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Summary . In this paper, we present a new algorithm to estimate a regression function in a fixed
design regression model, by piecewise (standard and trigonometric) polynomials computed
with an automatic choice of the knots of the subdivision and of the degrees of the polynomials
on each sub-interval. First we give the theoretical background underlying the method: the
theoretical performances of our penalized least square estimator have been studied at length
in other papers and are based on non-asymptotic evaluations of a mean-square type risk.
Then we explain how the algorithm is built and possibly accelerated (to face the case when the
number of observations is great), how the penalty term is chosen and why it contains some
constants requiring an empirical calibration. Lastly, a comparison with some well-known or
recent wavelets methods is led: this brings out that our algorithm behaves in a very competitive
way in term of denoising and of compression.

Keywords. Least square regression. Piecewise polynomials. Adaptive estimation.
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1. Introduction

We consider in this paper the problem of estimating an unknown function f from [0, 1] into
IR when we observe the sequence Yi, i = 1, . . . , n, satisfying

Yi = f(xi) + σεi, (1)

for fixed xi, i = 1, . . . , n in [0, 1] with 0 ≤ x1 < x2 < . . . < xn ≤ 1. Most of the theoretical
part of the work concerns any type of design but only the equispaced design xi = i/n is
computationally considered and implemented. Here εi, 1 ≤ i ≤ n is a sequence of indepen-
dent and identically distributed random variables with mean 0 and variance 1. The positive
constant σ is first assumed to be known. Extensions to the case where it is unknown are
proposed.
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We aim at estimating the function f using a data driven procedure. In fact, we want to
approximate f by piecewise standard and trigonometric polynomials in a spirit analogous
but more general than e.g. Denison et al. (1998). We also want to choose among “all
possible subsets of a large collection of pre-specified candidates knot sites” as well as among
various degrees on each subinterval defined by two consecutive knots.

Our method is based on recent theoretical results obtained by Baraud (2000); Baraud
(1998), Baraud et al. (2001a,b) who adapted to the regression problem general methods of
model selection and adaptive estimation initiated by Barron and Cover (1991) and developed
by Birgé and Massart (1998), Barron et al. (1999). Results on Gaussian regression can also
be found in Birgé and Massart (2001). Of course, the literature on the subject of fixed design
regression did not start at that time but all the results we have in mind have the specificity
of giving non asymptotic risk bounds and of dealing with adaptive estimators. The first
results about adaptation in the minimax sense in that context were given by Efromovich
and Pinsker (1984). Some asymptotic results have been also proved by Shibata (1981),
Li (1987), Polyak and Tsybakov (1990). An overview of most nonparametric techniques is
also given by Hastie and Tibshirani (1990). Note that from the theoretical point of view,
most results can be used to do some variable selection in an additive model for instance (i.e.
when f depends on several variables and f(x) = f(x(1), . . . , x(p)) = f1(x(1))+ . . .+fp(x(p))),
but this point is not empirically studied here: in particular, the multivariate extensions of
the algorithm would probably require some more work. Lastly, it is worth mentioning that
most available algorithms deal with equally spaced design; results and proposals concerning
the more general case of a non necessarily equi-spaced design are quite recent. Some of them
can be found for instance in Antoniadis and Pham (1998), see also the survey in Antoniadis
et al. (2002).

An attractive feature of the method which is developed here is that, once a calibration
step is done, everything is completely automatic and quite fast. Friedman and Silverman
(1989) already gave an algorithm for optimizing over the number and location of the knots
of the partition in an adaptive way: this algorithm is used by Denison et al. (1998) but
the later calibrate a piecewise cubic fit. In other words, all their polynomials have the same
degree a priori fixed to be 3. Ours have variable degrees between 0 and rmax (which is
rmax = 75 in experiments) and those degrees are also automatically chosen. This is an
important flexibility, for denoising square signals for instance. Moreover, the calibration
operation being done once for all, the only input of the algorithm are the maximal number
of knots to be considered and the maximal degree rmax. We do not have any complicated or
arbitrary stopping criterium to deal with, as in many MCMC methods, we do not have any
problems of initialization either. A great number of wavelet methods have also been recently
proposed in the literature. For an exhaustive presentation and test of these methods, the
reader is referred to Antoniadis et al. (2002). Therefore, we compared our method with
standard toolboxes implemented by Donoho and Johnstone (1994), as well as with some of
the more recent methods tested in Antoniadis et al. (2002). Note that we found out that
Coifman and Donoho (1995)’s improvement of Coifman and Wirkhauser (1992)’s method
was the best competitor. The performances of our algorithm prove that our method is very
good , for any sample size, any type of function f , and whether σ is known or not. Let
us mention also that our method seems to globally behave in a very competitive way, in
term of L2-error performances as well as in term of compactness of the representation of
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the signal. Besides, we deal with much more general frameworks. Our main drawback until
now is in term of the complexity of our algorithm,which is of order O(n2) linear operations
or O(n3) elementary operations (+,×, <) when theirs is of order O(n log2(n)) elementary
operations. Actually we propose a quick but approximated version with complexity of order
O(n) linear operations or O(n2) elementary operations (+,×, <). As a counterpart their
analysis includes 2n/2 bases which are constructed on dyadic partitions whereas ours includes
about (2rmax)n different basis which are constructed on general partitions.

Section 2 gives some more details on the theoretical part of the procedure. We present
first its formal principle. Then a theoretical result is stated as well as possible extensions
and consequences. Finally, the general form of the penalty we are working with is written.
In Section 3, details about how the estimate is computed are given, two relevant bases are
described (one for the space of standard polynomials, the other for the space of trigonometric
polynomials) and the reason for the choice of the form of the penalty term involved in
the computation of the estimate is explained. Section 4 presents the algorithm: the two
main ideas, namely localization and dynamical programming are developed. The scheme
for accelerating the algorithm without loosing its good properties is introduced. Section 5
presents the empirical results for both the complete algorithm and the accelerated algorithm.
The calibration procedure is led with the complete algorithm. Then both methods are
compared (in term of L2-error and of compression performances) with wavelet denoising
developed by Donoho and Johnstone (1994) and Donoho et al. (1995) whose toolbox is
available on Internet with test functions that we also used. Comparison results with 8 other
recent methods are also provided. Lastly Section 6 gives some concluding remarks.

2. The general method

2.1. General framework
We aim at estimating the function f of model (1) using a data driven procedure. For that
purpose we consider families of linear spaces generated by piecewise polynomials bases and
we compute for each space (base) the associated least square estimator. Our procedure
chooses among the resulting collection of estimators the ”best” one, in a sense that will be
precised. The procedure is the following. Let Dmax and rmax be two fixed integers and D an
integer such that 0 ≤ D ≤ Dmax. For any D, we choose a partition of [0, 1], that is a sequence
a1, . . . , aD−1 of D − 1 real numbers in [0, 1] such that 0 = a0 < a1 < . . . < aD−1 < aD = 1,
and a sequence of degrees, that is integers r1, . . . , rD, such that for any d, 1 ≤ d ≤ D,
0 ≤ rd ≤ rmax. Then, denoting by

m = (D, a1, . . . , aD−1, r1, . . . , rD) (2)

we define a linear space Sm as the set of functions g defined on [0, 1] that admit the following
kind of decomposition: let Id = [ad−1, ad[ for d = 1, . . . , D − 1, and ID = [aD−1, aD], then

g(x) =
D∑

d=1

Pd(x)1IId
(x), Pd polynomials with degree rd, d = 1, . . . , D.

We define `(I) as the number of xk falling in the subinterval I and we call it ”length of I”.
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The space Sm generated in this way has the dimension Dm =
∑D

i=1(ri + 1). If we call
Mn ⊂ {1, ..., Dmax} × [0, 1]D × {0, . . . , rmax}D a finite set of all possible choices for m, the
family of linear spaces of interest is then {Sm,m ∈Mn}.

Given some m in Mn, we define the standard least square estimator f̂m of f in Sm by

n∑
i=1

(Yi − f̂m(xi))2 = min
g∈Sm

n∑
i=1

(Yi − g(xi))2. (3)

In other words, we compute the minimizer f̂m for all g in Sm of the contrast γ(g) where

γ(g) =
1
n

n∑
i=1

[Yi − g(xi)]
2
. (4)

Each model m being associated with an estimator f̂m, we have a collection of estimators
{f̂m,m ∈ Mn} and we look for a data driven procedure m̂ = m̂(Yi, i = 1, . . . , n) which
selects automatically among the set of estimators the one that is defined as the estimator of
f :

f̃ = f̂m̂.

m̂ is a triple ”number of bins, partition, degree of the polynomials on each piece” with values
in Mn, (D̂, (â1, . . . , âD̂−1), (r̂1, . . . , r̂D̂)) based solely on the data and not on any a priori
assumption on f .

