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ABSTRACT. We consider a linear mixed-effects model where Y3, ; = ax + Bit; +¢ck,; is the
observed value for individual k at time ¢;, k=1,...,N,j=1,...,J. The random effects
ag, Bk are independent identically distributed random variables with unknown densities
fo and fg and are independent of the noise. We develop nonparametric estimators of
these two densities, which involve a cutoff parameter. We study their mean integrated
square risk and propose cutoff-selection strategies, depending on the noise distribution
assumptions. Lastly, in the particular case of fixed interval between times t;, we show
that a completely data driven strategy can be implemented without any knowledge on
the noise density. Intensive simulation experiments illustrate the method.
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1. INTRODUCTION

Longitudinal data and repeated measurements along time of a process are classically
analyzed with mixed-effects models. This allows taking into account both the inter-subjects
and the intra-subjects variabilities. In this paper, we focus on a simple linear mixed-effects
model written as follows. Let Y} ; denote the observed value for individual k at time t;,
fork=1,...,N,j=1,...,J. The linear mixed-effects model is defined as

(1) th:ak—i-ﬁktj—i-&“k,j, k=1,...,.N 7=1,...,J,

where (ay, k) represent the individual random variables of subject k, also called random
effects, and (e ;) are the measurement errors. We assume that:
[A1] times (Zj)1<j<s are known and deterministic,
[A2] measurement errors €} ; are independent identically distributed (i.i.d.) with a
density f-, such that E(e?¢) # 0, for any u € R,
[A3] variables (o, B)) are i.i.d. and we denote by f, and fg the densities of oy and
fr,

[A4] the sequence (o, Bk)1<k<n is independent of the sequence (e ;)i1<k<n1<j<J-

When the random effects (o, B;) and errors (g ;) are normally distributed, the maxi-
mum likelihood has been widely studied, the marginal density of Y having a closed form
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[see e.g. Pinheiro and Bates, 2000, and references therein|. However, the normality as-
sumption of the random effects may be inappropriate in some situations. For example
when an important covariate is omitted, a bimodal density may be more pertinent. As
recalled by Ghidey et al. [2010], wrongly assuming normality of the random effects can lead
to poor estimation results. Some authors propose to relax this assumption by developing
estimation of the random effects density first four moments [see e.g. Wu and Zhu, 2010,
and references therein|. But estimation of the random effects complete density may even
be more appropriate, especially if the true density is multimodal. Our aim is therefore to
estimate the densities f, and f3.

Several approaches have been proposed for this purpose. Shen and Louis [1999] consider
a smoothing by roughening method without any assumption on f.. Assuming ¢ Gaussian,
Zhang and Davidian [2001], Chen et al. [2002], Vock et al. [2011] propose a semi nonpara-
metric approach based on the approximation of the random effects density by an Hermite
series. Verbeke and Lesaffre [1996] develop an heterogeneity model where the random
effects have a finite mixture Gaussian density. Ghidey et al. [2004] propose a penalised
Gaussian mixture approach. Morris and Carroll [2006] use a wavelet-based approach. Non
parametric maximum likelihood has also been studied by Laird [1978|, Mallet et al. [1988],
Kuhn [2003|, Chafai and Loubes [2006]. Recently Antic et al. [2009] compare several of
these approaches with an intensive simulation study.

In this paper, we consider a different approach based on deconvolution tools. Deconvolu-
tion has been widely studied in various contexts. First, the noise density was systematically
assumed known and different estimators have been proposed: kernel estimators (e.g. Ste-
fanski and Carroll [1990], Fan [1991]), kernel estimators with bandwidth selection strategies
(Delaigle and Gijbels [2004]), wavelet estimators (Pensky and Vidakovic [1999]), or pro-
jection methods with model selection (Comte et al. [2006]). Then several extensions have
been considered to relax the assumption about noise density knowledge. Neumann [1997|
first studied the case where the noise density is estimated from a preliminary noise sample.
A complete adaptive procedure has been provided by Comte and Lacour [2011]. Recently,
several papers focus on repeated observations, which provide another way to estimate the
noise density, see Neumann [2007|, Delaigle et al. [2008]|, Meister and Neumann [2010] or
Comte et al. [2011].

We propose now a repeated observations strategy applied to mixed-effects models. We
describe different estimators whether the noise density is partly or completely unknown.
A preliminary estimation of f. Fourier transform is used, if needed. We study the risk
bounds of these estimators and show how the context of longitudinal data affects the
variance terms of the bounds. We also propose cut-off selections depending on the noise
distribution assumptions. Especially, a completely data driven estimator is proposed in
the case of unknown noise density.

The paper is organized as follows. Sections 2 and 3 present the estimators of f, and fg,
their risk bounds and the cut-off selection assuming f. is known. In section 4, the partic-
ular case of a Gaussian noise f. is considered. We propose an optimal cut-off selection in
the two cases 0. known or unknown. Finally, the general case with f. completely unknown
is considered in section 5 and new estimators and cut-off selections are proposed. Perfor-
mances of the different estimators are evaluated by simulation in section 6. Concluding
remarks are proposed in section 7. Proofs are gathered in Appendix.
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2. DEFINITION OF THE ESTIMATORS WITH A KNOWN NOISE DENSITY

2.1. Model and notations. In this section, we consider model (1) under Assumptions
[A1]-|A4]| and the additional assumption:

[A5] the noise density f. is known.
For the estimation of f,, we shall distinguish two cases.

— First case, the observation at time 0 is available. For notation simplicity, we will
denote by Y}, o the observation associated to time ¢y = 0, and we will consider J as
the number of other observations with ¢; # 0.
— Second case, no observation is available at time 0, then we have t; # 0 for all
j=1,...,J.
For the estimation of fg3, we do not distinguish the two cases. We shall also consider that
the time sequence (t;)1<j<s is in increasing order.
In the following, for notation simplicity and without loss of generality, we will assume
that J is even. Then for j =1,...,.J/2, we denote by

Aj =taj —taj-1

the time step between two successive observations.

Assumptions [Al]-[A4]| on model (1) imply that for a given j, (Yj j)r=1,. .~ are ii.d.
Thus we denote by fy; the density of Yy ;.

We also need few notations related to Fourier transform theory. If f is an integrable
function, then we denote by f*(u) = [ €™®f(z)dx the Fourier transform of f on R. For
two real valued square integrable functions f and g, we denote the convolution product of
fand g by (f *g)(x) = [ f(x —y)g(y)dy and we recall that, if f and g are both integrable
and square integrable, then (f x g)* = f*g*. If f is integrable and square integrable we
recall that inverse Fourier transform formula yields f(z) = 1/(27) [ e f*(u)du.

