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Abstract. In this paper, we consider the problem of nonparametric mean residual life (MRL)
function estimation in presence of covariates. We propose a contrast that provides estimators
of the bivariate conditional MRL function, when minimized over different collections of linear
finite dimensional function spaces. Then we describe a model selection device to select the
best estimator among the collection, in the MISE sense. A non-asymptotic oracle inequality is
proved for the estimator, that both ensures the good finite sample performances of the estimator
and allows us to compute asymptotic rates of convergence. Lastly, examples and simulation
experiments illustrate the method.
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1. Introduction

In randomized clinical trials, survival times are often measured from randomization or treat-
ment implementations. But studying survival functions or hazard rates may be inadequate to
answer a patient asking, during the trial, how much more time he still has or whether the new
treatment improves his life expectancy. To correctly address these questions, life expectancy
must be studied as a function of time, via the so-called mean residual life (MRL) function:

e(y) = E(Y − y|Y > y) , y > 0,(1.1)

where Y is a lifetime (i.e. a nonnegative random variable) with E(Y ) < +∞. This function −
average remaining life of a surviving subject − is of interest in several other application fields,
such as reliability or actuarial studies. For a discussion concerning statistical applications of
the MRL, we refer to Embrechts et al. (1997). If we denote by F the cumulative distribution
function (cdf) and by F̄ = 1 − F the survival function, we have the following formula for the
MRL e:

e(y) =

{ ∫ +∞
y F (u)du/F (y) if F (y) > 0

0 otherwise.

This equality leads to several proposals of nonparametric estimators, built by plug-in of Kaplan-
Meier survival estimators, see Hall & Wellner (1981) or Csörgö & Zitikis (1996) and the references
therein. Under adequate assumptions, these estimators inherit the parametric rates of the
Kaplan-Meier estimator, but unfortunately they are not smooth. To circumvent this drawback,
regularized estimators based on kernel smoothing have been proposed by Chaubey & Sen (1999)
or Abdous & Berred (2005).
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To measure the combined effect of a covariate X on the MRL, we shall rather define and
study the conditional MRL:

e(y|x) = E(Y − y|Y > y,X = x) =

{ ∫ +∞
y F (u|x)du/F (y|x) if F (y|x) > 0

0 otherwise,
(1.2)

where F̄ (y|x) is the conditional survival function of Y given X = x:

F̄ (y|x) = P(Y > y|X = x) =

∫ +∞
y f(X,Y )(x, u)du

fX(x)
if fX(x) > 0.

Here f(X,Y ) denotes the joint probability density of (X,Y ) and fX denotes the marginal density
of X. In semi-parametric regression analysis, Oakes & Dasu (1990) propose a proportional
mean residual life model to study the association with related covariates, when the response is
completely observed. This model is studied in Maguluri & Zhang (1994). Then, Chen & Cheng
(2005) and Chen et al. (2005) have developed strategies in this model for censored response.

In this paper, we propose a minimum contrast estimator of the conditional MRL. To our
knowledge, this is the first purely nonparametric approach. To be more precise, we propose a
regression-type contrast that we minimize over collections of finite dimensional functional spaces
spanned by orthonormal bases, called models. This produces a collection of estimators among
which the best one, in a sense to be defined, is chosen by using a penalization device. The
resulting estimator is proved to satisfy an oracle type inequality. This type of nonparametric
strategy has been introduced by Barron et al. (1999) among others, but using it in the present
setting is new.

We describe in Section 2 our estimation strategy. First, we present the contrast which is
minimized in the following. Then we give the conditions on the spaces over which the contrast
is minimized: this corresponds to model collections for which examples are provided. The
procedure is completed by a model selection performed via a penalization of the minimal contrast.
Then MISE bound is given in Section 3 and illustrated by asymptotic rate over Besov spaces.
Illustrations are provided in Section 4 and concluding remarks are stated in Section 5. Most
proofs are relegated in Section 6.

2. Estimation strategy

2.1. Definition of the contrast. Let Y be a nonnegative random variable and X a one-
dimensional covariate. We assume that the joint density f(X,Y ) of (X,Y ) is such that

F̄1(x, y) =

∫ +∞

y
f(X,Y )(x, u)du and F̄2(x, y) =

∫ +∞

y
F̄1(x, u)du

are measurable and finite nonnegative functions. Then, it is interesting to remark that

e(y|x) =
F̄2(x, y)

F̄1(x, y)
if F̄1(x, y) > 0.

This holds by simplification by fX(x) in Formula (1.2).
Next, we consider two functions S and T such that

∫∫

S2(x, y)F̄1(x, y)dxdy < +∞ and
∫∫

T 2(x, y)F̄1(x, y)dxdy < +∞. We define the µ-scalar product of S and T by

(2.1) 〈S, T 〉µ =

∫∫

S(x, y)T (x, y)dµ(x, y) with dµ(x, y) = F̄1(x, y)dxdy

and by ‖.‖µ the associated norm: ‖T‖2
µ = 〈T, T 〉µ. This is meaningful as F̄1(x, y) ≥ 0 and we

will work on fields where F̄1(x, y) > 0.
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Let T : (x, y) 7→ T (x, y) be a bivariate measurable compactly supported function, with support
denoted by A = A1 × A2. We propose to study the following contrast for estimating the
conditional MRL e(y|x):

(2.2) Γn(T ) =
1

n

n
∑

i=1

(
∫

T 2(Xi, y)1I{Yi≥y}dy − 2ΨT (Xi, Yi)

)

where

ΨT (x, y) =

∫ y

0
(y − u)T (x, u)du.

This contrast is justified by the following result:

Proposition 2.1. Assume that T and e are µ-square integrable. Then, under the following
assumption:

(A0) For all x ∈ A1, lim
y→+∞

yF̄1(x, y) = 0,

we have: E(Γn(T )) = ‖T − e‖2
µ − ‖e‖2

µ.

Therefore, minimizing the contrast Γn(T ) over a large set of functions should mean minimiz-
ing the empirical counterpart of ‖T − e‖2

µ and lead to find the function T which is the ”nearest”
of e among a given class of functions.

Proof of Proposition 2.1. Let us compute

(2.3) E(Γn(T )) = E

(∫

T 2(X1, y)1I{Y1≥y}dy − 2ΨT (X1, Y1)

)

.

First, the Fubini-Tonelli Theorem implies that

E

(
∫

T 2(X1, y)1I{Y1≥y}dy

)

=

∫∫
(
∫

T 2(x, y)1I{u≥y}dy

)

f(X,Y )(x, u)dxdu

=

∫∫

T 2(x, y)F̄1(x, y)dxdy,(2.4)

and the last term is finite as T is µ-square integrable. Secondly, an integration by part yields

∫ +∞

u
(y − u)f(X,Y )(x, y)dy = [−(y − u)F̄1(x, y)]

y=+∞
y=u +

∫ +∞

u
F̄1(x, y)dy = F̄2(x, u)

under the condition (A0). Therefore, with the Fubini-Tonelli Theorem first and next the Cauchy-
Schwarz Inequality, we have

∫∫ ∫ y

0
(y − u)|T (x, u)|f(X,Y )(x, y)dudxdy =

∫∫

|T (x, u)|F̄2(x, u)dudx

=

∫∫

|T (x, u)|e(u|x)F̄1(x, u)dudx

≤
(∫∫

T 2(x, u)F̄1(x, u)dudx

∫∫

e2(u|x)F̄1(x, u)dudx

)1/2

.
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The last bound is finite since T and e are µ-square integrable. Thus, the Fubini Theorem can
be applied to get:

E (ΨT (X1, Y1)) =

∫∫ ∫ y

0
(y − u)T (x, u)duf(X,Y )(x, y)dxdy

=

∫∫ (∫

1I{u≤y}(y − u)f(X,Y )(x, y)dy

)

T (x, u)dxdu

=

∫∫

T (x, u)F̄2(x, u)dxdu.(2.5)

Now, gathering (2.3), (2.4) and (2.5) yields

E(Γn(T )) =

∫∫

[T 2(x, y) − 2T (x, y)e(y|x)]F̄1(x, y)dxdy = ‖T‖2
µ − 2〈T, e〉µ

To end the proof, we can see that E(Γn(T )) = ‖T − e‖2
µ − ‖e‖2

µ. 2

Remark 2.1. Since F̄1(x, y) = F̄ (y|x)fX(x), Assumption (A0) is easily satisfied when the cdf
y 7→ F (y|x), for fixed x, belongs to exponential family laws (and has exponential rate of decay
w.r.t. y).

