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Abstract. We propose an adaptive estimation procedure of the hazard rate of a random
variable X in the multiplicative censoring model, Y = XU , with U ∼ U([0, 1]) independent of
X. The variable X is not directly observed: an estimator is built from a sample {Y1, ..., Yn}
of copies of Y . It is obtained by minimisation of a contrast function over a class of general
nested function spaces which can be generated e.g. by splines functions. The dimension of the
space is selected by a penalised contrast criterion. The final estimator is proved to achieve the
best bias-variance compromise and to reach the same convergence rate as the oracle estimator
under conditions on the maximal dimension. The good behavior of the resulting estimator is
illustrated over a simulation study.
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(C) CEREMADE UMR CNRS 7534, Université Paris-Dauphine, France. angelina.roche@dauphine.fr

Keywords. Adaptive procedure. Model selection. Hazard rate estimation. Multiplicative
censoring model.

AMS Subject Classification 2010. 62G05; 62N01.

1. Introduction

In this paper, our aim is to estimate the hazard rate associated with a nonnegative random
variable X, defined by

h = fX/F̄X

where F̄X(x) = 1 − FX(x) = P(X ≥ x) (resp. fX) is the survival function (resp. the density)
of X. However, instead of having at our disposal an independent and identically distributed
(i.i.d. in the sequel) sample X1, . . . , Xn with the distribution of X, we assume that we observe
{Y1, . . . , Yn} such that

Yi = XiUi, for all i = 1, . . . , n, (1)

where Xi is a non-negative unobserved random variable and Ui is also unobserved and follows
the uniform distribution on the interval [0, 1]. The quantity of interest, Xi, is supposed to be
independent of Ui, for all i = 1, . . . , n. The model Y = XU is called a multiplicative censoring
model by Vardi (1989), but we emphasise that this kind of censoring is very different from more
standard right-censoring. It represents incomplete observations when the lifetime at hand is
only known to belong to a random time interval; this happens in AIDS studies in particular.

Model (1) has been introduced by Vardi (1989) as a common model for different statistical
problems such as inference for renewal processes, deconvolution with exponential noise and
density estimation under decreasing constraint. Until now, only density and survival function
estimation have been studied in this model. First, a maximum likelihood estimation procedure
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has been introduced by Vardi (1989) and shown to be consistent. Then, Vardi and Zhang (1992)
have proved its uniform consistency and asymptotic normality, but in both papers, it is assumed
that two samples {Y1, ..., Yn} and {X1, ..., Xm} are observed and that m/(m+n) converges to a
positive constant c > 0. More recently, Asgharian et al. (2012) have proposed a kernel density
estimator and established conditions for strong uniform consistency. All previous results are not
applicable in our context as we assume m = 0.

In our setting, where X is not directly observable, no estimation procedure of the hazard rate
has been proposed, to our knowledge. Nonparametric hazard rate estimation has been devel-
oped in the context of direct or right-censored observations, mainly with quotient of functional
estimators, built by kernel methods as in Patil (1993a,b), wavelet strategies as in Antoniadis
et al. (1999), or projection and model selection techniques as in Brunel and Comte (2005). In
the present paper, our references on the topic are two studies dealing with nonparametric esti-
mation of hazard rate in the context of direct observations or right-censored data developed in
Comte et al. (2011) and in Plancade (2011). We show how to generalise the method proposed
in these papers to model (1); their specificity is to propose an adaptive regression estimator
built by direct contrast minimisation (no quotient) and model selection. We do not provide
exhaustive bibliography on the subject, but the interested reader is referred to the recent paper
of Efromovich (2016) and references therein.

Concerning the specific model considered here, we obtain the following relationship between
the density fY of Y and the density fX from the link between the random variables given by (1),

fY (y) =

∫ +∞

y

fX(x)

x
dx, y > 0.

This formula indicates that estimating the density of X from the density of the observed variable
Y is an inverse problem. Based on this observation, Andersen and Hansen (2001) have proposed
an estimation procedure of the density fX by a series expansion approach. Convergence rates for
the mean integrated squared error are derived. Van Es et al. (2005) have proposed an estimation
procedure of the density of log(X2) in the non i.i.d. case, under a different assumption on the
law of U . Abbaszadeh et al. (2012, 2013); Chesneau (2013); Chaubey et al. (2015) have proposed
adaptive wavelet estimators of the density fX , when the observations follow related – yet different
– models, for instance with an additional bias on X (Abbaszadeh et al., 2012), in the non i.i.d.
case (Chesneau, 2013) or under the assumption that X follows a mixing distribution (Chaubey
et al., 2015). They obtain convergence rates for the L2-risk (or even the Lp-risk Abbaszadeh
et al. 2013) on [0, 1]. Brunel et al. (2015) have proposed an adaptive estimation procedure for
both the density fX and the survival function F̄X in the case where X can take negative values.
They also obtain rates of convergence, for both integrated and pointwise quadratic risk which are
similar to the ones obtained by Andersen and Hansen (2001), though under different regularity
assumptions on the functions to estimate. These rates are proved to be optimal in the minimax
sense. Comte and Dion (2016) have proposed an adaptive estimation procedure for the density
function in a different context, the noise is supposed to be uniform over an interval [1− a, 1 + a]
(a > 0). None of the previous works considers hazard rate estimation, while this function is
widely used in survival analysis.

In this paper, we provide a projection strategy for the estimation of the hazard rate function
h, following the ideas developed by Comte et al. (2011) and by Plancade (2011). To this end, we
take into account the specific model (1) and propose an original minimum contrast estimator. We
first build a collection of projection estimators over linear models, and then choose an estimate
in the collection, by using model selection. In Section 2, we detail the estimation procedure for
a fixed model and justify the choice of our contrast. We give theoretical results in Section 3.
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In Section 4, we define the empirical criterion for choosing the model dimension and provide
theoretical results (oracle-inequality and rates of convergence) for the selected estimator. Finally,
in Section 5, we study the numerical behavior of the proposed estimator. Section 6 is devoted
to the proofs.

2. Estimation procedure

2.1. Notations. We estimate the target function h on a compact subset A = [0,a] of [0,+∞[.
Let (L2(A), ‖.‖, 〈., .〉) be the space of square integrable functions on A, equipped with its classical

Hilbert structure: 〈f, g〉 =
∫
A f(t)g(t)dt and ‖f‖ =

√
〈f, f〉, for all f , g ∈ L2(A). We also

introduce ‖ ·‖F̄X , a reference semi-norm that naturally appears in our estimation problem, given

by ‖t‖2
F̄X

:= 〈t, t〉F̄X , 〈s, t〉F̄X :=
∫
A s(x)t(x)F̄X(x)dx, for s, t ∈ L2(A). It satisfies ‖t‖F̄X ≤ ‖t‖.

We also denote ‖f‖∞,I := supx∈I |f(x)|, and ‖f‖p,I the classical Lp−norm of a function f on an
interval I ⊂ R.

We consider a collection (Sm)m∈{1,...,Nn} of linear subspaces such that

Sm = Span{ϕj , j ∈ Jm},

where Jm ⊂ N\{0}, Nn ≥ 1, {ϕj , j ∈ Jm} is a basis of the subspace, and ϕj has support in A.
We denote by Dm the dimension of Sm, which means that Dm = |Jm|, where |B| denotes the
cardinality of a set B. The following properties are required for the models.

(M1): The models are nested: Sm ⊂ Sm′ if m ≤ m′.
(M2): The basis {ϕj , j ∈ Jm} is a Riesz basis:

∃ d1, d2 > 0, ∀(αj)j∈Jm ∈ RDm , d1

∑
j∈Jm

α2
j ≤

∥∥∥∥∥∥
∑
j∈Jm

αjϕj

∥∥∥∥∥∥
2

≤ d2

∑
j∈Jm

α2
j .

(M3): The functions ϕj , j ∈ Jm are differentiable on A and

∃Φ0,Φ1 > 0,

∥∥∥∥∥∥
∑
j∈Jm

ϕ2
j

∥∥∥∥∥∥
∞,A

≤ Φ2
0Dm,

∥∥∥∥∥∥
∑
j∈Jm

(ϕ′j)
2

∥∥∥∥∥∥
∞,A

≤ Φ2
1D

3
m,

and ∀(αj)j∈Jm ∈ RDm , ‖
∑

j∈Jm αjϕ
′
j‖2 ≤ Φ2

2(
∑

j∈Jm α
2
j )D

2
m.

(M4): One of the two following properties is satisfied.
(M4,1): The basis is bounded: ∃c0 > 0, ∀j ∈ Jm, ‖ϕj‖∞,A ≤ c0.
(M4,2): The two following assertions are fulfilled.

(i) ∃c1 > 0, ∀j ∈ Jm, |{k ∈ Jm, ϕjϕk 6= 0}| ≤ c1,
(ii) ∃c2 > 0, supj∈Jm ‖ϕj‖

2
∞,A ≤ c2Dm.

(M5): There exists c3 > 0 such that for any f ∈ L2(A),
∑

j∈Jm〈f, ϕj〉
2 ≤ c3‖fm‖2, with

fm the orthogonal projection of f onto Sm.

Assumption (M1) implies that we have Sm ⊂ SNn =: Sn for all m = 1, . . . , Nn. Assumption
(M2) generalises the case of orthogonal bases. The differentiability of the basis (Assumption
(M3)) is required for our estimation strategy (see (6) below). Clearly, it excludes the classical
histograms and piecewise polynomial basis. The inequalities for the sup-norm of the sum of the
functions of the basis and their derivatives are classical. A basis which satisfies (M4,2) (i) and
(ii) is said to be localised. We have in mind at least two types of models that are convenient for
this set of assumptions.
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[T] - Trigonometric models. Let Jm = {1, . . . , 2m+ 1 = Dm}, ϕ1(x) = a−1/21A(x),

ϕ2j(x) = a−1/21A(x)
√

2 cos (2πjx/a) and ϕ2j+1(x) = a−1/21A(x)
√

2 sin (2πjx/a) .

We obtain that Assumptions (Ml), l = 1, . . . , 4 are satisfied, with d1 = d2 = 1 in (M2)

(orthonormal basis), Φ2
0 = 1/a, Φ2

1 = π2/a3, Φ2
2 = 4π2/a2 in (M3), c0 =

√
2/a in

(M4,1), and c3 = 1 in (M5) (see Section 6.1).
[BS] - B-spline models. Let r ∈ N\{0}, Jm = {−r + 1, 2, . . . , 2m − 1}, in such a way
that Dm = 2m − r + 1 and

ϕj(x) := ϕj,m(x) =
2m/2√

a
Nr

(
2m

a
x− j

)
, Nr(x) = r[0, 1, . . . , r](· − x)r−1

+ = 1?r[0,1](x), (2)

with the usual difference notation, see de Boor (1978); DeVore and Lorentz (1993), and
where ? is the convolution product. Assumptions (Ml), l = 1, . . . , 4 are satisfied, with
Φ2

0 = r/a, Φ2
1 = 4(r − 1)4r/a3, and Φ2

2 = (2r − 1)‖N ′r‖22,R/a2 in (M3), c1 = 2r − 1,

c2 = a−1 in (M4,2), and c3 = ‖Nr‖42,R(2r − 1)2/d1 in (M5).

