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∆n tends to zero while n∆n tends to infinity. We use a Fourier approach to construct an adaptive
nonparametric estimator and to provide a bound for the global L

2-risk. Estimators of the drift
and of the variance of the Gaussian component are also studied. We discuss rates of convergence
and give examples and simulation results for processes fitting in our framework.January 13, 2010

Keywords. Adaptive nonparametric estimation. High frequency data. Lévy processes. Projection
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1. Introduction

Let (Lt, t ≥ 0) be a real-valued Lévy process, i.e. a process with stationary independent
increments and càdlàg sample paths. The distribution of the process (Lt, t ≥ 0) is completely
specified by the characteristic function of the random variable Lt which has the form:

(1) ψt(u) = E(exp iuLt) = exp t(iub̃− 1

2
u2σ2 +

∫

R∗
(eiux − 1 − iux1|x|≤1)N(dx)),

where b̃ ∈ R, σ2 ≥ 0 and N(dx) is a positive measure on R
∗ satisfying

∫

R∗
x2 ∧ 1 N(dx) <∞

(see e.g. Bertoin (1996) or Sato (1997)). Thus, the statistical problem for Lévy processes

is the joint estimation of its characteristic triple (b̃, σ2, N) where appears a finite-dimensional

parameter (b̃, σ2) and an infinite dimensional parameter N , the Lévy measure. In most recent
contributions, authors consider a discrete time observation of the sample path, with regular
sampling interval ∆. Therefore, statistical procedures are based on the i.i.d. sample composed
of the increments (Zk = Z∆

k = Lk∆−L(k−1)∆, k = 1, . . . , n). In the general case, the distribution

of the r.v. Zk is not explicitly given as a function of (b̃, σ2, N). This is why authors rather use the
relationship between the characteristic function ψ∆ of Zk and the characteristic triple. Assuming
that N(dx) = n(x)dx admits a density, several papers concentrate on the estimation of the Lévy

density under various assumptions on the characteristic triple, including the case of b̃ = σ2 = 0 or
assuming stronger integrability conditions on the Lévy density (see e.g. Watteel and Kulperger
(2003), Jongbloed and van der Meulen (2006), van Es et al. (2007), Figueroa-López (2009)
and the references therein, Comte and Genon-Catalot (2008, 2009a,b)). The joint estimation of

(b̃, σ2, N) is investigated in Neumann and Reiss (2009) or Gugushvili (2009). The methods and
results differ according to the asymptotic point of view. One may consider that the sampling
interval ∆ is fixed and that n tends to infinity (low frequency data). This approach, which is
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quite natural, raises mathematical difficulties and does not take into account the underlying
continuous time model properties. One may consider that ∆ = ∆n tends to 0 as n tends to
infinity (high frequency data). Under the assumption that ∆n tends to 0 within a fixed length
time interval (n∆n = t fixed), the estimation of σ has been widely investigated for Lévy processes
(see e.g. Woerner (2006), Barndorff-Nielsen et al. (2006), Jacod (2007)). However, the Lévy
density cannot be identified from observations within a finite-length time interval. To identify
all parameters in the high-frequency context, one has to assume both that ∆n tends to 0 and
n∆n tends to infinity. This is the point of view adopted in this paper. Our main focus is the
nonparametric estimation of the Lévy density n(.) by an adaptive deconvolution method which
generalizes the study of Comte and Genon-Catalot (2009a). We also study estimators of the
other parameters. More precisely, we assume that the Lévy density satisfies

(H1)

∫

R

x2n(x)dx <∞.

For statistical purposes, this assumption, which was proposed in Neumann and Reiss (2009),
has several useful consequences. First, for all t, EL2

t < +∞ and as
∫

R
(eiux − 1 − iux)n(x)dx is

well defined, we get the following expression for (1):

(2) ψt(u) = E(exp iuLt) = exp t(iub− 1

2
u2σ2 +

∫

R

(eiux − 1 − iux)n(x)dx),

where b = EL1 has a statistical meaning (contrary to b̃). Thus, the sample path can be expressed
as:

(3) Lt = bt+ σWt +Xt,

where (Wt) and (Xt) are independent processes, (Wt) is a Brownian motion, (Xt) a square
integrable pure-jump martingale:

Xt =

∫

]0,t]

∫

R∗
x(p̂(du, dx) − dun(x)dx),

and

p̂(du, dx) =
∑

s≥0

δs,∆Ls(du, dx)

is the random Poisson measure associated with the jumps of (Lt) (or (Xt)) with intensity
dun(x)dx.

In Section 2, we present our main assumptions and some preliminary properties. In Section 3,
we assume that σ = 0 and study the estimation of the function h(x) = x2n(x). Using a sample

of size 2n, we build two collections of estimators (ĥm, h̄m)m>0 indexed by a cut-off parameter
m. The collections are obtained by Fourier inversion of two different estimators of the Fourier
transform h∗ of the function h. The estimators of h∗ are built using empirical estimators of the
characteristic function ψ∆ and its first two derivatives. First, we give a bound for the L

2-risk of
(ĥm, h̄m) for fixed m. Then, introducing an adequate penalty, we propose a data-driven choice

of the cut-off parameter which yields an estimator (ĥm̂, h̄m̄) for each collection. The L
2-risk

of these estimators is studied. We prove that the optimal rate of convergence is automatically
reached on Sobolev classes of regularity for the function h.

In Section 4, we consider the general case. To reach the Lévy density and get rid of the
unknown σ2, we must now use derivatives of ψ∆ up to the order 3 and we estimate the function
p(x) = x3n(x) developing the Fourier inversion approach and adaptive choice of the cut-off
parameter as for h. It is worth stressing that the point of view of small sampling interval
is crucial to our study. Indeed, it helps obtaining simple estimators of ψ∆ and its successive
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derivatives which are used to estimate the Fourier transform p∗ pf p. Section 5 is devoted to
the estimation of (b, σ). We study classical empirical means of the observations. This gives
an estimator of b but cannot give estimators of σ. To estimate σ, we consider power variation
estimators, introduced in Woerner (2006), Barndorff-Nielsen et al. (2006), Jacod (2007), Aı̈t-
Sahalia and Jacod (2007), under the asymptotic framework of high frequency data within a
long time interval. Moreover, a new estimator of σ is obtained from the non parametric study.
In Section 6, we give examples of Lévy models satisfying our set of assumptions. We provide
numerical simulation results in Section 7. Section 9 contains the main proofs. In Section 10,
two classical results, used in proofs, are recalled.

2. Assumptions and preliminary properties.

Let us consider the two functions

h(x) = x2n(x), p(x) = x3n(x),

and the assumptions

(H2) (k)

∫

R

|x|kn(x)dx <∞.

(H3) h belongs to L
2(R).

(H4)
∫
x8n2(x)dx =

∫
x4h2(x)dx <∞

(H5) p belongs to L
2(R).

(H6)
∫
x12n2(x)dx =

∫
x6p2(x)dx <∞

Assumption (H2)(k) is a moment assumption. Indeed, according to Sato (1999, Section 5.25,
Theorem 5.23), E|Lt|k < ∞ is equivalent to

∫
|x|>1 |x|kn(x)dx < ∞. Below, for each stated

result, the required value of k is given. Under (H1), the function h is integrable and Section 3
is devoted to the nonparametric estimation of h under the additional assumptions (H3)-(H4).
Assumption (H4) is only required for the adaptive result. Under (H1)-(H2)(3), the function p
is integrable and Section 4 concerns the estimation of p under (H5)-(H6).

Properties of the moments of L∆ = Z∆
1 = Z1 for small ∆ are used in the proofs below.

Lemma 2.1. Let p ≥ 1 be an integer and assume (H1)-(H2)(p) with p ≥ 3. Then, E(|Z1|p) <
+∞ and E(Z1) = b∆, Var(Z1) = ∆(σ2 +

∫
x2n(x)dx) and for 3 ≤ ` ≤ p, E(Z`

1) = ∆c` + o(∆)

where c` =
∫
x`n(x)dx.

Proof. Under the assumption, ψ∆ is p-times derivable and the result follows by computing the
successive derivatives of ψ∆. �

Thus, under (H1), (H2)(p), E(Z`
1/∆) is bounded for all ` ≤ p, for all ∆.

More precise results on the asymptotic behaviour of (1/∆)Ef(Z1) for unbounded functions f
are given in Figueroa-López (2008) (see the Appendix). In the sequel, results on the behaviour
of the characteristic function ψ∆ (see (2)) for small ∆ are needed.

Lemma 2.2. Under (H1), |ψ∆(u) − 1| ≤ ∆|u|(c(u) + σ2|u|) where c(u) = |b| + |
∫ u
0 |h∗(v)|dv|,

h∗(v) =
∫
eivxh(x)dx denotes the Fourier transform of h. If h∗ is integrable on R, then

|ψ∆(u) − 1| ≤ ∆|u|(|b| + |h∗|1 + |u|σ2).

Proof. By formula (2), under (H1), ψ∆ is C1 with:

(4) ψ′
∆(u) = ∆ψ∆(u)(φ(u) − σ2u),
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where we have set, using that eiux − 1 = ix
∫ u
0 e

ivxdv:

(5) φ(u) = ib−
∫ u

0
h∗(v)dv.

We have |φ(u)| ≤ |b|+ |
∫ u
0 |h∗(v)|dv| and by the Taylor formula, ψ∆(u)−1 = uψ′

∆(cuu) for some
cu ∈ (0, 1). The result follows. �

3. Case of no Gaussian component.

In this section, we assume that σ2 = 0 and focus on the nonparametric estimation of h. For
reasons that will appear below, we assume that we have at our disposal a 2n-sample, (Zk)1≤k≤2n,
with Zk = Z∆

k = Lk∆ −L(k−1)∆. We assume that ∆ = ∆n tends to 0 and n∆n tends to infinity.
Hence, ∆ and Zk depend on n. However, to simplify notations, we omit the dependence on n
and simply write ∆, Zk.

3.1. Definition of estimators depending on a cut-off parameter. For a complex valued
function f belonging to L

1(R), we denote its Fourier transform by f∗(u) =
∫
eiuxf(x)dx. For

integrable and square integrable functions f, f1, f2, we use the following notations:

||f || =

∫
|f(x)|2dx, < f1, f2 >=

∫
f1(x)f̄2(x)dx,

(z̄ denotes the conjugate of the complex number z). We have:

(f∗)∗(x) = 2πf(−x), < f1, f2 >=
1

2π
< f∗1 , f

∗
2 > .

By formula (2), under (H1), ψ∆ is C2 and we have, as σ2 = 0 (see (5)):

ψ′
∆(u)

ψ∆(u)
= i∆(b+

∫
eiux − 1

x
h(x)dx) = ∆φ(u).

Derivating again gives:

ψ”∆(u)ψ∆(u) − (ψ′
∆(u))2

ψ2
∆(u)

= −∆

∫
eiuxh(x)dx = −∆h∗(u).

The construction of estimators is based on the formulae:

(6) h∗(u) = − 1

∆

(
ψ”∆(u)ψ∆(u) − (ψ′

∆(u))2

ψ2
∆(u)

)
= − 1

∆

(
ψ”∆(u)

ψ∆(u)
− (ψ′

∆(u))2

ψ2
∆(u)

)

and the high frequency setting which yields that for all u, lim∆→0 ψ∆(u) = 1. By splitting
the 2n-sample into two independent subsamples of n observations, we introduce the following
empirical unbiased estimators of ψ∆, ψ

′
∆, ψ

′′
∆:

ψ̂
(j)
∆,q(u) =

1

n

qn∑

k=1+(q−1)n

(iZk)jeiuZk , j = 0, 1, 2, q = 1, 2.

We also define, based on the full sample, the estimator of ψ′′
∆:

ψ̂
(2)
∆ (u) =

1

2n

2n∑

k=1

(iZk)2eiuZk .
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We now build estimators of the Fourier transform h∗ of h. Considering the first expression of
h∗ in (6), we replace ψ∆, ψ

′
∆, ψ

′′
∆ in the numerator by the empirical estimators built on the two

independent subsamples of size n. In the denominator, ψ2
∆ is simply replaced by 1. This yields:

(7) ĥ∗(u) =
1

∆

(
ψ̂

(1)
∆,1(u)ψ̂

(1)
∆,2(u) − ψ̂

(2)
∆,1(u)ψ̂

(0)
∆,2(u

)
.

Hence, using independence of the two subsamples,

Eĥ∗(u) =
1

∆

(
(ψ′

∆(u))2 − ψ”∆(u)ψ∆(u)
)

= h∗(u) + h∗(u)(ψ2
∆(u) − 1).

Introducing a cut-off parameter m, we define an associated estimator of h, by:

ĥm(x) =
1

2π

∫ πm

−πm
e−iuxĥ∗(u)du.

This means that ĥ∗m(u) = ĥ∗(u)1[−πm,πm](u). By integration, noting that

1

2π

∫ πm

−πm
e−iuzdu =

sin(πmz)

πz
,

the following expression is available

ĥm(x) =
1

n2∆

∑

1≤j,k≤n

(Z2
k − ZkZn+j)

sin(πm(Zk + Zj+n − x))

π(Zk + Zj+n − x)
.