Remark 2.2. Note that the simpler contrast defined for a function t(·) of one variable by:

(2.6) γn(t) =
1

n

n
∑

i=1

(∫

t2(y)1I{Yi≥y}dy − 2ψt(Yi)

)

where ψt(y) =

∫ y

0
(y − u)t(u)du

would lead to build an estimator of e(.) in the non-conditional setting (in which case e(.) is uni-
variate). But this would not improve the rate of convergence. Indeed nonparametric estimators
obtained by substituting Kaplan-Meier estimators (or empirical distribution functions) to the
true survival functions achieve the parametric rate

√
n (see Hall & Wellner (1981) or Csörgö

& Zitikis (1996)): therefore, it cannot be improved by any strategy. The contrast proposed in
(2.6) would only avoid to consider directly a quotient estimator. Note that this estimator would
have interesting properties in a nonasymptotic point of view. But, this is not in the scope of
this paper.

Now, we need to specify the set of functions T that are considered here, to check that the
minimum Γn-contrast estimator can adequately be defined, including possibly model selection,
and to prove an oracle risk-bound result.

2.2. Assumptions and collections of linear spaces. Let us mention first that we provide
an estimator of e on a compact set only. We denote this compact by A = A1 × A2 and the
collection of spaces are defined with respect to this compact set. We will use norms referring to
this compact set, for T ∈ (L2 ∩ L

∞)(A):

‖T‖2
A =

∫∫

A
T 2(x, y)dxdy, ‖T‖∞,A = sup

(x,y)∈A
|T (x, y)|.

Moreover, our assumptions are also related to this compact set:

(A1) There exist F̄0, f1 > 0 such that ∀(x, y) ∈ A1 ×A2, F̄1(x, y) ≥ F̄0 and fX(x) ≤ f1.
(A2) ∀(x, y) ∈ A1 ×A2, e(y|x) ≤ ‖e‖∞,A < +∞.
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Assumptions (A1) and (A2) are weak because the bounds are required on a compact set only.
As F̄1(x, y)/fX (x) is a conditional survival function, it is bounded by 1, thus fX(x) ≤ f1 in
(A1) implies F̄1(x, y) ≤ f1 for (x, y) ∈ A. Therefore Assumption (A1) implies that ∀(x, y) ∈
A, F̄0 ≤ F̄1(x, y) ≤ f1 i.e. the reference measure of the problem here dµ(x, y) = F̄1(x, y)dxdy is
equivalent to the Lebesgue measure on A.

Now, we introduce a collection {Sm : m ∈ Mn} of projection spaces: Sm is called a model and
Mn is a set of multi-indexes (see the examples below). For each m, the space Sm of functions
with support in A = A1 ×A2 is defined by:

Sm = Fm ⊗Hn =
{

h, h(x, z) =
∑

j∈Jm

∑

k∈Kn

aj,kϕ
m
j (x)ψk(z), aj,k ∈ R

}

,

where Fm and Hn are subspaces of (L2∩L
∞)(R) respectively spanned by two orthonormal bases:

(ϕm
j )j∈Jm with |Jm| = Dm, where Dm is varying and (ψk)k∈Kn with |Kn| = D(2)

n is fixed. For all
j and all k, the supports of ϕm

j and ψk are respectively included in A1 and A2. Here, indexes
j and k are not necessarily integers, they can be pairs of integers, as in the case of a piecewise
polynomial space specified below.

Remark 2.3. From a theoretical point of view, we may consider that the covariates X are in
R

d and consider models of the form Sm = Fm1 ⊗ . . . Fmd
⊗Hn. The convergence rate would be

slower because of the curse of dimensionality.

Let us introduce the following set of assumptions on the models {Sm : m ∈ Mn}, which
are usual in model selection techniques. The specificity here is that they mainly concern the
x-direction and the spaces {Fm : m ∈ Mn}. We denote by Fn the space in the collection of the

Fm’s with maximal dimension denoted by D(1)
n and note that dim(Hn) = D(2)

n .

• (M1) D(1)
n ≤ n1/4/

√
log n, D(2)

n ≤ n1/4/
√

log n and ∀m,Fm ⊂ Fn.
• (M2) There exists a positive real φ1 such that, for all m ∈ Mn, we have

∀x ∈ A1,
∑

j∈Jm

(ϕm
j (x))2 ≤ φ1Dm

• (M3) Nesting condition:

Dm ≤ Dm′ ⇒ Fm ⊂ Fm′ .

Assumptions (M1)–(M3) are not too restrictive. Indeed, they are verified for the spaces
Fm on A1 = [0, 1] without loss of generality, spanned by the following bases (see Barron et al.
(1999)):

• [T ] Trigonometric basis: span(ϕ0, . . . , ϕm−1) with ϕ0 = 1I[0,1], ϕ2j(x) =
√

2 cos(2πjx)

1I[0,1](x), ϕ2j−1(x) =
√

2 sin(2πjx)1I[0,1](x) for j ≥ 1. For this model Dm = m and φ1 = 2
hold.

• [DP ] Regular piecewise polynomial basis: polynomials of degree 0, . . . , r (where r is
fixed) on each interval [(` − 1)/2D , `/2D[ with ` = 1, . . . , 2D. In this case, we have
m = (D, r), Jm = {j = (`, d) ∈ N × N, 1 ≤ ` ≤ 2D, 0 ≤ d ≤ r}, Dm = (r + 1)2D and
φ1 =

√
r + 1.

• [W ] Regular wavelet basis on an interval, as described by Cohen et al. (1993).
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Remark 2.4. If we denote by [H] the histogram basis defined by: forA1 = [0, 1], span(ϕ1, . . . , ϕ2m)

with ϕj = 2m/21I[(j−1)/2m,j/2m[ for j = 1, . . . , 2m, we have Dm = 2m, φ1 = 1. We want to empha-
size that [H] is a particular case of both [DP ] and [W ], and that practical computations with
[H] are easier than with any other basis.

Remark 2.5. The first assumption can be weakened for localized basis: for histogram basis,

piecewise polynomial basis and wavelets, (M1) reduces to D(i)
n ≤

√

n/ log n. Assumption (M1)
implies that there exists for the Fm⊗Hn’s a global nesting space Sn := Fn⊗Hn with dimension
denoted by Nn. By assumption (M1), we have Nn ≤

√

n/ log n but for localized basis Nn ≤
n/ log n would be sufficient to prove Theorem 3.1 in Section 3. The condition (M2) implies a
useful link between the sum of the squared basis functions and the dimension of the space Fm.
The third assumption (M3) implies in particular that ∀m,m′ ∈ Mn, Sm+Sm′ ⊂ Sn := Fn⊗Hn.