Details of the computation of the constants can be found in Section 6.1, as well as additional
technical properties. The following constraint is also required on the maximal model dimension
DNn for a constant K > 0:

DNn ≤ K
√
n/ ln3(n). (3)

2.2. Definition of the regression contrast. The key of our estimation strategy relies on the
following equalities, obtained from (1):

yf ′Y (y) = −fX(y), (4)

and
F̄Y (y) + yfY (y) = F̄X(y), y ∈ R+, (5)

see Section 6.1 for details. These relations lead to consider the following contrast, for any
differentiable function t ∈ L2(A):

γn(t) = ‖t‖2n − 2ν̃n(t), (6)

with ‖.‖n an empirical semi-norm and ν̃n an empirical process defined by

‖t‖2n = 1
n

∑n
i=1

[∫
A t

2(x)1{Yi≥x}dx+ Yit
2(Yi)1{Yi∈A}

]
,

ν̃n(t) = 1
n

∑n
i=1 [t(Yi) + Yit

′(Yi)] 1{Yi∈A} − at(a)f̂Y (a),

where f̂Y is an estimator of the density fY . Its properties will be specified later (see Section
2.3). Using (4) and (5), we prove in Section 6.2 the following result.

Lemma 2.1. Let t ∈ L2(A) be a bounded and continuously differentiable function on R+. Then

E [γn(t)] = ‖t− h‖2F̄X − ‖h‖
2
F̄X

+ 2at(a)
(
E
[
f̂Y (a)

]
− fY (a)

)
. (7)

The unusual term at(a)f̂Y (a) involved in the contrast permits to counterbalance the term
at(a)fY (a) which appears when we calculate E[ν̃n(t)], as (7) proves it. In practice (see Section

5), the value of f̂Y (a) is very small. Moreover, it follows from (5) that lima→+∞ afY (a) =
lima→+∞[F̄X(a) − F̄Y (a)] = 0. The term is thus intrinsically small when a gets large. This is
why the last righ-hand-side term of (7) can be regarded as negligible.

Then, it follows from Lemma 2.1 that minimizing the contrast over Sm will amount, for n
large enough, to find the function t in Sm that minimises the specific distance between t and h,
‖t−h‖F̄X . Under (H2) specified below (see Section 2.3), the norm weighted by F̄X is equivalent
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to the L2−norm and the resulting estimate will approximate hm, the orthogonal projection of
h on Sm. Consequently, for m large enough, it should be a good approximation of h.

2.3. Definition of hazard rate estimators. Concerning the random variables appearing in
the model, the following assumptions will be required.

(H1): fX is bounded on A.
(H2): infx∈A F̄Y (x) =: F̄0 > 0, fY ∈ L2(A) and E[Y 2

1 ] < +∞.

Since A is bounded (recall that A = [0,a]), the first part of Assumption (H2) can hold (it
does not hold on R+). It means also that the survival function F̄X is also lower bounded, thanks
to (5). Moreover, under (H1) and (H2), ‖h‖2A ≤ ‖fX‖2∞,A/(F̄0)2 (which implies that h ∈ L2(A))

and the norms ‖.‖ and ‖.‖F̄X introduced in Section 2.1 are equivalent:

∀t ∈ L2(A), F̄−1
0 ‖t‖

2 ≤ ‖t‖2F̄X ≤ ‖t‖
2. (8)

This explains why the quantity F̄0 plays an important role in the estimation procedure.

Now, we need to complete the definition of the estimators. It is easily seen that if t =∑
j∈Jm αjϕj is a minimiser of γn over Sm, it verifies

∂γn(
∑

j∈Jm αjϕj)

∂αj0
= 0, j0 ∈ Jm.

Let us denote by ~α = t(αj)j∈Jm ∈ RDm , the vector of the coefficients of t. The latter conditions
are equivalent to

Ψ̂m~̂α = ~̂b, with ~̂b = t

(
1

n

n∑
i=1

(ϕj(Yi) + Yiϕ
′
j(Yi))1{Yi∈A} − af̂Y (a)ϕj(a)

)
j∈Jm

,

and

Ψ̂m := (Ψj,k)j,k∈Jm =

(
1

n

n∑
i=1

{∫
A
ϕj(x)ϕk(x)1Yi≥xdx+ Yiϕj(Yi)ϕk(Yi)1{Yi∈A}

})
j,k∈Jm

.

Thus, a unique minimiser of γn exists in Sm if and only if the matrix Ψ̂m is invertible. This is

the case on the following set ∆̂m
ρ1 , defined for 0 < ρ1 < 1 and for m ∈ {1, . . . , Nn},

∆̂m
ρ1 =

{
min Sp(Ψ̂m) ≥ (1− ρ1)d1

̂̄F 0

}
,

where Sp(M) denotes the set of eigenvalues of a matrix M , ̂̄F 0 is an estimator of F̄0 and d1 is
defined in Property (M2). Our estimator is thus given by

ĥm =
∑
j∈Jm

α̂jϕj , where ~̂α = t(α̂j)j∈Jm =

{
Ψ̂−1
m
~̂b on ∆̂m

ρ1

0 on (∆̂m
ρ1)c

.

Its definition depends on the estimator ̂̄F 0 of F̄0, the value of the survival function at the point

a (note that F̄0 > 0 under (H2)), and the estimator f̂Y (a) of fY (a), the value of the density fY
at the same point a. In the sequel, we propose to choose

̂̄F 0 =
1

n

n∑
i=1

1{Yi≥a} +
1√
n
, (9)
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and a kernel density estimator with form

f̂Y (a) =
1

nŵ

n∑
i=1

K

(
a− Yi
ŵ

)
, (10)

for a kernel K : R→ R+ with a well-chosen data-driven bandwidth ŵ > 1/
√
n (see details below

for the bandwidth choice). Alternative possibilities can be considered, they are also discussed

below, Section 2.2 for f̂Y (a) and Section 6.1 for ̂̄F 0.

3. Upper-bound on the risk of the estimator

With previous definitions and assumptions, we prove the following result.

Proposition 3.1. Assume (H1) and (H2). Then the estimator ĥm satisfies

E
[
‖ĥm − h‖2

]
≤ C1

(
‖hm − h‖2 + V (m)

)
+ C2

a2Φ2
0

d1F̄0
DmE

[(
f̂Y (a)− fY (a)

)2
]

+
C3

n

with C1, C2 and C3 some constants which do not depend on m and n, and

V (m) =
1

d1F̄0

(
(1 + a‖h‖2)Φ2

0

Dm

n
+ a2Φ2

1

D3
m

n

)
.

The proof of Proposition 3.1 and all other results are deferred to Section 6.

The upper bound given in Proposition 3.1 contains a squared-bias term ‖h − hm‖2 which is
decreasing when m increases, and a variance term V (m) which, on the contrary, increases with
m. The last term C3/n is a negligible residual term. It remains one term, which involves the

pointwise risk of f̂Y at the point a. Corollary 3.1 below proves that the convergence rate of the
risk is not deteriorated by this additional term, under reasonable smoothness assumptions.

We introduce Hβ(I, L) the Hölder ball with radius L > 0 and smoothness β > 0 for functions
defined on an interval I of R:

Hβ(I, L) = {f : I → R, such that f is ` = bβc − times differentiable

and |f (`)(x)− f (`)(y)| ≤ L|x− y|β−` for any x, y ∈ I
}
,

where bβc is the largest integer less than β.
We also choose ŵ in the definition (10) with a Goldenshluger-Lepski type method over a

collection of possible bandwidths larger than 1/
√
n, as described in Comte (2015) or Rebelles

(2015). This permits to derive the following convergence rate.

Corollary 3.1. Consider models [T] or [BS] and let the assumptions of Proposition 3.1 hold.
If the hazard rate h belongs to the ball Hβ([0,a + ε], L) (for some fixed ε > 0), then there exists
an index m(β) in the collection Mn and a choice ŵ = w(β), such that

sup
h∈Hβ([0,a+ε],L)

E
[
‖ĥm(β) − h‖2

]
≤ Cn−2β/(2β+3),

for a constant C, which does not depend on m neither on n.

This result requires some comments. The convergence rate n−2β/(2β+3) is the optimal minimax
one obtained for the estimation of the density of X in the same model by Brunel et al. (2015).
This rate is obtained by computing the optimal bias-variance trade-off minm∈Mn ‖hm − h‖2 +
V (m) that appears in the right-hand-side of the result of Proposition 3.1. This proves that
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the additional term DmE[(f̂Y (a) − fY (a))2] of the inequality does not degrade the rate, at the
price of a slightly stronger smoothness condition. Indeed, the assumption that h belongs to
Hβ([0,a + ε], L) permits to state that fY belongs to Hβ+1([a− ε′,a + ε′], L′) for an L′ > 0 and

a ε′ ∈]0,a[ (see Proposition 6.1). This smoothness result ensures that the kernel estimate f̂Y
has a pointwise risk upper-bounded by C(n/ ln(n))−2(β+1)/(2β+3) (C a constant), for a “hand-

chosen” bandwidth ŵ � n−1/(2β+1), see Rebelles (2015) for example. Thus, as Dm is set to

Dmopt � n1/(2β+3), we get DmoptE[(f̂Y (a) − fY (a))2] ≤ n−2β/(2β+3). Notice also that any other

estimator for f̂Y (a) that is adaptive (that is built without the knowledge of β) and has a pointwise
risk upper-bounded as previously can be used in the procedure.

4. Model selection

It follows from Proposition 3.1 that m has to be chosen in order to make a good squared-
bias/variance compromise, and the aim of the present section is to provide a criterion to select

an estimator among the collection (ĥm)m∈{1,...,Nn}.
We follow the general model selection scheme developed by Birgé and Massart (1998) (see

also Massart 2007). The idea is to estimate the two terms involved in the compromise. For
the squared-bias, we have ‖h − hm‖2 = ‖h‖2 − ‖hm‖2 by Pythagoras Theorem. Then, as
‖h‖2 is a constant (though unknown), we only need to estimate −‖hm‖2 and we replace it by

−‖ĥm‖2n = γn(ĥm). For the variance, we mainly use the bound V (m), up to a multiplicative
constant κ. The theoretical study gives a value for this constant, but in an elaborate problem
like hazard rate regression, this value is too large. In practice, it is calibrated on preliminary
simulations, or by using specific numerical methods as described in Baudry et al. (2012).

Thus, the dimension is selected as follows

m̂ ∈ arg minm≤Nn,Dm≥ln(n)

{
γn(ĥm) + p̂en(m)

}
, (11)

with

p̂en(m) :=
κ

d1
̂̄F 0n

(
Φ2

0Dm + (aΦ2
0 + a2Φ2

1)D3
m

)
where κ > 0 is a universal constant. We denote by pen(m) the theoretical version of p̂en(m),

pen(m) :=
κ

d1F̄0n

(
Φ2

0Dm + (aΦ2
0 + a2Φ2

1)D3
m

)
.

Then we obtain the following result.

Theorem 4.1. Assume (H1) and (H2). Then there exists κ0 > 0 and n1(h, ρ0) ∈ N\{0}
depending on ‖h‖2 and ρ0, such that, for any κ ≥ κ0, and n ≥ n1(h, ρ0),

E
[∥∥∥ĥm̂ − h∥∥∥2

]
≤ C ′1 min

m=1,...,Nn, Dm≥ln(n)

{
inf
t∈Sm

‖h− t‖2 + pen(m)

}
+C ′2E

[
(Dm̂ ∨Dm)

(
f̂Y (a)− fY (a)

)2
]

+
C ′3
n
,

where C ′1, C
′
2, C

′
3 are positive constants.