We also define another estimator of h∗ of h by setting:

(8) h̄∗(u) = − 1

∆
ψ̂

(2)
∆ (u).

Here, using (6), we get

(9) Eh̄∗(u) = − 1

∆
ψ”∆(u) = h∗(u) + h∗(u)(ψ∆(u) − 1) − ∆ψ∆(u)φ2(u).

Thus, h̄∗ is simpler but has an additional bias term. We set:

(10) h̄m(x) =
1

2π

∫ πm

−πm
e−iuxh̄∗(u)du =

1

2n∆

2n∑

k=1

Z2
k

sin(πm(Zk − x))

π(Zk − x)
.

3.2. Risk for a fixed cut-off parameter. Next, let us define

hm(x) =
1

2π

∫ πm

−πm
e−iuxh∗(u)du.

Then we can prove the following result

Proposition 3.1. Assume that (H1)-(H2)(4) and (H3) hold. Then we have

(11) E(‖ĥm − h‖2) ≤ ‖hm − h‖2 + 72E(Z4
1/∆)

m

n∆
+

4∆2

π

∫ πm

−πm
u2c2(u)|h∗(u)|2du.

And,

(12) E(‖h̄m − h‖2) ≤ ‖hm − h‖2 + E(Z4
1/∆)

m

n∆
+

2∆2

π

∫ πm

−πm
u2c2(u)|h∗(u)|2du+C∆2Bm,

with C a constant, c(u) is defined in Lemma 2.2, Bm is defined in (16) and satisfies Bm = O(m)
if h∗ ∈ L1(R) and Bm = O(m5) otherwise.
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Proof. First, the Parseval formula gives ‖ĥm − h‖2 = (1/(2π))‖ĥ∗m − h∗‖2 and we can note that

h∗(u) − h∗m(u) = h∗(u)1I|u|≥πm is orthogonal to ĥ∗m − h∗m which has its support in [−πm, πm].
Thus,

‖ĥm − h‖2 =
1

2π
(‖h∗ − h∗m‖2 + ‖h∗m − ĥ∗m‖2).

The first term (1/(2π))‖h∗ − h∗m‖2 = ‖h− hm‖2 is a classical squared bias term. Next,

ĥ∗m(u) − h∗m(u) = [ĥ∗m(u) − E(ĥ∗m(u))] + [E(ĥ∗m(u)) − h∗m(u)]

= [ĥ∗m(u) − E(ĥ∗m(u))] + [ψ2
∆(u) − 1]h∗(u)1I|u|≤πm.

Bounding the norm of ‖ĥ∗m − h∗m‖2 by twice the sum of the norms of the two elements of the
decomposition, we get

E(‖ĥm − hm‖2) ≤ 1

π
E

(∫ πm

−πm
|ĥ∗(u) − Eĥ∗(u)|2du

)
+

1

π

∫ πm

−πm
|ψ2

∆(u) − 1|2|h∗(u)|2du

≤ 1

π

(∫ πm

−πm
V ar(ĥ∗(u))du

)
+

4∆2

π

∫ πm

−πm
u2c2(u)|h∗(u)|2du

(see Lemma 2.2 for the upper bound of |ψ∆(u) − 1| and note that |ψ∆(u)| ≤ 1). Now, we use
the decomposition:

∆(ĥ∗(u) − E(ĥ∗(u))) = (ψ̂
(1)
∆,1(u) − ψ′

∆(u))(ψ̂
(1)
∆,2(u) − ψ′

∆(u))

+(ψ̂
(1)
∆,1(u) − ψ′

∆(u))ψ′
∆(u) + (ψ̂

(1)
∆,2(u) − ψ′

∆(u))ψ′
∆(u)

−(ψ̂
(2)
∆,1(u) − ψ′′

∆(u))(ψ̂
(0)
∆,2(u) − ψ∆(u))

−(ψ̂
(2)
∆,1(u) − ψ′′

∆(u))ψ∆(u) − (ψ̂
(0)
∆,2(u) − ψ∆(u))ψ′′

∆(u).(13)

Considering each term consecutively and exploiting the independence of the samples, we obtain

(14) Var(ĥ∗(u)) ≤ 6

∆2

(
E

2(Z2
1 )

n2
+ 2

E
2(Z2

1 )

n
+

E(Z4
1 )

n2
+ 2

E(Z4
1 )

n

)
≤ 36

E(Z4
1/∆)

n∆
.

Thus, the first risk bound is proved.
Analogously, we have

(15) E(‖h̄m − h‖2) ≤ ‖hm − h‖2 +
1

π

∫ πm

−πm
|Eh̄∗(u) − h∗(u)|2du+

1

π

∫ πm

−πm
V ar(h̄∗(u))du

For the variance of h̄∗(u), we use:

h̄∗(u) − Eh̄∗(u) = − 1

∆
(ψ̂

(2)
∆ (u) − ψ′′

∆(u)).

Thus,

Var(h̄∗(u)) ≤ 1

2n∆
E(Z4

1/∆).

Next, for the bias of h̄∗(u), we use (see (9)-(5)):

|Eh̄∗(u) − h∗(u)|2 ≤ 2|h∗(u)|2||ψ∆(u) − 1|2 + 2∆2|φ4(u)|.
Hence, there is an additional term in the risk bound equal to

(16)
2

π
∆2

∫ πm

−πm
|φ4(u)|du = ∆2Bm.

If h∗ is integrable, |φ(u)| ≤ C, and Bm = O(m). Otherwise, |φ4(u)| ≤ C|u|4, and Bm =
O(m5). �
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Remark 3.1. We stress that the estimator ĥm is more complicated to study, but h̄m has an
additional bias term.

3.3. Rates of convergence in Sobolev classes. We consider classes of functions h belonging
to the set:

(17) C(a,L) = {f ∈ (L1 ∩ L
2)(R),

∫
(1 + u2)a|f∗(u)|2du ≤ L}.

Then we can prove the following result:

Proposition 3.2. Assume that (H1)-(H2)(4) and (H3) hold and that h belongs to C(a,L) with
a > 1/2. Consider the asymptotic setting where n→ +∞, ∆ → 0, n∆ → +∞ and assume that

m ≤ n∆. If n∆2 ≤ 1, then, for the optimal choice m = O((n∆)1/(2a+1)), we have:

E(‖ĥm − h‖2) ≤ O((n∆)−2a/(2a+1)).

If a ≥ 1, the condition n∆2 ≤ 1 can be replaced by n∆3 ≤ 1.
The same result holds for h̄m.

Proof. As ‖h − hm‖2 = (1/π)
∫
|u|≥πm |h∗(u)|2du, the definition of C(a,L) implies clearly that

‖h − hm‖2 ≤ (L/2π)(πm)−2a. The compromise between this term and the variance term

of order m/(n∆) is standard: it leads to choose m = O((n∆)1/(2a+1)) and yields the order
O((n∆)−2a/(2a+1)).

For a > 1/2, we have

|
∫ u

0
|h∗(v)|dv| = |

∫ u

0
|h∗(v)|(1 + v2)a/2(1 + v2)−a/2dv|

≤
(∫

|h∗(v)|2(1 + v2)a
∫

(1 + v2)−adv

)1/2

≤
√
L

∫
(1 + v2)−adv,

where
∫

(1 + v2)−adv < +∞. Therefore, h∗ is integrable and |φ(u)| ≤ |b| + |h∗|1.
The last term in the risk bound (11) is less than

K∆2

∫ πm

−πm
u2|h∗(u)|2du ≤ L∆2(πm)2(1−a)+ .

If a ≥ 1 and n∆3 ≤ 1, we have ∆2(πm)2(1−a)+ = ∆2 ≤ (n∆)−1.

If a ∈ (1/2, 1), the inequality ∆2m2(1−a) ≤ m−2a is equivalent to ∆2m2 ≤ 1. As m ≤ n∆,
∆2m2 ≤ 1 holds if n∆2 ≤ 1.

For the additional bias term appearing in the risk bound of h̄m, we have Bm = O(m). Thus,

m∆2 ≤ m−2a holds, for m = O((n∆)1/(2a+1)), if m1+2a∆2 = (n∆)∆2 ≤ 1 which in turn holds if
n∆3 ≤ 1. �

Remark 3.2. We can also discuss the case where a ∈ (0, 1/2]. If a ≤ 1/2, |
∫ u
0 |h∗(v)|dv| =

O(|u|1/2−a). Hence, the last term in (11) is of order ∆2m3−4a which is less than m−2a if

∆2m3−2a ≤ 1 and thus ∆2m3 ≤ 1. This requires n∆5/3 ≤ 1. The same constraint appears for
h̄m by looking at the exact formula for ∆2Bm (see (16)).
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3.4. Adaptation. The estimators ĥm, h̄m are deconvolution estimators that can also be de-
scribed as minimum contrast estimators and projection estimators. For details, the reader is
referred to Comte and Genon-Catalot (2009a,2009b). For m > 0, let

Sm = {f ∈ L
2(R), support(f∗) ⊂ [−πm, πm]}.

The space Sm is generated by an orthonormal basis, the sinus cardinal basis, defined by:

ϕm,j(x) =
√
mϕ(mx− j), j ∈ Z, ϕ(x) =

sinπx

πx
(ϕ(0) = 1).

This is due to the fact that

ϕ∗
m,j(u) =

eiuj/m

√
m

1[−πm,πm](u), j ∈ Z.

For a function f ∈ L
2(R), fm(x) = 1/2π

∫ πm
−πm e−iuxf∗(u)du is the orthogonal projection of f on

Sm. Introducing, for a function t ∈ Sm,

γn(t) = ||t||2 − 1

π
< ĥ∗, t∗ >= ||t||2 − 2 < ĥm, t >,

we get:

ĥm = arg min
t∈Sm

γn(t),

and γn(ĥm) = −‖ĥm‖2. We have

ĥm =
∑

j∈Z

âm,jϕm,j , with âm,j =
1

2π

∫ πm

−πm
ĥ∗(u)ϕ∗

m,j(−u)du.

and

‖ĥm‖2 =
1

2π

∫ πm

−πm
|ĥ∗(u)|2du

The coefficients âm,j of the series as well as ‖ĥm‖2 can be explicitly computed by integration.
In the same way, we set

Γn(t) = ||t||2 − 1

π
< h̄∗, t∗ >= ||t||2 − 2 < h̄m, t >,

and obtain:

h̄m = arg min
t∈Sm

Γn(t),

Analogously, h̄m has a series expansion on the sinus cardinal basis with explicit coefficients
and ‖h̄m‖2 has a closed-form formula. We give the explicit expression of ‖h̄m‖2 which is less

cumbersome than ‖ĥm‖2:

(18) ‖h̄m‖2 =
m

4n2∆2

∑

1≤k,l≤2n

Z2
kZ

2
l ϕ(m(Zk − Zl)).

Now, we need to select the best m as possible, in a set Mn = {m ∈ N, 1 ≤ m ≤ n∆} =

{1, . . . ,mn}. For the estimators ĥm, we propose to take

(19) m̂ = arg min
m∈Mn

(
−‖ĥm‖2 + pen(m)

)

with

pen(m) = κ
m

n∆2

(
(
1

n

n∑

k=1

Z2
k)(

1

n

2n∑

k=n+1

Z2
k) +

1

n

n∑

k=1

Z4
k

)
.
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The intuition for this choice is the following. The expression of pen(m) is an estimator of the
variance term of the risk bound (11) as close as possible of the variance (see (14)). The term

−‖ĥm‖2 is an estimator of −‖hm‖2 = ‖h − hm‖2 − ‖h‖2, which is up to a constant, the bias
term of the bound (11). This is why m̂ mimics the optimal bias-variance compromise.

For the estimators h̄m, we define

(20) m̄ = arg min
m∈Mn

(
−‖h̄m‖2 + κ′

m

n∆2

(
1

2n

2n∑

k=1

Z4
k

))
.

The following result shows that the above data-driven choices of the cut-off parameter are indeed
relevant.

Theorem 3.1. Assume (H1)-(H2)(16)-(H3)-(H4). If, moreover, h∗ ∈ L
1(R) and n∆3 ≤ 1,

there exist a numerical constants κ, κ′ such that

E(‖ĥm̂ − h‖2) ≤ C inf
m∈Mn

(
‖h− hm‖2 + κ(∆E

2(
Z2

1

∆
) + E(

Z4
1

∆
))
m

n∆

)

+
∆2

π

∫ πmn

−πmn

u2|h∗(u)|2du+ C
ln2(n∆)

n∆
,

E(‖h̄m̄ − h‖2) ≤ C inf
m∈Mn

(
‖h− hm‖2 + κ′E(

Z4
1

∆
)
m

n∆

)

+
∆2

π

∫ πmn

−πmn

u2|h∗(u)|2du+ ∆2Bmn + C
ln2(n∆)

n∆
,

where Bmn = O(mn) (Bmn is defined in (16)).