2.2. Estimator of fg. We first remark that by introducing the difference between two
successive observations normalized by the length of the time interval, for j = 1,...,.J/2,

Yioj — Yioj1

Zk,j = A] Y

we have
€k,25 — €k,2j—1
(2) Zy; = P+ =L ———

A

For a fixed j, the variables (Z j)k=1,. .~ areii.d. but the variables Z ; and Zj; for j # 1
are not independent. Let us denote fz, the density of the variables Zj ;. It follows from
(2) and the independence of (8)) and (e ;) under [A4], that

J

3) fz; = fo* f(ék,Qj—Ek,zj—ﬂ/Aj'
Thus, by noting that, for all j =1,...,J/2,

- Ck,25 " %k,2j—1 ;o Fu
« i A ey e YA Ck2j TUVA-Ek,2j-1
f(£k,2j—5k,2j—1)/Aj (w) = E <e ’ ) -k (e ’ ©

Y Y 2
- (eZTf) E (e_’Tf) —

)

f:%)
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we get, by taking the Fourier transform of equality (3),

(4) 2, () = f5(u) | f2(u/B)).
It follows from (4) that, for all j =1,...,J/2,

[z, (u)
folu) = ——~—~—75-
’ |f&(u/Ag)?
In order to exploit all the available observations, we can also write:
J/2 13 ( )

2
Z < |1z U/A

Now, Fourier inversion implies
J/2 «
1 ‘ 1 2 7,(u)
5 — —UuT £* d — —tuxr ~ ]761 .
(5) fa(x) 27T/e fp(u)du 27T/e J; f2(u/ D)2 u

This formula allows us to define the estimator of fs based on the natural estimator of
fz,(u)
J

N Yi,2i—Yk,2j-1

(6) fZ N Z ekaj _ Z ez’u4Aj 7

k 1

Plugging (6) in (5) would give a proposal but may induce convergence problems of the
integral. Thus, we introduce a cutoff 7m in the integral defining the estimator of fg:

o 1 ™m J/2 * (
Tom(e) = %/ _Z 720/,

where fg\](u) is given by (6). To summarize, our proposal to estimate fz is:

N J/2 zqu]
(7) Fom(e ;;% /m T AR

Note that under [A5]|, the estimator can indeed be computed.

2.3. Estimator of f,. First, we can notice that, if observations for ty = 0 are available,
then we have

Yio= ok +eko, k=1,...,N.
This model is a classical deconvolution model. Thus, we propose to estimate f, with the

deconvolution estimator proposed by Fan [1991] with specific kernel as in Comte et al.
[2006]:

o 1 N ™m ) ei“Yk»O
8) 0 ()= —= / e du
( @) =gy 2 |

Its theoretical properties have been first studied by Stefanski and Carroll [1990], Fan [1991],
and then by Comte et al. [2006] for cutoff selection and in more general context of functional
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regularities (see also Pensky and Vidakovic [1999] for such ideas in wavelet framework).

Now, we also provide an estimator when observations at t5 = 0 are not available. In
that case, we follow a construction similar to the one used for fg,,. Set, for j =1,...,J/2,

v Yioj  Yroi1
kg = -
to; toj—1

By definition of Y} ;, we have

Vk.:<i_ 1 > o+ (%_%_M>
J tgj tgj_1 t2j t2j—1

Remark that for a fixed j, the variables (VM) k=1,..,N are i.i.d. but the variables V} ; and
Vi for j # | are not independent. Let us denote by f‘*,] the Fourier transform of the

density of the variables V}, ; and

' 1 1
bi= toj  toj—1
We have, for all j =1,...,J/2,
fv,(u/pj)

9) fa(u) =

f2(u/(pita;)) f2(—u/(pjtaj-1))

A natural estimator of f(u) would be to compute the mean of the estimators of (9) for
j=1,...,J/2. However, this choice can lead to numerical instability because the quantity
1/(pjta;) involved in the denominator of (9) can be large for large values of j. Indeed, when
Aj; = Ais fixed, then t; = jA, 1/(pjt2;) = —(25 — 1) and fZ(u/(pjt2;)) = f2(—(25 — D)u).
Since fZ tends to zero near infinity, fX(u/(pjts;)) decreases when j increases. Therefore
the estimator of f* based on (9) may artificially take large values for large j. It shall be
noted this is not the case for the estimator of f;(u) which only involves the step size A;.

Thus, for numerical reasons, we propose an estimator of f*(u) which is only based on
the first observation V;

_ eV, 1u/p1

Jalu sza (u/(p1t2)) f2(—u/(p1t1))

Finally, the estimator of f, is defined by

- 1 N ™m ) etV 1u/p1 d
10 a,m = o N o
(10) Jam(@) 27TNkZ:1/—ﬂme F2(u/ (i) F2(—u/(prtn)

3. RISK BOUNDS AND CUTOFF SELECTION WITH KNOWN NOISE DENSITY

3.1. Risk bound for the estimator of f3. Let usdefine fg ., suchthat /3 = f511_rm;mm)-
The function fg3,, is the function which is in fact estimated by f/g\m We wish to bound
the mean integrated squared error (MISE) defined by E <||f@ - f/ﬁ-:nHQ) We first remark
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that the MISE is the sum of the integrated bias and the integrated variance:
_— 2 — 2 — — N2
B =] = & (o) = s + B[ o~ (75

We can easily calculate the expectation E ( f/ﬁ\m> of the estimator f;;;n We have

J/2 zqu ])

E(fm@) = Yy [ e
k=1

= / !f U/A)\
I

k‘h

fz,(w)
|F2(u/B)) U/A )|

—zuxf dU— fﬂm( )

Y&
- —duxr ___ 45 7
NI Z o
k=
.
27
where the last line follows from (4). Therefore the pointwise bias is

15@) ~E (@) = o [ ™ (50~ fn@du= o= [ pi(u)du,

2 2 ‘Ulzﬂm

and the integrated bias is equal to

2 1 / * 2
— fagml” = — u)|® du.
1f5 = foml” = 5 \u|2m’fﬁ( )l

To compute the integrated variance we first write, using Parseval formula,

e s - 3,0 2
7o~ fom| = J%Z [ |f6 . /A 1 e (1)

2

_ L2 e - Inw)
27 —mm Jj:l |f;(u/AJ)|2
2

J/2 N ) ; )

1 m uly, —E uly,

(11) - 2( e — Be - ’)
27 —Tm N j=1 k=1 ‘f:(u/A])’
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Thus, we get
m J/2 w1
. 2 2 A
() = v (3
TN J? —Tm ;|f:(u/AJ)|2
_ 2 wm (112 Var(e%1.5) I/ cov (1, e Pi)
= TN | \ & T tarm 1 T2 e tar o )
T \j=1 e I =t e e i’
5 wm [ J/2 1 J/2
< —/ + (1—1f3(u du
TN J? —Tm le ’f (U/A 4 ]le o

J/2
4 1 [m™ d
< NEX <2— / 7u4> 5
j=1 T J—mm ‘fs(u/A])’
Note that when the observation times are equally spaced (A; = A), this reduces to

E“m_fﬁ’m“Q = ﬂ]ifj /7:; yf;(Z;LA)y‘* +%

This result shows that we reduce the variance of a factor 1/.J by taking the mean of all J
available values of j in (7).
To summarize, the following result holds.