The proof of Theorem 4.1 is given in Section 6. Notice that we restrict the model collection
to spaces Sm with dimension larger than ln(n) for technical purposes.
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Figure 1. Plot of the mean risk R̂ defined by (12) (Figure (a)) and the mean

risk renormalised R̂/R̂(κmin) (Figures (b)) as a function of κ (κmin = 10−4) for
the estimator calculated on the basis [T]. Black curves: Gamma distribution, red
curves: rescaled Beta distribution, blue curves: exponential distribution, solid
lines: n = 2000, dotted lines: n = 200.

The risk bound stated in Theorem 4.1 shows that the selected m̂ leads to an estimator that
automatically performs the squared-bias variance compromise through the term

T1 := min
m=1,...,Nn, Dm≥ln(n)

{
inf
t∈Sm

‖h− t‖2 + pen(m)

}
up to the term

T2 := E
[
(Dm̂ ∨Dm)

(
f̂Y (a)− fY (a)

)2
]

which is more difficult to evaluate in this setting. We discussed in the previous section the fact
that, if Dm̂ has the order of the dimension minimizing T1, then the best possible rate can be
obtained, related to the regularity assumptions. The residual term C ′3/n is negligible.

5. Numerical illustration

5.1. Calibration of the constant appearing in the penalty term. In order to calibrate
the constant κ appearing in the penalty term, we classically calculate the risk of the estimator
as a function of κ for different simulated frameworks. Indeed, this constant is universal and
does not depend on the simulated samples. It depends only on the choice of the projection
basis. We investigate the case of the Fourier basis and the B-spline basis, described in Section
2.1. Hence, we fix κ once and for all for these two kinds of models. Such a method has been
used for the same purpose for instance in Bertin et al. (2016). The different models we consider
are the following: Gamma distribution X ∼ Γ(8, 4), Rescaled Beta distribution X = 5X ′,
X ′ ∼ Beta(3, 3), Exponential distribution X ∼ E(2) the exponential distribution with mean 2.
To avoid overfitting, the densities used for calibration are different from the ones used to study
the performances of the estimation procedure, in section 5.2.

For each distribution, we consider two sample sizes (n = 200 and n = 2000). Hence, we
plot 6 risk curves. The considered risk is the one associated with the L2-loss on [0,a] that we
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X ∼ Γ(2, 1/2) X ∼ 0.3E(1) + 0.7Γ(9, 0.5) X ∼ E(1)
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Figure 2. Plot of 10 estimators (thin lines), n = 2000. The bold line represents
the function h to estimate. First line: Fourier basis, second line: spline basis.

X ∼ Γ(2, 1/2) X ∼ 0.3E(1) + 0.7Γ(9, 0.5) X ∼ E(1)
n = 200 n = 2000 n = 200 n = 2000 n = 200 n = 2000

Fourier basis 0.25 0.095 0.022 0.011 0.04 0.015
(0.23) (0.018) (0.012) (0.003) (0.08) (0.025)

spline basis 0.17 0.06 0.013 0.0015 0.11 0.034
(0.22) (0.05) (0.016) (0.0020) (0.16) (0.030)

Table 1. Mean risk with standard deviations in parenthesis, over 50 Monte
Carlo replications.

approximate by the Monte Carlo method over N = 50 samples

R̂(κ) :=
1

N

N∑
l=1

∥∥∥ĥ(l)
m̂(κ) − h

∥∥∥2
, (12)

where ĥ
(l)
m̂(κ) is the estimator calculated from the l-th sample with m̂(κ) selected from the criterion

(11) with the given value of κ. The L2-distance ‖ · ‖ is approximated with the trapezoidal rule.
The results are presented in Figure 1 for the Fourier basis [T]. We choose a value of κ which

seems to give correct results for all the models, namely κ = 0.03 here. An identical procedure
has been applied for the splines basis [BS] of degree r = 4, which leads us to the choice κ = 0.002.

5.2. Estimation procedures. We considered three distributions for the simulations: a Gamma
density X ∼ Γ(2, 1/2), a mixed Gamma density X ∼ 0.3E(1) + 0.7Γ(9, 0.5) and a simple expo-
nential density X ∼ E(1). In Figure 2, we see that the estimation procedure, and in particular
the model selection criterion, is very stable. Moreover, as could be expected, the spline esti-
mators seem to have better performances than the one defined on the Fourier basis, except for
the case where X follows the exponential distribution: the hazard rate is constant in this case
and hence belongs to Sm, for all m, if the Fourier basis is chosen. For the other cases, the
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good behavior of the spline basis can be explained by its local feature (see property (M4,2)).
In particular, it permits to avoid the usual side effects of the Fourier basis, which are observed
when the hazard rate is not periodic. The results of Table 1 confirm these observations and
indicate that the spline basis seems to be more stable and more efficient than the Fourier basis
in most cases.

6. Proofs

6.1. Preliminary remarks, specific notations. We first state some intermediate equalities
which will be useful in the sequel.

About the semi-norms involved in the problem. Three Hilbert semi-norms are involved in our
problem: the classical Hilbert norm on the set A, denoted by ‖.‖, the semi-norm ‖.‖F̄X weighted

by F̄X on A and the empirical semi-norm ‖.‖n involved in the contrast (see Section 2.2). The
“empirical semi-scalar product” associated to ‖.‖n is defined by

〈t, s〉n =
1

n

n∑
i=1

(∫
A
t(x)s(x)1{Yi≤x}dx+ Yit(Yi)s(Yi)1{Yi∈A}

)
,

for all s, t ∈ Sm. Note that, from (5), E[〈s, t〉n] = 〈s, t〉F̄X . Finally, if

Bm = {t ∈ Sm, ‖t‖F̄X ≤ 1} (13)

is the unit ball of (Sm, ‖.‖F̄X ) and if (H2) is satisfied, we have, using (8),

Bm ⊂ {t ∈ Sm, ‖t‖ ≤ F̄−1/2
0 }. (14)

About the models. We first justify that the models spanned by the trigonometric basis and the
B-spline basis, as defined in Section 2.1 satisfy properties (Ml), l = 1, . . . , 5. For the Fourier
basis, it is straightforward. The basis is orthogonal, which means that equality holds in (M2)
and (M5) (d1 = d2 = c3 = 1). Notice only that the second inequality of Assumption (M3)
comes from the fact that ϕ′2k(x) = −2πkϕ2k+1(x)/a and ϕ′2k+1(x) = 2πkϕ2k(x)/a, for all k ≥ 1.
For the third one, we have∥∥∥∥∥∥

∑
j∈Jm

αjϕ
′
j

∥∥∥∥∥∥
2

=

∥∥∥∥∥
m∑
k=1

α2kϕ
′
2k + α2k+1ϕ

′
2k+1

∥∥∥∥∥
2

,

=

∥∥∥∥∥
m∑
k=1

2kπ

a
(−α2kϕ2k+1 + α2k+1ϕ2k)

∥∥∥∥∥
2

,

=

m∑
k=1

4k2π2

a2

(
α2

2k + α2
2k+1

)
≤ 4π2

a2
D2
m

∑
j∈Jm

α2
j

 ,

which ends to prove (M3), with Φ2
2 = 4π2/a2. Let us prove the properties for the B-spline

models. We begin with the following lemma dealing with the basic property of the B-spline Nr.

Lemma 6.1. Let r ∈ N\{0}, and Nr = 1?r[0,1]. Then,

(i) Nr has support [0; r], and Nr(x) =
∑k

j=0(−1)j
(
r

j

)
(x − j)r−1/(r − 1)! if x ∈]k − 1, k],

k = 1, . . . , r.
(ii) ‖Nr‖∞,[0;r] ≤ 1.

(iii) ‖N ′r‖∞,[0;r] ≤ 2(r − 1)2.
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Proof of Lemma 6.1. Property (i) can be found in Formula (9) of Killmann and von Collani
(2001). Property (ii) is straightforward. Let us focus on (iii). Let k ∈ [0; r] be fixed. On the
interval [k − 1, k], Nr is a polynomial function with degree r − 1 (see (i)), and Pr,k : x 7→
Nr(x/2 + k − 1/2), is a polynomial over [−1, 1] with the same degree. Thus, thanks to the
Markov inequality (Theorem 1.4 in Chapter 4 of DeVore and Lorentz 1993), ‖P ′r,k‖∞,[−1,1] ≤
(r − 1)2‖Pr,k‖∞,[−1,1]. This means that

‖N ′r‖∞,[k−1,k] = 2‖P ′r,k‖∞,[−1,1] ≤ 2(r − 1)2‖Pr,k‖∞,[−1,1] = 2(r − 1)2‖Nr‖∞,[k−1,k] ≤ 2(r − 1)2.

This inequality is valid for any k, which ends the proof of Lemma 6.1. 2

It follows from Lemma 6.1 that ϕj defined by (2) has support [2−maj, 2−ma(j+ r)[. Assump-
tion (M1) for the spline basis follows from the dyadic normalisation in the definition of ϕj (the
models define a multiresolution analysis, see Härdle et al. 1998). From Proposition 6.2 of Härdle
et al. (1998), (Nr(·− j))j∈Z is a Riesz basis: let d1, d2 > 0, such that for any finite subset Λ ⊂ Z,
and real numbers (αj)j∈Λ,

d1

∑
j∈Λ

α2
j ≤

∥∥∥∥∥∥
∑
j∈Λ

αjNr(· − j)

∥∥∥∥∥∥
2

2,R

≤ d2

∑
j∈Λ

α2
j .

Since ‖
∑

j∈Jm αjϕj‖
2 = ‖

∑
j∈Jm αjNr(·−j)‖22,R (by setting the change of variable y = 2mx/a in

the integrals that define the norms), we obtain Assumption (M2). Let us now prove Assumption
(M3). Let x ∈ A be fixed. There exists a unique k ∈ {0, . . . , 2m−1} such that x ∈ [k2−ma, (k+
1)2−ma[. For such a x, ϕj(x) 6= 0 only if

[2−maj, 2−ma(j + r)[∩[k2−ma, (k + 1)2−ma[ 6= ∅

that is if j ∈ {k− r+ 1, . . . , k} = Ak, and we have |ϕj(x)| ≤ 2m/2a−1/2‖Nr‖∞,[0,r] and |ϕ′j(x)| ≤
23m/2a−3/2‖N ′r‖∞,[0,r]. Since Ak has cardinality r, we deduce from (ii) and (iii) of Lemma 6.1∑

j∈Z
ϕ2
j (x) ≤ r × 2ma−1,

∑
j∈Z

(ϕ′j)
2(x) ≤ r × 23ma−34(r − 1)4,

which ends to prove the second inequality of (M3). For the third one,∥∥∥∥∥∥
∑
j∈Jm

αjϕ
′
j

∥∥∥∥∥∥
2

=
∑

j,k∈Jm

αjαk

∫
A
ϕ′j(x)ϕ′k(x)dx,

=
∑

j,k∈Jm

αjαk

∫
A

23m

a3
N ′r

(
2mx

a
− j
)
N ′r

(
2mx

a
− k
)
dx,

=
22m

a2

∑
j,k∈Jm

αjαk

∫
R
N ′r(u− j)N ′r(u− k)du,

=
22m

a2
t~αUm~α,

where Um is the positive symmetric matrix of size Dm with coefficients [Um]j,k = 〈N ′r(· −
j), N ′r(· − k)〉R (usual scalar product of L2(R)). If ρ(Um) is the spectral radius of Um, we have
ρ(Um) = max~α 6=0

t~αUm~α/‖~α‖2`2 , where ‖ ·‖`2 is the classical Euclidean norm on RDm . This leads
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to ∥∥∥∥∥∥
∑
j∈Jm

αjϕ
′
j

∥∥∥∥∥∥
2

≤ 22m

a2

∑
j∈Jm

α2
j

 ρ(Um).