The numerical constants κ, κ′ have to be calibrated via simulations (see discussion in Comte
and Genon-Catalot (2009a)).

By computations analogous to those in the proof of Proposition 3.2, we obtain the following
Corollary.

Corollary 3.1. Assume that the assumptions of Theorem 3.1 are fulfilled. If, for some positive
L, h ∈ C(a,L) with a > 1/2, then E(‖ĥm̂ − h‖2) = O((n∆)−2a/(2a+1)) provided that n∆2 ≤ 1.
The same holds for E(‖h̄m̄ − h‖2). If a ≥ 1, the constraint n∆3 ≤ 1 is enough.

4. Study of the general case (σ2 6= 0)

In this section, we assume (H1)-(H2)(3) and study the estimation of the function

p(x) = x3n(x).

We suppose that we have a sample of size 3n, (Zk)1≤k≤3n, Zk = Lk∆ − L(k−1)∆. As previously,
we can build two estimators of p∗, one is simpler but has more bias than the other one.

4.1. Definition of the estimators. We have to compute the three first derivatives of ψ∆ to
get rid of σ2 (see (5):

ψ′
∆(u)

ψ∆(u)
= ∆(ib− uσ2 + i

∫
eiux − 1

x
h(x)dx) = ∆(φ(u) − uσ2)

Derivating again gives:

(21)
ψ′′

∆(u)ψ∆(u) − (ψ′
∆(u))2

(ψ∆(u))2
= ∆(φ′(u) − σ2) = −∆(σ2 +

∫
eiuxx2n(x)dx),
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and lastly

ψ
(3)
∆ (u)ψ2

∆(u) − 3ψ′′
∆(u)ψ′

∆(u)ψ∆(u) + 2[ψ′
∆(u)]2

ψ3
∆(u)

= −∆ip∗(u).

Therefore, we get the formulae:

p∗(u) =
i

∆

(
ψ

(3)
∆ (u)ψ2

∆(u) − 3ψ′′
∆(u)ψ′

∆(u)ψ∆(u) + 2[ψ′
∆(u)]3

ψ3
∆(u)

)

=
i

∆

(
ψ

(3)
∆ (u)

ψ∆(u)
− 3

ψ′′
∆(u)ψ′

∆(u)

ψ2
∆(u)

+ 2
[ψ′

∆(u)]3

ψ3
∆(u)

)
,

where ψ∆(u) is close to one. We define empirical estimators of ψ∆(u), ψ′
∆(u), ψ′′

∆(u), ψ
(3)
∆ (u)

using the independent subsamples:

ψ̂
(j)
∆,q(u) =

1

n

qn∑

k=1+(q−1)n

(iZk)
jeiuZk , j = 0, 1, 2, 3, q = 1, 2, 3.

The following estimator of p∗ is obtained by replacing expressions in the numerator of p∗ by
their empirical counterpart (using the independent subsamples); moreover, the denominator is
replaced by 1. We get

(22) p̂∗(u) =
i

∆


ψ̂(3)

∆,1(u)ψ̂
(0)
∆,2(u)ψ̂

(0)
∆,3(u) − 3ψ̂

(2)
∆,1(u)ψ̂

(1)
∆,2(u)ψ̂

(0)
∆,3(u) + 2

3∏

q=1

ψ̂
(1)
∆,q(u)


 .

The bias of p̂∗(u) is given by

(23) Ep̂∗(u) − p∗(u) = (ψ3
∆(u) − 1)p∗(u)

Note that, as |ψ∆(u)| ≤ 1, |ψ3
∆(u) − 1| ≤ 3|ψ∆(u) − 1|. The estimator of p associated to p̂∗(u)

with cut-off parameter m is:

p̂m(x) =
1

2π

∫ πm

−πm
e−iuxp̂∗(u)du,

which has a closed-form formula obtained by integration. We also define, based on all the
observations,

ψ̂
(3)
∆ (u) =

1

3n

3n∑

k=1

(iZk)3eiuZk .

And

p̄∗(u) =
i

∆
ψ̂

(3)
∆ (u) and p̄m(x) =

1

2π

∫ πm

−πm
e−iuxp̄∗(u)du.

Here,

(24) Ep̄∗(u) − p∗(u) = (ψ∆(u) − 1)p∗(u) + 3i
ψ′′

∆(u)ψ′
∆(u)

∆ψ∆(u)
− 2i

[ψ′
∆(u)]3

∆ψ2
∆(u)

Let us set:

(25) φ̃(u) = φ(u) − uσ2 = ib−
∫ u

0
h∗(v)dv − uσ2.

Using ψ′
∆(u) = ∆ψ∆(u)φ̃(u) and some computations, we get:

(26) Ep̄∗(u) − p∗(u) = (ψ∆(u) − 1)p∗(u) − 3i∆ψ∆(u)φ̃(u)(σ2 + h∗(u)) + i∆2ψ∆(u)(φ̃(u))3,
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which shows additional terms in comparison with the bias (23). The corresponding estimator
has the expression:

(27) p̄m(x) =
1

3n∆

3n∑

k=1

Z3
k

sin(πm(Zk − x))

π(Zk − x)
.

4.2. Risk of the estimators. Let

pm(x) =
1

2π

∫ πm

−πm
e−iuxp∗(u)du

denote the orthogonal projection of p on Sm. The risk of the estimators with fixed cut-off
parameter is bounded as follows.

Proposition 4.1. Under (H1)-(H2)(6) and (H5),

(28) E(‖p̂m − p‖2) ≤ ‖p− pm‖2 + C0E(Z6
1/∆)

m

n∆
+ C

∆2

π

∫ πm

−πm
u2(1 + u2)|p∗(u)|2du

where C0 in a numerical constant much larger than 1.
We also have

E(‖p̄m − p‖2) ≤ ‖p − pm‖2 + E(Z6
1/∆)

m

n∆

+C(∆2

∫ πm

−πm
u2(1 + u2)|p∗(u)|2du+ ∆2m3 + ∆4m7).

Proof. As previously,

‖p̂m − p‖2 =
1

2π
(‖p∗ − p∗m‖2 + ‖p∗m − p̂∗m‖2).

The first term (1/(2π))(‖p∗ − p∗m‖2 = ‖p − pm‖2 is the projection bias on Sm. Next,

p̂∗m(u) − p∗m(u) = [p̂∗m(u) − E(p̂∗m(u))] + [E(p̂∗m(u)) − p∗m(u)]

= [p̂∗m(u) − E(p̂∗m(u))] + [(ψ∆(u))3 − 1]p∗(u)1I|u|≤πm.

Using Lemma 2.2 and (23), we get

E(‖p̂m − pm‖2) ≤ 1

π

∫ πm

−πm
C∆2u2(1 + u2)|p∗(u)|2du+

1

π
E

(∫ πm

−πm
|p̂∗(u) − Ep̂∗(u)|2du

)

≤ C
∆2

π

∫ πm

−πm
u2(1 + u2)|p∗(u)|2du+

1

π

(∫ πm

−πm
V ar(p̂∗(u))du

)
.

The estimator p̂∗ is the sum of three terms, each term being the product of three independent
variables. To bound the variance of p̂∗, for each term, we subtract the corresponding expectation
and use a decomposition with only centered terms. For instance, the first centered term of p̂∗ is
split as follows:

ψ̂
(3)
∆,1ψ̂

(0)
∆,2ψ̂

(0)
∆,3 − ψ

(3)
∆ [ψ∆]2

= (ψ̂
(3)
∆,1 − ψ

(3)
∆ )(ψ̂

(0)
∆,2 − ψ∆)(ψ̂

(0)
∆,3 − ψ∆)

+(ψ̂
(3)
∆,1 − ψ

(3)
∆ )(ψ̂

(0)
∆,2 − ψ∆)ψ∆ + (ψ̂

(3)
∆,1 − ψ

(3)
∆ )(ψ̂

(0)
∆,3 − ψ∆)ψ∆ + ψ

(3)
∆ (ψ̂

(0)
∆,2 − ψ∆)(ψ̂

(0)
∆,3 − ψ∆)

+(ψ̂
(3)
∆,1 − ψ

(3)
∆ )[ψ∆]2 + ψ

(3)
∆ (ψ̂

(0)
∆,2 − ψ∆)ψ∆ + ψ

(3)
∆ ψ∆(ψ̂

(0)
∆,3 − ψ∆),

and analogously for the two other terms in the formula of the estimator.
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Considering each term consecutively and exploiting the independence of the samples, we
obtain

(29) Var(p̂∗(u)) ≤ 7 × 3

∆2

(
E(Z6

1 ) + 9E(Z4
1 )E(Z2

1 ) + 4[E(Z2
1 )]3

)( 1

n3
+

3

n2
+

3

n

)

The main term is E(Z6
1 )/(n∆2) = [E(Z6

1 )/∆]/(n∆) coming from E(|ψ̂(3)
∆,1(u)−ψ

(3)
∆ (u)|2)|ψ∆(u)|4.

By the Hölder formula, we have E(Z4
1 ) ≤ (E(Z6

1 ))2/3 and E(Z2
1 ) ≤ (E(Z6

1 ))1/3. Thus,

1

2π

∫ πm

−πm
V ar(p̂∗(u))du ≤ 2058 [E(Z6

1 )/∆]m/(n∆).

This ends the study of ĥm.

Now, let us study h̄m. Here, the variance satisfies:

Var(p̄∗(u)) ≤ E(Z6
1 )

n∆2
=

E(Z6
1/∆)

n∆
.

As previously,

E(‖p̄m − pm‖2) =
1

2π
E(‖p̄∗m − p∗m‖2) =

1

2π

∫ πm

−πm

(
Var(p̄∗(u)) + |E(p̄∗(u)) − p∗(u)|2

)
du,

where the first term is bounded by E(Z6
1/∆)m/(n∆). It remains to study the bias term using

(26). We have |h∗(u)| ≤ |h|1. By Lemma 2.2, |φ̃(u)| ≤ |b|+ |u|(|h|1 +σ2) ≤ C(1+ |u|). Inserting
these bounds in (26) implies

(30) |E(p̄∗(u)) − p∗(u)| ≤ C∆|p∗(u)||u|(1 + |u|) + C ′∆(1 + |u|) + C ′′∆2(1 + |u|)3

Gathering the terms gives the announced bound for the risk of p̄m. This ends the proof of
proposition 4.1. �

Remark 4.1. Again here, both estimators have the same rate of variance with different con-
stants. The simpler estimator has additional bias terms.

We can state the result analogous to the one of Proposition 3.2.

Proposition 4.2. Assume that (H1), (H2)(6), (H5) hold and that p belongs to C(a,L). Consider

the asymptotic setting where n→ +∞, ∆ → 0 and n∆ → +∞. If n∆3/2 ≤ 1, then we have, for
the optimal choice m = O((n∆)1/(2a+1)),

E(‖p̂m − p‖2) ≤ O((n∆)−2a/(2a+1)).

If a ≥ 1/2, the condition n∆3/2 ≤ 1 can be replaced by n∆2 ≤ 1.

If a ≥ 3/2, the condition n∆3/2 ≤ 1 can be replaced by n∆3 ≤ 1.

Moreover, if n∆11/7 ≤ 1, then

E(‖p̄m − p‖2) ≤ O((n∆)−2a/(2a+1)).

If a ≥ 1/2, the condition n∆7/5 ≤ 1 can be replaced by n∆2 ≤ 1.

Proof. Let us take m = O((n∆)1/(2a+1)). When p ∈ C(a,L), the first two terms of (28) are of

order O((n∆)−2a/(2a+1)). The last term is O(∆2m2(2−a)+). If a ≥ 2, its order is ∆2 and is less
than 1/(n∆) if n∆3 ≤ 1.

If a ∈ (0, 2), ∆2m2(2−a) = O(∆2(n∆)2(2−a)/(1+2a)) which has lower rate than O((n∆)−2a/(2a+1))

if ∆2(n∆)4/(1+2a) ≤ O(1), that is n∆1+(1+2a)/2 = n∆3/2+a ≤ O(1). This gives the results for
p̂m.
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For p̄m, we must consider in addition the terms ∆2m3 and ∆4m7. As previously, ∆2m3 ≤
(n∆)−2a/(2a+1) if n∆(6a+5)/(2a+3) ≤ O(1) that is n∆5/3 ≤ 1 if a > 0 and n∆2 if a ≥ 1/2.
Moreover, ∆4m7 ≤ (n∆)−2a/(2a+1) if n∆(10a+11)/(2a+7) ≤ 1 that is n∆11/7 ≤ 1 if a > 0 and
n∆2 ≤ 1 if a ≥ 1/2. �

4.3. Adaptive strategy. The adaptive selection of the best possiblem imposes here a restricted
collection of models. We choose Mn = {m ∈ N/{0},m ≤

√
n∆ := µn}.