Proposition 1. Consider Model (1) under Assumptions [A1]-[A5] and ﬁ;?n the estimator
gwen by (7). If fa is integrable and square-integrable, then

(12) E 2 gu > L1 ™ du m
o= 5] —27r/|u2m‘fﬁ vl "TNREL %/_mm i

Inequality (12) requires few comments. First, the term

S s(w)? du

o L
is a squared bias term due to the truncation of the integral. It decreases when m increases,
and the rate of decrease is faster when the function fg is more regular. Indeed, classical
regularity spaces considered for density fs on R are described by:

[A6] f5 € Ap(L) = {fg € L' L2, [|f5(x)]*(2® + 1)°de < L} with b>1/2, L > 0.
Then, under [A6], we have the following bias order:

(13) 1fs = foml® < CL(mm)~".

Obviously, the larger the regularity index b of fg, the faster the bias decreases.

The two other terms of inequality (12) are variance terms. They clearly increase when m
increases. Moreover, the first of these two terms is dominating: since |f*(u)| < 1,Vu € R,
we have [ du/|f€ (u/A)|* > 2wm and it is usually much larger. For instance, if the

noise is Gaussian, [™" du/|fZ(u/A;)[* is larger than g202(Tm/A; )QAQ/(QJ ™m).
We have therefore to ﬁnd how to realize a compromise between the blas and the variance
terms. This is the purpose of section 3.3 in which a cutoff selection is proposed. Note that

2

du
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we can also provide pointwise risk bounds for the estimator f/g,\m; details about this are
gathered in Appendix A.

3.2. Risk bound for the estimator of f,. Let us define f, , such that fj ,,, = f31

The function f, ,, is the function which is in fact estimated by E;n Using similar calcu-

[—7m; Tm]-

lations to those used for ﬁ;;n, we get the following global MISE bound.

Proposition 2. Consider Model (1) under Assumptions [A1]-[A5] and estimator E;n
given by (10). If f, is integrable and square integrable then we have

2 1 9 o du
< — d
< 2w/u|zm'f ()2 dut 5

: () 72 (79
The same comments as for bound (12) apply here.

(14) E| fom = fo

2+

2|3

—7Tm

3.3. Cutoff selection. We propose the followmg model selection procedure for choosing
a relevant cutoff m for the estimators fg m and fa m. We define for w =« or w =

My = argmenﬁléln y {—wa,mH2 + penw(m)} ,

where for w = :

4 2 1 [ du m
(15) peng(m) = kg | — —/ _ |+ =],
’ 572 2\ 5 L ) T W
and for w = «a,
1 Tm du m
(16) R e s+
fs (p1t2> fs (p1t1>‘

Here kg and k, are constants which are calibrated once for all on preliminary simulation
experiments. Moreover, we set

My n ={m € {1,... N}, such that pen,(m) < 1}.
We can prove the following result.

Theorem 1. Consider Model (1) under Assumptions [A1]-[A5] with f, integrable and
square integrable. Assume that the noise is ordinary smooth, i.e. that there exist two
constants ce, Ce such that, Vx € R,

(17) ce(1+2%)° < 1/|f2(2)]? < C(1 +2).

Then, for w = «, (3,

— C/
A 2) <« i _ 2 il
08)  E(Wfene — £lP) <€ inf (1o~ ol +peny(m) + 5.

where C and C' are constants depending on the problem.
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Inequality (18) shows that the resulting estimator automatically realizes the squared-
bias/variance trade-off, up to a multiplicative constant C. For the sake of simplicity, the
result is given only in the ordinary smooth case. It can be obtained in general setting of
ordinary or super smooth noise, provided that a factor is added in the penalty for the super
smooth case, as detailed in Comte et al. [2006]. In practice, in the case of super smooth
noise, we multiply the penalty peng by the factor

2 L1 ™
(19) log Tﬂ;(%lwmm) /log(m + 1)

and the penalty pen,, by the factor

1 mm du
(20) log | — / Jlog(m + 1),
PN e G e )

Indeed, it is shown in Comte and Lacour [2011] that this is a slight over-penalization which
has the advantage of being easy to generalize to the unknown noise case.

4. SPECIAL CASE OF (GAUSSIAN NOISE

In this section, we assume that f. is Gaussian and centered, and that [A6] holds. We
distinguish two cases whether o2 is known or not.

4.1. Cutoff choice for % when o2 is known. The Fourier transform of f. is fX(u) =
exp(—c2u?/2). Let Ayn be a constant such that for all j = 1,...,J, Ay < Aj. Then
we get
—— < exp(20z (u/Apin)*)du
/_7"7” ‘f:(u/A])‘4 —Tm c e
< 2mmexp(202A, 3 72m?)

which, associated to [A6] and inequality (12), gives the following result.

Proposition 3. Consider Model (1) under Assumptions [A1]-[A6] with fg integrable and

square integrable, and assume that € is Gaussian and Aj > Apn, Vj = 1,...,J . Then
the choice
/ 1/2
(21) o = mo (o) = [ 0B
’ ’ 4m202A 2

gives the bound E(H% — £5l1?) = O(1/[log(N J)]®) provided that Ky < 1.

The consequence is that the convergence rate of the estimator is logarithmic, which
is rather slow. Nevertheless, simulation experiments show that deconvolution estimators
behave well also in this setting. It is easy to see that the rate will be much improved if fg
is also Gaussian or more generally super-smooth.
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4.2. Cutoff choice for m when o? is known. Now, we assume that A; = A is fixed.
The main variance term of Inequality (14) with p1t; = —1/2 and pite = —1 is of order:
2 m 4
— exp(bolu?)du < Wm exp(5mloim?).

—Tm

Under [A6], the bias order is given by (13). We deduce that a good choice of m is

%b@M)W

(22 0 = o) = (“E

with s}, < 1. It is worth noticing that here and contrary to mg g, the choice mg o does not
depend on the step A.

4.3. Cutoff selection when o2 is unknown. The optimal choices mo,3 and mg  pro-
vided in the two previous sections depend on o2. When this variance is unknown, we
propose to replace it by an estimator. A natural estimator can be obtained based on the

following relations

(23) Var(Yy;) = JJZ = 03 + t?a% +2tjoq 3+ O'?
(24) cov(Yig, Yig) =055 = 04+ titpoh+ (tj +1)0a,s

which hold for all &, 7, 7/ and where o
covariance of (av, 31), respectively. Set Y ; = % Zé\le Y}, ;. The following quantities

o2, 0% and o, g are the variances of oy, §i and the

Mz

N

R 1 .

052{]‘ = NZ(YM—Y-J’)Qv and J%/.j,Y.j/_ D Vegr = Yy)
k=1

]g:

are natural estimators of sz and UJQ-J./, respectively. From equations (23) and (24), let us
define the 4 x 4 - matrix A

1 DB tgj 357t 1
At JZJ/3 3J ! 3 sy 1

1 JZJ/3 135 o 35 tajoa I

1 J(J 1) Z1<J<J ﬁzggjq’(tﬁtj’) 0

and the vector
J/3 52
7 Zj 10v.35
&2
JZ Y3] 1

Jz Y3] 2

J J(J-1) 21<J<J’ UY] Y.