2.3. Definition of the estimator. The first step would be to define êm = arg minT∈Sm Γn(T ).
To that end, let T (x, y) =

∑

j∈Jm

∑

k∈Kn
aj,kϕ

m
j (x)ψk(y) be a function in Sm. To compute êm,

we have to solve:

∀j0 ∈ Jm∀k0 ∈ Kn,
∂Γn(T )

∂aj0,k0

= 0

or equivalently for all j0 ∈ Jm, k0 ∈ Kn,

∑

j∈Jm

∑

k∈Kn

aj,k
1

n

n
∑

i=1

ϕm
j (Xi)ϕ

m
j0(Xi)

∫

ψk(z)ψk0(z)1I{Yi≥z}dz =
1

n

n
∑

i=1

ϕm
j0(Xi)

∫ Yi

0
(Yi − u)ψk0(u)du.

Let vec(.) denote the operator that stacks the columns of a matrix into a vector. The above
equation can be summarized by

GmÂm = Υm,

where Âm denotes the vector vec((âj,k)j∈Jm,k∈Kn) of the coefficients of the development of the
estimator in the basis,

Gm :=
( 1

n

n
∑

i=1

ϕm
j (Xi)ϕ

m
l (Xi)

∫

ψk(z)ψp(z)1I{Yi≥z}dz
)

(j,k),(l,p)∈(Jm×Kn)2

and

Υm := vec

(

( 1

n

n
∑

i=1

ϕm
j (Xi)

∫ Yi

0
(Yi − u)ψk(u)du

)

j∈Jm,k∈Kn

)

.

Remark 2.6. We want to point several features of Gm. First, it is a square matrix with size
|Jm||Kn| × |Jm||Kn|. Next, it has nonnegative eigenvalues. Indeed, if u = vec((uj,k)j∈Jm,k∈Kn)

is a vector, and u> denotes its transpose, then

u>Gmu =
1

n

n
∑

i=1

∫





∑

j,k

uj,kϕ
m
j (Xi)ψk(z)





2

1I{Yi≥z}dz ≥ 0.

Lastly, the matrix Gm can also be written

Gm =
1

n

n
∑

i=1

Φ(i)
m ⊗ Ψ(i)

m

where Φ
(i)
m ⊗Ψ

(i)
m is the tensorial product of two square matrices Φ

(i)
m := (ϕm

j (Xi)ϕ
m
j0

(Xi))(j,j0)∈J2
m

and Ψ
(i)
m := (

∫

ψk(z)ψk0(z)1I{Yi≥z}dz)(k,k0)∈K2
n
. For the practical implementation of the estima-

tor, we need to compute the inverse of the matrix Gm.
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As Gm may be non invertible, we modify the definition of êm in the following way:

êm :=
{

arg minT∈Sm Γn(T ) on Ĥm

0 on Ĥc
m

,(2.7)

where

Ĥm :=
{

minSp(Gm) ≥ max( ˆ̄F0/3, n
−1/2)

}

where Sp(Gm) denotes the spectrum of Gm i.e. the set of the nonnegative eigenvalues of the

matrix Gm. The quantity ˆ̄F0 is an estimator of the bound F̄0 (the minimum of F̄1 on A, see
(A1)). We require that it fulfills the following assumption:

(A3) For any integer k ≥ 1, P(| ˆ̄F0 − F̄0| > F̄0/2) ≤ Ck/n
k.

An estimator ˆ̄F0 satisfying (A3) is defined in Comte et al. (2008). The definition of ˆ̄F0 is recalled
in Section 3.3. Note that k = 5 is enough for the proofs.

The final step is to select the relevant space via the penalized criterion. Here, only one
direction requires model selection, namely the x-direction. Indeed, the y-direction keeps the
good properties of empirical estimators provided that the y-space is simply chosen as large as
possible, as it would be done if no covariate was involved. Therefore, we select a model m̂ defined
by

(2.8) m̂ = arg min
m∈Mn

(

Γn(êm) + pen(m)
)

,

where pen(m) is defined in Theorem 3.1 below. Our estimator of e on A is then ẽ = êm̂.

3. Oracle inequality and rate of convergence

3.1. Mise bound. We can prove an oracle-type inequality under the following assumption:

(A4) Y1, · · · , Yn are R
+-supported and E(Y k

1 ) < +∞ for k = 6.

Moreover, we denote by em the L
2-orthogonal projection on Sm of e rectricted to A. Our main

Theorem is the following.

Theorem 3.1. Assume that (A0)–(A4) hold and the model collection satisfies (M1)-(M2)-
(M3). Let

(3.1) pen(m) = κφ1
E(Y 3

1 ) + `(A2)E(Y 2
1 )

F̄0

Dm

n
,

where κ is a numerical constant. Then ẽ = êm̂ with m̂ defined by (2.8) with pen(m) given by
(3.1), satisfies:

(3.2) E(‖ẽ− e‖2
A) ≤ C inf

m

(

‖e− em‖2
A + pen(m)

)

+
C ′

n
,

where C is a constant depending on F̄0 and C ′ is a constant depending on E(Y 6
1 ), F̄0, ‖e‖∞,A.

Remark 3.1. Inequality (3.2) shows that the estimator automatically makes the compromise
between the square bias ‖e − em‖2

A and the variance term which is proportional to the order
Dm/n of the penalty.

Remark 3.2. The constant terms in the penalty do not have the same status. The constant κ
is numerical and does not depend on any unknown quantity. Roughly speaking, it is universal
in the sense that it is not affected by the sampling changes and it can be calibrated over a wide
range of models by simulation experiments. The constant φ1 is known when the basis is chosen.
On the other hand, the unknown quantities E(Y 2

1 ) and E(Y 3
1 ) can be estimated by empirical
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moments, and F̄0 can be replaced by ˆ̄F0. For an example of theoretical study of such random
penalty, see Comte et al. (2008). The results of Theorem 3.1 would be generalized but in an
asymptotic setting.

Remark 3.3. We might have worked under the following stronger assumption instead of (A4):

(A’4) Y1, · · · , Yn are bounded random variables and there exists a positive constant B < +∞
such that 0 < Y1 ≤ B a.s.

In that case, the proof of the result (3.2) can be made simpler, and we can take the penalty

(3.3) penB(m) = κ′φ1
B3

F̄0

Dm

n
.

Here, the bound B is unknown and depends on the observations. Nevertheless, it is possible to
estimate it by the simple estimator B̂ = max1≤i≤n Yi.

3.2. Rates of convergence on Besov spaces. We can deduce from Theorem 3.1 the order of
the risk and the rate of convergence of the estimator. For that purpose, assume that e restricted
to A belongs to the anisotropic Besov space Bα

2,∞(A) on A with regularity α = (α1, α2). Let

us recall the definition of Bα

2,∞(A). Let e1 and e2 be the canonical basis vectors in R
2 and for

i = 1, 2, Ar
i,h = {x ∈ R

2;x, x+ hei, . . . , x+ rhei ∈ A}. Next, for x in Ar
i,h, let

(3.4) ∆r
i,hg(x) =

r
∑

k=0

(−1)r−k

(

r

k

)

g(x+ khei)

the rth difference operator with step h. For t > 0, the directional moduli of smoothness are
given by

ωri,i(g, t) = sup
|h|≤t

(

∫

A
ri
i,h

|∆ri
h,ig(x)|2dx

)1/2

.