From the bias point of view, the estimator to consider is p̂m̃ with:

(31) m̃ = arg min
m∈Mn

(
−‖p̂m‖2 + p̃en(m)

)

and

p̃en(m) = κ
m

n∆2

(
1

n

n∑

k=1

Z6
k + (

1

n

n∑

k=1

Z4
k)(

1

n

2n∑

k=n+1

Z2
k)

)
,

where the penalty follows closely the variance term of the risk bound of p̂m. For simplicity and
under additional restrictions, we can also consider the estimator p̄m̄ where

(32) m̄ = arg min
m∈Mn

(
−‖p̄m‖2 + pen(m)

)
with pen(m) = κ′

m

n∆2

(
1

3n

3n∑

k=1

Z6
k

)
.

We can prove the following result:

Theorem 4.1. Under assumption (H1), (H2)(24), (H5), (H6) and with n∆2 ≤ 1. There exist
numerical constants κ, κ′ such that

E(‖p̂m̂ − p‖2) ≤ C inf
m∈Mn

(
‖p− pm‖2 + κ[E(

Z6
1

∆
) + ∆E(

Z2
1

∆
)E(

Z4
1

∆
)]
m

n∆

)

+
∆2

π

∫ πµn

−πµn

u2(1 + u2)|p∗(u)|2du+ C
ln2(n∆)

n∆
.

E(‖p̄m̄ − p‖2) ≤ C inf
m∈Mn

(
‖p − pm‖2 + κ′E(

Z6
1

∆
)
m

n∆

)

+C

(
∆2

π

∫ πµn

−πµn

u2(1 + u2)|p∗(u)|2du+ ∆2µ3
n + ∆4µ7

n +
ln2(n∆)

n∆

)
.

(µn =
√
n∆).

The result is given for p̂m̂ but only proved for p̄m̄ to avoid technicalities analogous to those
studied in the case of estimation of h.

The consequence of Theorem 4.1 is that the adaptive estimators reach automatically the
optimal rate of convergence when p belongs to a Sobolev class. This can be seen by computations
analogous to those of Proposition 4.2.

5. Parameter estimation

Under (H1), the observed process may be written as Lt = bt + σWt + Xt where (Wt) is a
standard Brownian motion, (Xt) is a Lévy process, independent of (Wt), of the form

Xt =

∫

]0,t]

∫

R

x(p̂(ds, dx) − dsn(x)dx),

where p̂(ds, dx) is the random jump measure of (Lt) (and (Xt)) which has compensator dsn(x)dx.
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If moreover, ∫
|x|n(x)dx <∞.

then, the observed process may be written as Lt = b0t+σWt +Γt where b0 = b−
∫
xn(x)dx and

Γt =

∫

]0,t]

∫

R

xp̂(ds, dx) = Xt + t

∫
xn(x)dx =

∑

s≤t

Γs − Γs−

is of bounded variation on compact sets. We consider here a sample of size n. By using empirical
means of the data Z`

k, it is possible to obtain consistent and asymptotically Gaussian estimators

of b (` = 1) and, under suitable integrability assumptions on the Lévy density, of
∫
x`n(x)dx for

` ≥ 3. But this method fails to estimate σ for ` = 2 (see below). For this, one has to use another
approach either based on power variations or deduced for the nonparametric estimation.

5.1. Some small time properties. To study estimators of b and σ, small time properties of
moments are required.

In Figueroa-López (2008), conditions under which 1
∆Ef(L∆) converges, as ∆ tends to 0, to∫

f(x)n(x)dx for unbounded functions f are investigated (with new results and an exhaustive
review of previous ones). We sum up below some of these.

First, we recall that a non-negative locally bounded function g is said to be submultiplicative
(resp. subadditive) if there exists a constant K > 0 such that, for all x, y, g(x+ y) ≤ Kg(x)g(y)
(resp. g(x+ y) ≤ K(g(x) + g(y))). Let

S(n) = {g(x) := p(x)k(x), p subadditive, k submultiplicative, and

∫

|x|>1
g(x)n(x)dx <∞}.

Theorem 5.1. Let f be locally bounded, n(x)dx-a.e. continuous and such that there exists a
function g ∈ S(n) such that lim sup|x|→∞ |f(x)|/g(x) <∞. If moreover, f(x) = o(x2) as x→ 0,
then, as ∆ → 0,

1

∆
Ef(L∆) →

∫
f(x)n(x)dx.

If instead f(x) ∼ x2 as x→ 0, then

1

∆
Ef(L∆) → σ2 +

∫
f(x)n(x)dx.

This is Theorem 1.1 of Figueroa-López (2008). In particular, if for k ≥ 2,
∫
|x|kn(x)dx <∞,

the functions fu(x) = eiuxxk, u ∈ R, satisfy the assumptions. Of course, the result can be
obtained directly by derivating the characteristic function ψ∆ as seen above. If for r real number,
r ≥ 2,

∫
|x|rn(x)dx <∞, f(x) = |x|r satisfies the assumptions.

For the case of f(x) = |x|r with r < 2, which is not included in the previous theorem, we
state the two following special propositions.

Proposition 5.1. (i) Let (Γt) be a Lévy process with no continuous component and Lévy measure
n(γ)dγ. If

∫
|γ|n(γ)dγ < ∞, b =

∫
γn(γ)dγ and for r ≤ 1,

∫
|γ|rn(γ)dγ < ∞. There exists a

constant C such that, for all ∆,

E|Γ∆|r ≤ C∆.

(Under the assumption, (Γt) has finite mean and bounded variation on compact sets).

(ii) Let Xt = BΓt where (Γt) is a subordinator with Lévy density nΓ satisfying b =
∫ +∞
0 γ nΓ(γ)dγ <
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∞ and (Bt) is a Brownian motion independent of (Γt). The Lévy measure of (Xt) has a density
given by

(33) nX(x) =

∫ +∞

0
e−x2/2γ 1√

2πγ
nΓ(γ)dγ.

Consequently, if C =
∫ +∞
0 γr/2nΓ(γ)dγ <∞ with r ≤ 2, then

E|X∆|r ≤ C∆.

(iii) Let (Xt) be a Lévy process with no Gaussian component. Then, X∆/
√

∆ converges to 0
as ∆ tends to 0 in probability and in L

r for all r < 2.

5.2. Estimator of b. Consider a Lévy process (Lt) satisfying (H1) and set Zk = Lk∆−L(k−1)∆

as above. Let us define the empirical means:

(34) b̂ =
1

n∆

n∑

k=1

Zk, ĉ` =
1

n∆

n∑

k=1

Z`
k for ` ≥ 2.

We prove now that b̂, ĉ`, ` ≥ 2 are consistent and asymptotically Gaussian estimators of the
quantities b, c`, ` ≥ 2 where

c2 = σ2 +

∫
x2n(x)dx, c` =

∫
x`n(x)dx, for ` ≥ 3.

Proposition 5.2. Assume (H1) and n tends to infinity, ∆ tends to 0, n∆ tends to infinity.
(i) Under (H2)(2 + ε) for some positive ε,

√
n∆(b̂− b) converges in distribution to N (0, c2).

(ii) Under (H2)(2(`+ ε)) for some positive ε, and if n∆3 tends to 0,
√
n∆(ĉ` − c`) converges

in distribution to N (0, c2`).

Proof. We have E(Zk) = ∆b and, for ` ≥ 2, E(Z`
k) = ∆c` + o(∆). Therefore, b̂ is an unbiased

estimator of b and, for ` ≥ 2,
√
n∆|Eĉ` − c`| =

√
n∆O(∆). Hence, the additional condition

n∆3 = o(1) to erase the bias.

Setting c1 = b, ĉ1 = b̂, as VarZ`
k = ∆c2` + o(∆) for ` ≥ 1, we have n∆Varĉ` = c2` + O(∆).

Writing

√
n∆(ĉ` − Eĉ`) =

1√
n∆

n∑

k=1

(Z`
k − EZ`

k) =
n∑

k=1

χk,n,

it is now enough to prove that
∑n

k=1 E|χk,n|2+ε tends to 0. Under the assumption, we have

n∑

k=1

E|χk,n|2+ε ≤ C

nε/2∆1+ε/2

(
E|Zk|`(2+ε) + |E(Z`

k)|2+ε
)
≤ C

(n∆)ε/2
,

which gives the result. �

We stress that this method provides an estimator of b which is easy to compute and very
good in practice (see Section 7), but cannot provide an estimator of σ2.

5.3. Estimation of σ2.
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5.3.1. Power variations. Estimators of σ based on power variations of (Lt) have been proposed
and mostly studied in the case where n∆ = 1. They are studied for high frequency data within
a long time interval in Aı̈t-Sahalia and Jacod (2007). In the latter paper, the context is more
general than ours, which implies that proofs are of high complexity. For Lévy processes fitting in
our set of assumptions, we can derive the asymptotic properties of power variations estimators
with a specific proof given in Section 9. Consider

(35) σ̂(r)
n =

1

mrn∆r/2

n∑

k=1

|Zk|r,

where mr = E|X|r for X a standard Gaussian variable (recall that Zk = Lk∆ − L(k−1)∆).

Proposition 5.3. As n tends to infinity, ∆ tends to 0 and n∆ tends to infinity, if n∆2−r = o(1),√
n(σ̂

(r)
n − σr) converges in distribution to a N (0, σ2r(m2r/m

2
r − 1)) for:

(i) (Lt) a Lévy process satisfying (H1) and such that
∫
|x|n(x)dx < ∞ and

∫
|x|rn(x)dx < ∞

for r < 1.
(ii) (Lt = bt + σWt +Xt), with Xt = BΓt, where W,B,Γ are independent processes, W,B are

Brownian motions, Γ is a subordinator with Lévy measure nΓ satisfying b =
∫ +∞
0 γ nΓ(γ)dγ <∞

and
∫ +∞
0 γr/2 nΓ(γ)dγ <∞ for r < 1.

For other cases of Lévy processes, the result depends on the rate of convergence to 0 of
E|X∆|r/∆r/2 (see Proposition 5.1 (iii)) and will still hold if

√
n∆E|X∆|r/∆r/2 tends to 0.

Remark 5.1. • It is worth noting that the rate of convergence of the estimators σ̂
(r)
n is√

n. For r = 1, the estimator σ̂
(1)
n is consistent but not asymptotically Gaussian (because

of its asymptotic bias). We have implemented these estimators for r = 1/2, r = 1/4 (see
Section 7) for processes satisfying

∫
|x|rn(x)dx < +∞ for all positive r.

• Other estimators based on truncated power variations can be considered (see Aı̈t-Sahalia
and Jacod (2007)).

• We always give integrability conditions on R for the Lévy density. This simplifies the pre-
sentation but induces some redundancies. One should distinguish integrability conditions
near 0 and near infinity to avoid these redundancies.

5.3.2. Another estimator of σ2. The previous power variation estimators depend on r and have
rate

√
n under the condition that n∆2−r = o(1) where the value r < 1 is such that

∫
|x|rn(x)dx <

∞. This imposes a stronger integrability condition around 0 than (H1).
Under (H1) and (H2)(3), using an estimator of p∗ and empirical mean estimators, we can build

an estimator of σ2 with rate
√
n∆. As seen above, estimators of c2 = σ2+

∫
x2h(x)dx = σ2+h∗(0)

are available. Using a sample of size 3n, we get an unbiased estimator of c2 by setting (see
Proposition 5.2):

c̃2 =
1

3n∆

3n∑

k=1

Z2
k − ∆

(
1

n∆

n∑

k=1

Zk

)(
1

n∆

2n∑

`=n+1

Z`

)
.

Following the same proof as above, we can prove that
√
n∆(c̃2 − c2) converges in distribution

to the centered Gaussian law with variance c4 as ∆ tends to 0, n∆ tends to infinity with no
additional condition on ∆. We build an estimator of σ2 by subtracting an estimator of h∗(0).
In addition to (H1)-(H2)(3), assume that p∗(u) belongs to L1(R).

Note that h∗(u) =
∫
eiuxx2n(x)dx is such that (d/du)(h∗(u)) = ip∗(u). Integrating from u

to ∞, and using that lim|u|→+∞ h∗(u) = 0 yields h∗(u) = −i
∫ +∞
u p∗(v)dv and thus h∗(0) =
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−i
∫ +∞
0 p∗(v)dv. Since h∗(0) is a real number, we must have:

h∗(0) =

∫ +∞

0
Imp∗(v)dv.

Therefore, forM to be chosen adequately later on, we propose to estimate σ2, using the estimator
p̄∗ of p∗, by:

(36) σ̂2
M = c̃2 −

∫ M

0
Imp̄∗(v)dv.

Integration yields

(37)

∫ M

0
Imp̄∗(v)dv =

1

3n∆

3n∑

k=1

Z2
k(1 − cosMZk).

Thus

(38) σ̂2
M =

1

3n∆

3n∑

k=1

Z2
k cosMZk − ∆

(
1

n∆

n∑

k=1

Zk

)(
1

n∆

2n∑

`=n+1

Z`

)
.

Then we can prove the following result:

Proposition 5.4. Assume (H1)-(H2)(4), (H5) and that p∗ belongs to L1(R). If, in addition,

p ∈ C(a,L) with a > 5/2, M = M(∆) = ∆−1/4 and n∆2 tends to 0,
√
n∆(σ̂2

M(∆)−σ2) converges

in distribution to a centered Gaussian law with variance (1/2)
∫
x4n(x)dx = c4/2.

