Fast nonparametric estimation for convolutions of densities
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Abstract

The present paper is concerned with the problem of estimating the convolution of
densities. We propose an adaptive estimator based on kernel methods, Fourier analysis
and the Lepski method. We study its Lo-risk properties. Fast and new rates of conver-
gence are determined for a wide class of unknown functions. Numerical illustrations, on
both simulated and real data, are provided to assess the performances of our estimator.
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1 Introduction

1.1 Problem statement and motivations

Many quantities of interest in actuarial or financial sciences involve sums of random vari-
ables. For example, in the individual risk model, the total amount of claims on a portfolio
of insurance contracts is modeled as the sum of all claims on the individual policies. There-
fore, probability density functions of sums of random variables are of particular interest.
Typically, such functions are not available in a closed form. Hence, in order to compute
functionals of sums of random variables, estimation methods are often used.



Let (92, A, P) be a probability space, f the unknown density function of a random variable
X : Q — R, n a positive integer, X1,...,X, a n i.i.d. sample of X, m a positive integer
and g the m-fold convolution defined by

g(m):*mf(:n)://f(asxgxm)f(ajg)f(xm)dxgdmm (1.1)

Let us note that g is the density of the random variable S =Y """ | X,,. We aim to estimate
g from X1,...,X,. Sums of random variables occur in many situations in insurance and
finance, for example, such a sum appears when considering the aggregate claims X; 4 ...+
X, of an insurance portfolio during a certain reference period (e.g. a month or a year).
From actuarial point of view, one is often interested in the density function of S and m
could be interpreted as the expected number of claims in a specified period. Moreover,
the random variable S arises naturally in reliability theory as the lifetime of a system of m
identical components. A detailed application in the field of health insurance can be found in
Panjer and Willmot (1992). Other applications and examples, are indicated in Frees (1994).
Zhang (2007) considers the estimation of sums of functions of observable and unobservable
variables and provides examples in the field of data confidentiality problems and network.
In the case of dependence between the random variables X,,, Cherubini et al. (2011) study
the problem of capital allocation between risks when the sum of losses is bounded.

1.2 Previous work

The most famous nonparametric procedures are those developed by Frees (1994) and Saave-
dra and Cao (2000). Frees (1994) constructed a kernel based estimator using the random
variables S, = > ", X, (), where o € {combinations of m elements (o(1),...,a(m)) of
{1,...,n}}. Saavedra and Cao (2000) explored another point of view: the plug-in estima-
tor § = xp, f , where f denotes a standard kernel estimator for f. These two estimators enjoy
good mean integrated squared error (global Ly -risk) and asymptotic normality properties
(see, e.g., Frees (1994), Saavedra and Cao (2000), Ahmad and Fan (2001), Ahmad and
Mugdadi (2003), Prakasa Rao (2004), Schick and Wefelmeyer (2004, 2007), Du and Schick
(2007) and Giné and Mason (2007)). In particular, (Saavedra and Cao, 2000, Theorems 3
and 4)) show that § = %, f attains the parametric rate of convergence 1/n under the global
Lo-risk (or mean integrated square error MISE) if m > 2, f four times differentiable with
fourth derivative continuous, sup,cp | fU(z)] < oo for j € {0,1,2,3,4} and the functions
f" and f® are integrable. More recently, Nickl (2007) and mainly Nickl (2009) proved con-
vergence in law results for kernel or wavelet estimators of the convolution of two densities
under rather weak assumptions, to which it is worth comparing ours.



1.3 Contributions and relation to prior work

In this study we introduce a new kernel estimator g, where h denotes the bandwidth. It is
based on Fourier analysis following the spirit of, e.g., Fan (1991) and Caroll and Hall (1988)
for the standard deconvolution density problem “f x k”, where k£ denotes a known density.
In the first part, we establish sharp upper bounds for the pointwise and global Lo-risks
of our estimator. Rates of convergence are determined under mild assumptions on f; we
only suppose that f belongs to Sobolev balls with smoothness parameter 5 > 0. We show
the influence of 8 on the performances of g, and the best possible bandwidth choice. In
particular, for each risks, we determine a constant v,, > 0 such that our estimator attains
the parametric rate of convergence 1/n for g > v,,. When g € (0,v,,), this result does not
hold; we exhibit a new rate of convergence depending on 5. To the best of our knowledge,
this phe! nomenon was never shown before. Let us mention that g is not adaptive since
the best h depends on the unknown (. However, for real data applications, such prior
knowledge is not available.