Sy =

We assume that A is invertible. In this case, we deduce from equations (23)-(24) estimators
of 02 = (02, O'ﬁ, Ta,B: O 0?), which are defined as

62 = (Ug,aé,aaﬁ, ) = A1Sy
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J 3 J 3 J/3 J/2
As Ey is a M-estimator of parameters (J Z / §], 5 Z / §] g Z /1 U§] 95 J(J ) 214]@
if E(|Yk|*) < oo, there exists an explicit matrlx 7 such that

J/3 J/3 J/3 9 J/2 '
L
o R EO SR SR Dar s DR | E e
1<j<y’

We deduce that
(25) VN (52 - 0?) ;L—% N, A71zA Y

— 0

We assume that there exists a known upper bound for the unknown value of o, denoted
by ¢ maz- By plugging 62 in the definition (21) of mo,3, we obtain a random cutoff m:

log(NJ)

26 mog =mos(6:)/V2Am = —————— AMy,
( ) 0,8 Oﬁ( 6)/ n QﬁﬁeA;%nﬂ' n

where m,, = mg g o mam)/\/_
The study of fﬂ is complex in that case. We can prove the following upper bound
of the integrated rlsk

Proposition 4. Consider Model (1) under Assumptions [A1]-[A6], and assume that €

is Gaussian N(0,02) with unknown o, < Ocmaz- Then the estimator fﬁﬁaﬁ with ﬁ;?n
defined by (7) and mg g defined by (26) is such that

@) E(| o — folP) < € ([1og<NJ>]—b " %) |

It follows from Inequality (27) that the estimator % automatically reaches its best
possible rate, without requiring any information on the unknown function.
A similar proposal can be done for f&m.

5. ESTIMATORS WITH UNKNOWN NOISE DENSITY

In this section, we consider Model (1) under Assumptions [A1], [A3], [A4] and Assump-
tion |[A2’] replacing Assumption [A2]:
[A2’] Assumption [A2]| holds and the measurement errors ej ; are symmetric.

Note that the symmetry of the noise together with the condition fZ(u) # 0 imply that fZ
takes values in R /{0}, i.e. |f*(u)| = f*(u) >0, Vu € R.
Furthermore, we restrict to the following assumption on the observations design:

[A7] Aj = A for all j, such that t; = jA and J > 6.

5.1. Estimator of f. Under Assumptions [A2’] and |A7|, we can propose an estimator
of the density f.. Indeed, let us introduce

Wi = Zia—Zia

€k2 — €1 1

ﬁ ﬁ ( ) ) ) ) )

= Gt —Fx— P
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which implies that
* u « (U 5 U 4
Fiv () = B(e™™) = Beos(uW)) = |12 (5 ) I* = (£2(3)) -

Under Assumption [A2], we can estimate (fX)?* via

( YA (u/A) = Z cos(uWy).

Let us define estimators of fg and f, when f; is unknown. For numerical reasons, we can
not directly plug estimators of 1/(f*)? and 1/f* in (4) and (9) by considering 1/((f ) )12

and 1/((/7 )14, Therefore, following Neumann [1997], Comte and Lacour [2011] or Comte
et al. [2011], we define a truncated estimator of 1/(f)?

1 gren-e
(P[]

to be plugged in f/ﬁ-:n and a truncated estimator of 1/f*

1 L weN-ve
= 1/4
e [mw)”

to be plugged in f/a07\m and E;n
The error induced by the truncation is studied in the following lemma, which is an
extension of Neumann [1997|’s lemma for the case we study here.

Lemma 1. Assume that Assumption [A2’] holds.
(1) There exists a constant Cy such that

2

1
e G| ) ST TEwr " e

(2) There exists a constant Cy such that

< 1! C N
— A min @ ——————|.
~ | f2(w)]? bpeit2a,ay | f2(u) 2F2

5.2. Estimator of f3 with unknown f.. We can now define an estimator for fg by

1/2 —1
(28) . ‘ 1 2 CoN- CoN

2
1 1

(29) ACREED)

plugging (fgf*\)/2 in (4). Under Assumption [A7|, J > 6 and the observations used to estimate
fZ can be different from those used to estimate fg. The estimator of f3 when f. is unknown

is denoted by ffﬁ\;t and defined by

N J/2 —zua: Zy.,i)

(30) = 422%/ "

k=1 j=3 —mm U/A)
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Applying Lemma 1 shows that the risk bound in the case of estimated noise density is
getting more complicated. We denote for any function f integrable and square integrable

1 ™ * 2

Then we obtain the following risk bound

Proposition 5. Consider Model (1) under Assumptions [A1], [A2], [A3], [A4], [AT7].
Assume moreover that fg is integrable and square-integrable, then the estimator defined by
(30) satisfies

o Do(m, 1 Do(m, Dy(m, m
B Fam — Fl) < U = Sl + 10 200 4y (22000 (DS 6

where Cy 1s defined in Lemma 1.

This risk bound implies the usual bias term || £, — f3/|* and three terms of variance. The
terms 16Dy (m, 1)/[N(J—4)] and 6m/N correspond to the terms obtained in Inequality (12)
of Proposition 1 for known f*. The additional term, 4Co(Da(m, f3)/V/N)A(Ds(m, f5)/N)
comes from estimating f. If | f;]z decreases faster than | f*[3, it can happen that Dy(m, f3)
is bounded by a fixed constant. Then this term is negligible compared to Da(m,1)/[N(J —
4)]. Moreover, in Comte et al. [2011], in a context of repeated measurements, similar
variance terms are also obtained and their simulation experiments show that the first
variance term remains the dominating one. We conjecture that the same thing happens
here, even if the estimation may be more difficult.

For the adaptive procedure, we customize the proposals of Comte and Lacour [2011] to
the present case. More precisely, we replace f7 by its estimate in the penalty and in the
definition of the collection of cutoffs. For super smooth noise, an additional multiplicative
factor has to be added. Therefore, when the noise density is unknown, this multiplicative

—~—

factor must be systematically added “blindly". Practically, our estimator is fg ., defined
by (30) with

mﬁ:arg min {_Hfﬁ,mw"i_ﬁé—ﬁﬁ(m)}

meMg N
with
N 10g(%(zl’l)) 4Wl§2(m 1) m . 1 [ du
- - 2 ) Do(ma1) = — —
pes(m) = Ko | Rt ) D=5 (%)

and Mgy = {m € {1,...,N},peng(m) < 1}.

For ordinary smooth noise, this multiplicative factor behaves roughly like a constant. For
super smooth noise, it provides a slight overpenalization in the Gaussian case, as required
by the theory, see Comte et al. [2006] and Comte and Lacour [2011].

5.3. Estimator for f, with unknown f.. Analogously, we define for the estimation of
fa, either, if observations for j = 0, ty = 0 are available

1 N
_ E e’iqu’o
_ 1 [ N £
(31) fao,m(x) = —/ e k=1

Nidu,
27 ) —xm fz(u)
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or when observations at time 0 are not available

| N
- —2iAuVy 3
. 1 ™ . N /{,‘Zl ¢
(32) fomla) =5 [ e
27 J—xm f(=u) [z (2u)
otherwise. In that second case, observations used for the estimation of f are not used for

the estimation of the numerator. -
Now we detail the risk bound of the estimator fJ,, deduced from Lemma 1.