6. Examples

In this section, we give examples of models fitting in our framework.

Example 1. Drift + Brownian motion+ Compound poisson process.
Let

(39) Lt = b0t+ σWt +

Nt∑

i=1

Yi

where Nt is a Poisson process with constant intensity c and Yi is a sequence of i.i.d. random
variables with density f , independent of the process (Nt). Then,

∑Nt

i=1 Yi is a compound Poisson
process and (Lt) is a Lévy process with Lévy density n(x) = cf(x). Note that EL1 = b =
b0 +

∫
xn(x)dx. For the estimation of p, the rates that can be obtained depend on the density

f provided that f satisfies the assumptions of Theorem 4.1, which are essentially here moment
assumptions for the r.v.’s Yi. Any order can be obtained as shown in Table 1 where optimal
rates are computed for f a standard Gaussian, an exponential with parameter 1 and a Beta
distribution with parameters (1, 3) (for p to be regular enough).

As
∫
|x|rn(x)dx <∞ for all r < 1 (actually, for all r ≤ 2), estimation of σr is possible using σ̂

(r)
n

for any value of 0 < r < 1 (provided that n∆2−r = o(1)). The estimator σ̂2
M is possible if p is

regular enough (p ∈ C(a,L) with a > 5/2).

Example 2. Drift + Brownian motion + Lévy-Gamma process.
Consider Lt = b0t+ σWt + Γt where (Γt) is a Lévy gamma process with parameters (β, α), i.e.
is a subordinator such that, for all t > 0, Γt has distribution Gamma with parameters (βt, α)
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f(x) N (0, 1) E(1) β(1, 3)

p(x) = cx3f(x) ∝ x3e−x2 ∝ x3e−x1Ix>0 ∝ x3(1 − x)21I[0,1](x)

p∗(u) ∝ (u3 − 3u)e−u2/2 ∝ 1/(1 − iu)4 O(1/|u|3) for large |u|.∫
|u|≥πm |p∗(u)|2du O((πm)5e−(πm)2) O((πm)−7) O((πm)−5)∫

|u|≤πµn
u4|p∗(u)|2du O(1) O(1) O(1)

m̆ (best choice of m)
√

log(n∆) − 5
2 log log(n∆)/π O((n∆)1/8) O((n∆)1/6)

Rate ∝
√

log(n∆)

n∆
(n∆)−7/8 (n∆)−5/6

Table 1. Rates for different ”Drift+ Brownian motion +Compound Poisson process”.

and density: αβtxβt−1e−αx/Γ(βt)1Ix≥0. The Lévy density of (Lt) is n(x) = βx−1e−αx1Ix>0. We
have EL1 = b = b0 +

∫
xn(x)dx and p(x) = βx2e−αx1Ix>0.

We find p∗(u) = 2β/(α − iu)3,
∫
|u|≥πm |p∗(u)|2du = O(m−5) and

∫ πµn

−πµn
u4|p∗(u)|2du = O(1).

Therefore the rate for estimating p is O((n∆)−5/6) for a choice m̆ = O((n∆)1/6).

As for all r > 0,
∫
xrn(x)dx <∞, σ̂

(r)
n is authorized, for any value of 0 < r < 1, to estimate σr.

Example 2 (continued). Drift + Brownian motion + A specific class of subordinators.
Let Lt = b0t + σWt + Γt where (Γt) is a subordinator of pure jump type with Lévy density

of the form n(x) = βxδ−1/2x−1e−αx1Ix>0 with δ > −1/2 (thus
∫
xn(x)dx < ∞). This class

of subordinators includes compound Poisson processes (δ > 1/2) and Lévy Gamma processes
(δ = 1/2). When δ > 0, the function xn(x) is both integrable and square integrable. This case
was discussed in Genon-Catalot and Comte (2009) where the estimation of xn(x), when b0 = 0,
σ = 0, is studied. Here, we consider the case −1/2 < δ ≤ 0 which includes the Lévy Inverse
Gaussian process (δ = 0). Assumptions (H1)-(H6) are satisfied. The function p(x) = x3n(x) can
be estimated in presence (or not) of additional drift and Brownian component. We can compute

p∗(u) = β
Γ(δ + 5/2)

(α− iu)δ+5/2
.

Thus,
∫
|u|≥πm |p∗(u)|2du = O(m−(2δ+4)). As 2δ + 1 ≤ 1, u4|p∗(u)|2 is not integrable and

we have ∆2
∫
|u|≤πµn

u4|p∗(u)|2du = ∆2O(µn) = O(∆3/2). The best rate for estimating p is

O((n∆)−(2δ+4)/(2δ+5)) for a choice m̆ = O((n∆)1/(2δ+5)). Note that ∆3/2 ≤ (n∆)−(2δ+4)/(2δ+5)

for n∆2 ≤ 1 and −1/2 < δ ≤ 0.

We have
∫
xrn(x)dx < ∞ for r > 1/2 − δ. Hence, to estimate σr using σ̂

(r)
n , we must choose

1/2 − δ < r < 1.

Example 3. Drift + Brownian motion + Pure jump martingale.
Consider Lt = bt+σWt+BΓt where W,B,Γ are independent processes, W,B are standard Brow-

nian motion, and Γ is a pure-jump subordinator with Lévy density nΓ(γ) = βγδ−1/2γ−1e−αγ1Iγ>0

as above (assuming δ > −1). The Lévy density n(.) of (Lt) (and of (Xt = BΓt)) is linked with
nΓ (see (33)) and can be computed as the norming constant of a Generalized Inverse Gaussian



ESTIMATION FOR LÉVY PROCESSES 19

distribution:

n(x) =
2β√
2π
Kδ−1(

√
2α|x|)( |x|√

2α
)δ−1,

where Kν is a Bessel function of third kind (MacDonald function) (see e.g. Barndorff-Nielsen
and Shephard (2001)). For δ = 1/2, BΓt is a symmetric bilateral Lévy Gamma process (see
Madan and Seneta (1990), Küchler and Tappe (2008)). For δ = 0, BΓt is a normal inverse
Gaussian Lévy process (see Barndorff-Nielsen and Shephard (2001)). The relation (33) allows
to check that the function p(x) = x3n(x) belongs to L

1 ∩ L
2 and satisfies (H6) for δ > −3/4.

Moreover, we can obtain

p∗(u) = −iβ
(
u3Γ(δ + 5/2)

(α+ u2/2)5/2
− 3

uΓ(δ + 3/2)

(α+ u2/2)3/2

)
.

Thus,
∫
|u|≥πm |p∗(u)|2du = O(m−3) and ∆2

∫
|u|≤πµn

u4|p∗(u)|2du = ∆2O(µn) = O(∆3/2). The

best rate for estimating p is O((n∆)−3/4) obtained for m̆ = O((n∆)1/4)). We have ∆3/2 ≤
(n∆)−3/4 as n∆2 ≤ 1. As

∫
γr/2nΓ(γ)dγ < ∞ for r > 1 − δ/2, the estimation of σr by σ̂

(r)
n

requires 1 − δ/2 < r < 1. Therefore, we must have δ < 0.

7. Simulations

In this section, we present numerical results for simulated Lévy processes corresponding to
Examples 1 and 2 (see Section 6). For these models, the functions g(x) = xn(x), h and p belong
to L

1∩L
2(R). Thus, we can apply the method of Comte and Genon-Catalot (2009a), to estimate

g when b0 = 0, σ = 0, and the method developed here to estimate h when σ = 0 and p when
σ 6= 0. For simplicity, we have implemented the estimators h̄m̄, p̄m̄ defined by (10)-(20) and
(27)-(32). The numerical constant κ′ appearing in the penalties has been set to 7.5 for g, 4 for
h and 3 for p; its calibration is done by preliminary experiments. The cutoff m̄ is chosen among
100 equispaced values between 0 and 10.

Figure 1 shows estimated curves for models with jump part coming from compound Poisson
processes (see (39)) where the Yi’s are standard Gaussian, Exponential E(1), β(1, 3), and β(3, 3)
rescaled on [−4, 4]. The intensity c is equal to 0.5, except for the β(1, 3) Yi’s where c = 4.

Figure 2 shows estimated curves for jump part of Lévy Gamma and bilateral Lévy Gamma
type. The bilateral Lévy Gamma process is the difference Γt − Γ′

t of two independent Lévy
Gamma processes.

On top of each graph, we give the mean value of the selected cutoff with its standard deviation
in parentheses. This value is surprisingly small. As expected, the presence of a Gaussian
component deteriorates the estimation, which remains satisfactory on the whole.

Tables 2 and 3 show the means of the estimation results for b = E(L1) = b0 +
∫
xn(x)dx (see

(34)) and σ, with standard deviations in parentheses. We have set σ̂(r) = [σ̂
(r)
n ]1/r to denote

the estimator of σ, see (35).
The estimation of b is good in all cases, and especially when n∆ is large. The estimation of σ

is clearly more difficult, with noticeable differences according to the values of n and ∆. When ∆
is not small enough, the estimation can be heavily biased. In accordance with the theory, when
r is smaller, the estimator of σ is slightly better (smaller bias). Table 4 shows the values of
n∆2 and n∆2−r, which should be small for the performance of the estimator to be satisfactory.
It is worth noting that σ is constantly over-estimated. We also implemented σ̂M (see (38)) on
some of the same simulated data, see Table 5; the performances of the estimator are strongly
related to the asymptotic conditions: n∆ large, and n∆2 small. This is why the results when
n∆2 = 125, 5 (see Table 4) are not reported. When negative values occured, the estimate is
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Estimation of g(x) = xn(x) Estimation of h(x) = x2n(x) Estimation of p(x) = x3n(x)
b0 = 0, σ = 0 b0 = 0.25, σ = 0 b0 = 0.25, σ = 0.5

(a1) ¯̂m = 0.91 (0.03) (a2) ¯̂m = 1.01 (0.05) (a3) ¯̂m = 0.86 (0.19)
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Figure 1. Variability bands for the estimation of g, h, p for a compound Poisson
process with Gaussian (first line), Exponential E(1) (second line), β(1, 3) (third
line) and rescaled on [−4, 4] β(3, 3) (fourth line) Yi’s,with c = 0.5, except for the
third line c = 4. True (bold black line) and 50 estimated curves (dotted red),
∆ = 0.05, n = 5.104.

set to 0, which explains the large standard deviations. In such case, the median is preferable.
Contrary to σ̂(r), σ̂M always under-estimates σ.



ESTIMATION FOR LÉVY PROCESSES 21

Estimation of g(x) = xn(x) Estimation of h(x) = x2n(x) Estimation of p(x) = x3n(x)
b0 = 0, σ = 0 b0 = 0.25, σ = 0 b0 = 0.25, σ = 0.5

(a1) ¯̂m = 3.58 (0.36) (a2) ¯̂m = 0.93 (0.09) (a3) ¯̂m = 0.58 (0.09)
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Figure 2. Variability bands for the estimation of g, h, p for jumps from a Lévy-
Gamma process with β = 1, α = 1 (first line), a bilateral Lévy-Gamma process
with (β, α) = (0.7, 1), (β′ , α′) = (1, 1) (second line). True (bold black line) and
50 estimated curves (dotted red), ∆ = 0.05, n = 5.104.