Now, Um is a Toeplitz matrix: [Um]j+l,k+l = [Um]j,k for any indices j, k ∈ Jm and l such that
j+ l, k+ l ∈ Jm, which also satisfies [Um]j,k = 0 if |j− k| ≥ r. Applying a result of Gray (2006),
we thus have

ρ(Um) ≤
∑
k∈Z

[Um]0,k =
∑
|k|≤r

|〈N ′r, N ′r(· − k)〉R| ≤
∑
|k|≤r

‖N ′r‖22,R = (2r − 1)‖N ′r‖22,R.

This ends to prove (M3) with Φ2
2 = (2r − 1)‖N ′r‖22,R/a2.

For (M4), notice that ϕj(x)ϕk(x) = 0 as soon as k ≥ j + r or k+ r ≤ j for any x ∈ R. Thus,
(M4,2) (i) holds, with c1 = 2r − 1. Moreover, thanks to (ii) of Lemma 6.1, for any j ∈ Jm,
‖ϕj‖2∞,A ≤ 2ma−1‖Nr‖2∞,[0,r] ≤ Dma−1, which is (M4,2) (ii) with c2 = a−1. Let us finally prove

(M5). Let f ∈ L2(A). We write fm =
∑

j∈Jm αjϕj with ~α = (αj)j∈Jm ∈ RDm . Since f − fm is
orthogonal to Sm,

∑
j∈Jm

〈f, ϕj〉2 =
∑
j∈Jm

〈fm, ϕj〉2 =
∑
j∈Jm

∑
k∈Jm

αk〈ϕk, ϕj〉

2

= ‖t~αTm‖2`2 ,

where Tm the positive symmetric matrix with size Dm and coefficients [Tm]j,k = 〈ϕj , ϕk〉. Since
Tm is a symmetric matrix, we have∑

j∈Jm

〈f, ϕj〉2 ≤ ρ2(Tm)‖~α‖2`2 ≤ ρ
2(Tm)d−1

1 ‖fm‖
2,

thanks to (M2). Now, Tm is also a Toeplitz matrix, which satisfies [Tm]j,k = 0 if |j − k| ≥ r,
thanks to (M4,2). Applying the same result of Gray (2006) as above, we thus have

ρ(Tm) ≤
∑
k∈Z

[Tm]0,k =
∑
|k|≤r

|〈ϕ0, ϕk〉| ≤
∑
|k|≤r

‖ϕ0‖‖ϕk‖ = (2r − 1)‖Nr‖22,R.

Property (M5) follows, with c3 = (2r − 1)2‖Nr‖42,R/d1.

Properties (Ml), l = 2, 3, permit to establish the following lemma that will be used several
times in the proofs.

Lemma 6.2. Assume (H2), and Properties (Ml), l = 1, . . . , 4. Then, for any m ∈Mn,

sup
t∈Bm

‖t‖2∞,A ≤ Φ2
0Dm/(d1F̄0). (15)

Moreover, if ν : Sm → R is a linear map, then

sup
t∈Bm

ν2(t) ≤
∑
j∈Jn

ν2(ϕj)/(d1F̄0). (16)
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Proof of Lemma 6.2. The key of the proof is to start from (14) and to remark that it leads
to

Bm ⊂

t ∈ Sm, t =
∑
j∈Jm

αjϕj , (αj)j ∈ RDm ,

∥∥∥∥∥∥
∑
j∈Jm

αjϕj

∥∥∥∥∥∥
2

≤ F̄−1
0

 ,

⊂

t ∈ Sm, t =
∑
j∈Jm

αjϕj , (αj)j ∈ RDm ,
∑
j∈Jm

α2
j ≤ (d1F̄0)−1

 ,

with Assumption (M2). Thus, if t ∈ Bm, t =
∑

j∈Jm αjϕj , with ~α = (αj)j∈Jm ∈ RDm , we have

sup
t∈Bm

‖t‖2∞,A ≤ sup
~α=(αj)j∈Jm∈RDm

t~α~α≤(d1F̄0)−1

sup
x∈A

∑
j∈Jm

αjϕj(x)

2

.

Then, by the Cauchy-Schwarz Inequality and Assumption (M3),

sup
t∈Bm

‖t‖2∞,A ≤ (d1F̄0)−1 sup
x∈A

∑
j∈Jm

ϕj(x)2 ≤ (d1F̄0)−1Φ2
0Dm.

The reasoning is the same to obtain (16).

About the statistical framework. We establish explicit expression for the distribution of the vari-
able Y = XU in the multiplicative censoring setting we consider. First recall that we have the
following formula for the density of Y

fY (y) =

∫ +∞

y

fX(x)

x
dx, y > 0. (17)

Therefore we get (4). On the other hand,

F̄Y (y) := P(Y1 ≥ y) =

∫ +∞

y
fY (z)dz =

∫ +∞

y

∫ +∞

z

fX(x)

x
dxdz

=

∫ (∫ x

y
dz

)
fX(x)

x
1Iy≤xdx =

∫ +∞

y
(x− y)

fX(x)

x
dx

=

∫ +∞

y
fX(x)dx− y

∫ +∞

y

fX(x)

x
dx

= F̄X(y)− yfY (y).

So, (5) follows. 2

About the estimator ̂̄F 0. The following properties of ̂̄F 0 defined by (9) are simple but crucial for
the proof of our main results.

Lemma 6.3. We have ̂̄F 0 ≥ 1/
√
n and, for all ρ0 ∈ (0, 1),

P(| ̂̄F 0 − F̄0| ≥ ρ0F̄0) ≤ c/n4.

Any other estimator of F̄0 which satisfies such properties could be used in the paper. Also,
1/
√
n in (9) could be replaced by a quantity µn > 0 such that limn→∞ µn = 0 and µn ≥ n−α,

for a real number α > 0.
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Proof of Lemma 6.3. The first remark is trivial with definition (9). We then compute

P(| ̂̄F 0 − F̄0| ≥ ρ0F̄0) ≤ P

(∣∣∣∣∣n−1
n∑
i=1

1{Yi≥a} − P(Yi ≥ a)

∣∣∣∣∣ > ρ0F̄0 −
1√
n

)
,

≤ P

(∣∣∣∣∣n−1
n∑
i=1

1{Yi≥a} − P(Yi ≥ a)

∣∣∣∣∣ > ρ0F̄0/2

)
,

as soon as n−1/2 ≤ ρ0F̄0/2. Then, from the Hoeffding Inequality (Hoeffding, 1963), there exists
c̃ > 0 such that, for all n ≥ 4/(ρ2

0F̄0),

P(|̂̄F0 − F̄0| ≥ ρ0F̄0) ≤ c̃/n4,

which proves Lemma 6.3 with c = max

{
c̃,
(

4
ρ20F̄0

)4
}

.

6.2. Proof of Lemma 2.1. First note that from (5),

E
[
‖t‖2n

]
=

∫
A

(t2(x)F̄Y (x) + xt2(x)fY (x))dx =

∫
A
t2(x)F̄X(x)dx = ‖t‖2F̄X , (18)

and also that, with (4),

E
[
(t(Y1) + Y1t

′(Y1))1Y1∈A
]

=

∫
A

(t(x) + xt′(x))fY (x)dx =

∫
A

(xt(x))′fY (x)dx

= [xt(x)fY (x)]a0 −
∫ a

0
xt(x)f ′Y (x)dx = at(a)fY (a) +

∫
A
t(x)fX(x)dx,

since limx→0 xt(x)fY (x) = 0. Indeed, Formula (5) implies that limx→0(xfY (x)) = F̄X(0) −
F̄Y (0) = 0. Using the definition of h, we also have∫

A
t(x)fX(x)dx =

∫
A
t(x)h(x)F̄X(x)dx = 〈h, t〉F̄X .

This leads to

E [ν̃n(t)] = 〈h, t〉F̄X + at(a)
(
fY (a)− E

[
f̂Y (a)

])
. (19)

The result follows by gathering (18) and (19).

6.3. Proof of Proposition 3.1. Let us define, for 0 < ρ0, ρ1 < 1 such that ρ1 − 2ρ0 + ρ0ρ1,
the following sets,

Ωρ0 :=

{∣∣∣∣∣ ‖t‖2n‖t‖2
F̄X

− 1

∣∣∣∣∣ ≤ ρ0, for all t ∈ Sn

}
and

Ωρ0,ρ1 :=

{
(1− ρ0)F̄0 ≤ ̂̄F 0 ≤

1− ρ0

1− ρ1
F̄0

}
,

and decompose the risk as follows

E
[∥∥∥ĥm − h∥∥∥2

F̄X

]
= E

[∥∥∥ĥm − h∥∥∥2

F̄X
1Ωρ0∩Ωρ0,ρ1

]
+ E

[∥∥∥ĥm − h∥∥∥2

F̄X
1(Ωρ0∩Ωρ0,ρ1)

c

]
. (20)

We now compute upper-bounds for each of the two terms of the right-hand-side of (20).
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Upper-bound for E[‖ĥm − h‖21Ωρ0∩Ωρ0,ρ1
]. First we have

Ωρ0 ⊂
Nn⋂
m=1

∆m
ρ0 , (21)

where

∆m
ρ0 =

{
min Sp(Ψ̂m) ≥ (1− ρ0)d1F̄0

}
. (22)

Indeed,

Ωρ0 ⊂
{
∀t ∈ Sn, ‖t‖2n ≥ (1− ρ0)‖t‖2F̄X

}
⊂

Nn⋂
m=1

{
∀t ∈ Sm, ‖t‖2n ≥ (1− ρ0)F̄0‖t‖2

}

=

Nn⋂
m=1

∀~α ∈ RDm , t~αΨ̂m~α ≥ (1− ρ0)F̄0

∥∥∥∥∥∥
∑
j∈Jm

αjϕj

∥∥∥∥∥∥
2 ,

⊂
Nn⋂
m=1

∀~α ∈ RDm , t~αΨ̂m~α ≥ (1− ρ0)F̄0d1

∑
j∈Jm

α2
j

 ,

by using (8) and (M2). This proves Inclusion (21), which permits to deduce

Ωρ0 ∩ Ωρ0,ρ1 ⊂

(
Nn⋂
m=1

∆m
ρ0

)
∩ Ωρ0,ρ1 ⊂

(
Nn⋂
m=1

∆̂m
ρ1

)
∩ Ωρ0,ρ1 ,

since (1− ρ1) ̂̄F 0 ≤ (1− ρ0)F̄0 on Ωρ0,ρ1 .

Therefore, on the set Ωρ0 ∩ Ωρ0,ρ1 , for all m = 1, ..., Nn, ĥm is the minimiser of the contrast γn
on Sm. In particular, we have γn(ĥm) ≤ γn(hm), which means∥∥∥ĥm∥∥∥2

n
− ‖hm‖2n ≤ 2ν̃n(ĥm − hm).

on the set Ωρ0 ∩ Ωρ0,ρ1 and thus∥∥∥ĥm − hm∥∥∥2

n
≤ 2‖hm‖2n + 2ν̃n(ĥm − hm)− 2〈ĥm, hm〉n,

since ‖ĥm‖2n = ‖ĥm − hm‖2n − ‖hm‖2n + 2〈ĥm, hm〉n. The key of the proof is the control of the
deviations of the supremum of a centred empirical process over a unit ball. Since the process ν̃n
is not centred, we set

νn(t) := ν̃n(t)− 〈t, h〉n − at(a)
(
fY (a)− f̂Y (a)

)
, (23)

with 〈t, h〉n defined by (13). The process νn is centered, thanks to (19) and the fact that

E[〈t, h〉n] = 〈t, h〉F̄X . Moreover, ‖hm‖2n−〈ĥm, hm〉n = 〈hm− ĥm, hm−h〉n+ 〈hm− ĥm, h〉n. This
leads, on Ωρ0 ∩ Ωρ0,ρ1 , to∥∥∥ĥm − hm∥∥∥2

n
≤ 2〈hm − ĥm, hm − h〉n + 2νn

(
ĥm − hm

)
+ 2a

(
ĥm − hm

)
(a)
(
fY (a)− f̂Y (a)

)
.

