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Abstract

This note presents rates of convergence for the pointwise mean squared error in the deconvolution problem
with estimated characteristic function of the errors.

Résumé

Déconvolution ponctuelle avec distribution de l’erreur inconnue. Cette note présente les vitesses
de convergence pour le risque quadratique ponctuel dans le problème de déconvolution avec fonction ca-
ractéristique des erreurs estimée.

1. Introduction

Let us consider the following model:

Yj = Xj + εj j = 1, . . . , n (1)

where (Xj)1≤j≤n and (εj)1≤j≤n are independent sequences of i.i.d. variables. We denote by f the density
of Xj and by fε the density of εj . The aim is to estimate f when only Y1, . . . , Yn are observed. Contrary
to the classical convolution model, we do not assume that the density of the error is known, but that we
additionally observe ε−1, . . . , ε−M , a noise sample with distribution fε, independent of (Y1, . . . , Yn). Note
that the availability of two distinct samples makes the problem identifiable.

Altough there exists a huge literature concerning the estimation of f when fε is known, this problem
without the knowledge of fε has been less studied. One can cite Efromovich (1997) in a context of circular
data and Diggle and Hall (1993) who examine the case M ≥ n. Neumann (1997) and Johannes (2009) give
bounds for the integrated risk.

The contribution of this paper is to give rates of convergence for the pointwise squared error depending
on M and n.

Notations

For z a complex number, z̄ denotes its conjugate and |z| its modulus. For a function t : R 7→ R belonging
to L

1 ∩ L
2(R), we denote by ‖t‖ the L

2 norm of t and by ‖t‖1 the L
1 norm of t. The Fourier transform t∗

of t is defined by t∗(u) =
∫

e−ixut(x)dx.

2. Estimation procedure

It follows easily from Model (1) and independence assumptions that, if fY denotes the common density
of the Yj ’s, then fY = f ∗ fε and thus f∗

Y = f∗f∗
ε . Therefore, under the classical assumption:
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(A1) ∀x ∈ R, f∗
ε (x) 6= 0,

the equality f∗ = f∗
Y /f∗

ε yields an estimator of f∗ by considering the following estimate of f∗
Y :

f̂∗
Y (u) =

1

n

n
∑

j=1

e−iuYj .

Indeed, if f∗
ε is known, we can use the following estimate of f∗: f̂∗

Y /f∗
ε . Then, we should use inverse Fourier

transform to get an estimate of f . As 1/f∗
ε is in general not integrable (think of a Gaussian density for

instance), this inverse Fourier transform does not exist, and a cutoff is used. The final estimator for known

fε can thus be written: (2π)−1
∫

|u|≤πm
eiuxf̂∗

Y (u)/f∗
ε (u)du. This estimator is classical in the sense that it

corresponds both to a kernel estimator built with the sinc kernel (see Butucea (2004)) or to a projection
type estimator as in Comte et al. (2006).

Now, f∗
ε is unknown and we have to estimate it. Therefore, we use the preliminary sample and we

define the natural estimator of f∗
ε : f̂∗

ε (x) = 1
M

∑M
j=1 e−ixε−j . Next, we introduce as in Neumann (1997) the

truncated estimator:

1

f̃∗
ε (x)

=
1{|f̂∗

ε (x)|≥M−1/2}

f̂∗
ε (x)

=
1

f̂∗
ε (x)

if |f̂∗
ε (x)| ≥ M−1/2 and

1

f̃∗
ε (x)

= 0 otherwise.

Then our estimator is

f̂m(x) =
1

2π

∫ πm

−πm

eixu f̂∗
Y (u)

f̃∗
ε (u)

du. (2)

3. Study of the pointwise mean squared error

We introduce the notations

∆(m) =
1

2π

∫ πm

−πm

|f∗
ε (u)|−2du, ∆0(m) =

1

2π

(
∫ πm

−πm

|f∗
ε (u)|−1du

)2

, ∆0
f (m) =

1

2π

(
∫ πm

−πm

|f∗(u)|

|f∗
ε (u)|

du

)2

.