Let us precise what the “best” estimator is and the way to select it. We measure the
risk of an estimator via the expectation of some random L2-norm. If f̂ is some estimator of
f , the risk of f̂ is defined by

E

(
1
n

n∑
i=0

(f(xi)− f̂(xi))2
)

:= d2
n(f, f̂),

since f̂ is random through its dependency on the Yi’s. The risk of f̂m, where f̂m is an
estimator built as in relation (3), can in fact be proved to be equal (see equation (2) in
Baraud (2000)) to

d2
n(f, Sm) +

dim(Sm)
n

σ2

where dn(f, Sm) = inft∈Sm dn(f, t) and dim(Sm) denotes the dimension of Sm. Therefore an
ideal selection procedure choosing m̂ should look for an optimal trade-off between d2

n(f, Sm),
the so-called bias term and σ2dim(Sm)/n, the so-called variance term . In other words, we
look for a model selection procedure m̂ such that the risk of the resulting estimator f̂m̂ is
almost as good as the risk of the best least squares estimator in the family. More precisely,
our aim is to find m̂ such that

d2
n(f, f̂m̂) ≤ C min

m∈Mn

{
d2

n(f, Sm) + σ2 Lmdim(Sm)
n

}
, (5)

where the Lm’s are some weights related to the collection of models {Sm,m ∈ Mn}. This
inequality means that, up to a constant C (which has to be not too far from one for the
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result to be of some interest) our procedure chooses an optimal model and inside that model
an optimal estimator in the sense that it realizes a Lm-trade-off between the bias and the
variance terms.

We consider the selection procedure based on a penalized criterion of the following form

m̂ = arg minm∈Mn
[γ(f̂m) +

penn(m)
n

]

where penn(m) is a penalty function mapping Mn into R+. We will precise this penalty
later on and just mention that it is closely related to the classical Cp criterion of Mallows
(1973).

The procedure is then the following: for each model m we compute the normalized
residual sum of squares, γ(f̂m), where γ is defined by (4), we choose m̂ in order to minimize
among all models m ∈ Mn the penalized residual sum of squares γ(f̂m) + penn(m)/n and
we compute the resulting estimator, f̂m̂. Mallows’ Cp criterion corresponds to penn(m) =
2σ̂2dim(Sm)/n where σ̂2 denotes a suitable estimator of the unknown variance of the εi’s.
Our penalty term is similar but with an unknown universal constant instead of 2 and the
factor Lm allowing for very rich collections of models (see the further discussion on the
choice of the Lm’s). When σ2 is unknown we also replace it by an estimator.

2.2. Theoretical results
2.2.1. An example of theorem

From the theoretical point of view, Baraud (2000), Baraud (1998) and Baraud et al.
(2001a,b) obtained several results depending mainly on the assumptions set on the error
terms ε and on the types of the variables Xi in a more general model Yi = f(Xi) + σεi

where the Xi’s can be random or deterministic, independent or mixing, independent of the
εi’s or not. We formulate in detail the result corresponding to the following condition:

(Hε) The εi’s are i.i.d.centered variables and satisfy, ∀u ∈ R

E(expuε1) ≤ exp (u2s2/2)

for some positive s.

This assumption allows the variables εi’s to be Gaussian with variance s2 or to be bounded
by s. The particular case of Gaussian variables is given in Baraud (1998), and the following
result is a simplified version of Theorem 2.1 in Baraud (1998) or Theorem 1 in Baraud et
al. (2001b).

Theorem 1. Consider model (1) where f is an unknown function belonging to L2([0, 1]).
Assume that the εi’s satisfy Assumption (Hε) and that the family of piecewise polynomials
described in section 2.1 has dimensions Dm such that∑

m∈Mn

e−LmDm ≤ Σ < +∞ (6)
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where the Lm’s are nonnegative numbers (to be chosen). Then there exists a universal
constant θ > 0 such that if the penalty function is chosen to satisfy

penn(m) ≥ θs2Dm(1 + Lm)

then the estimator f̃ = f̂m̂ satisfies

d2
n(f, f̃) ≤ C inf

m∈Mn

[
d2

n(f, Sm) +
penn(m)

n

]
+ C ′s2 Σ

n
(7)

where C and C ′ are universal constants.

Note that as C ′s2Σ/n has a smaller order that penn(m)/n, the result in (7) may also be
written:

d2
n(f, f̃) ≤ C(s2,Σ) inf

m∈Mn

[
d2

n(f, Sm) +
penn(m)

n

]
where C(s2,Σ) denotes now a constant depending on s2 and Σ.
This kind of result can be extended to variables εi’s admitting only moments of order p,
provided that p > 2 (see Baraud (2000)) for regular collections of models only. We shall
try to see empirically if some problems arise in practice if this condition is not fulfilled by
considering Cauchy ε’s.
Note also that in many theoretical results, the multiplicative factor appearing in the penalty
and here denoted by s2 is in fact σ2, i.e. the variance of the noise. If this variance is known,
we keep it as the multiplicative factor. Else it can be estimated by the least square residuals:

σ̂2 =
1
n

n∑
i=1

(Yi − f̂m(xi))2

for a f̂m computed on a well chosen Sm. For instance, for equispaced design regression, we
can take the space generated by ad = d/D with D = n/ ln(n). This has been proved to
allow an extension of the theoretical results in the case of regular subdivisions in Comte and
Rozenholc (2002).

2.2.2. Collections of models and choice of the weights

Let us now illustrate condition (6) in order to better see the role of the Lm’s. Roughly
speaking, when the Lm’s can be chosen constant, the final rate for estimating a function of
smoothness α is the minimax rate n−2α/(2α+1). In most other cases, the Lm’s are required
to be of order ln(n) and the rate falls to (n/ ln(n))−2α/(2α+1). Let us give some (standard)
examples for the choice of the spaces when the design is equispaced namely when xi = i/n:

(RP) Regular piecewise polynomials (and regular Sm’s). This is typically what is meant
when talking about regular collections of models.
We work with constant degrees r1 = . . . = rD = r − 1 and we choose aj = j/D
for j = 0, . . . , D (regular partition of [0, 1]). Then m = (D, a1, . . . , aD−1, r, . . . , r),
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dim(Sm) = rD, we take D = 1, . . . , Dmax and we impose simply that rDmax ≤ n, i.e.
Dmax = [n/r]. Then we look for Lm’s such that

∑
m∈Mn

e−LmDm =
[n/r]∑
D=1

e−LmD ≤ Σ < ∞.

Therefore
Lm = 1 or Lm = 2 ln(D)/D

suits.
(IPC) Irregular piecewise polynomials with constant degrees. This illustrates by comparison

the extension from regular to general collections of models.
Once again we keep all the degrees constant equal to r−1. We choose the D−1 values
of a1 < . . . < aD−1 in the set {j/n, j ∈ {1, . . . , n − 1}} for D = 1, . . . , Dmax = [n/r].
We have then for Lm = Ln

∑
m∈Mn

e−LmDm =
[n/r]∑
D=1

(
n− 1
D − 1

)
e−rDLn .

Therefore, if we choose Lm = Ln = ln(n)/r this implies

∑
m∈Mn

e−LmDm ≤
n−1∑
k=0

(
n− 1

k

)
e−r(k+1)Ln

≤
n−1∑
k=0

(
n− 1

k

)(
1
n

)k+1

=
1
n

(
1 +

1
n

)n−1

≤
(

1 +
1
n

)n

≤ e

and condition (6) is satisfied.
(ITC) Irregular trigonometric polynomials with constant degrees.

The partitions and the aj ’s are chosen previously. The degree in this example (but
not in practice) is fixed also to 2r + 1 in the sense that, on an interval I of length `
we consider Trig`

0(x) =
√

1/`1II(x),{
Trig`

2p(x) =
√

2/` cos
(

2nπ
` px

)
1II(x),

Trig`
2p+1(x) =

√
2/` sin

(
2nπ

` px
)
1II(x),

for p = 1, . . . , r. Let us mention that the Trig polynomials would have to be multipli-
cated by

√
n to be normalized in L2. For the same reason as above, this would lead

to weights Lm’s of order ln(n), in order (6) to be fulfilled.

Note that the first example is meaningless for a non equally spaced design, but the second
and third ones can be extended to the general fixed design case by simply choosing the knots
a1 < . . . < aD−1 in the set {x1, x2, . . . , xn} with still a0 = 0 and aD = 1.
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Moreover the degrees of the polynomials are supposed to be fixed (to 2r + 1) in the
previous examples for the sake of simplicity but will be variable in the set {0, . . . , rmax}
in the algorithm developed below. In such case, the dimensional constraint Dmax = [n/r]
becomes

∑D
d=1(rd + 1) ≤ n where rd ∈ {0, . . . , rmax} is the degree of the polynomial on Id.

