−Kϕk(x)

∣

∣

∣

∣

∣

≤ (4K + 2λ+ 3){λ}−1AC[λ]+1K
[λ]+1,

and the result follows.
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Now we study the case µ > 0 and we want to prove that, for 2x > 4K + 2[λ] + 3,
∣

∣

∣

∣

∣

xλ logµ(x)

2K
∑

k=K+1

θk−Kϕk(x)

∣

∣

∣

∣

∣

. logµ(K)Kλ.

If λ is an integer, we write
∣

∣

∣

∣

∣

[x−1 logµ(x)]xλ+1
2K
∑

k=K+1

θk−Kϕk(x)

∣

∣

∣

∣

∣

.
logµ(K)

K
Kλ+1 = logµ(K)Kλ,

since x 7→ logµ(x)/x is decreasing for x large enough (x > eµ).
If λ is not an integer,

∣

∣

∣

∣

∣

[x{λ}−1 logµ(x)]x[λ]+1
2K
∑

k=K+1

θk−Kϕk(x)

∣

∣

∣

∣

∣

.
logµ(K)

K1−{λ}
K [λ]+1 = logµ(K)Kλ,

since for any ω > 0, x 7→ logµ(x)/xω is decreasing for x large enough (x > eµ/ω). ✷

Step 2. Now we want to prove (32) for x ≤ bν, b < 1, ν = 4K + 2. It holds (see Muckenhoupt
(1970) p.288)

e−x/2Ln(x) ≍
[

1

2

ψ(x/ν)
x
νψ

′(x/ν)

]1/2
[

J0(νψ(x/ν)) +O

(

x1/2

ν3/2
J̃0(νψ(

x

ν
)

)]

for x ≤ bν for some b < 1 and ν = 4n+ 2, where

ψ(t) =
1

2
(t− t2)1/2 +

1

2
arcsin(

√
t),

J0 is the Bessel function and J̃0(u) = 1]0,1](u) + u−1/21u>1. Since

ψ(t)

tψ′(t)
= 2 +

2

3
t+O(t3/2), t→ 0

and

ψ(t) =
√
t+O

(

t3/2
)

, t→ 0,

it follows from the asymptotic behavior of the Bessel function J0

e−x/2Ln(x) = J0
(√
xν
)

(1 + o(1))

=

√

2

π
(xν)−1/4 cos(

π

4
−

√
xν)− 1

4

√

1

2π
(xν)−3/4 sin(

π

4
−

√
xν) +O((xν)−5/4),

provided xν is large. Suppose that x > 1 and λ ≥ 1, then

xλ
2K
∑

n=K+1

e−x/2θnLn(x) =
2K
∑

n=K+1

θnx
λ
cos
[

π
4 −

√

x(4n+ 2)
]

(x(4n + 2))1/4
+Rn(x).

Since
2K
∑

n=K+1

1

(4n+ 2)3/4
.

∫ 2K

K

1

(1 + s)3/4
ds . K1/4,
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we have |Rn(x)| . xλ−3/4K1/4 ≤ Kλ for x ≤ K. So we need to investigate the series

SK(x)
.
=

2K
∑

n=K+1

θnx
λ
cos
[

π
4 −

√

x(4n+ 2)
]

(x(4n + 2))1/4
.

It is clear that we can restrict our attention to the case x > K
λ−3/4
λ−1/4 , because if xλ−1/4 ≤ Kλ−3/4,

we have

|SK(x)| ≤ xλ−1/4
2K
∑

n=K+1

1

(4n + 2)1/4
. xλ−1/4K3/4 ≤ Kλ.