Proposition 6. Consider Model (1) under Assumptions [A1], [A2’], [A3], [A4] and [A7].
Assume moreover that f, is integrable and square-integrable and observations for tg = 0
are available, then the estimator defined by (31) satisfies

(33)

0 _f2) < —fallP+—= TFE N2 . :
E(1f8m—=Tall®) < W fam=Ffall+— /m |f:(u)|2+4cl mm4}< / “)

pe{l,..., 27 —7m |f5*(u)|2p
where Cy 1s defined in Lemma 1.

The first two terms of the right-hand-side of inequality (33) are the standard terms,
which are also obtained for known fZ. The last term comes from the substitution of f7 by
its estimate. The main difference with the deconvolution estimators studied in Comte and
Lacour [2011] comes from the fact that we replace f¥ by a truncated estimator based on
(fX)%, while in Comte and Lacour [2011], the truncated estimator is based on an estimator
of fZ. We notice that a similar (but still different) phenomenon happens for fg,, where
we replace ()2 by a truncated estimator based on (f*)%. The risk bound for jfg?n is in
fact similar to the one found in Comte et al. [2011].

If f, is very smooth, and in particular much smoother than f., then the integrals
ST 1 fE(w) 2/ (f2 (u))?Pdu may be convergent and the last term negligible. For instance,

if @ is Gaussian and ¢ is Laplace i.e. ¢ = 0.7/v/2 where 1 has density f,(z) = e 1?l/2,

then, for p = 1,2, 3,4,
™ *(u 2
[,
and the last term is less than (2C1k4/7)/N. If a is Gaussian with variance o2 and ¢ is
Gaussian with variance o2, then the same behavior happens provided that o2 > 402.

—~—

Practically, our estimator is 9 ., defined by (31) with
o =arg min { £, + pent (m) |
meMq N
with
_ log(2rl) 2l . 1 [™ d

(34) pen’ (m) = ggwl’ j=_— _au

log(m+1) N 27 J—mm (£2)2(u)
and Moy = {m € {1,...,N},pen’(m) < 1}.

A similar study can be performed for the estimator f;\;n
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0. =1/10 oe =1/4 0. =1/2

Estimator N =200 2000 200 2000 200 2000

o Gaussian om 0.324 0.037 0.402 0.048 0.745 0.105
f9m 0.243 0.082 0266 0.103 0544 0.113

Foom 0469 0.055 0520 0.094 2022 1.014

Fam 0.700 0.180 0.736 0.122 1170 0.228

B Gaussian  fam 0427 0.044 0313 0.032 0402 0.041
Fom 0.301 0.032 0285 0.042 0535 0.151

a Gaussian i 0.335 0.036 0.417 0.048 0.744 0.111
f9m 0238 0.074 0271 0.105 0434 0.118

Foom 0469 0.050 0.538 0.097 2.080 1.046

o 0448 0.092 0.770 0.162 1.151 0.234

3 Mixed Fom 1500 0.312 2.288 0425 6.648 1.311
Gaussian Fom 1407 0211 6578 2107 15.074 10.091
a Mixed . 1.690 0.339 6.116 0.684 10.166 5.203
Gaussian E 2.088 0.353 6.168 0.703 14.302 6.014
Foom 5.673 2.269 22.945 9.926 36.288 34.551

Fam 3.328 0.700 14.279 6.555 34.705 31.040

B Gaussian  fam 0424 0.053 0283 0.034 0428 0.043
Fom 0.267 0.036 0.297 0.047 0522 0.156

a Gamma 0 0.362 0.047 0.483 0.053 0.896 0.125
E\; 0.288 0.057 0.348 0.112 0.601 0.173

Foom 0476 0.053 0.618 0.126 2438 1.221

Fam 0.612 0.118 0.730 0.179 1477 0.307

3 Gamma Fom 0.395 0.053 0.351 0.047 0.410 0.080
Fom 0.315 0.047 0.335 0.054 0517 0.183

a Gamma 0 0402 0.047 0412 0.047 0821 0.113
@ 0.356 0.050 0.313 0.108 0514 0.164

Foom 0.653 0.060 0.586 0.115 2.368 1.232

o 0.859 0.106 0.876 0.136 1.295 0.289

3 Mixed Fom 1.247 0360 1.228 0.465 2.848  0.639
Gamma Fom 1.194 0331 1457 0.689 6.769 1.790

TABLE 1. Empirical MISE x100 computed from 100 simulated datasets
with e Laplace. Estimators of fo are f3 ., f3,,; fa,m and fo m. Estimators

of fg are f/ng and ffg\;t

6. SIMULATION STUDY

We consider simulations of Model (1) with noise having either Laplace density (o.n with
folz) = eVl /\/2) or Gaussian N'(0,02) density and t;j =jA, A =2, J=6. For both
« and [ distributions, we experiment four possibilities:

e Gaussian, NV (0, 1),
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e Mixed Gaussian, with 0.3N(—1, (1/4)?) + 0.7TA/(1, (1/4)?),
e Gamma distribution, v(25,1/25)/5, B
e Mixed Gamma distribution, [0.37(2,1/2) + 0.77(20,1/5)]/V/3.

All these densities are calibrated so that their variance is approximately 1. We consider
three values of o.: 1/10, 1/4, 1/2. This means that the ratios of standard deviations
of signal over noise are equal to 10, 4 and 2. In the last case, there is a lot of noise in
the model, and the robustness of the procedure is really tested. Moreover, to see the
improvement due to sample sizes, we take two values for N, N = 200 and N = 2000.

We compare the performances in term of MISE computed over 100 samples of the
estimators

. E;Tn as given by (7) (known noise) with model selection as described in Section
3.3 with constant kg of penalty (15) equal to 0.5 for Laplace errors and 0.001 for
Gaussian errors,

e f3.m as given by (30) (unknown noise) with model selection described in Section
5.2 and constant kg equal to 0.5,

. ng; . given by (7) (known Gaussian noise) with mg, = mg g(o.) given by (21)
with Iilﬂ = 1. Note that the value of n’ﬁ does not fulfill the constraint K,ﬁ < 1 but
other values seemed too small.

We also compare

. .]@:n given by (8) (known noise) with model selection as described in Section 3.3
with constant 2 equal to 2,

. ﬁ;n given by (10) (known noise) and penalization device with constant x, equal
to 0.5 in the Laplace case and 0.0001 in the Gaussian case,

. ﬁ?:n given by (31) (unknown noise) with model selection described in Section 5.3
and constant &% equal to 2,

. ﬁ,Tm given by (32) (unknown noise) with constant K, equal to 10,

. @t (known Gaussian noise) with mep = mo o (0:) given by (22) with ], = 0.5.

The results are gathered in Tables 1 and 2.

Clearly, for the estimation of f,, the estimator fQ,, based on the observations Y o at

to = 0 has better performances than the estimator m based on the other observations.
For simple problems, f/a,\m performs well but fails to recover the two bumps of the bimodal
distributions, unless the noise level is very low (o, = 1/10). It is worth mentioning that
estimating the noise characteristic function often improves the estimation: this has been
already observed in Comte and Lacour [2011] and in Comte et al. [2011] recently. This
may be due to the truncation of ﬁ which attenuates the small values of f. involved in the
denominator of the estimators of fg and f,. When the true f; is used, these small values
appearing in the denominator are not truncated.