This point motivates a second part devoted to the adaptive estimation of g. Focusing on
the global Lp-risk, we develop a “Lepski method” (see, e.g., Lepski (1990) and Goldenshluger
and Lepski (2010)) constructing an efficient estimator h of the best bandwidth h for g,
whatever the smoothness of g. This yields an adaptive estimator g;. We then study its
rates of convergence under the global Lo-risk and assuming that f belongs to Sobolev
balls with smoothness parameter 3 > 0. To be more specific, we prove that, if m > 2
and 8 > 1/(2m(m — 1)), g; attains the parametric rate of convergence 1/n. When § €
(0,1/(2m(m — 1))], its rate of convergence is deteriorated by §. These asymptotic results
are very sharp since they are close to those obtained by g, with the best nonadaptive h. The
only difference is an extra logarithmic term when g € (0,1/(2m(m — 1))]. We illustrate it!
s performances via a simulation study and a real-data example is also provided to illustrate
the application of the proposed estimator in a realistic situation.

1.4 Paper organization

The rest of the paper is organized as follows. Section 2 introduces our estimation procedure.
The results are presented in Section 3. Simulated examples as well as a real-data application
are provided in Section 4. The proofs are postponed to Section 5.

2 Estimation procedure

2.1 Notations

For any a € R, we set [a] the integer part of a and, for any (a,b) € R?, we denote a A b =
min(a, b).



For any p > 1, we set

LM@Z{ﬂR%RWVM=</ZV@WMYM}

Assuming that f € L;(R), we define the Fourier transform of f by
@) = / f(z)e ez, teR. (2.1)

Remark 2.1 Let us recall that, if f € Li1(R) NLa(R), the Fourier inverse formula yields
that f is the inverse Fourier transform of f* and can be written as

Flz) = / T mpr )y, zeR. (2.2)

:% .

Let L > 0 and a > 0. We define the Sobolev space S(«, L) by

S(a,L) = {f € Li(R) N Lo(R), /

—0o0

(1 + 22| f* () Pdz < L} .

2.2 Estimator

We consider the kernel estimator for f:

where K denotes the sinus cardinal kernel, i.e.,

K(x) = M, z €R, (2.3)

T™r

and h is a positive real number (called the ”bandwidth”).

Remark 2.2 Let us mention that other choices of kernel functions K are possible (see,
e.g., Tsybakov (2004)). In this study we focus our attention on the sinus cardinal kernel
because it is compactly supported in the Fourier domain. Indeed, we have K*(t) = i (1),
teR.

In view of (2.1), a natural plug-in estimator for f* is given by:
fi) = [ e e = PO apnn@)

4



where f * denotes the empirical Fourier transform of f, i.e.,

n

gy = L —itX,
f (t) = E Z (& . (2.4)
v=1
Using the Fourier inverse formula (2.2) and the standard convolution equality: (xn,f)*(t) =
(f*(t))™, observe that
1 o0

o@) =5 | " ) (e =

T or —oo 27 J_ o

(f* ()t at. (2.5)

Another plug-in in (2.5) yields the following estimator for g:

w/h )
in(@) 1/ (F* ()™ e dt. (2.6)

B 27 —7/h

2.3 A selection method for A

Let us now develop a bandwidth selection based on the so-called “Lepski method” and the
global LLo-risk of gp. First of all, let us define

A |/ )
i () = — / (F()metmdt, xR,
27 J _x/(hvn)

V(h) = nzﬂ(lzif:))m

with « > 0, and

A(h) = sup (|gnnw — gwlls = V(R)), -
heHn
Then we consider the following estimator for the optimal bandwidth A of g; under the global
LLo-risk: R
h = argmin(A(h) + V(h)), (2.7)
heHn

where

1
Hy = {hk, :k‘E{l,Q,...,nm—l,nm}}.

hy
Using h (2.7) and gp, (2.6), we consider the plug-in estimator g; for g.

Further details about the Lepski method can be found in, e.g., Lepski (1990), Golden-
shluger and Lepski (2010) and Comte and Genon-Catalot (2012).



3 Results

3.1 Performances of g, under the pointwise LL,-risk

Let us start by the following remark.

Remark 3.1 If f is a density such that f € S(B3, L), then sup,cp(1 +u?)?|f*(u)|> .= B <
400 (since u — (1 +u?)8|f*(u)|? is continuous and integrable over R), and

Jas g @pPde< 5 [+l )Pde < B
so that g € S(a, M) with « = mfB and M = B™ L. As m if fized, we can still consider
that « can be small (but then [ is even smaller).
Proposition 3.1 below investigates the performance of g, under the pointwise LLo-risk.

Proposition 3.1 Consider the model described in Section 1 and let g, be given by (2.6).