Since

cos[
π

4
−
√

x(4n + 2)] = 2−1/2(cos[
√

x(4n + 2)] + sin[
√

x(4n+ 2)]),

it is enough to study the asymptotic behavior of the series

Σ1,K(x) =

2K
∑

n=K+1

θn
cos [

√
xn]

n1/4
, Σ2,K(x) =

2K
∑

n=K+1

θn
sin [

√
xn]

n1/4

as x→ ∞. Now, as Σ1,K(x) and Σ2,K(x) are harmonic sums, their asymptotic behaviour (x,K →
∞) can be analysed using the Mellin transform approach, which yields that |SK(x)| . Kλ for

x > K
λ−3/4
λ−1/4 . This yields (31) for µ = 0 and 2x < 4K+2. The case µ 6= 0 is here straightforward.

This ends the proof of Step 2. ✷

Therefore (31) is proved so the proof of Lemma 3.2 is complete. ✷

Proof of Lemma 3.3. Set for any j ∈ N0 = {1, 2, . . . , },

Θ2j :=

{

(θ1, . . . , θ2j) ∈ {0, 1}2j :
2l
∑

k=1

θk(−1)k = 0, l = 1, . . . , j

}

,

then it obviously holds
∣

∣Θ2(j+1)

∣

∣ = 2 |Θ2j| , |Θ2| = 1.

Indeed
Θ2(j+1) = {(θ1, . . . , θ2j , 0, 0); (θ1, . . . , θ2j , 1, 1), (θ1, . . . , θ2j) ∈ Θ2j} .

Thus

|Θ2j | = 2j .

And, for any sequence θ ∈ Θ2j, it holds
∣

∣

∣

∑l
k=1 θk(−1)k

∣

∣

∣
≤ 1 for any l = 1, . . . , 2k. Hence the set

ΩK
.
=

{

(θ1, . . . , θK) ∈ {0, 1}K :

∣

∣

∣

∣

∣

l
∑

k=1

θk(−1)k

∣

∣

∣

∣

∣

≤ 1, l = 1, . . . ,K,
K
∑

k=1

θk(−1)k = 0

}

satisfies |ΩK | ≥ 2K/2 for all even K. Next we follow the proof of the Varshamov-Gilbert bound
(see Tsybakov (2009)) applied to the set ΩK and get that for any even K ≥ 16 there exists a

subset {θ(0), . . . ,θ(M)} of ΩK such that

ρ(θ(j),θ(l)) ≥ K/16, 0 ≤ j < l ≤M,

and M ≥ 2K/16. ✷
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Proof of Lemma 3.4. Equality (10) and Lemma 3.3 imply ‖f
θ
(j) − f

θ
(l)‖2 ≥ A1δ

2K, for
0 ≤ j 6= l ≤M .

From (9), we have

χ2(fθ, f0) =

∫ ∞

0

(fθ(x)− f0(x))
2

f0(x)
dx

≤ C1

∫ ∞

0
(fθ(x)− f0(x))

2 dx+ C2

∫ ∞

0

(

x(α+1)/2fθ(x)− x(α+1)/2f0(x)
)2

dx

for some constants C1, C2 > 0. First

∫ ∞

0
(fθ(x)− f0(x))

2 dx = δ2
K
∑

k=1

θ2k ≤ δ2K

Next, using the relation (see formula (22.7.12) in Abramowitz and Stegun (1964)),

xLk(x) = (2k + 1)Lk(x)− kLk−1(x)− (k + 1)Lk+1(x),

we derive that for (α+ 1)/2 integer,

x(α+1)/2(fθ(x)− f0(x)) = δ

2K+(α+1)/2
∑

k=K+1−(α+1)/2

ψ(k,K,α,θ)ϕk(x)

where |ψ(k,K,α,θ)| . K(α+1)/2. Now, with the orthonormality of the system {ϕk} , we get

χ2(fθ, f0) . δ2Kα+2, K → ∞
uniformly in θ ∈ {0, 1}K .