Model (n,∆) (5.104, 0.05) (5.104, 0.01) (5.104, 10−3) (104, 10−3)

Poisson b̂ (b = 1) 1.000 (0.02) 0.997 (0.04) 0.995 (0.123) 1.001 (0.280)
Gaussian σ̂(1/2) 0.602 (0.03) 0.527 (0.002) 0.504 (0.002) 0.504 (0.005)

σ̂(1/4) 0.589 (0.03) 0.521 (0.002) 0.503 (0.002) 0.503 (0.002)

Poisson b̂ (b = 1.5) 1.502 (0.05) 1.502 (0.051) 1.494 (0.142) 1.461 (0.359)
Exp(1) σ̂(1/2) 0.611 (0.003) 0.530 (0.003) 0.505 (0.002) 0.505 (0.005)

σ̂1/4 0.594 (0.003) 0.522 (0.003) 0.503 (0.002) 0.503 (0.005)

Gamma b̂ (b = 2) 2.001 (0.02) 2.000 (0.05) 1.998 (0.177) 2.018 (0.335)
(1,1) σ̂(1/2) 0.705 (0.004) 0.562 (0.003) 0.512 (0.002) 0.513 (0.005)

σ̂(1/4) 0.677 (0.004) 0.548 (0.003) 0.508 (0.002) 0.508 (0.005)

Bilateral b̂ (b = 1.4286) 1.426 (0.035) 1.4286 (0.076) 1.4493 (0.264) 1.405 (0.619)
Gamma σ̂(1/2) 0.862 (0.005) 0.628 (0.004) 0.526 (0.003) 0.526 (0.006)

(0.7,1), (1.1) σ̂(1/4) 0.798 (0.004) 0.593 (0.003) 0.516 (0.002) 0.515 (0.006)

Table 2. Estimation of (b, σ), b0 = 1, the true value of b in parenthesis, σ = 0.5,
K = 200 replications.
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Model (n,∆) (5.104, 0.05) (5.104, 0.01) (5.104, 10−3) (104, 10−3)

Poisson b̂ (1) 0.999 (0.025) 1.005 (0.059) 0.998 (0.178) 1.025 (0.85)
Gaussian σ̂(1/2) 1.082 (0.005) 1.026 (0.004) 1.006 (0.004) 1.005 (0.009)

σ̂(1/4) 1.072 (0.005) 1.020 (0.005) 1.004 (0.004) 1.003 (0.01)

Poisson b̂ (1.5) 1.510 (0.026) 1.498 (0.06) 1.481 (0.190) 1.485 (0.442)
Exp(1) σ̂(1/2) 1.096 (0.005) 1.030 (0.004) 1.006 (0.004) 1.006 (0.009)

σ̂(1/4) 1.080 (0.005) 1.022 (0.004) 1.003 (0.004) 1.003 (0.010)

Gamma b̂ (2) 2.00 (0.026) 1.995 (0.068) 1.991 (0.196) 2.023 (0.195)
(1,1) σ̂(1/2) 1.172 (0.005) 1.062 (0.005) 1.014 (0.004) 1.014 (0.004)

σ̂(1/4) 1.152 (0.005) 1.050 (0.005) 1.010 (0.005) 1.010 (0.004)

Bilateral b̂ (1.4286) 1.425 (0.04) 1.431 (0.10) 1.429 (0.28) 1.492 (0.63)
Gamma σ̂(1/2) 1.330 (0.006) 1.136 (0.005) 1.033 (0.005) 1.033 (0.01)

(0.7,1), (1.1) σ̂(1/4) 1.284 (0.006) 1.105 (0.005) 1.022 (0.005) 1.022 (0.01)

Table 3. Estimation of (b, σ), b0 = 1, the true value of b in parenthesis, σ = 1,
power variation method for estimation of σ, K = 200 replications.

(n,∆) (5.104, 0.05) (5.104, 0.01) (5.104, 10−3) (104, 10−3)
n∆ 2500 500 50 10
n∆2 125 5 0.05 0.01

n∆2−1/2 559 50 1.6 0.3

n∆2−1/4 264 16 0.3 0.06

Table 4. Values of n,∆, n∆, n∆2, n∆2−r for r = 1/2 and r = 1/4.

Model Poisson- Poisson- Gamma
(n,∆) Gaussian Expon. (1, 1)

(104, 10−3) mean (std) 0.95 (0.18) 0.91 (0.34) 0.93 (0.30)
median 0.98 0.96 0.96

(5.104, 10−3) mean(std) 0.98 (0.06) 0.94 (0.20) 0.96 (0.13)
median 0.98 0.97 0.96

Table 5. Estimation of σ with second method, b0 = 1, σ = 1, K = 200 replications.

8. Concluding remarks

In this paper, we consider a general Lévy process and discrete observations of the sample
paths, with sampling interval ∆. The asymptotic framework ∆ → 0, n∆ → +∞ is especially
well fitted to produce simple adaptive nonparametric estimators of the Lévy density, showing
nice performances on simulated data. For the other parameters of the characteristic triple,
central limit theorems for empirical means based on the increments (including power variations)
are given. The practical implementation confirms the theoretical results: the drift is very well
estimated, the variance of the Gaussian component requires a large number of observations.
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9. Proofs

9.1. Proof of Theorem 3.1. We only study ĥm̂ as the result for h̄m̄ can be proved analogously
(and is even simpler).

The proof is given in two steps. We define, for some %, 0 < % < 1,

Ω% :=

{∣∣∣∣∣
[(1/n∆)

∑n
k=1 Z

2
k ][(1/n∆)

∑2n
k=n+1 Z

2
k ]

(E(Z2
1/∆))2

− 1

∣∣∣∣∣ ≤ %/2

}
⋂{∣∣∣∣

[(1/n∆)
∑n

k=1 Z
4
k ]

(E(Z4
1/∆))

− 1

∣∣∣∣ ≤ %/2

}
,

so that E(‖ĥm̂ − h‖2) = E(‖ĥm̂ − h‖21IΩ%) + E(‖ĥm̂ − h‖21IΩc
%
).

Step 1. For the study of E(‖ĥm̂ − h‖21IΩc
%
), we refer to the analogous proof given in Comte

and Genon-Catalot (2009) (see Section A4 therein). Using that E(Z16
1 ) < +∞, we can prove

E(‖ĥm̂ − h‖21IΩc
%
) ≤ C/(n∆). For this, we make use of the Rosenthal inequality recalled in the

Appendix.

Step 2. Study of E(‖ĥm̂ − h‖21IΩ%).
The proof relies on the following decomposition of γn

γn(t) − γn(s) = ‖t− h‖2 − ‖s − h‖2 + 2〈t− s, h〉 − 1

π
〈ĥ∗, t∗ − s∗〉

= ‖t− h‖2 − ‖s − h‖2 − 2νn(t− s) − 2Rn(t− s),

where

νn(t) =
1

2π
〈ĥ∗ − E(ĥ∗), t∗〉, Rn(t) =

1

2π
〈E(ĥ∗) − h∗, t∗〉.

As γn(ĥm) = −‖ĥm‖2, we deduce from (19) that, for all m ∈ Mn,

γn(ĥm̂) + pen(m̂) ≤ γn(hm) + pen(m).

This yields:

‖ĥm̂ − h‖2 ≤ ‖h− hm‖2 + pen(m) − pen(m̂) + 2νn(ĥm̂ − hm) + 2Rn(ĥm̂ − hm)

Then, for φn = νn, Rn, we use the inequality:

2φn(ĥm̂ − hm) ≤ 2‖ĥm̂ − hm‖ sup
t∈Sm+Sm̂,‖t‖=1

|φn(t)|

≤ 1

8
‖ĥm̂ − hm‖2 + 8 sup

t∈Sm+Sm̂,‖t‖=1
|φn(t)|2

Using that ‖ĥm̂ − hm‖2 ≤ 2‖ĥm̂ − h‖2 + 2‖ĥm − h‖2 and some algebra, we find

1

4
‖ĥm̂ − h‖2 ≤ 7

4
‖h− hm‖2 + pen(m) − pen(m̂) +

+8 sup
t∈Sm+Sm̂,‖t‖=1

|Rn(t)|2 + 8 sup
t∈Sm+Sm̂,‖t‖=1

|νn(t)|2(40)

We have to study the terms containing a supremum, which are of different nature. First, for
Rn(t), we have:

Lemma 9.1. We have: supt∈Sm+Sm̂,‖t‖=1 |Rn(t)|2 ≤ C∆2
∫ πmn

−πmn
u2|h∗(u)|2du.
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Proof. We have Rn(t) = 1
2π 〈t∗, (1 − ψ2

∆)h∗〉. By using Lemma 2.2, we find

sup
t∈Sm+Sm̂,‖t‖=1

|〈t∗, (1 − ψ2
∆)h∗〉|2 ≤ sup

t∈Smn ,‖t‖=1
|〈t∗, (1 − ψ2

∆)h∗〉|2

≤ 2π‖(1 − ψ2
∆)h∗1I[−πmn,πmn]‖2

≤ C∆2

∫ πmn

−πmn

u2|h∗(u)|2du.

�

On the other hand, νn must be decomposed into νn(t) =
∑4

j=1 νn,j(t) + rn(t) with

rn(t) =
1

2π∆
〈t∗, (ψ̂(1)

∆,1(u) − ψ′
∆(u))(ψ̂

(1)
∆,2(u) − ψ′

∆(u))〉

− 1

2π∆
〈t∗, (ψ̂(2)

∆,1(u) − ψ′′
∆(u))(ψ̂

(0)
∆,2(u) − ψ∆(u))〉,(41)

and

νn,1(t) =
1

2π∆
〈t∗, (ψ′′

∆ − ψ̂
(2)
∆,1)ψ∆〉, νn,2(t) =

1

2π∆
〈t∗, (ψ∆ − ψ̂

(0)
∆,2)ψ

′′
∆〉.

νn,3(t) =
1

2π∆
〈t∗, (ψ̂(1)

∆,1 − ψ′
∆)ψ′

∆〉, νn,4(t) =
1

2π∆
〈t∗, (ψ̂(1)

∆,2 − ψ′
∆)ψ′

∆〉,

Lemma 9.2. We have: E

(
supt∈Sm+Sm̂,‖t‖=1 |rn(t)|2

)
≤ C

n .

Proof. Using the independence of the subsamples, we can write:

E

(
sup

t∈Sm+Sm̂,‖t‖=1
|rn(t)|2

)
≤ E

(
sup

t∈Smn ,‖t‖=1
|rn(t)|2

)

≤ 1

2π2∆2
E[‖(ψ̂(1)

∆,1 − ψ′
∆)(ψ̂

(1)
∆,2 − ψ′

∆)1I[−πmn,πmn]‖2

+‖(ψ̂(2)
∆,1 − ψ′′

∆)(ψ̂
(0)
∆,2 − ψ∆)1I[−πmn,πmn]‖2]

≤ 1

2π2∆2

∫ πmn

−πmn

E[|ψ̂(1)
∆,1(u) − ψ′

∆(u)|2]E[|ψ̂(1)
∆,2(u) − ψ′

∆(u)|2]du

+
1

2π2∆2

∫ πmn

−πmn

E[|ψ̂(2)
∆,1(u) − ψ′′

∆(u)|2]E[|ψ̂(0)
∆,2(u) − ψ∆(u)|2]du

≤ mn

π∆2

(
[E(Z2

1 )]2

n2
+

E(Z4
1 )

n2

)
≤ C

n
(42)

because mn ≤ n∆ and E(Z2
1 ) and E(Z4

1 ) have order ∆. �

Now, the study of the νn,j’s relies on Lemma 10.1. Let us first study the process νn,1. We
must split Z2

k = Z2
k1IZ2

k
≤kn

√
∆ + Z2

k1IZ2
k
>kn

√
∆ with kn to be defined later. This implies that

νn,1(t) = νP
n,1(t) + νR

n,1(t) (P for Principal, R for residual) with

(43) νP
n,1(t) =

1

n

n∑

k=1

[ft(Zk) − E(ft(Zk))] with ft(z) =
1

2π∆
z21Iz2≤kn

√
∆〈t∗, eiz·ψ∆〉,

and νR
n,1(t) = νn,1(t) − νP

n,1(t).
We prove the following result:
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Proposition 9.1. Under the assumptions of Theorem 3.1, choose kn = C
√

n
ln(n∆) and define

(44) p(m,m′) = 4E(Z4
1/∆)

m ∨m′

∆
,

then

E

(
sup

t∈Sm+Sm̂,‖t‖=1
[νP

n,1(t)]
2 − p(m, m̂)

)

+

+ E

[
sup

t∈Smn ,‖t‖=1
|ν(R)

n,1 (t)|2
]
≤ C

ln2(n∆)

n∆
,

where C is a constant.

For νn,2, we have

Proposition 9.2. Under the assumptions of Theorem 3.1,

E

(
sup

t∈Sm+Sm̂,‖t‖=1
[νn,2(t)]

2 − p(m, m̂)

)

+

≤ C

n∆
,

where C is a constant.

For both νn,3 and νn,4, which are similar, we have to split again Zk = Zk1I|Zk|≤kn

√
∆ +

Zk1I|Zk|>kn

√
∆ with the same kn as above. We define νn,j(t) = νP

n,j(t) + νR
n,j(t) as previously, for

j = 3, 4.

Proposition 9.3. Under the assumptions of Theorem 3.1, define for j = 3, 4

(45) q(m,m′) = 4E
2(Z2

1 )/∆)
m ∨m′

∆
,

then

E

(
sup

t∈Sm+Sm̂,‖t‖=1
[νP

n,j(t)]
2 − q(m, m̂)

)

+

+ E

[
sup

t∈Smn ,‖t‖=1
|ν(R)

n,j (t)|2
]
≤ C

ln2(n∆)

n∆
,

where C is a constant.

Now, on Ω%, the following inequality holds (by bounding the indicator by 1), for any choice
of κ,

(1 − %)penth(m) ≤ pen(m) ≤ (1 + %)penth(m),

where penth(m) = E(pen(m)). It follows from (40) that

1

4
E(‖ĥm̂ − h‖21IΩ%) ≤ 7

4
‖h− hm‖2 + penth(m) − E(pen(m̂)1IΩ%) +

+C∆2

∫ πmn

−πmn

u2|h∗(u)|2du+ 8E( sup
t∈Sm+Sm̂,‖t‖=1

|νn(t)|21IΩ%).(46)

Recalling that

νn(t) = rn(t) + νP
n,1(t) + νR

n,1(t) + νn,2(t) + νP
n,3(t) + νR

n,3(t) + νP
n,4(t) + νR

n,4(t),
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we have

E( sup
t∈Sm+Sm̂,‖t‖=1

|νn(t)|21IΩ%) ≤ 8


 C

n∆
+

∑

j∈{1,3,4}
E( sup

t∈Sm+Sm̂,‖t‖=1
|νP

n,j(t)|21IΩ%)

+E( sup
t∈Sm+Sm̂,‖t‖=1

|νn,2(t)|21IΩ%)

)

≤ 8(
C ′

n∆
+ 2E[(p(m, m̂) + q(m, m̂))1IΩ% ])(47)

We note that

p(m,m′) + q(m,m′) =
1

4κ
(penth(m) + penth(m′)).