This implies a greater number of models.

2.2.3. Adaptation to unknown smoothness

It is easy to derive from inequalities like (7), adaptation results with respect to the unknown
smoothness of f . We recall quickly that a function f belongs to the Besov space Bα,l,∞([0, 1])
if it satisfies

|f |α,l = sup
y>0

y−αwd(f, y)l < +∞, d = [α] + 1,

where wd(f, y)l denotes the modulus of smoothness. For a precise definition of those no-
tions we refer to DeVore and Lorentz (1993), Chapter 2, Section 7, where it also proved
that Bα,p,∞([0, 1]) ⊂ Bα,2,∞([0, 1]) for p ≥ 2. This justifies that we now restrict our atten-
tion to Bα,2,∞([0, 1]). Moreover, if follows from DeVore and Lorentz (1993) that, if fm is
the orthogonal projection of f on Sm chosen in the collection (IPC) and if f belongs to
Bα,2,∞([0, 1]) with α < r + 1, then ‖f − fm‖2 is less than C(α)|f |2α,2D

−2α
m .

If moreover the law µ of the Xi’s admits is such that:

(Hµ) µ admits a density hµ with respect to the Lebesgue measure such that there exists
h0 > 0 and h1 > 0 with ∀x ∈ [0, 1], 0 < h0 ≤ hµ(x) ≤ h1 ≤ 1,

then, roughly speaking, dn(f, fm) can be replaced by ‖f − fm‖2µ ≤ h1‖f − fm‖2.
Then it follows from Inequality (7) of Theorem 1 that, under the above assumptions and

the assumptions of Theorem 1,

d2
n(f, f̃) ≤ C(h1, α, r, s2) inf

m∈Mn

(
|f |2α,2D

−2α
m +

ln(n)Dm

n

)
= C(h1, r, α, |f |α,2, s

2)
(

n

ln(n)

)− 2α
2α+1

.

This rate is reached by the estimator without requiring any prior information on α and this is
what is called adaptation. Due to the large size of the collection of models, the rate reached
is slightly sub-optimal (the optimal rate is known to be n−2α/(2α+1)). A special strategy
for visiting the spaces Sm is given in Proposition 4.1 and 4.2 of Baraud et al. (2001b) in
order to recover the optimal rate even when considering non regular approximation spaces,
but it is only a theoretical procedure for the moment. Here we can summarize our result as
follows (see also Proposition 2.2 in Baraud (1998)):

Corollary 2. Consider model (1) where f is an unknown function belonging to Bα,2,∞([0, 1]).
Assume that the εi’s satisfy Assumption (Hε), that the Xi’s satisfy (Hµ) and f̃ is computed
in the collection (IPC) with r + 1 > α > 0 Then there exists a universal constant θ > 0
such that if the penalty function is chosen to satisfy

penn(m) ≥ θs2Dm(1 + ln(n)/r)
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then the estimator f̃ = f̂m̂ satisfies

sup
f∈Bα,2,∞([0,1]),|f |α,2≤R

d2
n(f, f̃) ≤ C(h1, r, α,R, s2)

(
n

ln(n)

)− 2α
2α+1

where C(h1, r, α,R, s2) is a constant depending on h1, r, α,R, s2.

For some results in the fixed design case and when considering regular spaces (see (RP)),
we refer also to Proposition 4.1 in Baraud (2000): the optimal rate is also obtained if
moreover the design is regular i.e. xi = i/n for i = 1, . . . , n, if the ε’s admit moments of
order p with p > 4 and if α < r + 1. For a general fixed design x1 < x2 < . . . < xn, the
same rate is obtained asymptotically provided that the empirical measure associated to the
design converges to a measure µ on [0, 1] such that µ admits a density hµ with: ∀x ∈ [0, 1],
0 < h0 ≤ hµ(x) ≤ h1 ≤ 1. In other words, the limiting measure is required to be equivalent
to the Lebesgue measure.

2.3. The aim of the calibration study
The order of the penalty as given in the theoretical results above is only a crude approx-
imation that technically works and one of the aims of the empirical work is precisely to
find a more precise development for the choice of the penalty. We also want to calibrate
empirically some universal constants involved. For instance, if we think of a penalty:

penn(m) = s2

[
c1 ln

(
n− 1
D − 1

)
+ c2(ln(D))c3 + c4

D∑
d=1

(rd + 1) + c5

D∑
d=1

[ln(rd + 1)]c6

]
(8)

we need to check that it satisfies (6). (Remind that m is defined by (2).) Then we want
to prove empirically that the constants ci, i = 1, . . . , 6 are universal constants and com-
pute them. Note that complementary terms in a penalty function have been studied in
a theoretical framework (but for another problem and with a penalty having a different
form) by Castellan (2000). On the other hand, empirical experiments for calibrating a
penalty have already been lead for density estimation with regular histograms by Birgé
and Rozenholc (2002). For all degrees set to zero and regular partitions, they proposed
penn(D) = [ln(D)]2.5 + D− 1. Here, we take c1 = c4 = 2 and s2 = σ2. We look for c2, c3, c5

and c6.

3. Computation of the estimate

3.1. The general formula
The first step for the computation of f̃ = f̂m̂ is the computation of the f̂m’s for m varying
in Mn among which we choose it. Let m = (D, a1, . . . , aD−1, r1, . . . , rD) be given and recall
that Id = [ad−1, ad[ for d = 1, . . . , D − 1, and ID = [aD−1, aD], a0 = 0 and aD = 1. Then
f̂m satisfies

γ(f̂m) =
1
n

D∑
d=1

min
P

∑
xk∈Id

(Yk − P (xk))2.
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In other words, for some given m, we replace the global minimization of the contrast γ in
Sm by D minimizations of local contrasts denoted

γId(g) =
1
n

∑
{k/xk∈Id}

(Yk − g(xk))2 (9)

on Prd
. In the algorithm, Pr will be either the linear space Rr[X] of standard polynomials of

degree less or equal than r (see (IPC)) or the linear space Tr of trigonometric polynomials
generated by the Trig`

s for s = 0, . . . , r (see (ITC)). Then we have to compute for any degree
r and any interval I, the polynomial P I

r ∈ Pr such that:

γ̂I(r)
def= γI(P I

r ) = min
P∈Pr

∑
{k/xk∈I}

(Yk − P (xk))2/n =
1
n

 ∑
{k/xk∈I}

Y 2
k −

∑
{k/xk∈I}

(P I
r (xk))2

 .

Note that this contrast is defined only by the points xk and Yk for the indexes k such that
xk ∈ I and thus all intervals I ′ containing the same xk lead to the same minimization
procedure and to the same polynomial PI′ = PI . So there is no loss of generality to consider
intervals with bounds chosen among the xk’s.

It is well known that, for any base B := (B0, . . . , Br) of a linear space Pr, the contrast
minimizer P I

r = α0B0 + α1B1 + . . . + αrBr is the solution of the system of equations
CI

r AI
r = DI

r where (denoting by X ′ the transpose of the vector X),

AI
r = (α0, . . . , αr)′, (10)

CI
r = (cs,t)1≤s,t≤r , cs,t =

∑
k/xk∈I

Bs(xk)Bt(xk), (11)

DI
r = (d0, d1, . . . , dr) , ds =

∑
k/xk∈I

YkBs(xk). (12)

Let us denote by XI
r the matrix (Bs(xk)), s = 0, . . . , r, k ∈ {j/xj ∈ I} with r + 1 rows

and with #{k/xk ∈ I} columns, and by Y I the vector of the Yk’s for xk falling in I. The
minimum of contrast satisfies

n γ̂BI (r) := n γ̂I(r) = (Y I)′Y I − (AI
r)
′XI

r(X
I
r)
′AI

r = (Y I)′Y I − (DI
r)′(CI

r )−1CI
r (CI

r )−1DI
r .

and therefore
γ̂BI (r) =

1
n

[(Y I)′Y I − (DI
r)′(CI

r )−1DI
r ]. (13)

3.2. Choice of a relevant base.
Since (13) with (10) is valid for any base B of Pr, we look for a relevant choice of the base
B = (B0, . . . , Br) on the interval I, in term of piecewise polynomials. In other words, we
aim at choosing the basis such that CI

r = Ir (Ir is the r × r identity matrix), that is

cs,t =
∑

k/xk∈I

Bs(xk)Bt(xk) = δs,t
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where δs,t is the Kronecker symbol such that δs,t = 1 is s = t and 0 otherwise.
In the case of a general design (xi)1≤i≤n (non necessarily equispaced), for each interval I,

we can easily build by Gram-Schmidt orthonormalization or by using a Q-R decomposition
of X, an orthonormal basis of polynomials (whether standard or trigonometric) of any degree
r, with respect to the discrete scalar product associated to the xk’s in I. The problem here
is that for each possible interval I, and degree rmax a specific orthonormalized basis must be
computed, which is feasible but quite heavy (and therefore quite slow) from a computational
point of view. Consequently, some other ideas for accelerating the method have to be found.