If (α+1)/2 is not an integer, splitting the last integral between 0 and 1 and 1 and ∞, we get
a bound δ2Kα0+1 where α0 is the smallest even integer larger than α+ 1. Therefore,

χ2(fθ, f0) . δ2Kα+4, K → ∞
uniformly in θ ∈ {0, 1}K and we get Lemma 3.4. ✷

7.3. Proof of Propositions 4.2 and 4.3 for k = 1. We first look at the case k = 1 before
the general k-monotone case.

Set f1 = f1,Y . We have

〈f1, (yϕj)
′〉 = [f1(y)yϕj(y)]

y=+∞
y=0 +

∫ +∞

0

f(y)

y
× yϕj(y)dy = 〈f, ϕj〉.

This yields (14) for k = 1.

As yϕ′
j(y)e

y =
√
2y[2L′

j(2y)−Lj(2y)] is a polynomial with degree j+1, it can be decomposed

in the Laguerre polynomial basis of degree j + 1. There exist coefficients bj,1ℓ such that

yϕ′
j(y) =

j+1
∑

ℓ=0

bj,1ℓ ϕℓ(y)

and using the specific properties of Laguerre polynomials we can compute the coefficient bj,1ℓ .

Let L
(α)
j be the generalized Laguerre polynomials given by Formula (22.3.9) in Abramowitz and
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Stegun (1964) and Lj = L
(0)
j . By (22.5.17) for m = 1 in Abramowitz and Stegun (1964), we

have

(36) L′
j(x) = −L(1)

j−1(x).

Moreover, Formula (22.7.31) in Abramowitz and Stegun (1964) gives

(37) xL
(1)
j (x) = (j + 1)[Lj(x)− Lj+1(x)],

and Formula (22.7.12) therein

(38) xLj(x) = −(j + 1)Lj+1(x) + (2j + 1)Lj(x)− jLj−1(x).

We have to compute 2yL′
j(2y)− yLj(2y) or tL

′
j(t)− t

2Lj(t). Combining relations (36),-(38), we
get

tL′
j(t)−

t

1
Lj(t) =

j + 1

2
Lj+1(t)−

1

2
Lj(t)−

j

2
Lj−1(t).

Thus, bj,1ℓ = 0 for ℓ 6= j − 1, j, j + 1 and

(39) bj,1j−1 = − j
2
, bj,1j = −1

2
, bj,1j+1 =

j + 1

2
.

Finally,

(40) (yϕj)
′ = ϕj(y) + yϕ′

j(y) = − j
2
ϕj−1(y) +

1

2
ϕj(y) +

j + 1

2
ϕj+1(y).

This gives the result for k = 1. ✷

7.4. Proof of Proposition 4.2 for k ≥ 2.
Let fk = fk,Y . Using (12), we write

〈f, ϕj〉 =
(−1)k

k!

∫ +∞

0
f
(k)
k (y)(ykϕj(y))dy

and by integration by part we have

〈f, ϕj〉 = −(−1)k

k!

∫ +∞

0
f
(k−1)
k (y)(ykϕj(y))

(1)dy = · · · = (−1)k
(−1)k

k!

∫ +∞

0
fk(y)(y

kϕj(y))
(k)dy

provided that all terms appearing in the integration by parts are null, i.e.:

(41)

[

k
∑

ℓ=1

f
(k−ℓ)
k (y)(ykϕj(y))

(ℓ−1)(−1)ℓ−1

]+∞

0

= 0

Therefore, we obtain Formula (14) after proving that (41) holds.

Proof of (41): Let

S(y) =
k
∑

ℓ=1

f
(k−ℓ)
k (y)(ykϕj(y))

(ℓ−1)(−1)ℓ−1 =
k−1
∑

p=0

f
(p)
k (y)(ykϕj(y))

(k−p−1)(−1)k−p−1.

Using the Leibniz formula and interchanging sums yields

S(y) =

k−1
∑

t=0

ϕ
(t)
j (y)Σt(y)
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with

Σt(y) =
k−1−t
∑

p=0

(−1)k−p−1f
(p)
k (y)yp+1+t

(

k + p− 1

t

)

k × (k − 1) . . . × (p+ t+ 2).