We say that g is in the Besov space Bα

2,∞(A) if

(3.5) |g|Bα

2,∞
:= sup

t>0

2
∑

i=1

t−αiωri,i(g, t) <∞

for ri integers larger than αi.
The estimation procedure may allow an adaptation of the approximation space to each direc-

tional regularity. But, it happens that in the y-direction, the greatest space is directly chosen.
Thus, we just have to select a relevant Fm.

Corollary 3.1. Assume that e restricted to A belongs to the anisotropic Besov space Bα

2,∞(A)

with regularity α = (α1, α2) such that α1 > 1/2 and α2 > 1. We consider the spaces [DP]
and [W] described in Subsection 2.2 (with the regularity r of the polynomials and the wavelets

larger than αi − 1, i = 1, 2). Then, for D(2)
n = O(

√

n/ log(n)), and under the assumptions of
Theorem 3.1,

E(‖e1IA − ẽ‖2) = O(n
− 2α1

2α1+1 ).

The proof of Corollary 3.1 is standard and thus omitted (see Brunel et al. (2008)).
Thus we obtain a rate of convergence which would be standard for the estimation of a function

of one variable with regularity α1.
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3.3. About Assumption (A3). We recall here the definition of ˆ̄F0 which is given in Comte et
al. (2008), and the assumptions under which it fulfills (A3).

First define

ˆ̄Fm(x, y) =
∑

j∈Jm,k∈Kn

b̂j,kϕ
m
j (x)ψk(y), with b̂j,k =

1

n

n
∑

i=1

ϕm
j (Xi)

∫

ψk(y)1I{Yi≥y}dy.

Indeed, it is easy to see that

E(b̂j,k) =

∫∫

ϕm
j (x)ψk(y)F̄1(x, y)dxdy = 〈ϕm

j ⊗ ψk, F̄1〉,

so that ˆ̄Fm(x, y) is a natural projection estimator of F̄1. Then take

ˆ̄F0 = inf
(x,y)∈A

ˆ̄Fm∗(x, y)

where m∗ is chosen such that log(n) ≤ Dm∗ ≤ n1/4/
√

log(n), and D(2)
n = n1/4/

√

log(n).

Then Proposition 1 in Comte et al. (2008) states that, if F̄1(x, y) ∈ Bβ
2,∞(A) with β = (β1, β2)

and β̄ > 1 and n large enough, then (A3) is fulfilled.
Here β̄ denotes the harmonic mean: β̄−1 = 1

2(β−1
1 + β−1

2 ).

4. Examples and illustration

We give numerical illustrations for some classical regression models used in lifetime analysis.
The description and the parametric inference of these models are detailed in Chapter 6 of Lawless
(2003).

4.1. A.F.T. model (Accelerated Failure Time model). Let σ > 0 and µ : R 7→ R and
consider the model:

ln(Y ) = µ(X) + σε, and ε independent of X.

Then we have

P(Y > y|X = x) = P(ln(Y ) > ln(y)|X = x) = P(ε >
ln(y) − µ(x)

σ
|X = x)

= F̄ε

(

ln(y) − µ(x)

σ

)

.

where F̄ε stands for the survival function of the noise ε. Therefore, we can write

e(y|x) =

∫ +∞
y F̄ε

(

ln(u)−µ(x)
σ

)

du

F̄ε

(

ln(y)−µ(x)
σ

) .

• Example 1 : Take F̄ε(x) = exp(− exp(x)) and σ = 1. Then e1(y|x) = eµ(x), the conditional
expectation does not depend on y.
• Example 2 : Take F̄ε(x) = exp(− exp(x)) and σ = 2. Then
∫ +∞

y
exp(−

√
ue−

µ(x)
2 )du = 2eµ(x)/2

∫ +∞

√
ye−

µ(x)
2

e−vvdv = 2eµ(x)(1 +
√
ye−

µ(x)
2 ) exp(−√

ye−
µ(x)

2 ).

Thus

(4.1) e2(y|x) = 2eµ(x)(1 +
√
ye−

µ(x)
2 ).
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• Example 3 : Take F̄ε(x) = (1 + exp(x))−1 and σ = 1/2. Then

F̄ (y|x) =
1

1 + y2e−2µ(x)
.

∫ +∞

y

du

1 + u2e−2µ(x)
= eµ(x)

∫ +∞

ye−µ(x)

dv

1 + v2
= eµ(x)(arctan(+∞) − arctan(ye−µ(x)))

= eµ(x)(
π

2
− arctan(ye−µ(x))) = eµ(x) arctan(y−1eµ(x)).

This yields

(4.2) e3(y|x) = (eµ(x) + y2e−µ(x)) arctan(y−1eµ(x)).

We shall take affine functions µ(x).

4.2. Generalized Cox model. The standard Cox model assumes that the conditional hazard
rate α can be decomposed in the following multiplicative way: α(y|x) = exp(βx)α0(y). It was
generalized by Castellan & Letué (2000) for nonparametric estimation purpose by the general
equation

α(y|x) = exp(µ(x))α0(y).

As conditional cumulative hazard denoted by A(y|x) is related to conditional survival function
F̄ (y|x) by: A(y|x) =

∫ y
0 α(u|x)du = − ln(F̄ (y|x)), we have

F̄ (y|x) = exp

(

−
∫ y

0
α(u|x)du

)

.

Let us denote A0(y) =
∫ y
0 α0(u)du. We find

e(y|x) =

∫ +∞

y
exp(−eµ(x)(A0(v) −A0(y)))dv.

It is worth noting that for A0(y) = λy, that is constant hazard α0(y) = λ, this model gives

e(y|x) = e−µ(x)/λ which is the same model as the first AFT model above.
• Example 4 : We can consider the case α0(y) = λy andA0(y) = λy2/2. Let Φ(u) =

∫ u
−∞ exp(−v2/2)dv.

Then we find

(4.3) e4(y|x) =
1√
λ

exp

[

1

2
(λy2eµ(x) − µ(x))

]

(1 − Φ(
√
λye

µ(x)
2 )).

4.3. Additive Hazards models. Additive Hazards models are sometimes useful and are de-
fined, with the same notations as in section 4.2 by:

α(y|x) = α0(y) + exp(f(x)).

Simple calculations give:

F̄ (y|x) = exp

(

−
∫ y

0
α(u|x)du

)

= exp[−A0(y) − yf(x)].

Then, we find

e(y|x) =

∫ +∞

y
exp[A0(y) −A0(v) + f(x)(y − v)]dv.

• Example 5 : If we take an exponential baseline hazard with parameter λ, A0(y) = λy, we get:

(4.4) e5(y|x) =

∫ +∞

y
exp[(λ+ f(x))(y − v)]dv =

1

λ+ f(x)
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n = 100 n = 500 n = 1000

Example 1 0.0372 0.0191 0.0124
(0.0249) (0.0093) (0.0047)

Example 2 0.198 0.067 0.0687
(0.344) (0.0645) (0.0542)

Example 3 0.0274 0.0191 0.0084
(0.0854) (0.1184) (0.0533)

Example 4 0.0045 0.0011 0.0007
(0.0018) (0.0003) 0.0001

Example 5 0.3203 0.1291 0.1009
(0.2691) (0.0712) (0.0577)

Table 1. Empirical MISE’s averaging over 500 sample replications with their
standard deviations given in parenthesis for examples (1)–(5) and different sample
size n = 100, 500 and 1000.