Then, thanks to the Cauchy-Schwarz inequality, and the fact that, for all x, y ∈ R and θ > 0,
2xy ≤ θx2 + θ−1y2,

2〈hm − ĥm, hm − h〉n ≤ θ
∥∥∥ĥm − hm∥∥∥2

n
+ θ−1‖hm − h‖2n.
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Applying the last property twice, we obtain, for any δ, η > 0, 0 < θ < 1,

(1− θ)
∥∥∥ĥm − hm∥∥∥2

n
1Ωρ0∩Ωρ0,ρ1

≤
(

(δ + η)
∥∥∥ĥm − hm∥∥∥2

F̄X
+ θ−1 ‖hm − h‖2n

+ δ−1 sup
t∈Bm

ν2
n(t) + η−1a2 sup

t∈Bm
t2(a)

(
fY (a)− f̂Y (a)

)2
)

1Ωρ0∩Ωρ0,ρ1
.

where Bm is defined by (13). Since Ωρ0 ⊂ ∆m
ρ0 , then, for any t ∈ Sm, ‖t‖2n ≥ (1 − ρ0)‖t‖2

F̄X
.

Taking also into account that ‖ĥm−h‖2F̄X ≤ 2‖ĥm−hm‖2F̄X +2‖hm−h‖2F̄X , and that E
[
‖t‖2n

]
=

‖t‖2
F̄X

(t ∈ Sm), we have, as soon as (1− ρ0)(1− θ)− δ − η > 0,

E
[∥∥∥ĥm − h∥∥∥2

F̄X
1Ωρ0∩Ωρ0,ρ1

]
≤ C1‖hm − h‖2F̄X + C2E

[
sup
t∈Bm

ν2
n(t)

]
(24)

+C3a
2 sup
t∈Bm

t2(a)E
[(
fY (a)− f̂Y (a)

)2
]
,

where

C1 = 2

(
θ−1

(1− ρ0)(1− θ)− δ − η
+ 1

)
, C2 =

2δ−1

(1− ρ0)(1− θ)− δ − η
,

and C3 =
2η−1

(1− ρ0)(1− θ)− δ − η
. (25)

An upper bound for the term with constant C3 is given by (15) of Lemma 6.2: supt∈Bm t
2(a) ≤

Φ2
0/(d1F̄0)Dm. To bound the empirical process, we establish the following lemma below (see

Section 6.6.1).

Lemma 6.4. Assume that (H1) and (H2) are satisfied. Then,

E
[

sup
t∈Bm

ν2
n(t)

]
≤ 4

(
(1 + a‖h‖2)Φ2

0

d1F̄0

Dm

n
+

a2Φ2
1

2d1F̄0

D3
m

n
+
c3‖h‖2

d1F̄0

1

n

)
.

By gathering this and the result (15) of Lemma 6.2 in (24), we obtain

E
[∥∥∥ĥm − h∥∥∥2

F̄X
1Ωρ0∩Ωρ0,ρ1

]
≤ C̃1(‖hm−h‖2 +V (m))+ C̃2

a2Φ2
0

d1F̄0
DmE

[(
f̂Y (a)− fY (a)

)2
]

+
C̃3

n
(26)

with C̃1, C̃2 and C̃3 some constants which do not depend on m and n, and V (m) defined as in
the statement of Proposition 3.1.

Upper-bound for E[‖ĥm − h‖21(Ωρ0∩Ωρ0,ρ1 )c ]. First,

∥∥∥ĥm − h∥∥∥2

F̄X
≤ 2

∥∥∥ĥm∥∥∥2

F̄X
+ 2‖h‖2F̄X ≤ 2

∥∥∥ĥm∥∥∥2
+ 2‖h‖2F̄X . (27)
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Now, by definition of ĥm, and thanks to (M2),

∥∥∥ĥm∥∥∥ =

∥∥∥∥∥∥
∑
j∈Jm

α̂jϕj

∥∥∥∥∥∥1
∆̂m
ρ1

≤
√
d2

∑
j∈Jm

α̂2
j

1/2

1
∆̂m
ρ1

=
√
d2‖~̂α‖`21∆̂m

ρ1

,

=
√
d2‖Ψ̂−1

m
~̂b‖`21∆̂m

ρ1

≤
√
d2ρ(Ψ̂−1

m )‖~̂b‖`21∆̂m
ρ1

≤
√
d2 max{Sp(Ψ̂−1

m )}‖~̂b‖`21∆̂m
ρ1

≤
√
d2

(
min{Sp(Ψ̂m)}

)−1
‖~̂b‖`21∆̂m

ρ1

≤
√
d2

1

(1− ρ1)d1
̂̄F 0

‖~̂b‖`2 ,

≤
√
d2n

1

(1− ρ1)d1
‖~̂b‖`2 , (28)

where we recall that ‖ · ‖`2 is the Euclidean norm on RDm and ρ(·) the spectral radius of a
matrix.

Hence, as ~̂b = t
(

1
n

∑n
i=1(ϕj(Yi) + Yiϕ

′
j(Yi))− f̂Y (a)ϕj(a)

)
j∈Jm

, we have

‖~̂b‖`2 ≤ (3T1 + 3T2 + 3T3)1/2

where

T1 =
∑
j∈Jm

(
1

n

n∑
i=1

ϕj(Yi)

)2

, T2 =
∑
j∈Jm

(
1

n

n∑
i=1

Yiϕ
′
j(Yi)

)2

, and T3 = f̂2
Y (a)

∑
j∈Jm

(ϕj(a))2 .

We first bound T1, using the Cauchy-Schwarz Inequality and the first part of (M3),

T1 ≤ 1

n

∑
j∈Jm

n∑
i=1

ϕ2
j (Yi) ≤ Φ2

0Dm.

Similarly with the second part of (M3)

T2 ≤ 1

n

∑
j∈Jm

n∑
i=1

Y 2
i (ϕ′j)

2(Yi) ≤ a2Φ2
1D

3
m.

Moreover, thanks to the first part of (M3) and the definition of f̂Y , ŵ > 1/
√
n,

T3 ≤ f̂2
Y (a)Φ2

0Dm ≤ n‖K‖2∞,RΦ2
0Dm

This implies that

‖~̂b‖`2 ≤
√

3
(
(1 + n‖K‖2∞,R)Φ2

0Dm + a2Φ2
1D

3
m

)1/2
.

and, gathering equations (27) and (28),

E
[
‖ĥm − h‖2F̄X1Ωcρ0

]
≤

(
6d2n

(1− ρ1)2d2
1

(
(1 + n‖K‖2∞,R)Φ2

0Dm + a2Φ2
1D

3
m

)
+ 2‖h‖2F̄X

)
×P ((Ωρ0 ∩ Ωρ0,ρ1)c) . (29)

It remains to bound the probability of the event (Ωρ0 ∩ Ωρ0,ρ1)c. Notice first that

P ((Ωρ0 ∩ Ωρ0,ρ1)c) ≤ P
(
Ωc
ρ0

)
+ P

(
Ωc
ρ0,ρ1

)
.

The aim of the following lemma (proved in Section 6.6.2) is to bound P(Ωc
ρ0).
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Lemma 6.5. Assume that (H1) and (H2) are satisfied. Then the following inequality holds

P
(
Ωc
ρ0

)
≤ 4 exp

(
−c∗ n

D2
Nn

)
≤ 4 exp

(
− c∗

K2
ln3(n)

)
, (30)

with c∗ a constant depending on a, ρ0, F̄0, E[Y 2], and on the constants involved in properties
(Ml), l = 2, 3, 4, 5.

For P(Ωc
ρ0,ρ1), as soon as ρ1 − 2ρ0 + ρ0ρ1 > 0, we have

Ωc
ρ0,ρ1 =

{
(1− ρ0)F̄0 >

̂̄F 0

}
∪
{̂̄F 0 >

1− ρ0

1− ρ1
F̄0

}
⊂

{
F̄0 − ̂̄F 0 > ρ0F̄0

}
∪
{̂̄F 0 − F̄0 > ρ0F̄0

}
⊂
{∣∣∣ ̂̄F 0 − F̄0

∣∣∣ > ρ0F̄0

}
.

Thus, thanks to Lemma 6.3,
P(Ωc

ρ0,ρ1) ≤ cn−4. (31)

Gathering this bound and Lemma 6.5 in (29) leads to

E
[
‖ĥm − h‖2F̄X1Ωcρ0∪Ωcρ0,ρ1

]
≤ c

(
n
(
(1 + n‖K‖2∞,R

)
Dm +D3

m

)(
1/n4 + exp

(
− c∗

K2
ln3(n)

))
.

where c is a constant. Thanks to the fact that Dm ≤ K
√
n/(ln(n)3), we obtain, for a constant

C > 0,

E
[∥∥∥ĥm − h∥∥∥2

F̄X
1(Ωρ0∩Ωρ0,ρ1 )c

]
≤ C

n
, (32)

The proof of Proposition 3.1 is completed by gathering (26) and (32), and keeping in mind
that ‖.‖F̄X and ‖.‖ are equivalent (under (H2)).

6.4. Proof of Corollary 3.1. If h belongs to the Hölder ball Hβ([0,a + ε], L), then h belongs

also to the Besov ball Bβ∞,∞([0,a+ε], L) (see e.g. DeVore and Lorentz 1993 p.54 for the definition
of such spaces, and Barron et al. 1999 p.404, or DeVore and Lorentz 1993 (7.13) p.46). This

permits to deduce that h also belongs to Bβ2,∞([0,a + ε], L′) for another L′ > 0 (Massart 2007,

p.144). But, for such a ball, Lemma 12 of Barron et al. (1999) for [T] and DeVore and Lorentz

1993 for [BS], established that ‖hm − h‖ ≤ D−βm . Thus, Proposition 3.1 leads to

E
[
‖ĥm − h‖2

]
≤ C1

(
D−2β
m + V (m)

)
+ C̃2DmE

[(
f̂Y (a)− fY (a)

)2
]

+
C3

n
,

for three constants C1, C̃2, C3. The computation of m(β) ∈ arg min{D−2β
m + V (m), m ∈ Mn}

leads to m(β) = Cn1/(2β+3). Now, we deduce from the smoothness assumption on h, a smooth-
ness property for fY (the proof is deferred to Section 6.7).

Proposition 6.1. If h ∈ Hβ([0,a + ε], L) and (H2) is verified, then there exist L′ > 0 and
0 < ε′ < min(a, ε) such that fY ∈ Hβ+1([a− ε′,a + ε′], L′).

Since f̂Y is a kernel estimate with well-chosen bandwidth, Rebelles (2015) derives that

E
[(
f̂Y (a)− fY (a)

)2
]
≤ C

(
n

ln(n)

)− 2(β+1)
2(β+1)+1

,

for a constant C. Thus,

E
[
‖ĥm(β) − h‖2

]
≤ C1n

− 2β
2β+3 + C̃2Dm(β)C

(
n

ln(n)

)− 2β+2
2β+3

+
C3

n
,
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and Corollary 3.1 follows from the order of magnitude of Dm(β).