As ϕ
(t)
j (y) is continuous at 0 and tends to 0 at +∞, we only need to prove that Σt(y) tends to

0 at 0 and +∞. We look at the coefficient of ϕ
(0)
j = ϕj :

Σ0(y) = (−1)kk!

k−1
∑

p=0

yp+1(−1)p+1f
(p)
k (y)

1

(p + 1)!
.

By (13), Σ0(y) = (−1)kk!(F (y) − Fk,Y (y)). As F and Fk,Y are continuous c.d.f. on R
+, they

are null at 0 and both tend to 1 at +∞. Therefore, as y tends to 0 and +∞,

Σ0(y) → 0.

For the term Σ1(y), we prove that each term f
(p)
k (y)yp+2, p = 0, . . . , k − 2 tends to 0 at both 0

and +∞. Indeed,

f
(p)
k (y)yp+2 ∝ yp+2

∫ +∞

y

(u− y)k−1−p

uk
f(u)du.

(42) |f (p)k (y)yp+2| .
∫ +∞

y

yp+2

up+1
f(u)du ≤ y

∫ +∞

y
f(u)du

which tends to 0 as y tends to 0. Also,

(43) |f (p)k (y)yp+2| .
∫ +∞

y

yp+2

up+1
f(u)du ≤

∫ +∞

y
uf(u)du

which tends to 0 as y tends to +∞ as E(X) < +∞. We proceed analogously for all terms

Σt(y), t ≤ k− 1. We prove that f
(p)
k (y)yp+t+1, p = 0, . . . , k− t− 1 tends to 0 at both 0 and +∞.

The convergence at 0 is already done. For the convergence at +∞, we use that

(44) |f (p)k (y)yp+t+1| .
∫ +∞

y

yp+t+1

up+1
f(u)du ≤

∫ +∞

y
utf(u)du

which tends to 0 at +∞ by the moment assumption E(Xt) < +∞. The proof of (41) is
complete.✷

7.5. Proof of Proposition 4.3. The function (ykϕj)
(k)/k! belongs to Sj+k, and therefore

admits a decomposition on the basis of the ϕℓ, for ℓ = 0, 1, . . . , j + k:

1

k!
(ykϕj)

(k) =

j+k
∑

ℓ=0

hj,kℓ ϕℓ(y).

This decomposition is obtained as follows. The Leibnitz formula yields:

(45)
1

k!
(ykϕj)

(k) =

k
∑

p=0

(

k

p

)

1

p!
ypϕ

(p)
j .

Next, the development of ypϕ
(p)
j (y) is given in the following lemma.
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Lemma 7.4. We have

(46) ypϕ
(p)
j (y) =

j+p
∑

ℓ=0∨(j−p)

bj,pℓ ϕℓ(y),

where bj,0ℓ = δℓ,j and for p ≥ 0,

(47) bj,p+1
ℓ = −ℓ+ 1

2
bj,pℓ+1 − (p +

1

2
)bj,pℓ +

ℓ

2
bj,pℓ−1.

Moreover

(48) ∀ℓ ≤ j + p, |bj,pℓ | ≤ Cp(j + p)p.

Applying Lemma 7.4, and interchanging sums in (45) yields formula (15). Next, we use
Formula (48) to get

|hj,kℓ | ≤
k
∑

p=|ℓ−j|

Cp(j + p)p
(

k

p

)

1

p!
≤ max

p≤k
(Cp)(j + k + 1)k ≤ C ′

k(j + k)k.

This gives the bound (16).

Proof of Lemma 7.4 Initialization of (46) for p = 0 is obvious. Formula (39) shows that the
induction formula (47) holds for p = 0 (p = 0 to p = 1).

Next, we differentiate (46) and multiply by y, to get

y
(

ypϕ
(p+1)
j (y) + pyp−1ϕ

(p)
j (y)

)

=

p+j
∑

ℓ=0∨j−p

bj,pℓ yϕ′
ℓ(y)

Now using (39), we get

yp+1ϕ
(p+1)
j (y) = −pypϕ(p)

j (y) +

j+p
∑

ℓ=0∨j−p

bj,pℓ

(

− ℓ
2
ϕℓ−1(y)−

1

2
ϕℓ(y) +

ℓ+ 1

2
ϕℓ+1(y)

)

.