4.4. Monte-Carlo study. We study the numerical performances of our penalized estimator by
generating samples (Xi, Yi)

n
i=1 following the models described in the previous sections:

• Example 1 : e1(y|x) = eµ(x) with µ(x) = ax+ b with a = 2, b = −2 and X ∼ U([0, 1]).
• Example 2 : e2(y|x) given by (4.1) with µ(x) = ax + b with a = 1, b = −2 and X ∼
U([0, 1]).

• Example 3 : e3(y|x) given by (4.2) with µ(x) = ax + b with a = 0.5, b = −2 and
X ∼ χ2(8)/16.

• Example 4 : e4(y|x) given by (4.3) with λ = 2 µ(x) = ax with a = 5 and X ∼ χ2(8)/16.
• Example 5 : e5(y|x) given by (4.4) with f(x) = x5, λ = 0.8 and X ∼ U([0, 1]).

The sets A = A1×A2 are fixed intervals, roughly calibrated with respect to each distribution.
In practice, we would have chosen the compact sets of estimation with respect to the data (and
their extreme values). Here, we fixed them for reproducibility of the experiments in order to
have the same set of estimation for all paths. This is of course only possible in a simulation
setting. We illustrate the practical implementation of our estimator for histogram bases [H].

The penalty is chosen as follows:

(4.5) C

(

max
1≤i≤n

(Yi)

)3 Dm1

n
.

It corresponds to the empirical version of (3.3) with constant C = κφ1/
ˆ̄F0 calibrated as 10 (here,

φ1 = 1). Even if the generated observations come from R
+-supported probability laws, we can

consider in practice that the probability they fall outside a fixed bounded interval is very small.
A preliminary and rough study indicates that for all five models considered here this value of κ
has the adequate penalization effects. But, a more tedious calibration study maybe investigated
in particular to compare both penalization bounds (3.3) and (3.1). The algorithm selects the

x-dimension D
(1)
m less than

√
n whereas the y-dimension D(2)

n is fixed to the maximal value n.
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Figure 1. Distribution of the MISE’s values computed for 500 sample replica-
tions for examples (1)–(5) for size n = 500 (left) and n = 1000 (right).

We compute the empirical MISE (Mean Integrated Squared Error) over N = 500 replications
of the samples, by averaging over the paths j = 1, . . . , N , the quantities

(4.6)
`(A1)`(A2)

K2

K
∑

k,`=1

(ẽ(j)(y`|xk) − e(y`|xk))
2,
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where `(Ai) is the length of the interval Ai, i = 1, 2, (xk)1≤k≤K , (yk)1≤k≤K are uniform subdi-

visions of A1 and A2 respectively, and ẽ(j) is the estimator associated to the jth sample path.
Note that the computed error given by (4.6) is the empirical version of the L

2- risk

E

(
∫∫

A1×A2

(ẽ(y`|xk) − e(y`|xk))
2dxkdy`

)

which corresponds to integrated errors in both x- and y-directions instead of the empirical norm
in the x-direction for which oracle-inequality is given in Section 3. The values of the average
MISE’s are not satisfactory in regard to their associated standard deviations for a sample size
n = 100 which is to small in this context of (bivariate) estimation. We can see in Figure 1 that
for larger sample sizes n = 500 and n = 1000, we obtain better values. However there are still
extreme values. This is true for all examples and all the more noticeable for Example 3: the
box is so flat (see Figure 1) because of only two extreme values whereas the standard deviations
have the smallest values which indicates a good robustness of the estimation mechanism. On the
whole, the automatic selection works well. We provide in Figure 2 a view of typical estimates
and typical improvement between sizes n = 500 and n = 2000.

5. Concluding remark: the censored case

If the variable of interest Y is censored, we can generalize the contrast function. Let the
observations be Xi, Zi = Yi ∧ Ci, δi = 1I{Yi≤Ci} where C is the censoring random variable.
Assume that the strong independence assumption holds:

C is independent of (X,Y ).

Then the contrast of interest is

(5.1) ΓC
n (T ) =

1

n

n
∑

i=1

[

δi
Ḡn(Zi)

(∫

T 2(Xi, y)1I{Zi≥y}dy − 2ΨT (Xi, Zi)

)]

where Ḡn is the modified Kaplan-Meier (1958) estimator for Ḡ, the survival function of the
censoring sequence (Ci), Ḡ(x) = P(C ≥ x), as given in Lo et al. (1989). It is defined by

(5.2) Ḡn(x) =











n
∏

i=1, Z(i)≤x

(

n− i+ 1

n− i+ 2

)1−δ(i)

if x ≤ Z(n)

Ḡn(Z(n)) if x > Z(n).

This modification of the Kaplan Meier estimator is proposed because the estimate of Ḡ appears
in a denominator. To justify the proposed contrast, it is easy to check, under the independence
assumption, that the expectation of ΓC

n is the same as the one of Γn.

6. Proofs

6.1. Proof of Theorem 3.1. The line of the proof follows the line of the one given in Comte
et al. (2008) and many auxiliary results are borrowed from this work.

The following “empirical” norm is involved by the definition of the contrast. For T ∈ Sm, let

‖T‖2
n :=

1

n

n
∑

i=1

∫

T 2(Xi, y)1I{Yi≥y}dy.

It is related with the scalar product defined by (2.1) by

E(‖T‖2
n) = ‖T‖2

µ.
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Figure 2. Penalized estimator for Example 4 for sample size n = 500 and n =
2000: top-left: true conditional MRL e, bottom-left: estimator ẽ, top-right: x 7→
e(y|x) and x 7→ ẽ(y|x) for a fixed value of y, bottom-right: y 7→ e(y|x) and
y 7→ ẽ(y|x) for a fixed value of x.

Next, we have the following relation between the norm ‖.‖n and the contrast Γn:

(6.1) Γn(T ) − Γn(S) = ‖T − e‖2
n − ‖S − e‖2

n − 2νn(T − S),

where

(6.2) νn(T ) =
1

n

n
∑

i=1

(

ΨT (Xi, Yi) −
∫

T (Xi, y)1I{Yi≥y}e(y|Xi)dy

)

.
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We shall use in the proof the following sets:

Ĥm = {min Sp(Gm) ≥ max( ˆ̄F0/3, n
−1/2)}, Ĥ :=

⋂

m∈Mn

Ĥm,

∆ :=
{

∀T ∈ Sn :
∣

∣

∣

‖T‖2
n

‖T‖2
µ

− 1
∣

∣

∣
≤ 1

2

}

, and Ω :=
{∣

∣

∣

ˆ̄F0

F̄0
− 1
∣

∣

∣
≤ 1

2

}

.(6.3)

For m ∈ Mn, we recall that em is the orthogonal projection on Fm ⊗ Hn of e restricted to A.
The following bounds hold:

E(‖êm̂ − e‖2
A) ≤ 2‖e − em‖2

A + 2E(‖êm̂ − em‖2
A1I(∆ ∩ Ω))

+ 2E(‖êm̂ − em‖2
A1I(∆c ∩ Ω)) + 2E(‖êm̂ − em‖2

A1I(Ωc))

≤ 2‖e − em‖2
A + 2E(‖êm̂ − em‖2

A1I(∆ ∩ Ω))

+ 4E((‖êm̂‖2 + ‖e‖2
A)1I(∆c ∩ Ω)) + 4E((‖êm̂‖2 + ‖e‖2

A)1I(Ωc)).(6.4)

We use the following results, whose proofs can be found in Section 6.2 hereafter for Proposition
6.1 and in Proposition 4 of Comte et al. (2008) for Proposition 6.2.