Upper bound for the pointwise La-risk. Assume that f* g* € Li(R). Then there exists a
constant C > 0 such that

E ((gn(z) —g(x))?) < C h211m - % * </t|> /h ’g*(mdt)

Rate of convergence. Assume that f*, g* € L1(R) and f € S(5,L) for B,L > 0. Then there
exists a constant C > 0 such that

E ((gn(2) — 9(2))%) < Cry, (3.1)
where
Case (i) (i) (iii)
m>2,8>1/m | m>2 8>1/(m(m—1)) | f€(0,1/(m(m— 1))
h O(n—l 2) O(n=™ (2(m5+1))) O(n—m (2(mﬁ+1)))
- n-1 n-1 n—m>B/(mB+1)

In (i), observe that ¢, is adaptive (since h = O(n~'/2) does not depend on ) and
attains the parametric rate of convergence 1/n. The cases (ii) and (iii) are complementary.
In (ii), g is non-adaptive but still attains 1/n. In (iii), 1/n does not hold and gy, is still
non-adaptive.

Note that we recover the regularity threshold 1/2 when m = 2, that is given in Nickl
(2009), see his Propositions 4 and 5. But Nickl (2009) studies convergence in law in Cy(R),
the space of bounded continuous functions on R that vanish at infinity, while we only
consider here pointwise risk. On the other hand, we find out that the regularity threshold
for the parametric rate is 1/(m(m—1)) and obtain nonparametric rates below the threshold,
which is new.



3.2 Performances of g,
Proposition 3.2 below investigates the performance of g; under the global Lo-risk.
Proposition 3.2 Consider the model described in Section 1 and let g, be defined by (2.6).

Upper bound for the global La-risk. Assume that g* € Lo(R). Then there exists a constant
C > 0 such that

11
E (llgn — 9ll3) < C ++/ g (t)2dt | .
(Il 13) et |t|zw/h’ (t)]

Rates of convergence. Assume that f € S(B,L) for 3,L > 0. Then there exists a constant
C > 0 such that

E (/|gn — g]3) < Cra,

where
Case (iv) (v) (vi)
m>2,6>1/2m) | m>2,5>1/2m(m—1)) | € (0,1/(2m(m —1)))
h O(n—l) O(n—m/(2mﬁ+1)) O(n‘m (2m6+1))
n n-1 n1 n—2m*B/(2mpB+1)

The proof of Proposition 3.2 is based on a suitable decomposition of the global Lo-risk,
moments inequality for (2.4) and technical elements related to the Fourier analysis.

As in Proposition 3.1, Proposition 3.2 shows that, in (iv), the procedure g, is adaptive
and attains the parametric rate of convergence 1/n. The cases (v) and (vi) are comple-
mentary. In (v), g is non-adaptive but still attains 1/n. In (vi), the rate of convergence
1/n is deteriorated and gy, is still non-adaptive.

When m = 1 is considered in (vi), the rate of convergence becomes the standard one
for the density estimation problem via kernel method, i.e., r, = n~26/(28+1) (see, e.g.,
Tsybakov (2004)).

Note that the results of Proposition 3.2 on the integrated error exhibit rates and band-
width choices which are different from pointwise ones, under weak conditions. For instance,
the parametric rate of convergence 1/n for the MISE is also attained by the kernel method
of Saavedra and Cao (2000) (see (Saavedra and Cao, 2000, Theorems 3 and 4)). However,
it is established with more restrictive conditions on f, compared to (iv), i.e., f four times
differentiable with fourth derivative continuous, sup,cg |fVU)(x)| < oo for j € {0,1,2,3,4}
and the functions f” and f* are integrable. Nevertheless, similar results, under weak
conditions, may be deduced from the main Theorem in Nickl (2009).



Naturally, the performances of g, deeply depends on h. We see in Propositions 3.1 and
3.2 that its optimal value depends on the unknown smoothness parameter 5. In order to
estimate it efficiently via the observations, a selection method was proposed in Section 2.3.
The next section is devoted to the performances of the resulting adaptive estimator g;.

3.3 Performances of g;

Theorem 3.1 below explores the performances of g; under the global LLo-risk.

Theorem 3.1 Consider the model described in Section 1. Let g; be defined by (2.6) with
h = h from (2.7).

Upper bound for the global La-risk. Assume that g* € Lao(R). Then there exist two con-
stants k and C' > 0 such that

1 1
A~ 2 < : * 2 i
Gi—gl}) < C (hggn (,mm - /| Gl V<h>) + n)

Rates of convergence. Assume that f € S(B,L) for 3,L > 0. Then there exists a constant
C > 0 such that

E(|

E (||g;, — gll3) < Cra,

where
Case (vii) (viii)
m>2,8>1/2m(m—-1)) | B€(0,1/(2m(m — 1))]
" n—l (M) 2m26/(2mﬁ+1)

Theorem 3.1 shows that our adaptive procedure g; attains similar rates of convergence to
those attained by g, with the optimal non-adaptive h. The only difference is a a logarithmic

loss for g € (0,1/(2m(m — 1))].