3.3. Choice of a relevant base in the particular case xi = i/n.
3.3.1. Polynomial base.
We use the discrete Chebyshev polynomials defined as follows (see Abramowitz and Stegun
(1972)). The discrete Chebyshev polynomial on {0, 1, . . . , `− 1} with degree r is

Cheb`
r(x) =

1{∑`−1
i=0 [C`

r(i)]2
}1/2

C`
r(x) (14)

where C`
0(x) = 1 and

C`
r(x) =

1
(r!)2

∆r

[
r∏

s=0

g`(x− s)

]
, where g`(x) = x(x− `)

and ∆f(x) = f(x + 1)− f(x). Those polynomials satisfy
`−1∑
k=0

Cheb`
r(k)Cheb`

s(k) = δs,t, for 0 ≤ s, t ≤ r.

Therefore, choosing on the intervals I = [i/n, . . . , (i + ` + 1)/n[, the basis

BI
s (x) = Cheb`

s(nx− i),

will do the job. This leads to

γ̂Cheb
I (r) =

1
n

[
(Y I)′Y I − (DI

r)′DI
r

]
,

where DI
r is the vector with components

ds =
∑

k/n∈I

YkBI
s (k/n) =

`(I)−1∑
k=0

Yk+iCheb`
s(k).

3.3.2. Trigonometric base.
The case of piecewise trigonometric bases is even simpler since the basis described in (ITC)
is naturally orthonormal with respect to the discrete scalar product considered with a regular
design: ∑

xk∈I

Trig`
s(xk)Trig`

t(xk) = δs,t.
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3.4. A fast strategy for the general case
We present here a way to avoid the Gram Schmidt orthonormalization for general design
using the bases of the regular case given above.

Let us recall here that we assumed that all the xi’s were distinct and 0 ≤ x1 < x2 <
. . . < xn ≤ 1. Therefore the map Ψ that associates the normalized index i/n to xi is a
bijection, that can be defined from [x1, xn] into [1/n, 1] by setting for x ∈ [xi, xi+1[ that

Ψ(x) =
i

n
+

x− xi

n(xi+1 − xi)
. (15)

Then we can solve the problem of looking for the piecewise polynomial ĝ minimizing
∑n

k=1(Yk−
g(k/n))2 as previously with on each piece either the discrete Chebyshev base or the trigono-
metric base. Consequently we can consider the solution of the problem given by f̂ = ĝ ◦Ψ.
This amounts to solve a regular problem and to distort the solution according to the design.
An objection can be raised here. Indeed the procedure chooses an estimate g̃ such that
f̃ = g̃ ◦Ψ is an estimate of f . This implies, since

‖f − f̃‖2n =
1
n

n∑
i=1

(f̃ − f)2(xi) =
1
n

n∑
i=1

(g̃ ◦Ψ− f)2(xi)

=
1
n

n∑
i=1

[
(g̃ − f ◦Ψ−1) ◦Ψ(xi)

]2
=

1
n

n∑
i=1

[
(g̃ − f ◦Ψ−1)(

i

n
)
]2

,

that the rate of convergence of the estimate depends on the regularity of the function which
is indeed estimated, namely f ◦Ψ−1. Therefore, if we want to keep good theoretical rates of
convergence for regular functions f , we need to use a function Ψ such that Ψ is increasing
and Ψ−1 is very regular, satisfying Ψ(xk) = k/n. This can be done by considering for
instance, for x ∈ [k/n, (k + 1)/n[,

Ψ−1(x) = xk + (xk+1 − xk) exp
(

1− 1
n(x− k/n)

)[
1− exp

(
− 1

(k + 1)/n− x

)]
, (16)

which is increasing an infinitely differentiable (with derivatives of any orders null at the
points xk). This has no practical impact since we look only at the discrete L2 norm and

‖f − f̃‖2n =
1
n

n∑
i=1

[g̃(i/n)− f(xi)]
2
,

which does not depend on Ψ.

3.5. The choice of the penalty
We already announced in equation (8) our choice for the global form of the penalty. For
the results given in Theorem 1 to hold, we must prove that

∑
m∈Mn

e−LmDm < +∞ with
penn(m) = s2(1 + Lm)Dm.∑

m∈Mn

e−LmDm =
∑

m∈Mn

e−penn(m)/s2+Dm



A new algorithm for Fixed Design Regression 13

=
∑

1≤D≤Dmax,(D,a1,...,aD−1,r1,...rD−1)

exp
{
−
[
c1 ln

(
n− 1
D − 1

)
+ c2[ln(D)]c3

+c4

D∑
d=1

(rd + 1) + c5

D∑
d=1

[ln(rd + 1)]c6

]
+ D

}

=
Dmax∑
D=1

(
n− 1
D − 1

)
e
−

[
c1 ln

(
n− 1
D − 1

)
+c2[ln(D)]c3

]
+D

×

[
rmax+1∑

r1=0

. . .

rmax∑
rD=0

e−c4

∑D

d=1
(rd+1)−c5

∑D

d=1
[ln(rd+1)]c6

]

=
Dmax∑
D=1

e
ln

(
n− 1
D − 1

)
−

[
c1 ln

(
n− 1
D − 1

)
+c2[ln(D)]c3

]
+D
(

rmax∑
r=0

e−c4(r+1)−c5[ln(rd+1)]c6

)D

.

Therefore, if c1 ≥ 1, c2 ≥ 0 and c5 ≥ 0, we can give the following bound

∑
m∈Mn

e−LmDm ≤
Dmax∑
D=1

eDe−c4D

(
1− e−c4(rmax+1)

1− e−c4

)D

≤
Dmax∑
D=1

(
e1−c4

1− e−c4

)D

,

and this last term is bounded provided that∣∣∣∣ e1−c4

1− e−c4

∣∣∣∣ < 1

that is, if c4 > ln(1 + e) ' 1.3133. Thus in the general case, the chosen penalty is of the
form:

Proposition 1. The following choice of the penalty:

penn(m) = s2

[
c1 ln

(
n− 1
D − 1

)
+ c2(ln(D))c3 + c4

D∑
d=1

(rd + 1) + c5

D∑
d=1

[ln(rd + 1)]c6

]

is such that
∑

m∈Mn
e−LmDm =

∑
m∈Mn

e−penn(m)/s2+Dm converges with exponential rate,
provided that c1 ≥ 1, c2 ≥ 0, c4 ≥ 1.32 and c5 ≥ 0.

Let us mention that on each subinterval, we choose between a usual and a trigonometric
polynomials, so that, if we denote by R =

(
r
(1)
max + 1 + r

(2)
max + 1

)
where r

(1)
max and r

(2)
max are

the maximal degrees of each polynomials, the total number of visited bases is asymptotically
(for great values of n and fixed R) of order

n∑
D=1

(
n− 1
D − 1

)
RD = R (R + 1)n−1 = O(Rn).



14 F. Comte and Y. Rozenholc

4. Description of the algorithm

In the sequel, both for the description of the algorithm and for the empirical results, we
consider only the regular design defined by xi = i/n. The algorithm is easy to generalize to
non equispaced design (and works very well in terms of errors performance), but it is much
too slow to be seriously considered for the moment.

4.1. Localization
Let us emphasize here the two basic ideas of our procedure. The first one is based on
a localization of the problem. With the results and notations of Section 3.1 and the
subsections following, the global value of the contrast is γ(f̂m) := γ̂m =

∑D
d=1 γ̂Id

rd
and we

look for

m̂ = arg min
m∈Mn

[
γ̂m +

penn(m)
n

]
where we must consider here that penn(m) := penn,c(m) with c = (c1, c2, c3, c4, c5, c6) and

penn,c(m) = σ2

[
c1 ln

(
n− 1
D − 1

)
+ c2 ln(D)c3

]
+

D∑
d=1

σ2 [c4(1 + rd) + c5 ln(1 + rd)c6 ]

def= penn,c1,c2
(D) +

D∑
d=1

penn,c4,c5,c6
(rd).