Proposition 6.1. Provided that E[Y 6
1 ] < +∞, we have E(‖êm̂‖4) ≤ C ′n3, where C ′ = φ2

1E(Y 6
1 )/9

is a positive constant.

Proposition 6.2. If (A1) and (M1) are fulfilled, we have P(∆c) ≤ Ck/n
k for any k ≥ 1, when

n is large enough, where Ck is a constant depending on F̄0 and the basis.

Moreover, (A3) ensures that P(Ωc) ≤ Ck/n
k for any integer k. Thus, using Propositions 6.1

and 6.2 and Assumption (A3), we get

E((‖êm̂‖2 + ‖e‖2
A)1I(∆c ∩ Ω)) + E((‖êm̂‖2 + ‖e‖2

A)1I(Ωc))

≤ ‖e‖2
A(P(Ωc) + P(∆c)) + E

1/2(‖êm̂‖4)(P1/2(Ωc) + P
1/2(∆c))

≤ C2/n.(6.5)

Thus it remains to study E(‖êm̂ − em‖2
A1I(∆ ∩ Ω)). We state the following Lemma:

Lemma 6.1. The following embedding holds:

∆ ∩ Ω ⊂ Γ̂ ∩ Ω.

As a consequence, for all m ∈ Mn, the matrices Gm are invertible on ∆ ∩ Ω.

Proof of Lemma 6.1. Let m ∈ Mn be fixed and let ` be an eigenvalue of Gm. There exists
Am 6= 0 with coefficients (aλ)λ such that GmAm = `Am and thus A>

mGmAm = `A>
mAm. Now,

take T :=
∑

λ aλϕλ ∈ Sm. We have ‖T‖2
n = A>

mGmAm and ‖T‖2
A = A>

mAm. Thus, on ∆:

A>
mGmAm = ‖T‖2

n ≥ 1

2
‖T‖2

µ ≥ 1

2
F̄0‖T‖2

A =
1

2
F̄0A

>
mAm.

Therefore, on ∆, for all m ∈ Mn, we have min spec(Gm) ≥ F̄0/2. Moreover, on Ω, we have

F̄0 ≥ 2 ˆ̄F0/3 and max( ˆ̄F0/3, n
−1/2) = ˆ̄F0, for n ≥ 36/F̄ 2

0 . 2

Now, on ∆ ∩ Ω we have

Γn(êm̂) + pen(m̂) ≤ Γn(em) + pen(m),
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where êm̂ ∈ Fm̂ ⊗Hn and em ∈ Fm ⊗Hn. It follows from (6.1) and (6.2) and from the inequality
2xy ≤ x2/θ2 + θ2y2, with x, y, θ ∈ R

+ (here θ = 2), that, on ∆ ∩ Ω,

‖êm̂ − em‖2
n ≤ 2〈êm̂ − em, e− em〉n + pen(m) + 2νn(êm̂ − em) − pen(m̂)

≤ 1

4
‖êm̂ − em‖2

n + 4‖e− em‖2
n + pen(m)

+
1

4
‖êm̂ − em‖2

µ + 4 sup
T∈Bµ

m,m̂(0,1)

ν2
n(T ) − pen(m̂),

where Bµ
m,m′(0, 1) := {T ∈ (Fm + Fm′) ⊗Hn : ‖T‖µ ≤ 1}. This yields

3

4
‖êm̂ − em‖2

n ≤ 4‖e − em‖2
n + pen(m) +

1

4
‖êm̂ − em‖2

µ

+4
(

sup
T∈Bµ

m,m̂(0,1)

ν2
n(T ) − p(m, m̂)

)

+
+ 4p(m, m̂) − pen(m̂),

where p(m,m′) ≥ 0 is defined in the following Proposition.

Proposition 6.3. Let

p(m,m′) = κ
E(Y 3

1 ) + `(A2)E(Y 2
1 )

4F̄0

Dm +Dm′

n

where κ is a numerical constant. Under the assumptions of Theorem 3.1, we have

E

(

sup
T∈Bµ

m,m̂(0,1)

(

ν2
n(T ) − p(m, m̂)

)

+
1I(∆)

)

≤ C ′
1

n
.

Now, we can see that the penalty is such that

∀m,m′, 4p(m,m′) ≤ pen(m) + pen(m′),(6.6)

and use the definition of ∆. We obtain on ∆ ∩ Ω:
1

2
‖êm̂ − em‖2

µ ≤ 4‖e − em‖2
n + 2pen(m)

+
1

4
‖êm̂ − em‖2

µ + 4
(

sup
T∈Bµ

m,m̂(0,1)

ν2
n(T ) − p(m, m̂)

)

+

and thus on ∆ ∩ Ω:
1

4
‖êm̂ − em‖2

µ ≤ 4‖e − em‖2
n + 2pen(m)

+4
(

sup
T∈Bµ

m,m̂(0,1)

ν2
n(T ) − p(m, m̂)

)

+
.

Taking the expectation of the last Inequality and using proposition 6.3, we get:

(6.7)
1

4
E(‖êm̂ − em‖2

µ1I(∆ ∩ Ω)) ≤ 4‖e− em‖2
µ + 2pen(m) +

C1

n
.

Gathering (6.4), (6.5) and (6.7) leads to

E(‖êm̂ − e‖2
A) ≤ 2‖em − e‖2

A +
8

F̄0

(

4‖e− em‖2
µ + 2pen(m) +

C1

n

)

+
C2

n

≤ 2
(

1 +
16

F̄0

)

‖em − e‖2
A +

16

F̄0
pen(m) +

C3

n
(6.8)

for any m ∈ Mn. This concludes the proof of Theorem 3.1. 2
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6.2. Proof of Proposition 6.1. Let us note that êm̂ is either 0 or arg minT∈Sm̂
Γn(T ). In the

second case, min Sp(Gm̂) ≥ max( ˆ̄F0, n
−1/2) and thus

‖êm̂‖2 =
∑

j,k

(âm̂
j,k)

2 = ‖Am̂‖2 = ‖G−1
m̂ Υm̂‖2

≤ (1/min Sp(Gm̂))2‖Υm̂‖2

≤ min(1/ ˆ̄F 2
0 , n)

∑

j,k

(

1

n

n
∑

i=1

ϕm̂
j (Xi)

∫

A2

1I(0≤u≤Yi)(Yi − u)ψk(u)du

)2

≤ n
1

n

n
∑

i=1

∑

j

(ϕm̂
j (Xi))

2
∑

k

(
∫

A2

1I(0≤u≤Yi)(Yi − u)ψk(u)du

)2

≤ φ1D(1)
n

n
∑

i=1

∫

A2

1I(0≤u≤Yi)(Yi − u)2du ≤ φ1D(1)
n

n
∑

i=1

Y 3
i

3
.

Therefore, it follows that

E
(

‖êm̂‖4
)

≤ φ2
1(D(1)

n )2E





(

n
∑

i=1

Y 3
i

3

)2




≤ φ2
1(D(1)

n )2n2
E(Y 6

1 )/9 ≤ φ2
1E(Y 6

1 )

9
n3. 2

6.3. Proof of Proposition 6.3. We use several times the same very useful inequality based
on the property that the squared norm of the orthogonal projection of a function is less than
the squared norm of the function itself. We use this property as follows:

∑

k

(
∫

A2

h(v)ψk(v)dv

)2

≤ ‖h‖2(6.9)

for any function h ∈ L
2(A2).