4 Numerical experiments

For simplicity in the following simulation study, we have added the superscript m on g to
denote the m-th convolution power. We consider the problem of estimating the density g.,
of the sum of a fixed number m of 4.i.d. random variables, emphasizing the case m = 2.
We demonstrate the usefulness of the adaptive kernel estimator gmﬁon both simulated and
real data examples. The numerical experiments have been carried out using Matlab.
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Figure 1: Test densities f (solid) and gy (dashed) (the 2-fold convolution power of f).

4.1 Computational aspects

A computationally-efficient procedure for kernel density estimation has been given by Sil-
verman (1982, 1986), with extensions by Jones and Lotwick (1984). The main idea of this
approach is to express kernel estimator as a convolution of the data with the kernel and
use a Fast Fourier Transform (FFT) to perform the convolution (see e.g. Silverman (1986)
Section 3.5). The estimator proposed in this paper is based on the same idea, therefore
FFT-based method are well suited for its implementation. The resulting estimator g,
is simple to implement and fast which allows us to perform the selection procedure in a
reasonable time for various sample sizes.

The original observations were generated from an i.i.d. sample of random variables
X1,...,X,. Three test functions, representing different degrees of smoothness were used

(see Figure 1),

(a) the standard normal distribution N (0, 1),

(b) the Claw distribution 2A/(0,1) + SN (1/2—1,(1/2)?),
(c) the uniform distribution 4 (—1,1).

For numerical implementation, we consider an interval [a,b] that cover the range of
the data and the density estimates were evaluated at M = 2" equally spaced points t; =
a+ (b—a)/M,i=0,1,...,M — 1, between a and b, with r = 8, b = —a = 5 and M is
the number of discretization points. The constant x is taken equal to 1 and the normalized
sinc Kernel (2.3) were used throughout all experiments. Our results are based on N = 500
simulated data sets and the MISE was approximated by the average of the Integrated
Squared Error (ISE) over the N replicates.
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Figure 2: (a): True density (dotted), density estimates (red) and sample of 20 estimates
(gray) out of 100 proposed to the selection algorithm obtained with a sample of n = 1000
data. (b): Graph of the the function A(h) + V(h) against the smoothing parameter h and
(shifted) MISE(h). The red circle represents the global minimizer of A(h) + V' (h) and the
blue circle represents the global minimizer of MISE(h).

4.2 Bandwidth selection procedure

We have considered the case where m = 2 to illustrate the finite sample behavior of the
adaptive estimator gmﬁ, constructed with the data-driven bandwidth selection procedure
described in the Section 2. Note that, although we focused on m = 2 the approach can
easily handle other values of m.

In order to reduce, the computational cost of the selection procedure and improve the
numerical efficiency of the resulting estimator, we have reduced the cardinality of the fi-
nite set of bandwidth H,. Indeed, a proper choice of an initial grid H,, allows to reduce
considerably the computational time involved in the bandwidth selection procedure and
consequently in the estimation of gm ;- Thus, in each case, the grid of i values that we have

considered consisted of 100 values from 0.2k to 1.2h¢ where hg = n~™/5 denotes a pilot
bandwidth generally selected from a reference rule, like Silverman’s rule of thumb (see e.g.
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Figure 3: (a): True density (dotted), density estimates (red) and sample of 20 estimates
(gray) out of 100 proposed to the selection algorithm obtained with a sample of n = 2000
data. (b): Graph of the function A(h) + V(h) against the smoothing parameter h and
(shifted) MISE(h). The red circle represents the global minimizer of A(h) + V' (h) and the
blue circle represents the true MISE-minimizing bandwidth hypsk.

Silverman (1986)). Thus, in practice, for each value of h € H,, the function A(h) + V(h)
has been computed from a single simulation and then, we have minimized (2.7) numerically
over the grid H,. This step can be easily and quickly computed (thanks to the FFT-al!
gorithm). The results are depicted in Figures 2 and 3 for n-samples of sizes 1000 et 2000.
Figures 2(b) 3(b) also contain a plot of the function A(h) 4+ V(h) against the smoothing
parameter h and a vertical shift of the curve MISE(h) is also overlayed for visualization
purposes. For each density, it is clear from the figures, that the value of h is the unam-
biguous minimizer of A(h) + V(h). One notes that selection is already very effective for
n = 1000, h provides a decent approximation, fairly close to haigy and even closer when
the sample size n grows (i.e. n = 2000), for all test densities. When n = 1000, for the
Gaussian density, the bandwidth which minimizes MISE(h) in this case is hysg = 0.12520
and h = 0.12543. In this case, for the Claw and the uniform densities, we obtained re-
spectively hyisg = 0.12517,h = 0.12540! and hyisg = 0.12547, h = 0.12542. Note that,
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t! he selection procedure also give good results on smaller sample sizes (e.g. for n = 100
and the Gaussian density, hyrsg = 0.3980 and h = 0.3888). Therefore, without any prior
smoothness knowledge on the unknown density, our adaptive estimator is very effective to
estimate each of the three densities.