The estimation of fg is very satisfactory and quite stable even for bimodal densities.
Globally, increasing the noise level does not degrade too much the results.

As expected, for both functions, increasing the sample size improves the estimation.

In the Gaussian case, we experiment the specific proposals of Section 4. The results are
always really interesting, and rather convincing for both sample sizes 200 and 2000; the
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main exception corresponds to the case where « is bimodal, where the estimator fails to
correctly estimate f, even for small noise. This method can be used for estimating fg and
more cautiously f,, if one is convinced that the noise is Gaussian.

7. CONCLUSION.

In this paper, we consider a linear mixed-effects model with random i.i.d. coefficients
ar and B and we study how to estimate their unknown distributions. We propose several
solutions, depending on the available information about noise density. Since it is often
assumed to be Gaussian, we show that specific strategies can be developed in this case.
In the more realistic case where it is unknown, we also propose general solutions based on
deconvolution strategies. All this material is tested on simulation experiments which show
the relevance of the methods. These proposals are all new and very different from existing
strategies for such models.

Several extensions may be considered in future works. First, we may wish to estimate the
joint distribution of o and 3, with known or unknown noise density. Secondly, remaining
in a linear setting, we may add fixed regressors with constant coefficients to be estimated.
Lastly, finding out if such strategies may be successful for more general nonlinear mixed-
effects model remains an open question.

APPENDIX A. POINTWISE RISK BOUND OF fg
The variance of the estimator is
J/2 zqu i

Var (fﬁ,m(x)) = N2J2 47T2 ZV&I‘ Z/ - ’f* u/A )’ du
J/2 m wZy,
. e J
— V —iTu d
J24 2 Z o (/me 2 (/D)) “)
/2

4 1 /Tl'm iy ez‘uZ;w- /ﬂm . eiZZk,j, )
+—— cov e ——— du, e —————dz|.
NP 2 ( o AP e AP

J:3'=1,5#]

For the first part of the decomposition, we have

™m ) ezqu j WZk J
Var / ety __ = " / —zmu du
—mm ‘f* ’U,/A )’ —mm ’U,/A )‘
i(u—2)Z,;
</ / fzz(u z) ¢ - 5 du dZ)
o TS HIZOrS)

/ / et ij =) du dz
—rm |2 (u/ D) | f2(2/ A))

< /ﬂmw U/|fz )|dw

2

IN

IN
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o. =1/10 o.=1/4 oe =1/2

Estimator N =200 2000 200 2000 200 2000

a Gaussian om 0.378 0.032 0.475 0.041 0.839 0.115
f9m 0.273 0.078 0281 0102 0871 0.115

Form 0.999 0.100 0463 0.119 3.448 3.357

Form 0.597 0.060 0.878 0.124 2.891 0.855

oo 0.519 0.066 1.219 0467 7.883 5.750

8 Gaussian  fym 1542 0171 0448 0058 0.245 0.044
fom 1.081 0.137 1939 0576 1279 0.401

f5mane 1201 0.154 0339 0.051 0449 0.126

a Gaussian  f9, 0.339 0.034 0405 0.049 0.769 0.116
f9m 0.251 0.073 0276 0103 0.771 0.119

Fom 1.057 0.106 0464 0.125 3418 3.358

Fom 0.519 0.062 0845 0128 2.770 0.834

Formone 0.552 0.071 1.193 0470 7.883 5.750

3 Mixed fom 1423 0.150 5705 3.745 0.225 17.173
Gaussian fom 1945 0.189 3910 0.666 1.279 2.659
Fomor, 1212 0.146 11.329 6.843 0.449 32.819

o Mixed 0 1.758 0.354 6.854 1.298 16.623 7.780
Fo 2270 0391 6.78 2300 21.627 13.979
5.586 3.605 30.503 30.099 37.200 37.163
6.528 0.917 22195 13.291 36.105 34.323
10.692 6.270 35.626 34.765 40.127 38.672
1.464 0.163 0.534 0.052 0.253 0.040
0.941 0.086 2.821 0.795 1.949 0.552

Gaussian

)

[ Gaussian

I8,mopt 1.186 0.145 0.386 0.047 0.463 0.126

a Gamma O m 0.403 0.048 0.481 0.056 0.912 0.162
E 0.330 0.052 0.336 0.117 0.783  0.177

i‘-ﬁ@ 1.106 0.102 0.519 0.180 3.852 3.765

Fom 0.648 0054 1.020 0.175 3.005 1.015
oo 0.572 0.070 1418 0.617 8208 6.129
B Gamma  fam 1578 0.155 0497 0056 0339  0.053
fom 0.832 0.114 1.927 0574 1573 0.484
foimon, 1224 0.143 0390 0.051 0591  0.197
0

a Gamma 0 0.364 0.045 0462 0050 0.948 0.158
f9m 0.310 0057 0.330 0.128 0.826 0.171
form 0.968 0.085 0483 0.176 3.839 3.757
Form 0.574 0056 1.008 0.173 3.002 0.977
oo 0.534 0.064 1404 0.611 8199 6.128
3 Mixed fom 1743 0305 1.120 0551 5719 4999
Gamma fom 2032 0342 2971 1.054 2959 1.016
f5mane 1418 0308 2229 0977 7.094 6.656

TABLE 2. Empirical MISE x100 computed from 100 simulated datasets
with ¢ Gaussian. Estimators of f, are fQ ., fQ ., fam and fom,,,. Esti-

mators of fg are f/g,\m, j;;n and !}‘Zm\om.
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by applying bidimensional Cauchy Schwarz inequality with respect to the measure |f }j (u—
z)|dudz and by using then Fubini. Thus

™ ) ez‘qu,]- ™n
Var / e —————du| < / P — /|f€ (w/A; )|?dw
—mm | f2(u/Ay)] —mm | f2 U/A
m™m 1
< IEPA [
—em | f2(u/05)]*
For the second part of the variance decomposition, we have
™m ) uZy ™m ] 122y, 1
|cov (/ e*m”ei]2 du,/ 67”267]2 dz) |
—m |f2(u/Ag)] —m |f2(2/A5)
= )T~

4772m/|f§(w)|dw

N

IN

By gathering the terms, we obtain

J/2

_ 1 L am [ f5w)ldw
< E , - - L pr
Var (fﬁ,m(x)> = 12N J2 =~ 1f=174, /_mn |f5*(u/Aj)|4 du + T N

When the observation times are equally spaced with A; = A, we obtain the following
bound

T™m

S A v 4| £
— mm | f2 (u/A;)] 1m
Var (frm(@)) < 2| fPa—EW2l— 4 022,

Thus the MSE is bounded by

Proposition 7. Consider Model (1) under Assumptions [A1]-[A5] with fg integrable and
square integrable, and f. € La(R) then,

E(‘m(x)—fg(x)r) < (% | f5(u (u)|du)?

|u|>mm
/2 .
2Hfa!!2 1 /’”” 1 A f5ll m
35 A‘ 7du—|— —.
(85) x N2 TraaE T N
]_
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APPENDIX B. PROOFS

B.1. Proof of Proposition 2. We can easily calculate the expectation of the estimator
fa,m(z) defined by (10). We have