Taking into account that −pypϕ(p)
j (y) = −∑j+p

ℓ=0∨(j−p) p b
j,p
ℓ ϕℓ(y) gives formula (47). Inequality

(48) is obtained by straightforward induction. The proof of Proposition 4.2 is now complete. ✷

7.6. Proof of Proposition 4.4 and 5.2. We give the proof of Proposition 5.2. The other
result follows by setting Vm+k = Im+k the identity matrix of size (m+ k)× (m+ k).

The risk bound of the estimator can be written as follows

‖f̃m − f‖2 = ‖f − fm‖2 + ‖f̃m − fm‖2

where fm =
∑m−1

j=0 aj(f)ϕj is the projection of f on Sm = span(ϕ0, . . . , ϕm−1) and ‖f − fm‖2 is
the usual bias of a projection estimate. Next we have

‖f̃m − fm‖2 =
m−1
∑

j=0

(ãj − aj(f))
2 = ‖K(k)

m (~̃a(Z)m+k−1 − E(~̃a(Z)m+k−1))‖2
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where ~̃a(Z)m+k−1 = (ãj(Z))0≤j≤m+k−1. So,

E(‖f̃m − fm‖2) ≤ ρ2(K(k)
m )E(‖~̃a(Z)m+k−1 − E(~̃a(Z)m+k−1)‖2)

≤ ρ2(K(k)
m )

m+k−1
∑

j=0

Var(ãj(Z)) =
1

n
ρ2(K(k)

m )

m+k−1
∑

j=0

Var(ϕj(Z1))

≤ 1

n
ρ2(K(k)

m )

m+k−1
∑

j=0

E(ϕ2
j (Z1))

≤ 2(m+ k)ρ2(K
(k)
m )

n
,

as
∑m+k−1

j=0 ϕ2
j (x) ≤ 2(m+ k), ∀x ∈ R

+. We have

ρ2(K(k)
m ) ≤ ρ2(H(k)

m )ρ2(V−1
m+k)

ρ2(H(k)
m ) = sup

x∈Rm+k,‖x‖2=1

xt (H(k)
m )t H(k)

m x = sup
x∈Rm+k,‖x‖2=1

m
∑

j=1

(

j+k
∑

ℓ=(j−k)+

[H(k)
m ]j,ℓxℓ)

2

We consider first m ≥ k and use (16) to get

m
∑

j=1

(

j+k
∑

ℓ=(j−k)+

[H(k)
m ]j,ℓxℓ)

2 ≤ (C ′
k)

2(2k + 1)

m
∑

j=1

(j + k)2k
j+k
∑

ℓ=(j−k)+

x2ℓ

≤ (C ′
k)

2(2k + 1)(m + k)2k
m
∑

j=1

j+k
∑

ℓ=(j−k)+

x2ℓ .

Next write that
m
∑

j=1

j+k
∑

ℓ=(j−k)+

x2ℓ =

k
∑

j=1

j+k
∑

ℓ=0

x2ℓ +

m
∑

j=k+1

j+k
∑

ℓ=j−k

x2ℓ

Interchanging sums yields

m
∑

j=k+1

j+k
∑

ℓ=j−k

x2ℓ =

m+k
∑

ℓ=1

(ℓ+k)∧m
∑

j=(ℓ−k)∨1

x2ℓ ≤ (2k + 1)

m+k
∑

ℓ=1

x2ℓ

Therefore we get

ρ2(H(k)
m ) ≤ C ′′

k (m+ k)2k with C ′′
k = (C ′

k)
2(2k + 1)(3k + 1).