Table 1: 10000xMISE values from 500 replications. From top to bottom Gaussian, Claw
and Uniform densities for m = 2. The numbers in parenthesis show the performance of
Saavedra and Cao (2000)

n 500 1000 2000
Gaussian  0.0186 (0.0345) 0.0065 (0.0188) 0.0028 (0.0101)
(
(

Claw 0.0291 (0.1535) 0.0114 (0.1261) 0.0056 (0.1114)
Uniform  0.0250 01301) 0.0104 (0.0867) 0.0072 (0.0589)

Finally, we have compared the performance of our adaptive estimator to those of a
different kernel-based estimator presented in Saavedra and Cao (2000), i.e. § = %, f, where

f(z) = LSt K (””‘hx') , is a standard kernel estimator and K is a kernel function.

All experiments were conducted using a Gaussian kernel and we have been focused on a
global bandwidth selector: the rule of thumb (ROT) bandwidth selector (see e.g. Silverman
(1986)). Thus, the optimal bandwidth is given by hror = 1.06 min(é, Q/1.34)n~/%, where
¢ is the sample standard deviation and @ is the interquartile range. TABLE 1 summarizes
the results. It shows in particular that our adaptive estimator systematically outperforms
the estimator Saavedra and Cao (2000). As expected and predicted by our theoretical
findings, the performance gets better as the sample sizes increases.

Real data example

In this section a real data application of the bandwidth selection method is given. In
insurance, a typical example is the sum of insurance claims, where (X, ),=1,... », are individual
insurance claims and S = >""" | X, is the sum of m claims and m could be interpreted as
the expected number of claims in a specified period (e.g. one month). In this illustration, we
consider the hospital data example, reported and analyzed in Frees (1994) and we discuss
the case m = 2. The data in Table 2 consist of measurements of the 1989 total charges for
33 patients at a Wisconsin Hospital

The bandwidth was also chosen by grid search minimization, over an equally spaced
grid of 100 values from Amin = 9 to Amax = 450. Figure 4(a) depicts density estimate and
show histogram of the sum of claims for m = 2. Figure 4(b) contain a plot of the function
A(h) + V(h) against the smoothing parameter h and the red circle represents the global

12



Table 2: 1989 total hospital charges (in dollars) for 33 females aged 30-49 hospitalized for
circulatory disorders from a Wisconsin Hospital (see Frees (1994)).

2337 2179 2348 4765 2088 2872 1924 2294 2182 2138 1765
2467 3609 2141 1850 3191 3020 2473 1898 7787 6169 1802
2011 2270 3425 3558 2315 1642 5878 2101 2242 5746 3041

0031 || 7§HQiitogram 10 ThA(h) TV(h
—3 F () 3
0.025f || = 0
=
7 +
= L - 0
< 0.015 =10 t
a =
0.01f 3
0.005(
(0= : : —-- == ~ ; ;
4000 6000 8000 10000 12000 14000 10" 10°
X1+ Xo log(h)

(a) (b)

Figure 4: (a) Our estimator g, ; (red) for the sum of two claims and a sample of 4 estimates
G2.», (gray) out of 100 used to the selection algorithm. (b): Graph of A(h)+V (h) against the
smoothing parameter h (in a log-log scale). The red circle represents the global minimizer
h of A(h) 4V (h) and the gray circles represent the values of h corresponding to the g, plot
in (a)

minimizer i of A(h)+V (k). The density estimates depicted by the gray lines in Figure 4(a)
are based on the bandwidths marked by the gray circles in Figure 4(b).

Conclusion and perspectives

We have constructed a new adaptive estimator g; for g using kernel methods, Fourier
analysis and the Lepski method. Theorems 3.2 and 3.1 show the good performances of g;
in terms of rates of convergence under the global Ly-risk over S(8,L). The agreement of
our simulations with our theoretical findings show that our estimator is quite effective on
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both simulated and real data sets. Possible perspectives of this work are to
e remove the extra logarithmic term in the case f € (0,1/(2m(m — 1)] via another

adaptive estimator,

e extend our estimation procedure to another problem as the one of Zijaeva (1975), i.e.,
estimate the density g of X7 + Y7 from n 4.i.d. observations X1, ..., X,, with density
f1 and n i.i.d. observations Yi,...,Y, with density fo,

All these points need further investigations that we leave for future works.