Proposition 3.1. Consider model (1) under (A1), then there exist constants C, C′ > 0 such that

E[(f̂m(x) − f(x))2] ≤ 2

(

1

2π

∫

|t|≥πm

|f∗(t)|dt

)2

+
C

n
min(‖f∗

Y ‖1∆(m), ∆0(m)) + C′
∆0

f (m)

M

Assumption (A1) is generally strengthened by the following description of the rate of decrease of f∗
ε :

(A2) There exist s ≥ 0, b > 0, γ ∈ R (γ > 0 if s = 0) and k0, k1 > 0 such that

k0(x
2 + 1)−γ/2 exp(−b|x|s) ≤ |f∗

ε (x)| ≤ k1(x
2 + 1)−γ/2 exp(−b|x|s)

Moreover, the density function f to estimate generally belongs to the following type of smoothness spaces:

Aδ,r,a(l) = {f density on R and

∫

|f∗(x)|2(x2 + 1)δ exp(2a|x|r)dx ≤ l} (3)

with r ≥ 0, a > 0, δ ∈ R and δ > 1/2 if r = 0, l > 0.
When r > 0 (respectively s > 0), the function f (respectively fε) is known as supersmooth, and as ordinary
smooth otherwise. The spaces of ordinary smooth functions correspond to classic Sobolev classes, while
supersmooth functions are infinitely differentiable. It includes for example normal (r = 2) and Cauchy
(r = 1) densities.

Corollary 3.2. If f∗
ε satisfies (A2) and if f ∈ Aδ,r,a(l), the rates of convergence for the Mean Squared

Error E[(f̂m(x) − f(x))2] are given in Table 1.
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Indeed, if f ∈ Aδ,r,a(l), the bias term can be bounded in the following way

2

(

1

2π

∫

|t|≥πm

|f∗(t)|dt

)2

≤ K1(πm)−2δ+1−re−2a(πm)r

.

and straightforward computation gives ∆(m) ≤ K2(πm)2γ+1−se2b(πm)s

, ∆0(m) ≤ K3(πm)2γ+2−2se2b(πm)s

and, with v = 2γ + 1 − s,

∆0
f (m)K−1

4 ≤ (πm)(2γ+1−2δ)+(log(m))1δ=γ+1/21{r=s=0} + (πm)v−max(2δ,s−1)e2b(πm)s

1{s>r}

+(πm)v−2δe2(b−a)(πm)s

1{r=s,b≥a} + 1{r>s}∪{r=s,b<a}

where K1, K2, K3, K4 are positive constants. Then the rates of Table 1 are established choosing a dequate
m0 depending on n, M and the smoothness indices (for example, in the case r = s = 0, m0 is the integer
part of n1/(2δ+2γ) ∧ M1/ max(2γ,2δ−1)).

s = 0 s > 0

r = 0 n− 2δ−1

2δ+2γ + M−[min(1, 2δ−1

2γ )](log M)1δ=γ+1/2 (log n)−
2δ−1

s + (log M)−
2δ−1

s

r > 0
(log n)

2γ+1

r

n
+

1

M
See Lacour (2006) and comment below.

Table 1: Rates of convergence for the MSE if f∗ε satisfies (A2) and f ∈ Aδ,r,a(l).

For the case (r > 0, s > 0), the rules for the compromise between supersmooth terms in both squared
bias and variance are given in Lacour (2006) and are very tedious to write; moreover, this case contains
several sub-cases.

The rates in term of n are known to be the optimal one for the deconvolution with known error (see
Fan (1991) and Butucea (2004)). They are recovered as soon as M ≥ n. Extending the proof of Neumann
(1997) we can prove the optimality of the rate M−1 in the cases where f is smoother than fε and r ≤ 1.