If m < k, the bound obviously holds.
Therefore we get

E(‖f̃m − f‖2) ≤ ‖f − fm‖2 + 2(m+ k)ρ2(K
(k)
m )

n

≤ ‖f − fm‖2 + Ck

(m+ k)2k+1ρ2(V−1
m+k)

n

This ends the proof. ✷
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7.7. Proof of the Lemmas of Section 4.3 (Theorem 4.1).

Proof of Lemma 4.1. For f̃0 we follow the same line as in the proof of Lemma and omit the
details. Next f̃θ belongs to W s(D) if δ2

∑2K+1
k=K µ2k(θ)k

s ≤ D/4 i.e.

δ2Ks+3 ≤ D/C

where C = C(s) is a constant. ✷

Proof of Lemma 4.2. First note that f̃0(0) = f̃θ(0) = 0 and f̃ ′0(0) = cα,β(α + β)/eα+1 > 0
and

f̃ ′θ(0) = f̃ ′0(0) + δ

2K
∑

k=K+1

θk−Kϕ
′
k(0) = c̃α − δ

√
2

2K
∑

k=K+1

(2k + 1)θk−K .

Now f̃ ′
θ
(0) > 0 if

δK2 << 1.

Under this condition, f̃θ is nonnegative on an interval [0, a], a > 0.
For x > a, we follow the arguments in the proof of Lemma 3.2 for each of the three terms

involved in the definition of µk(θ). Thus we must prove that

sup
x>a

∣

∣

∣

∣

∣

xλ logµ(e+ x)

2K+1
∑

k=K

θk−Kkϕk(x)

∣

∣

∣

∣

∣

. Kλ+1 logµ(K).

This is obtained as previously (just change ρ
(λ)
k (r) into kρ

(λ)
k (r), see Step 1 of the proof of Lemma

3.2). Then by taking λ = α, µ = β and δ = δ′K−α−1 log−β(K) for small enough constant δ′ > 0

not depending on K, we get f̃θ(x) ≥ 0, x ∈ R+. ✷

Proof of Lemma 4.3. Let

Θ = {(θ0, . . . , θ2K+1), θ0 = θ1 = 0, θj ∈ {0, 1}, for j = 2, . . . , 2K + 1}.
We prove that ρ1(., .) is a distance on Θ. Due to the initial conditions θ0 = θ1 = 0, ρ1(θ,θ

′) = 0
implies that θ = θ

′.
For θ ∈ Θ, we separate θ = (θ0, . . . , θ2K+1) as θ

(even) := (θ2j , 0 ≤ j ≤ K) and θ
(odd)

accordingly. Let ρ2(ω, ω
′) =

∑K
k=0 1ωk+1−ωk 6=ω′

k+1−ω′

k
, then

ρ1(θ,θ
′) = ρ2((θ)

(even), (θ′)
(even)

) + ρ2((θ)
(odd), (θ′)(odd)).

Now we can check that ρ2 satisfies the triangular inequality on Ω = {(ω0, . . . , ωK), ω0 = 0, ωj ∈
{0, 1}, j = 1, . . . ,K}. For ǫ, ǫ′ ∈ {−1, 0, 1}, we note that

1ǫ 6=ǫ′ =
1

2

(

|ǫ− ǫ′|+ ||ǫ| − |ǫ′||
)

= d(ǫ, ǫ′)

where d(., .) satisfies the triangular inequality. Setting ǫk = ωk+1 − ωk, we get that ρ2(ω, ω
′) =

∑K
k=0 d(ǫk, ǫ

′
k) satisfies the triangular inequality on Ω.