5 Proofs

In the following, the quantity C' denotes a generic constant that does not depend on n. Its
value may change from one term to another (it can depend on the fixed m).

5.1 Intermediary results

Proposition 5.1 Let f* be (2.1) and f* be (2.4). For any positive integer v, there exists
a constant C' > 0 such that

1

ﬁ.

swpEE (1f*(t) = f()*") < C

teR

Proof of Proposition 5.1. First of all, let us recall the Rosenthal inequality (see Rosenthal
(1970) ).

Lemma 5.1 (Rosenthal’s inequality) Let n be a positive integer, p > 2 and Uy,..., Uy,
be n zero mean independent random variables such that sup,cgy . 3 E(|Uu|P) < co. Then
there exists a constant C > 0 such that

P n n p/2
E( ) )gc ZE<|Uv\p>+(ZE(U3)>

n
> U
v=1 v=1
Let t € R. We have

@) - @)= %ZUv(t), Uy (t) = X0 _ F(emitX1),

Note that Uy (t),...,Uy,(t) are i.i.d. with E(Uy(t)) =0, |[U1(¢)| < 1 and E(JU;(¢)|?) < 1. For
any positive integer v, the Rosenthal inequality yields the existence of a constant C' > 0

such that
n 2v
> U1
v=1

E (1)~ S OF) = E <O

14



Proposition 5.1 is proved.

O

Lemma 5.2 Let (u,v) € C? such that |u| < 1 and |v| < 1. Then, for any integer m > 1,
we have
[u™ — ™| < |Ju—v|™ + Dp|u —v||v],

with Dy, = (3™ — 2™ — 1) /2.

Proof of Lemma 5.2. For m = 1, the desired inequality is obviously satisfied with D,,, = 0.
Let us now investigate the case m > 2. The binomial theorem yields

m—1

u =3 (’Z) WP (u — vy Tk

k=0

The triangular inequality and |u| < 1 and |v| < 1 give
[u™ — ™| < |u—v|™ 4+ Dp|u —v||v],

with

Lemma 5.2 is proved.

O
5.2 Proof of the main results
5.2.1 Proof of Proposition 3.1
Upper bound for the pointwise L risk. Set
1 [m/h . 1 [m/h A
G, () = — / g (B)etrdt = / (F()"etdt,  zeR. (5.1)
27 —x/h 27 —x/h
Using the elementary inequality (z + y)? < 2(2? + y?), (z,y) € R?, we obtain
E ((9n(2) — 9(2))?) < 2(P +Q), (5.2)

15



where
P=E ((gn(z) — gn(@)?), Q= (Gulx)—g(x))*

Upper bound for Q. The Fourier inverse formula yields

2 2
= i * eitx i %
Q= (27T /ﬂzﬂ/hg (t) dt) < <2W /t|27r/h g (t)|dt> : (5.3)

Upper bound for (). We have

1 w/h £ m * m\ itz i
PE((% | @ = oy dt))
1 ﬂ—/h x m * m ’
<15:<(27r L e =) |dt> )

2
< (;ﬂ / //Z (= (1w - o))" dt) , (5.4)

where the last line follows from the Fubini theorem (write the squared integral as a
multiple integral) and the Cauchy-Schwarz inequality.

It follows from the inequalities |f*(t)| < 1, |f*(¢)| < ||f]l1 = 1, Lemma 5.2 and the
elementary inequality (z + y)? < 2(z% + %), (z,y) € R?, that

PO = (@) P <2 (IF@) = FOP™ + DI = 0PI 0P),

with Dy, = (3™ — 2™ — 1)/2.

Proposition 5.1 implies the existence of a constant C' > 0 such that
E (17 e)™ = (£ ®)"?)
<2 (E(If@) - £ (0P™) + DLIFOPE (1F(t) - (1))
1 1 * 2
<o+ 2rop). (5.5

By (5.4), (5.5), the elementary inequalities v/|z + y| < /|z| + /|y|, and (z +y)? <

16



2(2% +y?), (z,y) € R?, and [/ | f*(t)|dt < || 7|1, we have

P<C (/_7;//}; <nlm + i‘f*(t)p)lﬂ dt>2
1 1
> . (5.6)

C ! = o d 2 C

< — 4 = *(t)|dt < — + =
<ol tie! /_ﬁ/hlf() < (nmh2+n
Combining (5.2), (5.3) and (5.6), we obtain