Then we find a localized decomposition of the penalized contrast:

nγ̂m + penn,c(m) = penn,c1,c2
(D) +

D∑
d=1

{
nγ̂BId

(rd) + penn,c4,c5,c6
(rd)

}
,

where the first part of the penalty penn,c1,c2
(D) is the global penalization concerning the

number of sub-intervals and the second part penn,c4,c5,c6
(rd) is the local part concerning the

degree on each sub-interval. We recall that γ̂BI (r) is defined by (13) for a basis B.
We implement in fact a multi-bases estimate. For this purpose, the algorithm chooses

on each subinterval a particular base between a preselected collection of bases. Here our
preselected collection of bases is, as described in section 3.3, the ”Cheb” and ”Trig” bases.
For this multi-bases implementation the decomposition of the penalized contrast is as follows:

nγ̂m + penn,c(m) = penn,c1,c2
(D) +

D∑
d=1

min
ϕd

{
nγ̂ϕd

Id
(rd) + penϕd

n,c4,c5,c6
(rd)

}
.

This can also be written:

nγ̂m + penn,c(m) =
n∑

k=1

Y 2
k + penn,c1,c2

(D) +
D∑

d=1

[
penϕd

n,c4,c5,c6
(rd)− pϕd

Id
(rd)

]
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where on the interval I = [i/n, . . . , (j + 1)/n[

pϕ
I (s) =

s∑
t=0

[
j−i∑
k=0

Yk+iϕ
I
t (k)

]2

def= pϕ
s (i, j),

where ϕI = (ϕI
0, . . . , ϕ

I
s, . . .) is one of the preselected bases and ϕd is set for ϕId . The

quantity pϕ
s (i, j) represents obviously the weight of the contrast when going from i to j

(j included), so that pϕ(i, i) is defined. Note that, for 1 ≤ ` ≤ n, those quantities are
systematically computed by setting

Y` = (Yi+k−1)1≤i≤`,1≤k≤n−` and B` = (ϕI
i (k))0≤i≤rmax,0≤k≤`−1

and by computing and storing (B`Y`)•2 where A•2 = (a2
i,k)1≤i≤p,1≤k≤q for A = (ai,k)1≤i≤p,1≤k≤q.

Then considering different values of ` amounts to take into account intervals of any length
` = 1, . . . , n. Note that even if penϕ can depend on ϕ we choose after some experiments the
same penalization for each base.

For j ≥ i, the procedure of minimization first computes:

p(i, j) = min
ϕ

min
1≤s≤rmax

[
σ2(c4(1 + s) + c5 ln(1 + s)c6)− pϕ

s (i, j)
]
,

so that the best base and the best degree is chosen.

4.2. Dynamical programming
We reach here the point where we need to use dynamical programming (see Kanazawa
(1992)). The fundamental idea of dynamical programming here is that to go until point j
with d steps (pieces here), we must first go until some k < j with d − 1 steps and then go
from k to j in one step.
Let q(d, k) be the minimum of the contrast − penalized in degree with base selection − to
go from 1 to k with d pieces; this value is thus associated to a best partition, d best bases
and a choice of d best degrees which fulfill the localization constraints.
First note that q(1, k) = p(1, k) which gives an initialization; then

q(d + 1, j) = min
d≤k<j

[q(d, k) + p(k + 1, j)] (17)

which represents 2j operations. Then a Q matrix can be filled in, with two possible strategies:

(a) “Off line” method: Compute the q(1, j) for j = 1, . . . , n and then do a recursion on d
using (17). The drawback of the method is that the actualization (i.e. if some more
observations are available and n changes), everything must be done again whereas you
know that the last column only changes.

(b) “In line” method: Assume that you have built (q(d, j))1≤d≤j≤n and you want to
increase n and compute the q(d, n+1), d = 1, . . . , n+1. Then as q(1, n+1) = p(1, n+1)
and

q(d + 1, n + 1) = min
d≤k<n+1

[q(d, k) + p(k + 1, n + 1)] ,

you only need to compute the p(k + 1, n + 1), 1 ≤ k ≤ n, the q(d, k) being already
known.
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The first part of the work, namely the computation of the coefficients p(i, `) requires
O(n3rmax) elementary operations, and the dynamical programming part requires O(n2Dmax)
operations. The global complexity of the algorithm is therefore of order

n3rmax + n2Dmax.

The implemented method is the first one (Off line), but of course, for an actualization pur-
pose, the second method must be preferred.

Now, on the last column of Q, there are the q(d, n)’s, 1 ≤ d ≤ n, which are the min-
ima of the contrast penalized in degree, to go from 1 to n with d pieces. Thus the last thing
to do is to choose

D̂ = arg min
d=1,...,n

[
q(d, n) + c1 ln

(
n− 1
d− 1

)
+ c2 ln(d)c3

]
.

Of course, the involved partitions must be stored, and not only their number of pieces.
As a summary, let us give the steps of the algorithm:

Proposition 2. A model is selected by the algorithm following the steps:

1. On any interval I = [i/n, (j + 1)/n[, compute pϕ
s (i, j) =

s∑
t=0

[
j−i∑
k=0

Yk+iϕ
I
t (k)

]2

for

1 ≤ i ≤ j ≤ n, 0 ≤ s ≤ rmax, and for ϕI
t = Cheb`(I)

t and ϕI
t = Trig`(I)

t (see Section
3.3.1 and 3.3.2),

2. Compute pϕ(i, j) = min
1≤s≤rmax

(
σ2(c4s + c5 ln(s)c6)− pϕ

s (i, j)
)

for 1 ≤ i ≤ j ≤ n,

3. Compute p(i, j) = minϕ∈{Cheb,Trig} pϕ(i, j),

4. Initialize q(1, k) = p(1, k) for 1 ≤ k ≤ n, and compute recursively for 1 ≤ d ≤ n− 1,

q(d + 1, n) = min
d≤k<n

[q(d, k) + p(k + 1, n)] ,

5. Then choose D̂ = arg min
d=1,...,n

[
q(d, n) + c1 ln

(
n− 1
d− 1

)
+ c2 ln(d)c3

]
.

The positions of the knots of the involved partitions as well as the selected degrees in step
2 must be stored.

4.3. A fast version of the algorithm
We also implemented a quick but approximated version of the algorithm, with complexity
of order Doptrmaxn2.
We do not describe it with much details, but simply with its global idea. Namely, each step
of the algorithm answers to the question: is it better to add one point to the subdivision or
to cancel one, where the “better” is evaluated in term of the compared penalized contrasts.
We must admit that many available algorithms are with complexity of order O(n log2(n)),
this is really a drawback of our procedure.
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5. Empirical results

5.1. Risks and calibration

First we take for the penalty as defined in Proposition 1, s2 = σ2, c1 = c4 = 2. We look
for c2, c3, c5 and c6 with the constraint (c2, c3) = (c5, c6). Indeed, the symmetry of those
coefficients seems a natural property here and we need to limit the number of possibilities
to explore.
Second, we use a set of 16 test functions with very different shapes and regularity. The test
functions are given in Figure 1. Functions 1 to 4 and 7 to 14 are the same as the ones used
by Antoniadis et al. (2002), functions 1 to 14 come from the Wavelab toolbox developed by
Donoho (see Buckheit et al. (1995)) and functions 15 and 16 have been added in order to
test also the estimators for some regular functions.

Signal 1 Signal 2 Signal 3 Signal 4

Signal 5 Signal 6 Signal 7 Signal 8

Signal 9 Signal 10 Signal 11 Signal 12

Signal 13 Signal 14 Signal 15 Signal 16

Fig. 1. Test functions.

Third, we consider different levels (namely 3, 5, 7 , 10) of noise which are evaluated in
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terms of a signal to noise ratio, denoted by s2n, and computed as

s2n =

√√√√√ 1
n

n∑
i=1

(f(i/n)− f̄)2

σ2
, f̄ =

1
n

n∑
i=1

f(i/n).