Thus

penth(m) − E(pen(m̂)1IΩ%) + 128E[(p(m, m̂) + q(m, m̂))1IΩ% ]

≤ penth(m) − (1 − %)E(penth(m̂)1IΩ%) +
32

κ
E[(penth(m) + penth(m̂))1IΩ% ]

≤ (1 +
32

κ
)penth(m) + (

32

κ
− (1 − %))E[penth(m̂))1IΩ% ].

Therefore we choose κ such that (32/κ − (1 − %)) ≤ 0, that is κ ≥ 32/(1 − %). This together
with (46) and (47) yields

1

4
E(‖ĥm̂ − h‖21IΩ%) ≤ 7

4
‖h− hm‖2 + (2 − %)penth(m) + C∆2

∫ πmn

−πmn

u2|h∗(u)|2du+
C”

n∆
.

9.2. Proof of Propositions 9.1, 9.2, 9.3 .

Proof of Proposition 9.1. Let m′′ = m ∨m′, and note that Sm + Sm′ = Sm′′ . We evaluate
the constants M,H, v to apply 10.1 to νP

n,1(t) (see (43)).

sup
z∈R

|ft(z)| ≤ kn

2π
√

∆
sup
z∈R

|
∫ πm′′

−πm′′
t∗(−u)eiuzψ∆(u)du|

≤ kn

2π
√

∆

∫ πm′′

−πm′′
|t∗(u)|du ≤ kn

2π
√

∆
(2πm′′

∫ πm′′

−πm′′
|t∗(u)|2du)1/2

=
kn√
∆

(m′′)1/2‖t‖ =
kn

√
m′′

√
∆

:= M

Moreover

E( sup
t∈Sm+Sm′ ,‖t‖=1

[νP
n,1(t)]

2) ≤ 1

2πn∆2

∫ πm′′

−πm′′
E(Z4

1 )ψ2
∆(u)du ≤ m′′

E(Z4
1/∆)

n∆
:= H2.

The most delicate term is v.

Var(ft(Z1)) =
1

4π2∆2
E

(
Z4

11IZ2
1≤kn

√
∆|
∫∫

eixZ1t∗(−x)ψ∆(x)dx|2
)

≤ 1

4π2∆2
E

(
Z4

1

∫∫
ei(x−y)Z1t∗(−x)t∗(y)ψ∆(x)ψ∆(−y)dxdy

)

=
1

4π2∆2

∫∫
ψ

(4)
∆ (x− y)t∗(−x)t∗(y)ψ∆(x)ψ∆(−y)dxdy,
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where we recall that ψ
(4)
∆ (x) = E(Z4

1e
ixZ1). Making use of the basis (ϕm”,j , j ∈ Z) of Sm”, we

have t =
∑

j∈Z
tjϕm′′,j with ‖t‖2 =

∑
j∈Z

t2j = 1,

Var(ft(Z1)) ≤ 1

4π2∆2

∑

j,k∈Z

tjtk

∫∫
ψ

(4)
∆ (x− y)ϕ∗

m′′,j(−x)ϕ∗
m′′,k(y)ψ∆(x)ψ∆(−y)dxdy

≤ 1

4π2∆2


∑

j,k∈Z

∣∣∣∣
∫∫

ψ
(4)
∆ (x− y)ϕ∗

m′′,j(−x)ϕ∗
m′′,k(y)ψ∆(x)ψ∆(−y)dxdy

∣∣∣∣
2



1/2

=
1

4π2∆2

(∫∫

[−πm′′,πm′′]2
|ψ(4)

∆ (x− y)|2|ψ∆(x)|2|ψ∆(−y)|2dxdy
)1/2

Var(ft(Z1)) ≤ 1

4π2∆2

(∫∫

[−πm′′,πm′′]2
ψ

(4)
∆ (x− y)|2dxdy

)1/2

≤
√

2πm′′

4π2∆2

(∫

[−2πm′′,2πm′′]
|ψ(4)

∆ (z)|2dz
)1/2

.(48)

Therefore, we need to study
∫
[−2πm′′,2πm′′] |ψ

(4)
∆ (z)|2dz. Recall that φ(u) = ib−

∫ u
0 h

∗(v)dv. We

have
ψ

(4)
∆ = ∆[φ(3) + ∆(4φφ′′ + 3(φ′)2) + 6∆2φ′φ2 + ∆3φ4]ψ∆,

where

φ′(u) = −h∗(u), φ′′(u) = −i
∫
eiuxx3n(x)dx, φ(3)(u) =

∫
eiuxx4n(x)dx

satisfy:
∫
|φ′(u)|2du = ‖h‖2, |φ′(u)| ≤ |h|1,∫

|φ′′(u)|2du =

∫
x6n2(x)dx =

∫
x2h2(x)dx,

∫
|φ(3)(u)|2du =

∫
x8n2(x)dx =

∫
x4h2(x)dx.

By assumption, h∗ is in L1(R), thus, |φ(u)| ≤ |b| + |h∗|1 := Mφ. Therefore

|ψ(4)
∆ |2 ≤ C∆2(|φ(3)|2 + ∆2((φ′′)2 + (φ′)4) + ∆4(φ′)2 + ∆6),

where C is a constant depending on Mφ and |h|1. Therefore,
∫ 2πm′′

−2πm′′
|ψ(4)

∆ (u)|2du ≤ C∆2[

∫
x4h2(x)dx+ ∆2(

∫
x2h2(x)dx+ 4πm′′|h|41) + ∆4‖h‖2 + 4πm′′∆6]

≤ C1∆
2[

∫
x4h2(x)dx+ ∆2

∫
x2h2(x)dx + ∆4‖h‖2] + C2m

′′∆4

Thus, using Assumptions (H1), (H3), (H4),
∫

[−2πm′′,2πm′′]
|ψ(4)

∆ (u)|2du ≤ K(∆2 +m′′∆4).

As m′′∆4 ≤ n∆5 and n∆3 ≤ 1 we get∫

[−2πm′′,2πm′′]
|ψ(4)

∆ (u)|2du ≤ 2K∆2.

This together with (48) yields

v = c

√
m′′

∆
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where c is a constant.
Applying Lemma 10.1 yields, for ε2 = 1/2 and p(m,m′) given by (44) yields

E

(
sup

t∈Sm+Sm′ ,‖t‖=1
[νP

n,1(t)]
2 − p(m,m′)

)

+

≤ C1

(√
m”

n∆
e−C2

√
m” +

k2
nm”

n2∆
e−C3

√
n/kn

)

as p(m,m′) = 4H2. We choose

kn =
C3

4

√
n

ln(n∆)
,

and as m ≤ n∆, we get

E

(
sup

t∈Sm+Sm′ ,‖t‖=1
[νP

n,1(t)]
2 − p(m,m′)

)

+

≤ C ′
1

(√
m”

n∆
e−C2

√
m” +

1

(∆n)4 ln2(n∆)

)
.

Therefore
mn∑

m′=1

E

(
sup

t∈Sm+Sm′ ,‖t‖=1
[νP

n,1(t)]
2 − p(m,m′)

)

+

≤ C ′
1

(∑n∆
m′=1

√
m”e−C2

√
m”

n∆
+

1

(n∆)3 ln2(n∆)

)
.

As C2xe
−C2x is decreasing for x ≥ 1/C2, and its maximum is 1/(eC2), we get

mn∑

m′=1

√
m”e−C2

√
m” ≤

∑
√

m′≤1/C2

(eC2)
−1 +

∑
√

m′≥1/C2

√
m′e−C2

√
m′

≤ 1

eC3
2

+

∞∑

m′=1

√
m′e−C2

√
m′
< +∞.

It follows that
mn∑

m′=1

E

(
sup

t∈Sm+Sm′ ,‖t‖=1
[νP

n,1(t)]
2 − p(m,m′)

)

+

≤ C

n∆
.

Let us now study the second term ν
(R)
n,j (t) in the decomposition of νn,j(t). The cases j = 3, 4

being similar, we consider only ν
(R)
n,j (t) for j = 1.

E

[
sup

t∈Smn ,‖t‖=1
|ν(R)

n,1 (t)|2
]

≤ 1

4π2∆2
E



∫ πmn

−πmn

∣∣∣∣∣
1

n

n∑

k=1

(Z2
k1IZ2

k
>kn

√
∆e

iuZk − E(Z2
k1IZ2

k
>kn

√
∆e

iuZk))

∣∣∣∣∣

2

|ψ2
∆(u)|2du




≤
E(Z4

11IZ2
1>kn

√
∆)

4nπ2∆2

∫ πmn

−πmn

du ≤ mnE(Z4+2p
1 )

2πn∆2(kn

√
∆)p

≤ K
E(Z4+2p

1 /∆) lnp(n∆)

2π(n∆)p/2
,

using mn ≤ n∆ and recalling that kn = (C3/4)(
√
n/ ln(n∆)). Taking p = 2, which is possible

because E(Z8
1) < +∞, gives a bound of order ln2(n∆)/(n∆).

Proposition 9.1 is proved. �
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Proof of Proposition 9.2. For νn,2, the variables are bounded without splitting, and the

function ft is replaced by f̃t = (2π∆)−1〈t∗, eiz.ψ′′
∆〉. We just check the orders of M , H2 and v

for the application of Lemma 10.1. For t ∈ Sm′′ = Sm + Sm′ and ‖t‖ ≤ 1, we have

sup
z∈R

|f̃t(z)| ≤ 1

2π∆

√∫ πm′′

−πm′′
|t∗(−u)|2du

∫ πm′′

−πm′′
|ψ′′

∆(u)|2du

≤
√
m′′E(Z2

1 )

∆
≤ C

√
m′′ := M.

Next

E( sup
t∈Sm+Sm′ ,‖t‖=1

[νn,2(t)]
2) ≤ 1

2πn∆2

∫ πm′′

−πm′′
|ψ′′

∆(u)|2du ≤ m′′
E

2(Z2
1 )/∆)

n∆
:= H2.

Following the same line as previously for v, we get

Var(f̃t(Z1)) ≤
1

4π2∆2

(∫∫

[−πm′′,πm′′]2
|ψ∆(u− v)|2|ψ′′

∆(u)|2|ψ′′
∆(−v)|2dudv

)1/2

.

As ψ′′
∆ = ∆(φ′ + ∆φ2]ψ∆, we get (recall that Mφ = |b| + |h∗|1 is the upper bound of |φ(u)|):

Var(f̃t(Z1)) ≤ 1

4π2∆2

∫ πm′′

−πm′′
|ψ′′

∆(x)|2dx

≤
2∆2(‖h∗‖2 + 2πm′′∆2M2

φ)

4π2∆2
≤ 1

π
(‖h‖2 +M2

φmn∆2)

≤
‖h‖2 +M2

φ

π
:= v

as mn∆2 ≤ n∆3 ≤ 1. �

Proof of Proposition 9.3. Here ft is replaced by f̆t(z) = z1I|z|≤k′
n

√
∆〈t∗, eiz.ψ′

∆〉. Using now

that |ψ′
∆(u)| ≤ E(|Z1|) ≤

√
E(Z2

1 ), we obtain here that M = k′n
√
m′′
√

E(Z2
1/∆). On the other

hand, we find H2 = m′′
E

2(Z2
1 )/(n∆2). Lastly, we find

Var(f̆t(Z1)) ≤
1

4π2∆2

(∫∫

[−πm′′,πm′′]2
|ψ(2)

∆ (u− v)|2|ψ′
∆(u)|2|ψ′

∆(−v)|2dudv
)1/2

.

With the bounds for |ψ′
∆| and

∫ 2πm′′

−2πm′′ |ψ′′
∆(z)|2dz, we obtain v = cE(Z2

1/∆)
√
m′′. �

9.3. Proof of Theorem 4.1. The proof follows the same lines as for the adaptive estimator of
h. We introduce, for 0 < % < 1,

Ωb :=

{∣∣∣∣∣
[(1/(3n∆))

∑3n
k=1 Z

6
k ]

(E(Z6
1/∆))

− 1

∣∣∣∣∣ ≤ %

}
.

Provided that E(Z24
1 ) <∞, we can make use of the Rosenthal inequality to obtain:

E(‖p̄m̄ − p‖21IΩc
%
) ≤ C/n∆.

For the study of E(‖p̄m̄ − p‖21IΩ%), the decomposition is similar to the previous case (see (40))
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where ĥm̂, h are now replaced by p̄m̄, p). The processes Rn(t) and νn(t) are given by:

νn(t) =
1

2π
〈p̄∗ − E(p̄∗), t∗〉, Rn(t) =

1

2π
〈E(p̄∗) − p∗, t∗〉.