6.5. Proof of Theorem 4.1. As previously, we decompose the risk

E
[
‖ĥm̂ − h‖2

]
= E

[
‖ĥm̂ − h‖21Ωρ0∩Ωρ0,ρ1

]
+ E

[
‖ĥm̂ − h‖21(Ωρ0∩Ωρ0,ρ1 )c

]
.

We first focus on the first term and we get that, on Ωρ0 ∩Ωρ0,ρ1 , for all m = 1, ..., Nn, ĥm do
minimise the contrast γn on Sm. Therefore, by definition of m̂, we have, on Ωρ0 ∩Ωρ0,ρ1 , for all
m = 1, ..., Nn,

γn(ĥm̂) + p̂en(m̂) ≤ γn(ĥm) + p̂en(m) ≤ γn(hm) + p̂en(m), (33)

where we recall that hm is the orthogonal projection of h on Sm. Now, with the same algebra
as in the proof of Proposition 3.1, we get that, for (1− ρ0)(1− θ)− δ − η > 0,

E
[∥∥∥ĥm̂ − h∥∥∥2

F̄X
1Ωρ0∩Ωρ0,ρ1

]
≤ C1‖hm − h‖2F̄X + C4pen(m)1Ωρ0∩Ωρ0,ρ1

+C2E

[
sup

t∈Bm∨m̂
ν2
n(t)− p(m̂,m)

]

+C3a
2E

[
sup

t∈Bm∨m̂
t2(a)

(
fY (a)− f̂Y (a)

)2
]

+(C2p(m̂,m)− p̂en(m̂))1Ωρ0∩Ωρ0,ρ1
, (34)

where Bm∨m̂ = {t ∈ Sm∨m̂, ‖t‖F̄X ≤ 1} (see (13)), C1, C2, C3 are given by (25), C4 is a constant
which does not depend on n,m and p(m′,m) is defined in the following Lemma.

Lemma 6.6. Assume that (H1) and (H2) hold. There exists κ̄0 such that for κ ≥ κ̄0

Nn∑
m′=1

E

[(
sup

t∈Bm∨m′
ν2
n(t)− p(m,m′)

)
+

]
≤ C

n
,

where

p(m,m′) = κ̄0(d1F̄0)−1

(
Φ2

0(1 + a‖h‖2)
Dm∨m′

n
+ a2Φ2

1

D3
m∨m′

n

)
,

and C > 0 is a a constant.

We have ‖h‖2 ≤ D2
m∨m̂ for n ≥ n0(h), since Dm∨m̂ ≥ ln(n). By definition of Ωρ0,ρ1 , this leads

to

C2p(m, m̂)1Ωρ0,ρ1
≤ C2κ̄0

1− ρ0

1− ρ1
( ̂̄F 0d1)−1

(
Φ2

0

Dm∨m̂
n

+ (aΦ2
0 + a2Φ2

1)
D3
m∨m̂
n

)
1Ωρ0,ρ1

≤ (p̂en(m) + p̂en(m̂)) 1Ωρ0,ρ1

as soon as κ ≥ C2κ̄0
1−ρ0
1−ρ1 , since Dm∨m̂ ≤ Dm +Dm̂. This and Inequality (34) imply that

E
[
‖ĥm̂ − h‖2F̄X1Ωρ0∩Ωρ0,ρ1

]
≤ C1‖hm − h‖2F̄X + C4pen(m) + C2E

[(
sup

t∈Bm∨m̂
ν2
n(t)− p(m, m̂)

)
+

]
+E

[
p̂en(m)1Ωρ0,ρ1

]
+ C4pen(m). (35)
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Moreover,

p̂en(m)1Ωρ0,ρ1
≤ κ(d1

̂̄F 0)−1

(
Φ2

0

Dm

n
+ (aΦ2

0 + a2Φ2
1)
D3
m

n

)
1Ωρ0,ρ1

≤ κ(d1F̄0)−1

1− ρ0

(
Φ2

0

Dm

n
+ (aΦ2

0 + a2Φ2
1)
D3
m

n

)
≤ 1

1− ρ0
pen(m).

Hence, applying Lemma 6.6, we obtain

E
[
‖ĥm̂ − h‖2F̄X1Ωρ0∩Ωρ1

]
≤

{
C1‖hm − h‖2F̄X + C ′4pen(m)

}
+C3a

2E

[
sup

t∈Bm∨m̂
t2(a)

(
fY (a)− f̂Y (a)

)2
]

+
C5

n
.

Moreover, on the complementary event, we follow the same line as in the proof of Proposition
3.1, as all the bounds remain true for Dm replaced by Nn, the maximal dimension, and we get

E
[
‖ĥm̂ − h‖2F̄X1(Ωρ0∩Ωρ1 )c

]
≤ c

n
,

for some constant c. Gathering the last two bounds gives an upper bound on E[‖ĥm̂ − h‖2F̄X ].

Recalling that the norm ‖.‖F̄X is equivalent to ‖.‖ (see Section 6.1), Theorem 4.1 is proved.

6.6. Proof of technical lemmas.

6.6.1. Proof of Lemma 6.4. The process νn, defined by νn(t) = ν̃n(t) − 〈t, h〉n − at(a)(fY (a) −
E[f̂Y (a)]), t ∈ L2(A) is centred. Thus, we split it into 4 centred processes as follows: νn =∑3

l=1 ν
(l)
n , with, for t ∈ L2(A),

ν(1)
n (t) :=

1

n

n∑
i=1

t(Yi)1{Yi∈A} − E[t(Yi)1{Yi∈A}],

ν(2)
n (t) :=

1

n

n∑
i=1

Yit
′(Yi)1{Yi∈A} − E[Yit

′(Yi)1{Yi∈A}],

ν(3)
n (t) := −〈t, h〉n + E[〈t, h〉n].

The process ν
(3)
n is also written ν

(3)
n = ν

(3,1)
n + ν

(3,2)
n , with

ν(3,1)
n (t) :=

1

n

n∑
i=1

∫
A
t(x)h(x)1{Yi≥x}dx− E

[∫
A
t(x)h(x)1{Yi≥x}dx

]
,

ν(3,2)
n (t) :=

1

n

n∑
i=1

Yit(Yi)h(Yi)1{Yi∈A} − E[Yit(Yi)h(Yi)1{Yi∈A}],

Therefore, it remains to bound the four terms of the right-hand-side of the following inequality:

E
[

sup
t∈Bm

ν2
n(t)

]
≤ 4

∑
l∈{1,2,(3,1),(3,2)}

E
[

sup
t∈Bm

(
ν(l)
n (t)

)2
]
.
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For l = 1, 2, (3, 1), (3, 2), we first apply Property (16) of Lemma 6.2:

sup
t∈Bm

(
ν(l)
n (t)

)2
≤ 1

d1F̄0

∑
j∈Jm

(
ν(l)
n (ϕj)

)2
.

Let us then begin with ν
(1)
n . For any j ∈ Jm, E[(ν

(1)
n (ϕj))

2] = Var(ϕj(Y1))/n ≤ E[ϕ2
j (Y )]/n ≤

Φ2
0Dm/n thanks to (M3). Thus,

E
[

sup
t∈Bm

(
ν(1)
n (t)

)2
]
≤ Φ2

0

d1F̄0

Dm

n
(36)

Similarly, we have E[(ν
(2)
n (ϕj))

2] ≤ n−1E[Y 2
1 (ϕ′j(Y1))2]. Hence, by (M3) E[supt∈Bm(ν

(2)
n (t))2] ≤

(Φ2
1/(d1F̄0))E[Y 2

1 1IA(Y1)]D3
m/n. Now, Equation (5) implies that, for all y, yfY (y) ≤ 1. Thus

E[Y 2
1 1IA(Y1)] =

∫ a
0 y

2fY (y)dy ≤
∫ a

0 ydy = a2/2 and

E
[

sup
t∈Bm

(
ν(2)
n (t)

)2
]
≤ a2Φ2

1

2d1F̄0

D3
m

n
. (37)

For ν
(3,1)
n , we first have E[(ν

(3,1)
n (ϕj))

2] ≤ E[(〈ϕj , h1Y1≥.〉)2]. With (M5), this leads to

E
[

sup
t∈Bm

(
ν(3,1)
n (t)

)2
]
≤ 1

d1F̄0

1

n
E

∑
j∈Jm

(〈ϕj , h1Y1≥.〉)2

 ≤ c3

d1F̄0

‖hm‖2

n
≤ c3

d1F̄0

‖h‖2

n
. (38)

Then for ν
(3,2)
n , we have E[(ν

(3,2)
n (ϕj))

2] ≤ n−1E[Y 2
1 ϕ

2
j (Y1)h2(Y1)1Y1∈A], thus

E
[

sup
t∈Bm

(
ν(3,2)
n (t)

)2
]
≤ aΦ2

0‖h‖2

d1F̄0

Dm

n
. (39)

where we use again (M3) and that 0 ≤ yfY (y) ≤ 1, y ∈ A. Lemma 6.4 is proved by gathering
(36), (37), (38), and (39).

6.6.2. Proof of Lemma 6.5. Thanks to the definition of Ωρ0 , and then thanks to (H2),

Ωc
ρ0 =

{
∃t ∈ Sn,

∣∣∣∣∣ ‖t‖2n‖t‖2
F̄X

− 1

∣∣∣∣∣ > ρ0

}
⊂
{
∃t ∈ Sn,

∣∣∣‖t‖2n − ‖t‖2F̄X ∣∣∣ > ρ0F̄0‖t‖2
}
,

=

{
inf

t∈Sn\{0}

∣∣∣∣∣
∥∥∥∥ t

‖t‖

∥∥∥∥2

n

−
∥∥∥∥ t

‖t‖

∥∥∥∥2

F̄X

∣∣∣∣∣ > ρ0F̄0

}
=

{
inf

t∈Sn,‖t‖=1

∣∣ηn(t2)
∣∣ > ρ0F̄0

}
with

ηn(t) =
1

n

n∑
i=1

(∫
A
t(x)1{Yi≥x}dx+ Yit(Yi)1{Yi∈A}

)
−
∫
A
t(x)F̄X(x)dx, t ∈ L2(A).

If t ∈ Sn, it can be written t =
∑

j∈JNn
αjϕj , with ~α = (αj)j∈JNn ∈ RDNn , in such a way that

ηn(t2) = t~αΦ~α, with Φ = (Φj,k)j,k∈JNn the matrix with coefficients

Φj,k =
1

n

n∑
i=1

{∫
A
ϕj(x)ϕk(x)1Yi≥xdx+ Yiϕj(Yi)ϕk(Yi)1{Yi∈A}

}
−
∫
A
ϕj(x)ϕk(x)F̄X(x)dx.