Lastly, the performances are usually compared to a reference value called an oracle. This
oracle is the lowest value of the risk. It is computed by using the fact that, in the simulation
study, the true function is known, and that, if all the estimates are computed, the one with
the smallest risk can be found, as well as its associated risk. In other words here, we would
have to compute all ‖f − f̂‖2n, for some known f and all possible f̂ , for all the sample paths.
This can be done for regular models but would imply much too heavy computations here
for general models. Therefore, another reference must be found to evaluate our estimator.
We use the following ratios

R1(f) :=
minj=1,...,48 E∗

[
`22(f, f̂wj

)
]

E∗
[
`22(f, f̃)

] and R2(f) =
E∗
[
minj=1,...,48 `22(f, f̂wj

)
]

E∗
[
`22(f, f̃)

] (18)

the second one being of course a harder criterium than the first one to evaluate our method.
In both cases, the ratios are compared to one: the higher over 1 the ratio, the better our
method. The index wj denotes the wavelet method number j where 48 wavelet methods
are considered and f̂wj denotes the estimate of f obtained using the method wj . Before
giving the details about the wavelet methods, let us explain formula (18). We generate K
(K = 100) samples with length n (n = 128, 512) in the regression model, and denote by
f̂ (k)an estimate of f (computed with any method, f̂

(k)
wj with the method wj) based on the

kth sample. Then

`22(f, f̂ (k)) =
1
n

n∑
i=1

(f − f̂ (k))2(i/n),

and

E∗[`22(f, f̂)] =
1
K

K∑
k=1

`22(f, f̂ (k)).

Therefore, if our test functions f1, . . . f16 lead to values of R2(fi) for i = 1, . . . , 16 such that
∀i ∈ {1, . . . , 16}, R2(fi) ≥ a, then this means that, for any f ∈ {f1, . . . , f16},

E∗[`22(f, f̃)] ≤ 1
a
E∗
[

min
j=1,...,48

`22(f, f̂wj
)
]

.

We must emphasize that we chose diadic values of n (n = 128 = 27 or n = 512 = 29) in order
to be able to apply all wavelet methods, but our method does not require diadic samples
and can be used for any n without any change.

Now let us be more precise about the wavelets. We use both the MathWorks toolbox
developed by Misiti et al. (1995) and the WaveLab toolbox developed by Buckheit et
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al. (1995), following the theoretical works by Donoho (1995), Donoho and Johnstone
(1994), Donoho et al. (1995). The abbreviations below refer to the MathWorks toolbox.
We use the 6 following basic wavelets: the Haar wavelet (well suited for square signals),
two Daubechies DB4 and DB15 wavelets (well suited for smooth signals), two symmetric
wavelets abbreviated as Symmlets, sym2 and sym8, the bi-orthogonal wavelet bior3.1 (well
suited for signals with rupture). The wavelets are associated with 4 types of threshold:
the threshold

√
2 log(n) called “sqtwolog”, the minimax threshold called “minimaxi”, the

SURE (Stein’s Unbiased Risk Estimate) threshold called “Rigsure”, an heuristical version
of SURE threshold using a correcting term for small values of n, called “Heursure”. Lastly,
we use the two standard types of threshold, hard and soft thresholding†. This explains the
6 ∗ 4 ∗ 2 = 48 indexes for the wavelets methods.

Several attempts and experiments lead, for the set of constant of the penalty, to the
choice

c1 = c2 = c4 = c5 = 2, c3 = c6 = 2.5.

(D = 4) Residuals, Segmentation, Basis, Degrees

0 0.2 0.4 0.6 0.8 1
-4

-2

0

2

4
Standard Trigonometric Standard Standard

r1 = 6 r2 = 26 r3 = 59 r4 = 54

^

0 0.2 0.4 0.6 0.8 1
-15

-10

-5

0

5

10

15
Data : N = 384 - Signal Noise Ratio = 5  (7db )

0 0.2 0.4 0.6 0.8 1
-15

-10

-5

0

5

10

15
Data and Estimate --- elapsed time = 60 s

Data
FY3PG

0 0.2 0.4 0.6 0.8 1
-15

-10

-5

0

5

10

15
Signal and Estimate : L2-Error = 0.408

Signal
FY3PG

Fig. 2. An example of decomposition of a signal by the complete algorithm.

†Note that the estimation is improved by using the function “wmaxlev” to select the maximum
level of the wavelets instead of the standard level round[log2(n)] and we therefore use this Math-
Works function as well.
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We present in Figure 2 an example of data set and estimated signal as performed by
our algorithm. The signal has been built with three pieces using functions 15, 8 and 6.
The fourth picture gives the variation of the residuals and shows that the algorithm has
found an estimator with four pieces, the first one is a standard polynomial with degree
6 corresponding to the estimation of the first function, the second one is a trigonometric
polynomial with degree 26 corresponding to the estimation of the second function, the last
two pieces correspond to the estimation of the third function, and are polynomials of degree
59 and 54.

5.2. Comparison with standard wavelet methods
We report more systematically in Figure 3 the performances of this choice when the maximal
degree is set to rmax = 74 and for s2n= 3, 5, 7, 10, the functions fi being as given in Figure
1, K = 100 and n = 128.
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100
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Signal 11

10-1

100
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Signal 12

10-1
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L 2 ra
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100
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Signal 15

10-1

100
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Signal 16

E*[ min l2(f, fWj
) ]/E*[ l2(f, f ) ]

~
j=1..48

^2
2

3 5 7 10 3 5 7 10 3 5 7 10 3 5 7 10

3 5 7 10 3 5 7 10 3 5 7 10 3 5 7 10

3 5 7 10 3 5 7 10 3 5 7 10 3 5 7 10

3 5 7 10 3 5 7 10 3 5 7 10 3 5 7 10

s2n s2n s2n s2n

s2n s2n s2n s2n

s2n s2n s2n s2n

s2n s2n s2n s2n

Fig. 3. Performance ratios R2(f) relatively to the 16 test functions for K = 100 and n = 128.
The greater than one, the better our algorithm.
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More precisely, Figure 3 plots the values obtained for R2(f) relatively to the test functions
given in Figure 1. We emphasize that the ratio we compute is very unfavourable to our
method, because for each sample, we compare our risk to the one of the best (unknown in
practice) wavelet method. The ordinate of the lower point is anyway greater than 0.65, which
is quite good since we recall that it means that, for any f ∈ {f1, . . . , f16}, E∗[`22(f, f̃)] ≤
1.54E∗

[
minj=1,...,48 `22(f, f̂wj )

]
.

Note that we have also computed the risks in term of `1-type error; we obtain the same
type of results except for the function f8 and f16 where the results are even better: this can
be explained by the fact that the `1-distance reduces the weights of the discontinuities which
are inherent in our method. Besides, the errors are taken centered Gaussian with known
variance, but we also considered centered uniform and Cauchy errors and the results were
similar.

We have roughly described in Section 4.3 an accelerated version of our complete algo-
rithm, but we had to test if the performances of this method were indeed of the same order
as the standard one, but appreciably faster. We give below in Table 1 the estimation perfor-
mances in term of R2(f) and in term of CPU time (for the same samples) of the accelerated
algorithm compared to the standard one.

XXXXXXXXXSignal
Ratio

s2n = 3 s2n = 5 s2n = 7 s2n = 10

Risk Time Risk Time Risk Time Risk Time

1 1.55 0.24 1.53 0.25 1.37 0.25 1.46 0.25

2 0.93 0.18 0.95 0.18 0.96 0.17 0.99 0.16

3 1.05 0.10 1.00 0.11 1.01 0.12 1.00 0.14

4 0.95 0.13 0.95 0.13 0.96 0.14 0.96 0.14

5 0.99 0.19 1.00 0.19 0.99 0.18 0.98 0.18

6 0.99 0.19 1.00 0.20 0.99 0.20 1.00 0.21

7 1.00 0.13 1.00 0.14 1.00 0.14 1.00 0.14

8 0.97 0.08 0.98 0.08 0.98 0.08 1.00 0.08

9 0.96 0.11 0.96 0.13 0.96 0.13 0.95 0.13

10 0.93 0.13 1.04 0.14 1.04 0.15 1.21 0.15

11 1.03 0.10 1.11 0.12 1.10 0.13 1.03 0.14

12 1.00 0.13 1.04 0.13 1.07 0.13 1.09 0.13

13 0.93 0.17 0.97 0.17 0.98 0.16 1.01 0.16

14 0.95 0.10 0.94 0.10 0.92 0.10 0.94 0.10

15 0.96 0.05 0.98 0.05 1.00 0.06 0.99 0.07

16 1.04 0.13 1.04 0.13 1.14 0.13 1.08 0.13

Table 1. Quick and complete algorithm comparison : Risk ratio and CPU Time ratio, ratio =
Quick / complete, n = 512 and K = 100.

It appears that except for the first signal, which is better identified by the complete
algorithm, the quick algorithm performs very well both in term of risk (which was expected)
and time (which was the aim). More precisely and if we except Signal 1, there is essentially
no loss in term of risk when using the quick algorithm, but it appears indeed to be between
five and twenty times faster for a sample with size n = 512. This effect naturally increases
with the sample size. As a conclusion, it is clear that both the standard the accelerated
algorithm work very well.
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5.3. Compression performances
We already computed the complexity of our algorithm so that it is clear that even in its quick
version, it remains slower than wavelet methods. But it has two decisive advantages with
respect to those methods, in addition to its completely automatic feature: first, it performs
very well whatever the type of signal, and even faced with discontinuities, and second, its
compression properties are quite excellent, and in particular much better in many cases than
wavelets, which was somehow unexpected.
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Fig. 4. Error ratio in function of the compression ratio. The ratios are our method over all wavelet
methods (dotted lines correspond to levels 1). K = 100 samples with length n = 128 and s2n=5.