Let W = (X,Y ) and

ξT (W ) = ΨT (X,Y ) −
∫

T (X, v)1I{Y ≥v}e(v|X)dv.

To study the empirical process, we split ξT (W ) in 3 parts:

ξT (W ) = ξT,1(W ) + ξT,2(W ) − ξT,3(W ),

with

ξT,1(W ) = ΨT (X,Y )1I{Y ≤kn} − E(ΨT (X,Y )1I{Y ≤kn}),

ξT,2(W ) = ΨT (X,Y )1I{Y >kn} − E(ΨT (X,Y )1I{Y >kn}),

ξT,3(W ) =

∫

T (X, v)1I{Y ≥v}e(v|X)dv − E

(∫

T (X, v)1I{Y ≥v}e(v|X)dv

)

,

where W = (X,Y ). Then νn(T ) = (1/n)
∑n

i=1 ξT (Wi) can be split in the same way: νn(T ) =
νn,1(T ) + νn,2(T ) − νn,3(T ) with νn,k(T ) = (1/n)

∑n
i=1 ξT,k(Wi) for k = 1, 2, 3. We choose

(6.10) kn =

(

3n

log4(n)

)1/3

,
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Now, the main tool of the proof is the checkout of Talagrand Inequality (Talagrand (1996)):

Lemma 6.2. Let W1, · · · ,Wn be i.i.d. random variables and (ξT )T∈B a set of bounded functions
and B a unit ball of a finite dimensional subspace of L

2(A). Let νn(T ) = (1/n)
∑n

i=1 ξT (Wi)
where E[ξT (W1)] = 0, and suppose that:

i) sup
T∈B

‖ξT ‖∞ ≤M1, ii) sup
T∈B

Var[ξT (W1)] ≤ v iii) E

(

sup
T∈B

|νn(T )|
)2

≤ H2.

Then, there exists constants K > 0, K1 > 0 and K2 > 0 such that:

E

[

sup
T∈B

|νn(T )|2 − 2H2

]

≤ K

[

v

n
e−K1

nH2

v +
M2

1

n2
e
−K2

nH
M1

]

We apply Talagrand’s Inequality given in Lemma 6.2 to the terms involving νn,1 and νn,3 in
the following inequality:

E

(

sup
T∈Bµ

m,m̂(0,1)

(

ν2
n(T ) − p(m, m̂)

)

+
1I(∆)

)

≤ 3E

(

sup
T∈Bµ

m,m̂(0,1)

(

ν2
n,1(T ) − p1(m, m̂)/6

)

+

)

+3E

(

sup
T∈Bµ

n(0,1)

(

ν2
n,2(T )

))

+3E

(

sup
T∈Bµ

m,m̂(0,1)

(

ν2
n,3(T ) − p3(m, m̂)/6

)

+

)

,

where p(m,m′) = p1(m,m
′) + p3(m,m

′) and with Bµ
n(0, 1) = {T ∈ Sn : ‖T‖µ ≤ 1}.

• Study of νn,2.
Recall that E(Y 6

1 ) < +∞. We write:

E

(

sup
T∈Bµ

n(0,1)

(

ν2
n,2(T )

))

≤ 1

F̄0

∑

j,k

E

(

ν2
n,2(ϕ

n
j ⊗ ψk)

)

,

where (ϕn
j ⊗ ψk)j,k denotes here an orthonormal basis of Sn w.r.t the norm ‖.‖A. This implies,

as E(ν2
n,2(T )) = (1/n)Var(ξT,2(W )) and using (6.9), that

E

(

sup
T∈Bµ

n(0,1)

(

ν2
n,2(T )

))

≤ 2

nF̄0

∑

j,k

[

E

(∫

(Y1 − v)1I{v≤Y1}ϕ
n
j (X1)ψk(v)dv1I{Y1>kn}

)2
]

,

and with (M2)

E

(

sup
T∈Bµ

n(0,1)

(

ν2
n,2(T )

))

≤ 2φ1D(1)
n

nF̄0
E

(∫

A2

(Y1 − v)21I{v≤Y1}dv1I{Y1>kn}

)2

≤ 2φ1√
nF̄0

E(Y 3
1 1I{Y1>kn}) ≤

2φ1√
nF̄0

E(Y 3+p
1 )

kp
n

≤ 2φ1E(Y 3+p
1 )

3p/3F̄0

(log(n))4p/3

n1/2+p/3
≤ C

n

as soon as we take p > 3/2, e.g. p = 2.
• Study of νn,1.
We apply Talagrand’s Inequality, and for this purpose, we will have to check i), ii) and iii) and
to compute M1, v and H2 defined in Lemma 6.2.
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i) Search for bound M1. Under (A1), we have,

sup
T∈Bµ

m,m′
(0,1)

sup
x∈R,y∈R

|ξT,1(x, y)| ≤
1

√

F̄0

sup
T∈Bm,m′ (0,1)

sup
x∈R,y∈R

|ξT,1(x, y)|

Here Bm,m′(0, 1) = {T ∈ Fm∨m′ ⊗Hn : ‖T‖A ≤ 1} and T =
∑

j,k aj,kϕjψk where (ϕj ⊗ ψk)(j,k)

is an orthonormal basis of Fm∨m′ ⊗ Hn w.r.t. the norm ‖.‖A, where Fm∨m′ = Fm + Fm′ and
dim(Fm∨m′) = max(Dm,Dm′) under (M3) (nested collection).

|ΨT (x, y)| =

∣

∣

∣

∣

∣

∣

∑

j,k

aj,kϕj(x)

∫

(y − v)1I{v≤y}ψk(v)dv1I{y≤kn}

∣

∣

∣

∣

∣

∣

≤





∑

j,k

a2
j,k

∑

j

(ϕj(x))
2
∑

k

(
∫

(y − v)1I{v≤y}ψk(v)dv1I{y≤kn}

)2




1/2

≤ ‖T‖A





∑

j

(ϕj(x))
2

∫

(y − v)21I{v≤y}dv1I{y≤kn}





1/2

with Inequality (6.9)

≤
√

φ1(k3
n/3)max(Dm,Dm′) with (M1) − (M2),

≤
√

φ1(Dm +Dm′)n/ log2(n)

for kn = (3n/ log4(n))1/3 as given by (6.10). Therefore

sup
T∈Bµ

m,m′
(0,1)

‖ξT ‖∞ ≤ 2

√

φ1(Dm +Dm′)n

log2(n)
√

F̄0

:= M1.

ii) Search for bound v.

First, let B = max(Dm,Dm′)1/5 and write

Var[ξT,1(W1)] ≤ E
[

Ψ2
T (X1, Y1)1I{Y1<kn}

]

≤ E
[

Ψ2
T (X1, Y1)

]

≤ E
[

Ψ2
T (X1, Y1)1I{Y1≤B}

]

+ E
[

Ψ2
T (X1, Y1)1I{Y1>B}

]

.

Now, we study each term. First, we have for T ∈ Bµ
m,m′(0, 1)

E
[

Ψ2
T (X1, Y1)1I{Y1≤B}

]

≤ E

[

(
∫

T (X1, v)(Y1 − v)1I{v≤Y1}dv

)2

1I{Y1≤B}

]

≤ `(A2)B
2
E

[∫

A2

T 2(X1, v)1I{v≤Y1}dv

]

= `(A2)B
2

∫∫

A
T 2(x, v)F̄1(x, v)dxdv

= `(A2)B
2‖T‖2

µ = O(B2) = O((max(Dm,Dm′)2/5).