Thus, it is enough to prove the Lemma for the set Ω and the distance ρ2.
Following the proof of the Varshamov-Gilbert Lemma as given in Tsybakov, this amounts to

proving that for ω(0) = (0, . . . , 0) ∈ Ω, Card({(ωk) ∈ Ω, ρ2(ω, ω
(0)) = i}) =

(K
i

)

. Let

Am,i := Card

({

ω ∈ Ω,

K
∑

k=0

1ωk+1−ωk=0 = i

})

.
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Note that

AK,i = Card

({

ω ∈ Ω, ω1 − ω0 = 0,

K
∑

k=1

1ωk+1−ωk=0 = i− 1

})

+Card

({

ω ∈ Ω, ω1 − ω0 = 1,
K
∑

k=1

1ωk+1−ωk=0 = i

})

= Card

({

ω ∈ Ω, ω0 = 0, ω1 = 0
K
∑

k=1

1ωk+1−ωk=0 = i− 1

})

+Card

({

ω ∈ Ω, ω0 = 0, ω1 = 1,

K
∑

k=1

1ωk+1−ωk=0 = i

})

= AK−1,i−1 +AK−1,i.

As A1,0 = A1,1 = 1, we deduce AK,i =
(

K
i

)

by the definition of the binomial coefficients. ✷

Proof of Lemma 4.4. The first inequality follows from Lemma 3.4 and fY,θ = fθ and fY,0 = f0.
The second inequality follows from (20), (21) and Lemma 4.3. ✷

7.8. Proof of Theorem 5.1. Let M = maxMn the maximal element of the collection. Let
for m ≤M , Sm = {~t ∈ R

M ~t = (t1, . . . , tm, 0, . . . , 0)} and for any ~t ∈ R
M , let

γn(~t) = ‖~t‖2M − 2〈~t,K(k)
M
~̃aM+k−1(Z)〉M ,

where ‖~x‖2M is the Euclidean norm in R
M and 〈·, ·〉M the associated scalar product. For ~t ∈ Sm,

we denote by ~tm the vector of Rm with them first coordinates of ~t (those which are not necessarily

zero). Thanks to the particular forms of the matrices H
(k)
m (band) and V−1

m+k (lower triangular),

we have, for ~t ∈ Sm,

〈~t,K(k)
M
~̃aM+k−1(Z)〉M = 〈~tm,K(k)

m
~̃am+k−1(Z)〉m = 〈~tm, ~̃am−1〉m.

Therefore the vector
~̃
f(m) in R

M with m first coordinates ~̃am−1 and following coordinates null

is such that
~̃
f(m) = argmin~t∈Sm

γn(~t) and γn(
~̃
f(m)) = −‖f̃m‖2. Therefore

m̃ = arg min
m∈Mn

γn(
~̃
f(m)) + pen(m)).

Now for m,m′ ∈ Mn, and ~t ∈ Sm, ~s ∈ Sm′ , we have

γn(~t)− γn(~s) = ‖~t− ~fM‖2M − ‖~s − ~fM‖2M − 2〈~t− ~s,K
(k)
M
~̃aM+k−1(Z)− ~fM〉M

= ‖~t− ~fM‖2M − ‖~s − ~fM‖2M − 2〈~t− ~s,K
(k)
M (~̃aM+k−1(Z)− ~aM+k−1(fZ)〉M

where ~fM = (aj(f))0≤j≤M−1. Let us define

νn(~t) = 〈~t,K(k)
M (~̃aM+k−1(Z)− ~aM+k−1(fZ)〉M ,

and note that

(49) ‖f̃m − f‖2 = ‖ ~̃f(m) − ~fM‖2M +
∞
∑

j=M

a2j (f), ‖fm − f‖2 = ‖~fm − ~fM‖2M +
∞
∑

j=M

a2j (f).
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By definition of m̃, we have

γn(
~̃f(m̃)) + pen(m̃) ≤ γn(~fm) + pen(m),

which writes

(50) ‖ ~̃f(m̃) − ~fM‖2M ≤ ‖~fm − ~fM‖2M + pen(m) + 2νn(
~̃f(m̃) − ~fm)− pen(m̃).

Let B(m̃,m) = {~t ∈ Sm∨m̃, ‖~t‖M = 1} and note that

2νn(
~̃f(m̃) − ~fm) ≤ 2‖ ~̃f(m̃) − ~fm‖M sup

~t∈B(m̃,m)

|νn(~t)|

≤ 1

4
‖ ~̃f(m̃) − ~fm‖2M + 4 sup

~t∈B(m̃,m)

ν2n(~t)

≤ 1

2
‖ ~̃f(m̃) − ~fM‖2M +

1

2
‖~fm − ~fM‖2M + 4 sup

~t∈B(m̃,m)

ν2n(~t).