Hence,

Ωc
ρ0 ⊂

 inf
~α∈RDNn ,

∥∥∥∑j∈JNn
αjϕj

∥∥∥=1

∣∣ t~αΦ~α
∣∣ > ρ0F̄0

 (40)
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Now, the Cauchy-Schwarz inequality applied twice and Assumption (M2) imply that, for all
~α ∈ RDNn , such that ‖

∑
j∈JNn

αjϕj‖ = 1,

t~αΦ~α =
∑

j,k∈JNn

αjαkΦj,k =
∑
j∈JNn

αj
∑
k∈JNn

αkΦj,k ≤
∑
j∈JNn

αj

∑
k∈Jn

α2
k

1/2 ∑
k∈JNn

Φ2
j,k

1/2

≤

 ∑
j∈JNn

α2
j

 ∑
j,k∈JNn

Φ2
j,k

1/2

≤ 1

d1

∥∥∥∥∥∥
∑
j∈JNn

αjϕj

∥∥∥∥∥∥
2 ∑

j,k∈JNn

Φ2
j,k

1/2

,

=
1

d1

 ∑
j,k∈JNn

Φ2
j,k

1/2

which amounts to upper-bound the spectral radius of Φ by its Frobenius norm. From this and
Equation (40) we obtain

Ωc
ρ0 ⊂

 ∑
j,k∈JNn

Φ2
j,k > d2

1ρ
2
0F̄

2
0


and

P
(
Ωc
ρ0

)
≤

∑
j,k∈JNn

P

(
Φ2
j,k >

d2
1ρ

2
0F̄

2
0

D2
Nn

)
=

∑
j,k∈JNn

P

(∣∣∣∣∣ 1n
n∑
i=1

Z
(i)
j,k − E

[
Z

(i)
j,k

]∣∣∣∣∣ > d1ρ0F̄0

DNn

)
(41)

where Z
(i)
j,k =

∫
A ϕj(x)ϕk(x)1Yi≥xdx + Yiϕj(Yi)ϕk(Yi)1{Yi∈A}. We now control independently

the two terms of Z
(i)
j,k: Z

(i)
j,k = Z

(i,1)
j,k + Z

(i,2)
j,k with Z

(i,1)
j,k =

∫
A ϕj(x)ϕk(x)1Yi≥xdx and Z

(i,2)
j,k =

Yiϕj(Yi)ϕk(Yi)1{Yi∈A}. If the basis (ϕj)j∈JNn is localised (Assumption (M4,2)), we have a slighly
more accurate inequality:

P
(
Ωc
ρ0

)
≤
∑
jJNn

∑
k∈JNn ,ϕjϕk 6=0

P

(∣∣∣∣∣ 1n
n∑
i=1

Z
(i)
j,k − E

[
Z

(i)
j,k

]∣∣∣∣∣ > d1ρ0F̄0√
c1DNn

)
, (42)

since there are only c1DNn non-zero terms in the sum over j and k (and not D2
Nn

).

Control of Z
(i,1)
j,k . First remark that |Z(i,1)

j,k | is almost surely bounded by d2 (thanks to assump-

tion (M2)). Hence, the Hoeffding Inequality (Hoeffding, 1963), gives us the following bound:
for all x > 0,

P

(
1

n

n∑
i=1

Z
(i,1)
j,k − E[Z

(i,1)
j,k ] ≥ x

)
≤ 2 exp

(
− 2x2

4d2
2n

)
= 2 exp

(
− x2

2d2
2n

)
.

This implies that

P

(∣∣∣∣∣ 1n
n∑
i=1

Z
(i,1)
j,k − E

[
Z

(i,2)
j,k

]∣∣∣∣∣ > d1ρ0F̄0

2DNn

)
≤ 2 exp

(
−n d2

1ρ
2
0F̄

2
0

4d2
2D

2
Nn

)
, (43)

and for a localised basis

P

(∣∣∣∣∣ 1n
n∑
i=1

Z
(i,1)
j,k − E

[
Z

(i,2)
j,k

]∣∣∣∣∣ > d1ρ0F̄0

2
√
c1DNn

)
≤ 2 exp

(
−n d2

1ρ
2
0F̄

2
0

4d2
2c1DNn

)
. (44)
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Control of Z
(i,2)
j,k . We apply the following Bernstein Inequality (which immediatly follows from

Birgé and Massart 1998, p.366).

Lemma 6.7. (Bernstein Inequality) Let T1, T2, . . . , Tn be independent random variables and
Sn(T ) =

∑n
i=1(Ti − E[Ti]). Assume that

Var(T1) ≤ v2 and ∀` ≥ 2,
1

n

n∑
i=1

E
[
|Ti|`

]
≤ `!

2
v2bl−2

0 .

Then, for η > 0,

P
(

1

n
|Sn(T )| ≥ η

)
≤ 2 exp

(
− nη2/2

v2 + b0η

)
.

A distinction must be made depending on the property of the basis. If the basis is bounded
(Assumption (M4,1))

E
[(
Z

(i,2)
j,k

)2
]

= E
[
Y 2

1 ϕ
2
j (Y1)ϕ2

k(Y1)
]
≤ c4

0E[Y 2
1 ] =: v2,

and, for all integer ` ≥ 2,

E
[(
Z

(i,2)
j,k

)`]
= E

[
Y `

1 ϕ
`
j(Y1)ϕ`k(Y1)

]
≤ c2`

0 E[Y `
1 1{Y1∈A}] ≤ c

2`
0 a`−2E[Y 2

1 ] ≤ `!

2
v2b`−2

0 .

with b0 = c2
0a. Then applying Bernstein Inequality (Lemma 6.7), we have

P

(∣∣∣∣∣ 1n
n∑
i=1

Z
(i,2)
j,k − E

[
Z

(i,2)
j,k

]∣∣∣∣∣ > d1ρ0F̄0

2DNn

)
≤ 2 exp

(
− n

D2
Nn

d2
1ρ

2
0F̄

2
0

8c4
0E[Y 2

1 ] + 4c2
0ad1ρ0F̄0/DNn

)

≤ 2 exp

(
−c∗∗ n

D2
Nn

)
, (45)

with c∗∗ = ρ2
0F̄

2
0 /(8c

4
0E[Y 2

1 ] + 4c2
0ad1ρ0F̄0) (using the fact that DNn ≥ 1). Now, if the basis is

not bounded but satisfies (M4,2),

E
[(
Z

(i,2)
j,k

)2
]

=

∫
A
y2ϕ2

j (y)ϕ2
k(y)fY (y)dy ≤

∫
A
yϕ2

j (y)ϕ2
k(y)fY (y)dy ≤ c̃2DNn ,

≤ a‖ϕj‖2∞,A
∫
A
ϕ2
k(y)dy ≤ a× c2DNn × d2 := v2,

with yfY (y) ≤ 1, y ≤ a, (i) of (M4,2) and (M2). For all integer ` ≥ 2, with the same reasoning,

E
[(
Z

(i,2)
j,k

)`]
≤

∫
A
y`ϕ`j(y)ϕ`k(y)fY (y)dy ≤ a`−1

∫
A
ϕ`j(y)ϕ`k(y)dy,

≤ a`−1‖ϕj‖`∞,A‖ϕk‖`−2
∞,A

∫
A
ϕ2
k(y)dy ≤ (c2DNn)`/2(c2DNn)(`−2)/2 × d2,

= c2D
`−1
Nn

d2 ≤
`!

2
v2b`−2

0 ,
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with b0 = DNn . This gives, from Lemma 6.7,

P

(∣∣∣∣∣ 1n
n∑
i=1

Z
(i,2)
j,k − E

[
Z

(i,2)
j,k

]∣∣∣∣∣ > d1ρ0F̄0

2
√
c1DNn

)
≤ 2 exp

(
− n

DNn

d2
1ρ

2
0F̄

2
0

c1(8c2d2DNn + 4
√
DNnd1ρ0F̄0/

√
c1)

)

≤ 2 exp

(
−c∗∗ n

D2
Nn

)
, (46)

with c∗∗ = d2
1ρ

2
0F̄

2
0 /(c1(8c2d2 + 4d1ρ0F̄0/

√
c1)).

Now, gathering inequalities (41), (43) and (45) or (42), (44) and (46) (depending on the
assumption (M4,1) or (M4,2) on the basis) ends the proof of Lemma 6.5.

6.6.3. Proof of Lemma 6.6. We start from the decomposition given in the proof of Lemma 6.4.
We thus have to bound the terms of the right-hand-side of the following inequality:

E

[(
sup

t∈Bm∨m̂
ν2
n(t)− p(m, m̂)

)
+

]
≤ 4

∑
l∈{1,2,(3,2)}

Nn∑
m′=1

E

[(
sup

t∈Bm∨m′

(
ν(l)
n (t)

)2
− pl(m,m

′)

3

)
+

]

+4E

[
sup
t∈BNn

(
ν(3,1)
n (t)

)2
]

with

p1(m,m′) = κ̄0Φ2
0(F̄0d1)−1Dm∨m′

n
,

p2(m,m′) = κ̄0a
2Φ2

1(F̄0d1)−1D
3
m∨m′

n
,

p3(m,m′) = κ̄0aΦ2
0‖h‖2(d1F̄0)−1Dm∨m′

n
.

For the last term, we obtain from (38) that E
[
supt∈BNn

(
ν

(3,1)
n (t)

)2
]
≤ c3‖h‖2/(d1F̄0n).

For the three other terms, the guiding idea to bound each of them is to apply the following
version of the Talagrand Inequality which can be found, for instance, in Lacour (2008).

Theorem 6.1 (Talagrand Inequality). Let F be a set of uniformly bounded functions, which
have a countable dense sub-family for the infinite norm. Let (V1, . . . , Vn) be independent random
variables and

Z = sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f(Vi)− E [f(Vi)])

∣∣∣∣∣ .
Consider b, v, and H, such that

b ≥ sup
f∈F
‖f‖∞, v ≥ sup

f∈F

1

n

n∑
i=1

Var(f(Vi)) and H ≥ E[Z].

Then, for every ε > 1, there exist numerical positive constants C1, C2, c1 and c2 such that

E
[(
Z2 − εH2

)
+

]
≤ C1

v

n
exp

(
−c1

nH2

v

)
+ C2

b2

n2
exp

(
−c2

nH

b

)
.
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Control of ν
(1)
n . The aim is to apply the Talagrand Inequality (Theorem 6.1). We first compute

the key quantities involved in the concentration results.
The quantity (H(1))2 = Φ2

0(F̄0d1)−1(Dm∨m′/n) follows from the proof of Lemma 6.4.

Let us compute b(1), a uniform upper-bound for the sup-norm of the functions to which the in-
equality is applied. For t ∈ Bm∨m′ , we have by Inequality (15) in Lemma 6.2, supt∈Bm∨m′ ‖t‖

2
∞,A ≤

Φ2
0(F̄0a)−1Dm∨m′ =:

(
b(1)
)2
.We turn now on the upper-bound v(1) on supt∈Bm∨m′ n

−1
∑n

i=1 Var(t(Yi)):

sup
t∈Bm∨m′

1

n

n∑
i=1

Var(t(Yi)) ≤ sup
t∈Bm∨m′

E
[
t2(Y )

]
= sup

t∈Bm∨m′

∫
A
t2(y)fY (y)dy

≤ sup
t∈Bm∨m′

‖t‖∞,A
∫
A
|t(y)|fY (y)dy ≤ (

√
d1F̄0)−1Φ0‖fY ‖‖t‖

√
Dm∨m′ ,

≤
√
d1
−1

Φ0‖fY ‖
√
Dm∨m′ =: v(1).

We apply Theorem 6.1 and get, for all ε(1) > 1,

E

[(
sup

t∈Bm∨m′

(
ν(1)
n (t)

)2
− ε(1)Φ2

0(d1F̄0)−1Dm∨m′

n

)
+

]
≤ C

{
1

n
e−c

(1)
1

√
Dm∨m′ +

Dm∨m′

n2
e−c

(2)
2

√
n

}
,

where C, c
(1)
1 , c

(1)
2 > 0 are some constants. We sum over m, and choose κ̄0 in the penalty p(m,m′)

such that p1(m,m′) ≥ 3ε(1). This leads to

Nn∑
m′=1

E

[(
sup

t∈Bm∨m′

(
ν(1)
n (t)

)2
− p1(m,m′)

3

)
+

]
≤ C

n
. (47)

Control of ν
(2)
n . The proof is very similar to the one of the previous paragraph. We recall that

ν
(2)
n (t) := 1

n

∑n
i=1 Yit

′(Yi) − E[Yit
′(Yi)] and compute the quantity b(2), v(2) and H(2) required

to apply the Talagrand Inequality. Again, from the proof of Lemma 6.4, we get (H(2))2 =
a2Φ2

1(2F̄0d1)−1(D3
m∨m′/n).