The term Rn(t) is dealt using (30). For the term containing νn(t), we need apply 10.1. So, νn

is split into the sum of a principal and a residual term, respectively denoted by νP
n and νR

n with

(49) νP
n (t) =

1

3n

3n∑

k=1

[ft(Zk) − E(ft(Zk))] with ft(z) =
1

2π∆
z31I|z|3≤kn

√
∆〈t∗, eiz·〉,

and νR
n (t) = νn(t) − νP

n (t). Everything is analogous. The difference is that, for applying

10.1, we have to bound
∫ 2πm”
−2πm” |ψ

(6)
∆ (u)|2du (instead of

∫ 2πm”
−2πm” |ψ

(4)
∆ (u)|2du previously). Using

ψ′
∆ = ∆φ̃ψ∆ (see (5)-(25)), we find

ψ
(6)
∆ = ∆ψ∆φ

(5) + ∆2ψ∆[6φ̃φ(4) + 15φ(3)(φ′(u) − σ2)]

+∆3ψ∆[15φ(3)φ̃2 + 60φ′′(φ′(u) − σ2)φ̃+ 15(φ′(u) − σ2)3]

+∆4ψ∆[17φ′′φ̃(3) + 36φ̃(2)(φ′(u) − σ2)2]

+12∆5ψ∆φ̃
4(φ′(u) − σ2) + ∆6ψ∆φ̃

6.

Now, φ̃(u) ≤ C(1 + |u|) and all the derivatives of φ̃, φ are bounded. Moreover, under (H6),∫
|φ(5)(u)|2du =

∫
x6|p(x)|2dx < +∞. Thus, we find the following bound

∫ 2πm”

−2πm”
|ψ(6)

∆ |2 ≤ C∆2(1 + ∆2m3 + ∆4m5 + ∆6m7 + ∆8m9 + ∆10m13) = O(∆2),

as m ≤
√
n∆. The proof may then be completed as for ĥm̂.�

9.4. Proof of Proposition 5.1.
Proof of (i). The assumptions and the fact that r ≤ 1 imply

|Γ∆|r = |
∑

s≤∆

Γs − Γs− |r ≤
∑

s≤∆

|Γs − Γs−|r.

Taking expectations yields

E|Γ∆|r ≤ ∆

∫
|γ|rn(γ)dγ.

Proof of (ii). Consider f a non-negative function such that f(0) = 0. We have:

E

∑

s≤t

f(Xs −Xs−) = E

∑

s≤t

f(BΓs −BΓs−
).

Then,

∑

s≤t

Ef(BΓs −BΓs−
) =

∑

s≤t

∫

R

f(x)

(
Ee(−x2/2(Γs−Γs− )) 1√

2π(Γs − Γs−)

)
dx.

Since, for all x,

E

∑

s≤t

e(−x2/2(Γs−Γs− )) 1√
2π(Γs − Γs−)

= t

∫ +∞

0
e−x2/2γ 1√

2πγ
nΓ(γ)dγ,

we get the formula for nX . Setting mα = E|X|α, for X a standard Gaussian variable, yields
∫

R

|x|αnX(x)dx = mα

∫ +∞

0
γα/2nΓ(γ)dγ.
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Thus
E|X∆|r = mrE(Γ

r/2
∆ ).

As r/2 ≤ 1,

Γ
r/2
∆ = (

∑

s≤∆

Γs − Γs−)r/2 ≤
∑

s≤∆

(Γs − Γs−)r/2.

Taking expectation gives the result.
Proof of (iii) The result is proved e.g. in Barndorff-Nielsen et al. (2006) (Theorem 1, p. 804)
(see also Aı̈t-Sahalia and Jacod (2007)). �

9.5. Proof of proposition 5.3. The study of (35) relies on the following result which is stan-
dard for r = 2.

Lemma 9.3. Let Yt = θt+ σWt for θ a constant and consider

σ̃(r)
n =

1

mrn∆r/2

n∑

k=1

|Yk∆ − Y(k−1)∆|r.

Then, for all r,
√
n(σ̃

(r)
n −σr) converges in distribution to a centered Gaussian distribution with

variance σ2r(m2r/m
2
r − 1) as n tends to infinity, ∆ tends to 0, n∆ tends to infinity, and n∆2

tends to 0.

Proof. We have

Eσ̃(r)
n =

1

mr
E|θ

√
∆ + σX|r,

for X a standard Gaussian variable. We get, after a change of variables,

Eσ̃(r)
n =

1

mr

∫
|u|r exp [−(u− θ

√
∆)2

2σ2
]
du

σ
√

2π

Thus,

Eσ̃(r)
n − σr = σr

(
e−θ2∆/2σ2 − 1

)
+

1

mr
e−θ2∆/2σ2

∫
|u|r(eθu

√
∆/σ2 − 1)e−

u2

2σ2
du

σ
√

2π

Noting that

eθu
√

∆/σ2 − 1 = θu
√

∆/σ2 + ∆
∑

n≥2

1

n!
(uθ/σ2]n∆n/2−1

and that
∫
|u|rue−

u2

2σ2 du
σ
√

2π
= 0, we easily obtain

|Eσ̃(r)
n − σr| ≤ c∆

Thus,
√
n|Eσ̃(r)

n − σr| = o(1) if
√
n∆ = (n∆2)1/2 = o(1). Noting that E|θ

√
∆ + σX|k converges

to σkmk as ∆ tends to 0, we get

nVarσ̃(r)
n → σ2r(m2r/m

2
r − 1).

Finally, we look at

χk,n =
1

n

(
|θ
√

∆ + σ(Wk∆ −W(k−1)∆)/
√

∆|r − E|θ
√

∆ + σX|r
)
,

which satisfies
nEχ4

k,n ≤ c

n3
.

Hence,
√
n(σ̃

(r)
n −Eσ̃

(r)
n ) converges in distribution to the centered Gaussian with the announced

variance which completes the proof. �
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Proof of (i). As noted above, Lt = b0t + σWt + Γt with b0 = b −
∫
xn(x)dx. Using that, for

r ≤ 1, ||∑ ai + bi|r − |∑ ai|r| ≤
∑ |bi|r, we get

|σ̂(r)
n − σ̃(r)

n | ≤ 1

mrn∆r/2

n∑

k=1

|Γk∆ − Γ(k−1)∆|r,

where σ̃
(r)
n is built with Yt = b0t+ σWt as in the previous Lemma. Thus, applying Proposition

5.1 (i),

E
√
n|σ̂(r)

n − σ̃(r)
n | ≤ 1

mr

√
n∆1−r/2

∫
|x|rn(x)dx.

Since r < 1, the constraint n∆2−r = o(1) can be fulfilled and implies n∆2 = o(1). Hence, the
result follows from the previous proposition.
Proof of (ii). The proof is analogous to the previous one (using Proposition 5.1 (ii)) and is
omitted. �

9.6. Proof of Proposition 5.4. Let us set

σ̃2
M =

1

3n∆

3n∑

k=1

Z2
k cosMZk, b̂1 =

1

n∆

n∑

k=1

Zk, b̂2 =
1

n∆

2n∑

`=n+1

Z`.

We have

3n∆Varσ̃2
M =

1

∆

[
E(Z4

1 cos2MZ1) −
(
E(Z2

1 cosMZ1)
)2]

.

We need choose M tending to infinity in such a way that the right handside above tends to a
limit. For this, we use:

E(Z2
1 cosMZ1) = −Reψ′′

∆(M),

E(Z4
1 cos2MZ1) =

1

2
E(Z4

1 (1 + cos 2MZ1)) =
1

2
(E(Z4

1 ) + Reψ
(4)
∆ (2M)).

We know that (1/∆)E(Z4
1 tends to

∫
x4n(x)dx as ∆ tends to 0. Some elementary computations

yield (see (5)-(25)):

ψ′′
∆(u) = −∆ψ∆(u)(h∗(u) + σ2) + ∆2ψ∆(u)φ̃2(u),

ψ
(4)
∆ (u) = ψ∆(u)

[
∆φ(3)(u) + ∆2

(
4φ′′(u)φ̃(u)) + 3(h∗(u) + σ2)2

)
− 6∆3φ̃2(u)(h∗(u) + σ2) + ∆4φ̃4(u)

]
.

We have |ψ∆| ≤ 1, |φ̃(u)| ≤ |b| + |u|(σ2 + |h|1), φ′, φ′′, φ(3) are Fourier transforms of integrable
functions and thus tend to 0 as |u| tends to infinity. Hence, as M tends to infinity,

1

∆
|ψ(4)

∆ (2M)| ≤ C(∆M + ∆2M2 + ∆3M4).

Choosing M such that ∆3M4 tends to 0, we obtain that the above term tends to 0. This choice
implies also that ∆−1/2ψ′′

∆(M) tends to 0. Hence, 3n∆Varσ̃2
M tends to

∫
x4n(x)dx/2.

For the Lindeberg condition, we write

√
n∆(σ̃2

M − E(σ̃2
M )) =

3n∑

k=1

χk,n,

where nE|χk,n|4 ≤ C
n∆(EZ4

1/∆) tends to 0. So, we have the convergence in distribution result

for
√

3n∆(σ̃2
M − Eσ̃2

M ). Finally,
√

3n∆(σ̂2
M − Eσ̂2

M) −
√

3n∆(σ̃2
M − Eσ̃2

M) = −∆
√

3n∆(b̂1b̂2 − b2).
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As the righthand side above tends to 0 in probability, we obtain the convergence in distribution
of

√
3n∆(σ̂2

M − Eσ̂2
M).

It remains to study the bias of σ̂2
M . From definition (36), we deduce

E(σ̂2
M ) = σ2 + h∗(0) −

∫ M

0
Imp∗(v)dv +

∫ M

0
Im(p∗(v) − E(p̄∗(v)))dv.

Therefore,

|E(σ̂2
M ) − σ2| ≤

∫ M

0
|E(p̄∗(v)) − p∗(v)|dv +

∫ +∞

M
|p∗(v)|dv.

It follows from (30) that

|E(σ̂2
M ) − σ2| ≤ C

∫ M

0
∆|p∗(v)||v|(1 + |v|)dv + ∆(1 + |v|)dv + ∆2(1 + |v|)3dv +

∫ +∞

M
|p∗(v)|dv

≤ C ′
(

∆

∫ M

0
|p∗(v)|(1 + v2)dv + ∆M2 + ∆2M4

)
+

∫ +∞

M
|p∗(v)|dv

Assume now that p ∈ C(a,L), then

|E(σ̂2
M ) − σ2| ≤ C ′

(
∆

∫ M

0
|p∗(v)|(1 + v2)a/2(1 + v2)1−a/2dv + ∆M2 + ∆2M4

)

+

∫ +∞

M
|p∗(v)|(1 + v2)a/2(1 + v2)−a/2dv

≤ C ′∆
√
L

(∫ M

0
(1 + v2)2−adv

)1/2

+ C ′∆M2 + C ′∆2M4

+
√
L

(∫ +∞

M
(1 + v2)−adv

)1/2

If a > 5/2, we get

|E(σ̂2
M ) − σ2| ≤ K(∆ + ∆M2 + ∆2M4 +M−a+1/2)

≤ K(∆ + ∆M2 + ∆2M4 +M−2).

Thus, choosing M = ∆−1/4 will give a bias of order ∆1/2. As n∆2 tends to 0, and M4∆3 =
∆2 → 0, we get the result. �

10. Appendix

10.1. Two classical results. The Talagrand inequality. The following result follows from
the Talagrand concentration inequality given in Klein and Rio (2005) and arguments in Birgé
and Massart (1998) (see the proof of their Corollary 2 page 354).

Lemma 10.1. (Talagrand Inequality) Let Y1, . . . , Yn be independent random variables, let νn,Y (f) =
(1/n)

∑n
i=1[f(Yi) − E(f(Yi))] and let F be a countable class of uniformly bounded measurable

functions. Then for ε2 > 0

E

[
sup
f∈F

|νn,Y (f)|2 − 2(1 + 2ε2)H2
]
+

≤ 4

K1

(
v

n
e−K1ε2 nH2

v +
98M2

K1n2C2(ε2)
e
− 2K1C(ε2)ε

7
√

2
nH
M

)
,

with C(ε2) =
√

1 + ε2 − 1, K1 = 1/6, and

sup
f∈F

‖f‖∞ ≤M, E

[
sup
f∈F

|νn,Y (f)|
]
≤ H, sup

f∈F

1

n

n∑

k=1

Var(f(Yk)) ≤ v.
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By standard density arguments, this result can be extended to the case where F is a unit
ball of a linear normed space, after checking that f 7→ νn(f) is continuous and F contains a
countable dense family.

The Rosenthal inequality. (see e.g. Hall and Heyde (1980, p.23)) Let (Xi)1≤i≤n be n
independent centered random variables, such that E(|Xi|p) < +∞ for an integer p ≥ 1. Then
there exists a constant C(p) such that

(50) E

(∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

p)
≤ C(p)




n∑

i=1

E(|Xi|p) +

(
n∑

i=1

E(X2
i )

)p/2

 .
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