N ( in,lu/Pl)

2(7nt) - %,2%/ ) )
5 pit2 € \rita

_ l - i —Zux ka 1 (U/pl) d
N 27 b
k=1 5 p1t2 fs p1t1
1 7ZU,1'
- % - fa( )du - foz,m(x)
The integrated bias is therefore given by:
(fa—E(fam)H 2 ()2 du
|u|>7m
The integrated variance is
— 2 1o I /) = Sy (u/p)
‘fa,m_fa,mH = 2_ e " U
whm 1 (5m) 2 ()

u

| /m T (ufpy) = fy (u/pr) ||

2 ’
S fs (p1t2) fs (p1t1)
Therefore, as for (12),

E(‘A

2 1 1 m
fozm_fa,m ) ay —.
H = 2nN /,rm I <p1t2> £ (pltl)‘Q du + N

Gathering bias and variance bounds gives the result of Proposition 2. [J

B.2. Proof of Theorem 1. Let Sy, = {t € L1 N Ly, such that t* = t*1|_p, s} be the
subspace of Ly with functions having Fourier Transforms supported by [—7m,mm|. Now

we can notice that f/g?n is the minimizer over S,,, of the contrast

N J/2 ka]

N, () = |It* — ZZ 27r/ \f* u/Aj)[? /A, ™

k 15=1
since vy s (t) = ||t]|? — 2(t, f/gyjn> Then defining

N J/2 (eZrki — E(eZrs))

(¢ NJZZ%/ |f2(u/A)2 du

=1j=1

we have the decomposition, for all functions s, t integrable and square integrable,

(36) v () = na(s) = It = fall* = lIs = foll” = 2vn,a(t = 9).
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By definition of mg, we have that Vm € Mg v,

Yo (fpms) + Peng(mg) < va(fgm) + peng(m)
and with (36), this yields, Ym € Mg,

1f8.ms — o> < NIfa = foumll® + peng(m) + 2vn 5 (fam, — fo.m) — Peng(ing)

< N fs = foml® + peng(m) + 2| fo.m, — fomll  sup vns(t) — peng(ring)

tESm‘f’Smﬂ
1 ——
< |Ifs = famll® + peng(m) + sy = faml®
+4  sup v () — peng(ihp)
tESm+Sim g '
< s Foml? +2 Ty = F5l7 + 515 — Fpom?
< o = faml” + 2peng(m) + S fpms = folI* + 511f5 = fomll

+4( sup vy s(t) — p(ing, m))
tESm‘i’Smﬁ

where 4p(m, m’) < peng(m) + peng(m’). We can prove

Lemma 2. Under the assumptions of Theorem 1,

=21

E( sup V]%T,J(t)_p(mﬁ’m)>§

tGSm+SmB

Applying Lemma 2, we get Vm € Mg y,

— Cl
E(llfgms = f31%) < 31f5 = fomll* + 4peng(m) + <.

This is the result of Theorem 1. [J

Proof of Lemma 2. Let us define p(x) = sin(nz)/(rz) and ¢, e(x) = V/me(ma — £) for
{ € Z. We recall that (¢, ¢)ecz is an orthonormal basis of Sy, and it fulfills Y, 07 < m.
Let us denote by

Mej = €k,2j5 _Aék,Qj—l.
j
Then the (1 ;)k,; are independent. We split v 5 in two parts and write vy, ;(t) = I/](\}v)‘](t)—i-
VJ(\g)J(t)

N J/2 zuﬁk zumw- E(eiunkJ))

) NJZZ?W/ |fe*(u/_Aj)|2 o

k=1 j=1

and
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For yj(\g’)J(t), we find the bounds

2
sup [y, (02 < sup > e DS (P )]
t€Sm+S,,|1t]=1 t€Sm+S,.1t1=1 o7, ez
2
< ST (@m0
VEZ

where m V m’ = sup(m,m’), and

mvVm'
E sup O ) <Y < Var(@mm) < = H2.
00 B S

Moreover Var(t(81)) < E(t*(81)) < [[t]|ocE( \N@N)SHWmWWUMdebrmthSmmm
Itllco < vVm VvV m!|t|| (see Comte et al. [2006]) yield
sup Var(t(81)) < vm Vv /|| f3| := v2
t€Sm 8,/ lt]=1

and

sup It]loo < VMV m' := by

tESm+S,, ./ |t]|=1
Thus Talagrand Inequality implies

@) (2 _ 4™V T8 @) 2 _ gV
E( sup  [vn7;(2)] —4T>§ Z E( sup  [vn5(0)])7 —4 N

tESm‘i‘Smﬁ m/eMﬁ N tESm+Sm,
H2 2
V2 —K b5 _Kk NH2
= Z Kl(N =1 +N22 Sz
m/GMﬁyN
r 7 mvVm
< B (Ul e K] T o/
m/EMﬁ,N
'
< =
- N

since the sums are convergent or bounded.

(1)

For vy’; we compute the same bounds conditionally to (8y)i<k<n . Then we proceed
analogously to Comte et al. [2008| and Comte et al. [2006], and we get the result.[]

B.3. Proof of Proposition 3. The bias order given in (13) under Assumption |[A6],
is O(m~2*) which gives the announced order when choosing m = mg . Moreover, the

variance terms are made negligible by this choice. Indeed the integrated variance of ﬁ;?n
is of order

(mm)~ ! 2 2 m
5N J exp(202A-2 1m?) + N
which leads to a variance of order
o AL o log(NJ)

(N Jlog(NT) | PNemoA,),
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and the convergence rate of order (log(NJ))™°. O

B.4. Proof of Proposition 4. The proof is based on the following decomposition
(37) (Hfﬁ mo.5 _f,@H2) < E(Hfﬁ,@ _fﬁ‘|2]l|;g_ag‘§gg/g)+E(fﬁm70,\ﬁ_fﬁ‘|2]l|;g_gg|>ag/g)

First, remark that when |02 — 02| < 02/2, we have 102 < 02 < 302. Consequently

%mOﬁ < mo,g((ﬁ:)/\/i < mg g with mg 3 = mg g(o:). Thus, looking at (11), we get
| Fomns = Fomas L za_ozicorse < 1mos = Fomosll
and clearly as [A6| holds, we have
s = P apeap < CLETOR) ™y < O'Limma ).
Therefore
E( fams = FolPL 52 pa cpa ) < Cllog(ND)] ™

On the other hand, by using that mo,@ < m,, we get
N 2
| fs,m55 — fomosl” < CON

and || fg g — fal® < [1f5]1%, so that

E| s — f517 22 aja) < ONB(2 — 07| > 02/2)
The following lemma yields the result.