Let us now prove the uniform boundedness. Let t ∈ Bm∨m′ , from the Cauchy-Schwarz
Inequality, assumptions (M2) and (M3), we get,

sup
t∈Bm∨m′

sup
x∈A

{
x2t′(x)2

}
≤ a2 sup

~α∈RDm∨m′ , t~α~α≤F̄−1
0

sup
x∈A

 ∑
j∈Jm∨m′

αjϕ
′
j(x)

2

≤ a2(d1F̄0)−1 sup
x∈A

∑
j∈Jm∨m′

ϕ′j(x)2 ≤ a2Φ2
1(F̄0d1)−1D3

m∨m′ =:
(
b(2)
)2
.

Now, supt∈Bm∨m′ n
−1
∑n

i=1 Var(Yit
′(Yi)) ≤ supt∈Bm∨m′ E[Y 2t′(Y )2]. But, using yfY (y) ≤ 1 for

any y ≥ 0, we get for any t ∈ Bm∨m′ ,

E
[
Y 2t′(Y )2

]
=

∫ a

0
y2(t′(y))2fY (y)dy ≤ a‖t′‖2 ≤ aΦ2

2D
2
m∨m′/(d1F̄0),

with the last inequality of (M3). Therefore,

sup
t∈Bm∨m′

1

n

n∑
i=1

Var(Yit
′(Yi)) ≤ aΦ2

1(F̄0d1)−1D2
m∨m′ :=

(
v(2)
)2
.
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Then, by Theorem 6.1, for all ε(2) > 1, there exist C, c
(2)
1 , c

(2)
2 > 0 such that

E

[(
sup

t∈Bm∨m′

(
ν(2)
n (t)

)2
− ε(2)(H(2))2

)
+

]

≤ C

{
D2
m∨m′

n
e−c

(2)
1 Dm∨m′ +

D3
m∨m′

n2
e−c

(2)
2

√
n

}
.

We sum over m, and choose κ̄0 in p(m,m′) such that p2(m,m′) ≥ 3ε(2). This leads to

Nn∑
m′=1

E

[(
sup

t∈Bm∨m′

(
ν(2)
n (t)

)2
− p2(m,m′)

3

)
+

]
≤ C

n
. (48)

Control of ν
(3,2)
n . We begin as usual by computing the quantities involved in the Talagrand

Inequality with (H(3,2))2 = F̄−1
0 d1Dm∨m′‖h‖2/n, from the proof of Lemma 6.4. Next, thanks to

(15),

sup
t∈Bm∨m′

sup
y∈A
|yt(y)h(y)| ≤ a sup

~α∈RDm∨m′ ,~α~αt≤F̄−1
0

sup
y∈A

∣∣∣∣∣∣
∑

j∈Jm∨m′

αjϕj(y)h(y)

∣∣∣∣∣∣
≤ Φ0(F̄0d1a)−1/2

√
Dm‖h‖∞,A =: b(3,2).

Then, as yfY (y) ≤ 1 (see (5)),

sup
t∈Bm∨m′

1

n

n∑
i=1

Var (Yit(Yi)h(Yi)) ≤ sup
t∈Bm∨m′

E
[
Y 2t2(Y )h2(Y )

]
,

= sup
t∈Bm∨m′

∫
A
y2t2(y)h2(y)fY (y)dy,

≤ sup
t∈Bm∨m′

a‖h‖2∞,A‖t‖2,

≤ a(d1F̄0)−1‖h‖2∞,A :=
(
v(3,2)

)2
.

Applying Talagrand’s Inequality of Theorem 6.1 is exactly similar to what has been done for the

previous processes ν
(1)
n and ν

(2)
n . Since D2

m ≥ ln2(n), and as soon as ln2(n) ≥ ‖h‖2, we obtain

Nn∑
m′=1

E

[(
sup

t∈Bm∨m′

(
ν(3,2)
n (t)

)2
− ε(3,2)F̄−1

0

D3
m∨m′

n

)
+

]

≤
Nn∑
m′=1

E

[(
sup

t∈Bm∨m′

(
ν(3,2)
n (t)

)2
− ε(3,2)F̄−1

0 ‖hA‖
2Dm∨m′

n

)
+

]
≤ C

n
.

If κ̄0 in the penalty p(m,m′) is such that p3(m,m′) ≥ 6ε(3,2), this leads to

Nn∑
m′=1

E

[(
sup

t∈Bm∨m′

(
ν(3,2)
n (t)

)2
− p3(m,m′)

6

)
+

]
≤ C

n
. (49)

We end the proof of Lemma 6.6 by gathering (47), (48), and (49).
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6.7. Proof of Proposition 6.1. The guideline for the proof is the following.

Part 1: We prove that there exist L′′ > 0 and 0 < ε′ < min(a, ε) such that fX ∈ Hβ([0,a+
ε′], L′′).

Part 2: We prove that the result of Part 1 implies that there exists L′ > 0 such that
fY ∈ Hβ+1([a− ε′,a + ε′], L′).

Proof of Part 1. We note H(x) = − ln(F̄X(x)), under Assumption (H2), and by continuity of
F̄X , there exists 0 < ε′ < min(a, ε) such that F̄X(x) > 0 for all x ∈ [0,a + ε′]. Hence, on the
set [a− ε′,a + ε′], the function H is well defined and differentiable and we have H ′(x) = h(x),
which implies that H ∈ Hβ+1([0,a + ε], L). Moreover, since F̄X(x) = exp(−H(x)), the function
F̄X is (` + 1)-times differentiable on [0,a + ε′] (with ` = bβc) and consequently fX is `-times
differentiable.

We now prove that there exists L′′ > 0 such that, for all x, y ∈ [0,a + ε′],∣∣∣f (`)
X (x)− f (`)

X (y)
∣∣∣ ≤ L′′|x− y|β−` (50)

which ends the proof of Part 1.
By induction, we easily show that

F̄
(`)
X (x) = −h(`−1)(x)e−H(x) +R`(x)

with R1 ≡ 0 and, for all k = 1, ..., `− 1, Rk+1 = h(k−1)(x)h(x)e−H(x) +R′k(x).
Hence, for all x, y ∈ [0,a + ε′],

|f (`)
X (x)− f (`)

X (y)| = |F̄ (`+1)
X (x)− F̄ (`+1)

X (y)|
≤ |h(`)(x)eH(x) − h(`)(y)eH(y)|+ |R`(x)−R`(y)|
≤ |h(`)(x)eH(x) − h(`)(y)eH(x)|+ |h(`)(y)eH(x) − h(`)(y)eH(y)|

+|R`(x)−R`(y)|

≤ e‖H‖∞,[0,a+ε] |h(`)(x)− h(l)(y)|+ ‖h`‖∞,[0,a+ε]

∣∣∣eH(x) − eH(y)
∣∣∣

+|R`(x)−R`(y)| (51)

Since h ∈ Hβ([0,a + ε′], L), both H and h(`) are continuous on the compact set [0,a + ε′] (we
recall that F̄X > 0 on this set) , hence ‖H‖∞,[0,a+ε] <∞ and ‖h`‖∞,[0,a+ε] <∞. Moreover, eH is
differentiable, hence, since [0,a+ε′] is compact, it is Lipschitz continuous. By induction, we can
also prove that R` is differentiable (and then Lipschitz continuous). Hence, from Equation (51),
using again the fact that h ∈ Hβ([0,a + ε′], L) and the compactness of [0,a + ε′], we know that
there exists L1 > 0 such that

|f (`)
X (x)− f (`)

X (y)| ≤ e‖H‖∞,[0,a+ε]L|x− y|β−` + L1|x− y| ≤ L′′|x− y|β−`,

with L′′ = e‖H‖∞,[0,a+ε]L + L1(a + ε′)1−β+` which implies Equation (50) and ends the proof of
Part 1.

Proof of Part 2. From the fact that yf ′Y (y) = −fX(x) (see Equation (4)), it can be shown by
induction that, if fX is `-times differentiable on [0,a + ε′], then fY is (`+ 1)-times differentiable
on [a− ε′,a + ε′] (we recall that a− ε′ > 0) and

f
(`+1)
Y (y) = −

f
(`)
X (y)

y
+ R̃`(y)
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with R̃0 ≡ 0 and R̃`+1(y) = f (`)(y)
y2

+ R̃′`(y).

Hence, for all x, y ∈ [a− ε′,a + ε′], using the fact that fX ∈ Hβ([0,a + ε′], L′′), and that R̃` is
differentiable – which can be proved by induction –, hence Lipschitz continuous on the compact
set [a− ε′,a + ε′], there exists a constant L2 > 0 such that

|f (`+1)
Y (y)− f (`+1)

Y (x)| ≤

∣∣∣∣∣f
(`)
X (x)

x
−
f

(`)
X (y)

y

∣∣∣∣∣+ |R̃`(x)− R̃`(y)|

≤

∣∣∣∣∣f
(`)
X (x)

x
−
f

(`)
X (x)

y

∣∣∣∣∣+

∣∣∣∣∣f
(`)
X (x)

y
−
f

(`)
X (y)

y

∣∣∣∣∣+ |R̃`(x)− R̃`(y)|

≤ ‖f (`)
X ‖∞,[a−ε′,a+ε′]

∣∣∣∣1x − 1

y

∣∣∣∣+
1

a− ε′
|f (`)
X (x)− f (`)

X (y)|

+|R̃`(x)− R̃`(y)|

≤
‖f (`)
X ‖∞,[a−ε′,a+ε′]

a− ε′
|x− y|+ L′′

a− ε′
|x− y|β−` + L2|x− y|.

This implies that fY ∈ Hβ+1([a−ε′,a+ε′], L′) with L′ =
‖f (`)X ‖∞,[a−ε′,a+ε′]

a−ε′ + L′′

a−ε′+L2(a−ε′)1−β−`.

References

M. Abbaszadeh, C. Chesneau, and H. Doosti. Nonparametric estimation of density under bias
and multiplicative censoring via wavelet methods. Statist. Probab. Lett., 82(5):932–941, 2012.

M. Abbaszadeh, C. Chesneau, and H. Doosti. Multiplicative censoring: estimation of a density
and its derivatives under the Lp-risk. REVSTAT, 11(3):255–276, 2013.

K. E. Andersen and M. B. Hansen. Multiplicative censoring: density estimation by a series
expansion approach. J. Statist. Plann. Inference, 98(1-2):137–155, 2001.
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1196, 2011.

C. de Boor. A practical guide to splines, volume 27 of Applied Mathematical Sciences. Springer-
Verlag, New York-Berlin, 1978.

R. A. DeVore and G. G. Lorentz. Constructive approximation, volume 303 of Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer-Verlag, Berlin, 1993.

S. Efromovich. Minimax theory of nonparametric hazard rate estimation: efficiency and adap-
tation. Ann. Inst. Statist. Math., 68(1):25–75, 2016.

R. M. Gray. Toeplitz and circulant matrices: A review. Foundations and Trends R© in Commu-
nications and Information Theory, 2(3):155–239, 2006.
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