2
) 11 .
E ((gn(x) — 9(a))?) < C ( bt ( f e <t>|dt> ) SN

Rates of convergence. Since [ |f*(t)[>(1+t?)?dt < L, recalling that this implies that

|f*(t)]?(1 4 t?)? < B, we have

2 2
o)~ {f )

8 m 2
</|| >7/ (’f*(t”(l + t2) /2>2 (|f*(t)|(1 + t2)5/2> i (1 + t2) mﬁ/th>
t|>m/h

< (1+ (x/h)})"™PBM2L2 < Ch*™P, (5.8)

(i) m > 2, B> 1/m: The inequalities (5.7) and (5.8) and h = O(n~1/?) give

(ii) m > 2, B> 1/(m(m —1)): It follows from (5.7) and (5.8) and h = O(n~"/((mA+1)))
that

E ((gn(z) — g(x))?) < C <n_m2f3/(mﬂ+1) +1. n—mwmﬂm) <ot
n n

(i1i) B € (0,1/(m(m —1))): Similarly to the previous case, we have
W(@) — g(@))?) < C <n—m2ﬁ/(mﬁ+1) L1 n—m26/<mﬁ+1)> < OB/ (mp1).
n

E((g
The proof of Proposition 3.1 is complete. [
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5.2.2 Proof of Proposition 3.2.

Upper bound for the global Lo-risk. Recall that g, is defined in equation (5.1). The
elementary inequality (z + )2 < 2(z? + 42), (z,y) € R?, yields

E (Ign — glI3) < 2(R+9), (5.9)

where
R=E(|lgh—gnll3),  S=Ign— gll3-

Upper bound for R. The Parseval theorem gives

w/h B
=R (@) - (o)) d (5.10)

- % —7/h

Owing to the Parseval theorem, we have
w/h )
[ rorasirig =g <o (511)
—T

It follows from (5.10), (5.5) and (5.11) that

1 1 [m/h 1 1
< 4= ()2 < S )
R_C(hnm+n/ﬂ/h|f () dt)_C(hnern) (5.12)

Upper bound for S. Using the Parseval theorem, we get

S = g™ (t)|?dt. (5.13)
|t|>/h

Combining (5.9), (5.12) and (5.13), we obtain

) 11 .
E(lgn—gll3) <C (hm + +/ g (t)]%lt) : (5.14)
n [t|>m/h

n

Rates of convergence. Let us recall that, since f € S(8,L), then g € S(a, M) with
a=mfB and M = B™" 1L (see Remark 3.1). Therefore

/ g% (8)2dt < (1+(7r/h)2)"”5/ (14 2)8]g* (1) 2dt < CLA2™3. (5.15)
1 /h e/
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(iv) m > 2 and B > 1/(2m): It follows from (5.14) and (5.15) with h = O(n~!) that

11 1
A 2 -9 ﬁ
E ([lgn - gll3) < C (nm_l +— ) <C-.

(v) m >2 and > 1/(2m(m — 1)): The choice h = O(n~"/@m#+1)) in the bounds
(5.14) and (5.15) yields

E (||§h — gH%) <C (n—2m25/(2m5+1) + l + n—2m26/(2m5+1)> < Cl.
n

n

(vi) B € (0,1/(2m(m — 1))): Proceeding as for the previous point, we obtain
E (o — gl3) < C <n—2m26/<2mﬂ+1> L Ly n—2m26/<2mﬁ+1>) < On-2mB/emat).
n

This ends the proof of Proposition 3.2.

5.2.3 Proof of Theorem 3.1.

Upper bound for the global Ly-risk. Let h € H,, be fixed. The Minkowski inequality
and the elementary inequality (z +y + 2)? < 3(2? + y? + 22), (z,v, 2) € R3, yield

E (I9; — 913) <3 (13 — 3,413) +E (13,5 — 3I3) +E (190 - gl13)).
By definition of A(h), we have
E (19, — 3,4]3) < E(A(R)) + E(V (),
the definition of A(h) yields
E (19,5 — anl3) <EAR) + V(h)
and Proposition 3.2 gives

1 1
E (|la, — g2 < C ++/ *(£))%dt | .
(Ilgn — 9113) <hnm S g% ()]
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Therefore, owing to the definition of &, we have

E (1195 — 9lI3)
< 3(E(A(h)) + E(V (k) + A(h)) + V (k) + C (h'rlzm + % + /|t|> ., ‘g*(t)|2dt>
< 6(E(A(R) + V(h) + C <hlm v [ |g*(t)\2dt> , (5.16)
o s
where
B(Am) = ( sup (Igne — dwl — Vi), ). (517)

Upper bound for E(A(h)). Let us introduce the following functions:

1 w/h

gh(l') = 271_/ /h g*(t)e’mdt, x € R

and

T TSV '
T (z) = / g*(t)e dt, xz € R.
’ 2T ) _r(1/hAL )

Observe that

9n = Gnw = 9w — G — (Gnpy = Gaw) + G = Gnge-

Using again the Minkowski inequality and the elementary inequality (z +y + 2)? <
3(2? +y? + 2?), (2,9, 2) € R3, we obtain

190 = |13 < 3 (11 = GulI3 + |dn s — G5 + G0 — GnarlI3) -
Set D = [—w /bW, —7(1/hA1/R))]U[x(1/hA1/R)), 7 /B]. The Parseval theorem yields
_ 1 _
low =3l =55 [l @Pde< [ gt = g - gl
™ JD [t|>7/h
In the same way, we prove that

gm0 = G lls < Ngn — G ll3-

Then
G — npr )13 < 6llgn — G ll3 + 3llg — Full3- (5.18)
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It follows from (5.17), (5.18) and the Parseval theorem that
E(A(h)) < 6U + 3/ lg*(t)|?dt, (5.19)
[t|>m/h

where

U—E ( sup (6w — w2 — v<h'>/6>+) .
heHn

Upper bound for U. Let us consider the random event
Qu) = {|F*(w) = f*(w)| < 7v/log(n)/n}

Let us set W (log(n))
og(n))™
= —V() =r——2>"—,
2T ( ) & nm

Owing to the Parseval theorem and Lemma 5.2, we have

Un

w/h
low — w3 — V(R) /6 = - / (Fr @)™ = (F7 ()™ Bdt — V() /6

- % —7/h
1 w/h - * m 7 /b N ) i
<“</—w/hf (1500 = 7P a0~ w/12) s [ 10 = £ 0P oo
+D’%%/_OO () - f*(t)|2!f*(t)|2dt>.
Therefore
U<CB+S+T), (5.20)
where -
n /hy ~
= E * * 2m o J |
R kzl ((/ﬂ/hk (If (t) — f* ()" 1o /12> t>+>
n 7 /hy _ ,
S = E (|7 N my J
> [ EFO- s )
and N
T:/_ E ('f*(t> - f*(t)\2> £ ()| 2dt.

FEvaluation of R. On Q(t), we have

Pty — )] <y 2B

n
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Therefore, taking 7 large enough, we have
W/hk e . )
/ (170 - 5O = va/12) 1 < 0
—r/hp

Hence
R=0. (5.21)

Upper bound for S. Following Neumann (1997), we apply Bernstein Inequality and
get that

l Z(efith - E(efith))

n

P(Q(t)%) =P ( > Ty 10g(ﬂ)/“>
k=1
< 2(exp(—7%log(n)/4) + exp(—37+/nlog(n)/4)).

Thus, taking 7 > 2 4 p implies

P(Q°(t)) < CnP. (5.22)

Applying the Cauchy-Schwarz inequality, Lemma 5.1 with v = 2m, (5.22) with p =
m+ 2 and 1/h, < n™, we obtain

o ew/hy, ~ 1/2
S < E(|F*(t) — f*()[*™ P(Q¢(2))) "2 dt
;/_W/hk((! () = FOF™) " PQs(t)
1 &1 1 1
< Oy 2y = O = O (523)

Note that we get k > 4 + m for the constant in the definition of V'(h).

Upper bound for T. Using Lemma 5.1 with v = 1 and applying the Parseval theorem,
we get

1 1 1
T < C—||f*I3 < C—||f|l3 < O-. 5.24
<ol c Nl <o, (524)
Putting (5.20), (5.21), (5.23) and (5.24) together, we have
1
U<C-. (5.25)
n
Combining (5.19) and (5.25), we get
1
E(A(h)) <C | — +/ lg*()|dt | . (5.26)
o Jitzn/h
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Finally, from (5.16) and (5.26), we obtain

E(lg; — gl2) < C (1 + / O+ V() + 1) . (5.27)
e > /h

hn™ n
We obtain the desired result by taking the infimum of h over H,,.

Rates of convergence.

(vii) m > 2, B > 1/(2m(m — 1)): It follows from (5.27) and (5.15) with h = [pn~™/(2mA+1)]
that

E(lg;, —9l3) < C (n_2m25/(2m5+1) + (log(n))mn~2m*B/@mA+1) | 1) <ol

(viii) B € (0,1/(2m(m — 1))]: Putting (5.27) and (5.15) together with

h— [((log(n))m> m/(2mﬁ+1)]

n

we obtain

_|_i
n n n

oo (n))™ 2m23/(2mB+1) og(n))™ 2m?2B/(2mB+1)
wllg-olp < o (50" ) < o (tes) |

Theorem 3.1 is complete.
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