Lemma 3.
(38) P(lo? - 02| > 07/2) < C/N*,
Proof of Lemma 3. We take J = 3 for simplicity. We know that &2 is a linear combination

of 63 ;, 7 = 1,2,3 and (say) 635 y.3. Therefore as P(|X +Y| > a) <P(|X| > a/2)+P(]Y]| >
a/2), the result follows if we prove that for j =1,2,3,

1 Cj . 1 Cy
(|UY] .j| > _02) < and P(|63.5y.3 — J23| >3 2) < <5

N 2’ NZ°

We provide few details for the first term and j = 3. The bound rehes on a Rosenthal in-
equality which states that for independent centered random variables X1, ..., X, admitting
moments of order p

n n n p/2
E(Y X <o | SE(XP)+ (Z E(Xf))

Consequently
P = P(|635— (02 + t30% + 203045 + 02)| > N)

= P(= > (42 - E(42)) - (A—E(A))?] > \)

k=1
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where Ay, = (o — E(ag)) +t3(B —E(Bk)) +ex3 and A = N1 Zé\le Ag. Then by Markov
inequality stating that P(|X| > A\) < E(|X|P)/AP, we get

N
Po< Pl Y (42~ E(42)] > M2) + P((A~ E(A)? > /2)

(i)% ( ) " <@>4E<1A—E<A>r4>

=1
4
(E) E(A}) + i(N*?’E(A‘f) + N72(E(4}))%)

IN

1 N
D047~ B(4})
k

A N2 A2

under a moment condition of order 4 for «, 8 and . This gives the announced result.

B.5. Proof of Lemma 1. (1) We first prove assertion (1) of the lemma. We denote by

1 1
Rlu) = (F)2w)  (f)2(u)

First we write a decomposition:

1—
2 _ g G wen2
E(R@P = E( (7)) )
o (@0 -unyo)
Yi(u T wzN-12"__ — i
() G |V + 2y

—

Then, using that 1/[y/ (£2)4(u) + (f* ()22 < 1/(f2)(u), we obtain

BIRWIP) < o+ e ® | (700 - (2 ) ]

= W

which is the first term of the bound.

(1) if (f5)*(u) < 2N~Y2) we have N=Y2/(f*)8(u) < 2N~1/(f*)'?(u). Moreover, start-
Lng in the same way as above, using that 1/[\/ (f)*(w) + (fZ(u))?)? < 1/(f*(u))?*, we also
1/2 _
BIRGWP) < i + e ® | (70 - 09'w)’]
_ 1 N—1/2 <3 N—1/2
= U0 U S W
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(ii) If (f*)* > 2N~1/2 using the Bernstein Inequality yields:

IN

P @l < N2) < P02 ) — U2 @)l > () (w) - NY2)
P (102 w) = (1) @)l > (£ (w)/2)

2exp (—N(f2)*(u)/16)

O (N1 (f2(w)™)

ININ A

and completing the decomposition above, this yields

]l/\
) “UDH N2
E(|R(u)[?) < E( (f2)4(w) >

i) — () ()
(f;)lS(U)E ]1(/1‘2¥(U)2N*1/2 << — >>2

(f)*H(w) + (f2)* ()

E|l——

(f2)*(u) (f5)*(w)>N-1/2 (\/W-F(f ) (u)>2

Then, using that 1/[1/ (f2)1(u) + (£ (w))))® < 1/(f2(u))*, we get

1 _ 1
i) ()

! (T4 w) — (12w’ (

-1

E(RW) < P (7)) < N7V2) 4

W) B
NY2 1 — (4
+ oy [ (T2 w) — (£2)*(w)] }
CN-1 N1 N2 . N1
S W T Ew TR S W

Thus, in that case where N=1/2/(f*)8(u) > 2N~1/(f5)'2(u), we get

N—l
E(IRW)P) < 15z
| (u)] 2
This ends the proof of assertion (1).
(2) We now prove assertion (2). Set
1 1
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First we write:

11—
) = | [ D <N

which is the first term of the bound.
(i) if (£¥)*(u) < 2N~Y2, we have

N—3/4 N—1/2 N—1/4 N—l
< .
~(fH)(w)

" T " )

Moreover, starting in the same way as above, we also have

BRI < gy + <<f];<v>18/:u> o <fi*v>34/<4u>>E[<@<u)‘(f:)4(“))2]
- L N—3/4 R N—1/2 R N4
= U T 0w " e " G
N—3/4 N-1/2 N-U/A4
@ " W " )

A

where the last line follows from the assumption (f¥)*(u) < 2N~/2.
(ii) If (f5)* > 2N~1/2) we use as in the proof of (1) that P(|(f*)*(u)] < N~1/2) <

C1 (N_l(fa* (u))_g) , and completing the decomposition above, this yields

Lty e n-1/2

+ *1 E N L muysn-
A ( @(u)ﬂf:)?(“)ﬂ(@(“))
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L (77 ) — (20 )’

i) - (1

N4y, ]l/s\“uzN*12 — N7 1/4 ’

R (VT + gz (@) sz
1

1
(7o)

_l’_

_ -1 1/2 _
< g (7w < V%) 4 i + s [ () - 09)')|
ClN 1 N1 N1/2 _3/2 N1
S 0w T W T nw S oW

Thus, in that case where N1 /(f)!(u) is smaller than the three other terms found for
case (i), we get
N—l

This ends the proof of the lemma. [

B.6. Proof of Proposition 5. Clearly
Hfﬁ,m - fﬁH2 = Hfﬁ,m - fﬂ,m”2 + Hfﬁ,m - fﬂ”2
< 20 fsm — Foml® + 2l f5m — Famll? + 1 f5,m — foll?

We already know that E(Hm — famll?) < (4/(N(J — 4))D2(m, 1) + m/N. Moreover,
2

- J/2
1fm = Faml® = %/m A 4Zfz R (3)de
m J/2 2
_ 1 J 4ZfZ ( > du
J/2 2

S AR

IN

%/”’" n(%)Pa

L iz ) () P

—7Tm

Then, applying Lemma 1, using the independence of j/}\](u) and R(u) for j > 3, and that

2 2 ? 1 J/2
E _J ] Z(fgj (U) - fZ (u) = N ZV&I‘ ZUZ Z COV wZ] ezuZ /)
= J#5’
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1 4 J—4 (J—4)? e 12w Ui
< v (G - S - e gor)
1 2 J—4 ANV
: Nﬂ(“T'fe(z”)
yields
— 5 1 /™™ 1 2 J—4 . u du
B~ Frnl®) < 2 [ 575 (14 TR
@ ™m . ) N-1/2 N1 p
) (\f:(%)\‘*A\f:(%)\S) !
4 2m Dy(m, f5), ., Da(m, f3)
< mDQ(mal)‘i‘W‘i‘QCO( JN ) A ( N ).
Now, gathering all term gives
__ Dy(m, Dy(m,
B~ £aP) < Wson = Fol? + 5y gy Dalm, 1) + 6% -+ 4Co( 227l (2T,

which is the announced result. (J

B.7. Proof of Proposition 6. The proof of Proposition 6 follows the same line as the
proof of Proposition 5 in a somehow simpler setting. Clearly

18 m = Fall* = 1f8m = Jaml® + | fam — fal?
< 208 = Loml® + 258 = famll* + I fam — fal?

We already know that E(H]@; — faml®) < @m) 7 (T du/|fZ(u)]*)/N. Moreover

™m

— — 1 g
1= Pl =52 [ 1T ) Ro(w)Pd

—TTm
which yields the result by writing that \f{%(u)]z < 2[]%(11,) — [y, (W) + 2| fa(u) f2 (),
using the independence of E(u) and Ry and applying Lemma 1.0J
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