We get by plugging this in (50),

1

2
‖ ~̃f(m̃) − ~fM‖2M ≤ 3

2
‖~fm − ~fM‖2M + pen(m) + 4 sup

~t∈B(m̃,m)

ν2n(~t)− pen(m̃)

Let p(m,m′) be such that 4p(m,m′) ≤ pen(m) + pen(m′) and use (49), to get

1

2
‖f̃m̃ − f‖2 ≤ 3

2
‖fm − f‖2 + 2pen(m) + 4

(

sup
~t∈B(m̃,m)

ν2n(~t)− p(m, m̃)

)

+

Now, if we prove that

(51) E





(

sup
~t∈B(m̃,m)

ν2n(~t)− p(m, m̃)

)

+



 ≤ c

n

the result follows.
The proof of (51) follows the line of the proof of Proposition 7.1 in Mabon (2015).

8. Appendix

For simplicity, set fk,Y = fk. For k = 1,

f1(y) =

∫ +∞

y

f(u)

u
du1y≥0.

Derivating yields the first equality in (12). Integrating between 0 and y gives the second equality
which implies:

(52) lim
y→0

y f1(y) = lim
y→+∞

y f1(y) = 0.

To get (12), we proceed by induction and prove that, for any p such that 1 ≤ p ≤ k − 1,

(53)
dp

dyp
[fk(y)] = (−1)pk × · · · × (k − p)

k−1−p
∑

j=0

(

k − 1− p

j

)

(−y)j
∫ +∞

y

f(u)

uj+p+1
du.
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The formula is true for p = 0 as (2) implies

fk(y) = k
k−1
∑

j=0

(

k − 1

j

)

(−y)j
∫ +∞

y

f(u)

uj+1
du.

Now if we admit the formula for order p, we can deduce that, derivating once more,

dp+1

dyp+1
[fk(y)] = (−1)pk × · · · × (k − p)







k−1−p
∑

j=1

(

k − 1− p

j

)

(−1)j(jyj−1)

∫ +∞

y

f(u)

uj+p+1
du

+

k−1−p
∑

j=0

(

k − 1− p

j

)

(−1)j+1yj
f(y)

yj+p+1







.

The last sum is equal to

−f(y)
yp+1

k−1−p
∑

j=0

(

k − 1− p

j

)

(−1)j = −f(y)
yp+1

(1− 1)k−1−p = 0

and for the first one, we note that

j

(

k − 1− p

j

)

= (k − 1− p)

(

k − 2− p

j − 1

)

so that we get

dp+1

dyp+1
[fk(y)] = (−1)pk× · · · × (k− p)× (k− p− 1)

k−1−p
∑

j=1

(

k − 2− p

j − 1

)

(−1)jyj−1

∫ +∞

y

f(u)

uj+p+1
du

and setting j′ = j − 1 in the sum gives the result at order p + 1. Therefore Formula (53) is
proved for all p = 0, . . . k − 1. Taking p = k − 1 and derivating once more gives Formula (12).

To obtain (13), we integrate (12) between 0 and y. The successive integrations by part give
the result provided that, for ℓ = 0, . . . , k,

yk−ℓf
(k−ℓ−1)
k (y) → 0, as y → 0.

For this notice that, as for u ≥ y ≥ 0, u− y ≤ u and y/u ≤ 1,

|yk−ℓf
(k−ℓ−1)
k (y)| ∝ yk−ℓ

∫ +∞

y

(u− y)k−1−(k−ℓ−1))

uk
f(u)du ≤ y

∫ +∞

y

f(u)

u
du.

The r.h.s. above is equal to yf1(y) and tends to 0 as y tends to 0 by (52).✷
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