20 ELODIE BRUNEL(1), FABIENNE COMTE(2)

On the other hand, for T (x, y) =
∑

j,k aj,kϕj(x)ψk(y), and ‖T‖2
µ ≤ 1 we have,

E
[

Ψ2
T (X1, Y1)1I{Y1>B}

]

≤
∑

j,k

a2
j,k

∑

j,k

E

[

ϕ2
j(X1)

(

(Y1 − v)ψk(v)1I{v≤Y1}1I{Y1>B}dv
)2
]

≤ 1

F̄0
E





∑

j

ϕ2
j (X1)

∫

A2

(Y1 − v)21I{v≤Y1}1I{Y1>B}dv





≤ φ1 max(Dm,Dm′)

F̄0
E

[
∫

A2

(Y1 − v)21I{v≤Y1}1I{Y1>B}dv

]

=
φ1 max(Dm,Dm′)

F̄0

E(Y 3
1 1I{Y1>B})

3

≤ φ1E(Y 6
1 )max(Dm,Dm′)

3F̄0B3
= O((max(Dm,Dm′)2/5).

Therefore,

sup
T∈Bµ

m,m′
(0,1)

Var[ξT,1(W1)] ≤ C(Dm +Dm′)2/5 := v,

where C is a constant depending on `(A2), φ1, F̄0 and E(Y 6
1 ).

iii) Search for bound H2 : Let us write here T =
∑

j,k aj,kϕjψk where (ϕj ⊗ ψk)(j,k) is an

orthonormal basis of (Fm + Fm′) ⊗Hn w.r.t. the norm ‖.‖A.

E



 sup
T∈Bµ

m,m′
(0,1)

|ν2
n,1(T )|



 ≤ 1

F̄0
E

(

sup
T∈Bm,m′ (0,1)

|ν2
n,1(T )|

)

≤ 1

F̄0

∑

j,k

E
(

ν2
n,1(ϕj ⊗ ψk)

)

≤ 1

nF̄0

∑

j,k

E

(∫

(Y1 − v)1I{v≤Y1}ϕj(X1)ψk(v)dv

)2

≤ 1

nF̄0

∑

j

E

[

ϕ2
j (X1)

∫

(Y1 − v)21I{v≤Y1}dv

]

with (6.9)

≤ 1

nF̄0

∑

j

∫∫

ϕ2
j (x)

∫

(y − v)21I{v≤y}dvf(X,Y )(x, y)dxdy

≤ 1

nF̄0

∫∫

(
∑

j

ϕ2
j (x))

y3

3
f(X,Y )(x, y)dxdy

≤ φ1 max(Dm,Dm′)E(Y 3
1 )

3nF̄0
.

Therefore,

E



 sup
T∈Bµ

m,m′
(0,1)

|ν2
n,1(T )|



 ≤ φ1(Dm +Dm′)E(Y 3
1 )

3nF̄0
:= H2.
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Applying Lemma 6.2 yields that

E



 sup
T∈Bµ

m,m′
(0,1)

ν2
n,1(T ) − 2H2



 ≤ K ′
(

(Dm +Dm′)2/5

n
e−K ′

1(Dm+Dm′ )3/5
+
Dm +Dm′

n log4(n)
e−K ′

2 log2(n)

)

≤ K”

n

(

D2/5
m e−K ′

3D
3/5
m e−K ′

3D
3/5

m′ +D
2/5
m′ e

−K ′

3D
3/5

m′

)

+
2K”

n1/2 log4(n)
e−K ′

2 log2(n)

using that (x+ y)a ≥ (xa + ya)/2 for a = 2/5 or a = 3/5. As k2/5 exp(−Ck3/5) is bounded and

summable for k ∈ N and K”|Mn|n−1/2 log−4(n)e−K ′

2 log2(n) is O(1/n), it follows that

E



 sup
T∈Bµ

m,m̂(0,1)

ν2
n,1(T ) − 2H2



 ≤
∑

m′∈Mn

E



 sup
T∈Bµ

m,m′
(0,1)

ν2
n,1(T ) − 2H2



 ≤ C

n
.

• Study of νn,3.

(i) Search for M1. First, let T (x, y) =
∑

j,k aj,kϕj(x)ψk(y) ∈ Bµ
m,m′(0, 1), we note that

∫

A2

T 2(x, v)dv =
∑

j,j′

(
∑

k

aj,kaj′,k)ϕj(x)ϕj′(x)

For bj = (
∑

k a
2
j,k)

1/2, we have
∑

j b
2
j ≤

∑

j,k a
2
j,k ≤ 1/F̄0, and

∫

A2

T 2(x, v)dv ≤
∑

j,j′

bjbj′|ϕj(x)ϕj′(x)| = (
∑

j

bj|ϕj(x)|)2

≤
∑

j

b2j
∑

j

ϕ2
j (x) ≤ (1/F̄0)‖

∑

j

ϕ2
j‖∞

≤ (1/F̄0)φ1 max(Dm,Dm′).

This yields

|
∫

T (x, v)1I{y≥v}e(v|x)dv| ≤
(∫

A2

T 2(x, v)dv

∫

A2

e2(v|x)1IA1(x)dv

)1/2

≤ [(1/F̄0)φ1 max(Dm,Dm′)]1/2 sup
(x,v)∈A

|e(v|x)|
√

`(A2)

=

(

`(A2)‖e‖∞,Aφ1

F̄0

)1/2
√

Dm +Dm′ := M1

(ii) Search for v.

E

(
∫

T (X1, v)1I{Y1≥v}e(v|X1)dv

)2

≤ E

[
∫

A2

T 2(X1, v)1I{v≤Y1}e
2(v|X1)dv

]

≤
∫∫

A
T 2(x, v)e2(v|x)

∫

1I{v≤y}f(X,Y )(x, y)dydvdx

≤
∫∫

A
T 2(x, v)e2(v|x)F̄1(x, v)dvdx

≤ ‖e‖2
∞,A‖T‖2

µ = ‖e‖2
∞,A := v.
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(iii) Search for H2. We also have with the same argument,

∑

j,k
E

(∫

ϕj(X1)ψk(v)1I{Y1≥v}e(v|X1)dv

)2

=
∑

j

E

[

ϕ2
j (X1)

∫

A2

1I{Y1≥v}e
2(v|X1)dv

]

≤ φ1 max(Dm,Dm′)

∫

A2

E(e2(v|X1))dv ≤ φ1(Dm +Dm′)

∫

A2

E[E((Y1 − v)2|Y1 > v,X1)]dv

≤ φ1(Dm +Dm′)`(A2)E(Y 2
1 ).

Therefore,

E



 sup
T∈Bµ

m,m′
(0,1)

|ν2
n,3(T )|



 ≤ φ1(Dm +Dm′)E(Y 2
1 )`(A2)

nF̄0
:= H2.

Applying Lemma 6.2 yields that

E



 sup
T∈Bµ

m,m′
(0,1)

ν2
n,3(T ) − 2H2



 ≤ K ′
(

1

n
e−K ′

1(Dm+Dm′ ) +
1

n
e−K ′

2

√
n

)

,

and this gives the result in the same manner as in the previous cases. 2
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