4. Proof of Proposition 3.1

First, let us denote fm(x) = (2π)−1
∫ πm

−πm
eixuf∗(u)du and R(x) =

(

1
f̃∗

ε (x)
− 1

f∗

ε (x)

)

. Then we have the

following decomposition:

E[(f̂m(x) − f(x))2] ≤ 2(fm(x) − f(x))2 + 2E[(f̂m(x) − fm(x))2]

≤ 2(fm(x) − f(x))2 + 4Var

(

1

2π

∫ πm

−πm

eixu f̂∗
Y (u)

f∗
ε (−u)

du

)

+ 4E

[

(

1

2π

∫ πm

−πm

eixuf̂∗
Y (u)R(u)du

)2
]

(4)

Since (f − fm)(x) = (1/2π)(f∗ − f∗
m)∗(−x), we can bound the biais term in the following way

(fm(x) − f(x))2 ≤

(

1

2π

∫

|t|≥πm

|f∗(t)|dt

)2

. (5)

The second term of the right-hand-side of (4) is the variance term when f∗
ε is known and has already

been studied: it follows from Butucea and Comte (2009) that

Var

(

1

2π

∫ πm

−πm

eixu f̂∗
Y (u)

f∗
ε (−u)

du

)

≤
1

2πn
min(‖f∗

Y ‖1∆(m), ∆0(m)). (6)
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For the remaining term in (4), we write first:

E

[

(

1

2π

∫ πm

−πm

eixuf̂∗
Y (u)R(u)du

)2
]

≤ 2E

[

(

1

2π

∫ πm

−πm

eixu(f̂∗
Y (u) − f∗

Y (u))R(u)du

)2
]

+2E

[

(

1

2π

∫ πm

−πm

eixuf∗
Y (u)R(u)du

)2
]

:= 2T1 + 2T2.

Neumann (1997) proved that there exists a positive constant C1 such that

E|[R(u)|2] = E

(

∣

∣

∣

∣

1

f̃∗
ε (u)

−
1

f∗
ε (u)

∣

∣

∣

∣

2
)

≤ C1 min

(

1

|f∗
ε (u)|2

,
1

M |f∗
ε (u)|4

)

.

Then we find

T1 =
1

4π2

∫∫

eix(u−v)Cov(f̂∗
Y (u), f̂∗

Y (v))E(R(u)R̄(v))dudv

≤
1

4π2n

∫∫

|f∗
Y (u − v)|

√

E(|R(u)|2)E(|R(v)|2)dudv ≤
C1

4π2n

∫∫

|f∗
Y (u − v)|

|f∗
ε (u)f∗

ε (v)|
dudv.

This term is clearly bounded by C1(2πn)−1∆0(m). Moreover writing it as

C1

4π2n

∫∫

√

|f∗
Y (u − v)|

|f∗
ε (u)|

√

|f∗
Y (u − v)|

|f∗
ε (v)|

dudv

and using first the Schwarz Inequality, and second the Fubini Theorem yields the bound C1(2πn)−1‖f∗
Y ‖1∆(m).

Therefore

E

[

(

1

2π

∫ πm

−πm

eixu(f̂∗
Y (u) − f∗

Y (u))R(u)du

)2
]

≤
C1

2πn
min(‖f∗

Y ‖1∆(m), ∆0(m)), (7)

and thus it has the same order as the usual variance term. Lastly,

T2 ≤
1

4π2

∫∫

|u|,|v|≤πm

|f∗
Y (u)f∗

Y (v)|
√

E(|R(u)|2)E(|R(v)|2)dudv

≤
1

4π2

(
∫ πm

−πm

|f∗
Y (u)|

√

E(|R(u)|2)du

)2

≤
C1

4π2M

(
∫ πm

−πm

|f∗
Y (u)|

|f∗
ε (u)|2

du

)2

= C1

∆0
f (m)

2πM
. (8)

Inserting the bounds (5) to (8) in Inequality (4), we obtain the result of Proposition 3.1. �
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