Therefore, we also lead a naive comparison of the standard wavelet methods and of
our algorithm in term of their compression performances. For each estimated function, we
compute three types of code lengthes: an “integer length” which is a number of integers,
namely the number of nonzero wavelet coefficients for the wavelet methods, NintW , and
twice the chosen number D of intervals in the piecewise polynomials method NintPP (1
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integer for D, D integers for each degree rd, D−1 integers for the length of the intervals), a
“real length” which is the number of real coefficients of the developments for each method,
NrealW and NrealPP , and a global length, NW and NPP , defined in both cases as
(Nint/4) + Nreal to take into account the common idea that an integer is four times
smaller than a real number in terms of code length. Figure 4 above plots the error ratios
R(j)(f) := E∗

[
`22(f, f̂wj

)
]
/E∗

[
`22(f, f̃)

]
in function of the global length ratios NWj/NPP

where j is the index of the wavelet method, for f taken as each signal of Figure 1 and for
s2n= 5. We can see that both the estimation and the compression performances of our
algorithm are most of the time better than wavelet methods since both ratios are higher
than 1. The signal 5 and 6 are the only one for which the wavelets are better but it appears
that they are better either in term of risk or in term of compression, but not both; on the
contrary for the other signals, our method is better in term of both risk and compression
performance.

We give also in Table 2 the means over the samples of the ratios: mean (over the samples)
of NrealWj over mean of NrealPP , mean of NintWj over mean of NintPP and mean of
NWj over mean of NPP , for the index j corresponding to the best wavelet in term of
approximation performance for each sample path; we also distinguish between the values
s2n of the signal to noise ratios. We can see that all ratios are greater than 1, which means
that our method is better in term of compression that all standard wavelets. Besides, the
compression improvement of our algorithm increases when the s2n increases.

NrealWj/NrealPP NintWj/NintPP NWj/NPP
s2n s2n s2n

Signal 3 5 7 10 3 5 7 10 3 5 7 10

1 2,57 2,05 2,09 2,22 1,61 1,20 1,24 1,26 2,30 1,79 1,84 1,93

2 2,92 2,89 1,52 1,47 4,32 4,20 2,35 2,44 3,13 3,08 1,64 1,59

3 2,85 3,57 3,33 3,24 5,25 6,46 6,31 7,30 3,14 3,92 3,68 3,64

4 2,23 2,12 2,11 1,20 7,61 8,72 9,74 6,86 2,59 2,50 2,50 1,44

5 1,47 1,01 1,17 1,06 16,74 12,58 14,98 13,64 1,80 1,23 1,43 1,29

6 1,13 1,16 1,19 1,22 28,89 33,98 35,01 36,30 1,40 1,44 1,47 1,52

7 2,35 2,26 2,40 2,36 1,32 1,33 1,35 1,34 2,03 1,98 2,08 2,05

8 1,64 2,33 2,55 2,43 9,06 18,00 21,97 22,10 1,96 2,83 3,10 2,95

9 1,35 3,71 3,55 2,80 1,80 5,56 5,69 4,94 1,42 3,97 3,84 3,06

10 3,00 4,97 5,19 5,75 4,80 6,87 6,26 6,27 3,24 5,26 5,37 5,84

11 2,18 4,72 4,85 4,68 3,54 8,07 8,89 8,84 2,36 5,15 5,33 5,17

12 4,43 3,15 4,67 4,50 8,79 7,48 11,41 11,52 4,92 3,57 5,30 5,12

13 3,50 3,67 3,68 1,85 5,10 5,40 5,63 2,93 3,73 3,92 3,95 1,99

14 3,40 2,49 2,46 6,11 5,49 4,53 4,68 12,79 3,68 2,73 2,72 6,82

15 2,09 3,45 3,14 3,21 3,42 6,41 6,04 6,85 2,26 3,80 3,47 3,59

16 1,40 1,61 1,83 1,97 9,95 13,01 15,99 18,50 1,69 1,95 2,23 2,40

Table 2. Compression performances for the three ratios in function of the s2n and of the signal
for K = 100 samples with length n = 128.
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5.4. Comparison with recent wavelet methods
We also implemented for comparison some more recent wavelet methods, already studied
in Antoniadis et al. (2002) and therefore quite reproducible for such a test. More precisely
we considered the following methods, implemented using the Gaussian Wavelet Denoising
Library built by Antoniadis et al. (2002) (see http://www.jstatsoft.org/v06/i06/), using
either a Haar or a Symmlet8 filter:

W1 Coifman and Donoho (1995)’s translation invariant method using soft thresholding
(TI-soft), coded with the function “recTI” in the library,

W2 Coifman and Donoho (1995)’s translation invariant method using hard thresholding
(TI-hard), coded with the function “recTI” in the library,

W3 Cai (1999)’s method using a block non-overlapping thresholding estimator, re-using
the first few empirical coefficients to fill the last block, coded with the function
“recblockJS” in the library

W4 Cai (1999)’s previous method, the last few remaining empirical coefficients being
unused, coded with the function “recblockJS” in the library,

W5 Huang and Lu (2000)’s method based on nonparametric mixed-effect models, coded
with the function “recmixed” in the library,

W6 Cai and Silverman (2001)’s method using an overlapping block thresholding estimator,
coded with the function “recneighblock” in the library,

W7 Antoniadis and Fan (2001)’s hybrid method using a “keep”, “shrink” or “kill” rule
(SCAD),

W8 Vidakovik and Ruggeri (2000)’s bayesian adaptive multiresolution method coded with
the function “recbams” in the library.

Signal PP PP/PT W1 W2 W3 W4 W5 W6 W7 W8

1 0.077 0.098∗ 1.856 0.423• 0.798 0.817 0.472 0.947 0.866 0.871

2 0.313 0.361∗ 2.421 0.404• 0.769 0.785 0.506 0.820 0.977 0.871

3 0.061 0.063∗ 0.207 0.108• 0.198 0.228 0.135 0.216 0.148 0.856

4 0.197 0.202 0.805 0.174∗• 0.251 0.282 0.238 0.197 0.335 0.857

5 0.582 0.563∗ 4.337 0.651• 0.724 0.746 0.670 0.677 1.600 0.883

6 1.001 1.003∗ 8.506 1.601 1.492 1.474 4.788 1.406• 3.816 4.050

7 0.010 0.012∗ 0.552 0.133• 0.388 0.405 0.193 0.416 0.285 0.860

8 0.168 0.059∗ 0.596 0.072• 0.239 0.256 0.273 0.253 0.398 0.864

9 0.050 0.053∗ 0.377 0.080• 0.159 0.177 0.143 0.198 0.159 0.859

10 0.113 0.091 0.313 0.084∗• 0.127 0.154 0.120 0.135 0.181 0.859

11 0.087 0.087 0.200 0.052∗• 0.108 0.140 0.088 0.082 0.091 0.856

12 0.084 0.083 0.235 0.050∗• 0.085 0.117 0.094 0.080 0.106 0.858

13 0.181 0.141 0.891 0.136• 0.258 0.269 0.234 0.246 0.365 0.867

14 0.057 0.052 0.176 0.062∗• 0.097 0.096 0.073 0.096 0.084 0.857

15 0.027 0.027∗ 0.203 0.071• 0.156 0.175 0.136 0.166 0.122 0.856

16 0.156 0.076∗ 0.735 0.118• 0.233 0.251 0.255 0.227 0.357 0.868

Table 3. L2-errors for s2n= 5, n = 512, PP is our method when considering piecewise polynomial
bases only, PP/PT is our method when considering both standard and trigonometric piecewise
polynomials, W1 to W8 are the wavelet methods described above with Symmlet8 filter. σ = 1 is
known. • gives the best wavelet method, ∗ gives the best method between PP/TT and W1-W8.
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For a more precise description of those methods, we refer to Antoniadis et al. (2002).
They are a selection of recent methods that Antoniadis et al. (2002) describe and test,
namely methods number 5, 6, 12, 13, 20, 11, 18 and 34 respectively in their Table 3. We
work first with σ = 1 assumed to be known. Moreover, in all the following, we use the quick
version of our algorithm.

Table 3 above gives the L2-errors for the 16 test functions and signal to noise ratio s2n=5
obtained with the quick version of our method (when using standard polynomials (PP) or
both standard and trigonometric polynomials (PP/PT)) and with the other methods W1
to W8. We must say that we did not succeed in making W8 work, but this may be an
error of ours. Besides we found out that the method of Coifman and Donoho (1995) with
hard thresholding (W2 or TI-hard) seems to be almost always better than all the other
wavelet methods. Our method behaves very well and is in general better than all the other
methods. Even when we do not have the lowest errors, we are not far from it. Globally, the
PP/PT method seems to be preferable: the losses are never very important but the gains
are sometimes decisive, when compared to the wavelet methods in competition.
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Fig. 5. Comparison of the L2-errors for the 16 test functions and the four s2n ratios. Our piecewise
polynomial method is the thick curve, the other curves are the best wavelet methods among W1–W8
with Symmlet8 filter. K = 100, n = 512, σ = 1 known.

In order to give a better idea of the dependence with respect to the value of s2n and
visualize the level of the performances, Figure 5 gives the L2-errors for the 16 test functions
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and the four s2n ratios of our method (when using only standard polynomials) against the
four best wavelet methods, namely W2, W3, W4, W6.

Since we found the method of Coifman and Donoho (1995) with hard thresholding (TI-
hard) to be the better one, we present a more precise comparison of our results with theirs
in Figure 6, in order to illustrate the influence of the choice of the filter (either the Symmlet8
filter or the Haar filter) in the wavelet methods. Our method does not require such a choice,
which seems to be sometimes decisive (Signals 7 and 8).
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Fig. 6. Comparison of the L2-errors for the 16 test functions and the four s2n, of our piecewise
polynomial method, using both standard and trigonometric polynomials (thick curve) and Coifman
and Donoho (1995)’s method for the Haar (dashed curve) and the Symmlet8 filters (thin curve).
K = 100, n = 512, σ = 1 known.

Lastly, we lead a comparison with unknown σ. We implemented our method using a
preliminary estimator of σ2 based on the mean square residuals obtained with an estimator
of the regression function computed on a regular model with D = [n/ ln(n)] intervals in
the subdivision and degree r = 3. This estimator is used for the penalization procedure.
The estimate of f is then used to re-evaluate σ and to initialize a second penalization. For
the test functions 5 and 6, it appears clearly that almost no method makes the job in this
case, neither wavelets, nor ours. The only good wavelet method is Huang and Lu (2000)’s
method W5 which is never better than the other wavelet methods for the other signals. Note
that the test function 5 and 6 are not used by Antoniadis et al. (2002) in their experiments.
In the other cases again and as shown by the results given in Table 4, one of the better
wavelet methods is still Coifman and Donoho (1995)’s method, , contrary to Antoniadis
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et al. (2002)’s conclusion that the best method highly depends on the type of the signal
function. Note that we gave for this method the results using both the Symmlet8 and the
Haar filter.

Signal PP/PT W1 W2 W2H W3 W4 W5 W6 W7 W8

1 0.092∗ 2.08 0.494 0.111• 0.914 0.934 0.470 1.070 0.976 0.871

2 0.367∗ 2.990 0.461 0.385• 0.946 0.960 0.510 1.030 1.200 0.871

3 0.063∗ 0.209 0.111• 0.120 0.201 0.230 0.136 0.217 0.149 0.856

4 0.206 0.873 0.187∗• 0.461 0.274 0.305 0.240 0.215 0.365 0.857

5 4.690 11.4 2.57 16.1 2.38 2.38 0.694∗• 2.4 5.98 0.884

6 23.1 23.7 23.5 23.6 23.6 22.8 0.986∗• 23.6 23.1 4.05

7 0.013∗ 0.571 0.140 0.026• 0.404 0.420 0.192 0.437 0.295 0.86

8 0.060∗ 0.610 0.073• 0.290 0.243 0.260 0.275 0.259 0.402 0.864

9 0.052∗ 0.390 0.081 0.064• 0.167 0.184 0.144 0.208 0.164 0.859

10 0.090 0.319 0.083∗• 0.104 0.128 0.154 0.120 0.136 0.182 0.859

11 0.088 0.204 0.053∗• 0.066 0.110 0.142 0.089 0.083 0.092 0.856

12 0.088 0.240 0.050∗• 0.123 0.085 0.117 0.094 0.080 0.107 0.858

13 0.150 0.913 0.136∗• 0.181 0.265 0.274 0.233 0.250 0.373 0.867

14 0.053∗ 0.179 0.063• 0.072 0.098 0.097 0.074 0.096 0.084 0.857

15 0.028∗ 0.206 0.073• 0.084 0.158 0.177 0.138 0.169 0.124 0.856

16 0.080∗ 0.751 0.118• 0.427 0.239 0.258 0.256 0.234 0.362 0.868

Table 4. L2-errors for s2n= 5, n = 512, and σ = 1 is unknow. PP/PT is our method when
considering both standard and trigonometric piecewise polynomials, W1 to W8 are the wavelet
methods described above with Symmlet8 filter, W2H is the method W2 when using the Haar

filter. •: best wavelet method, ∗: best method.

For sake of completeness, let us give a characteristic example in which our algorithm
behave in a very satisfactory way, as compared with wavelets. We simulated data using the
test function 3, as plotted in Figure 7.
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Fig. 7. Plot of n = 512 data simulated with function HeaviSine (test function 3), Gaussian errors,
σ = 1 and s2n=5.



28 F. Comte and Y. Rozenholc

Then we plot in Figure 8 the true signal and the estimated function. This function
presents two difficulties, a rupture and a peak. Our method detects both perfectly, some
wavelet methods detect the rupture but most of them miss the peak, except W5 and W7
that give a very smooth version of it.
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Fig. 8. True and estimated functions with methods PP/PT and W1-W7. L2 and L1 errors above the
pictures. σ = 1 unknown. n = 512, s2n= 5.

6. Concluding remarks

As a conclusion, let us emphasize that we provide an algorithm that has several advantages:

(a) It is completely automatic, with no arbitrary stopping criterium as for Denison et al.
(1998) method (or any MCMC method in fact), and the algorithm makes the main
choices by itself. The only inputs are Dmax and rmax.

(b) In (nearly) all cases, we can do as well as or better than wavelets methods; those meth-
ods remain faster, but of course, piecewise polynomials (standard or trigonometric)
are much more flexible than wavelets independently of the type or signal that must be
de-noised (whether square or sinusoidal or even a mix of both).

(c) As we mentioned for the complete algorithm, we have a very simple method for the
actualization when the sample size increases.
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(d) Lastly, our performances in term of signal compression are really excellent and should
be more theoretically quantified.

Let us mention also that even if the algorithm is slower than wavelet methods, it is never-
theless quite fast. For example, compared to the one provided by Denison et al. (1998), it
is ten times faster (we need 1 or 2 minutes when they require between 10 and 30).

Of course, we studied here only the simplest regression model in order to find the better
algorithm to solve our problem and we still need to find some ideas to computationally deal
with the general fixed design case. But several new frameworks arise immediately, which
would also require a precise study.
First, we can think of working with a random design, which means replacing the deterministic
xi’s by random variables Xi’s

Yi = f(Xi) + σεi.

If the Xi’s are i.i.d. and independent of the noise, then things will be right identical to the
general fixed design case. Empirical experiments already prove that if the Xi’s are random
variables identically distributed with uniform law on [0, 1] (which is the most reasonable way
of generating a reasonable non equispaced design), then the estimation procedure works as
well as in the fixed design case; this seems in accordance with the intuition. The only loss is
in term of time. But many theoretical results are available even if they are not independent
from the noise so that this assumption may also be empirically relaxed.
A simple model involving some dependency between the variables is given by the autore-
gressive model

Xi = f(Xi−1) + σεi, i = 1, . . . , n.

Higher orders p (i.e. f(Xi−1) replaced by f(Xi−1, . . . , Xi−p) with p ≥ 1) can also be studied.
Again, theoretical results (see Baraud et al. (2001b)) have been proved on that subject.
Then the εi’s themselves may also be dependent: from the theoretical point of view, this
implies some more coefficient (measuring the mixing rate of the εi’s) in the penalty term
instead of the usual σ2. This may also be experimented, through generating dependent εi’s,
for instance built from a linear autoregression (εi = ρεi−1 + ui with i.i.d. ui’s).
Lastly, many experiments may be done on the variance σ2 of the errors: it may be non
constant and piecewise estimated following a specific subdivision (i.e. not the same as
the one chosen to estimate the function f). More generally, heteroskedastic models are
theoretically and empirically studied in the regular case in Comte and Rozenholc (2002).
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