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Abstract

We provide in this paper asymptotic theory for the multivariate GARCH(p, q)
process. Strong consistency of the quasi-maximum likelihood estimator (MLE) is
established by appealing to conditions given in Jeantheau [19] in conjunction with
a result given by Boussama [9] concerning the existence of a stationary and ergodic
solution to the multivariate GARCH(p, q) process. We prove asymptotic normality
of the quasi-MLE when the initial state is either stationary or fixed.
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1. INTRODUCTION

There is now an insurmountable literature on Generalized Autoregressive Con-
ditional Heteroscedasticity (GARCH). The model and its various subsidiaries have
been one of the most successful econometric modelling schemes over the past two
decades or so. For univariate GARCH, there is more or less coherent asymptotic
theory for the maximum likelihood estimator (MLE), enabling practitioners to con-
duct statistical inference with a reasonable amount of confidence, given as usual,
correct model specification and a large enough sample. The story is markedly dif-
ferent in the multivariate case. Here, since asymptotic theory is rare, practitioners
often resort to asymptotic normality simply as a rule of thumb. See for instance,
Bollerslev [5], pp. 306–307, or Comte and Lieberman [11].

Broadly speaking, most papers in the area concentrate on either the univariate
or the multivariate case and on either the statistical or probabilistic properties of
these processes. In the following we outline the ongoing research on asymptotic
theory for GARCH. The univariate ARCH(p) model

xt =
√
htεt, εt ∼ iid(0, 1), ht = w +

p∑
i=1

αix
2
t−i, (1)

was originally presented by Engle [13]. It was generalized by Bollerslev [4] to
GARCH(p, q), with

ht = w +
q∑
i=1

αix
2
t−i +

p∑
i=1

βiht−i.

The model requires w > 0 and αi ≥ 0, βi ≥ 0, ∀i. It has been shown by Bollerslev
[4] to be second-order stationary if and only if

w > 0 and
q∑
i=1

αi +
p∑
j=1

βj < 1.

Weiss [30] established consistency and asymptotic normality of the MLE in a
univariate linear dynamic model with ARCH(p) errors, a model slightly more general
than (1). He proved asymptotic normality by appealing to conditions given by
Basawa et al. [2]. These conditions appear to form the backbone of many related
studies to follow. Nelson [26] gave necessary and sufficient conditions for strict
stationarity and ergodicity of the univariate GARCH(1,1) model. His condition

E{log(β1 + α1ε
2
t )} < 0 (2)

does not exclude the case β1 + α1 = 1 and hence, allows for the possibility of
Integrated GARCH (IGARCH).

Lumsdaine [22] established consistency and asymptotic normality of the quasi-
MLE in the GARCH(1,1) and IGARCH(1,1) models under the assumptions: (i) The
true parameter θ0 ∈ int(Θ), Θ ⊂ IR4 is a compact parameter space, (ii) Nelson’s [26]
condition (2) and (iii): εt ∼ iid fε, with fε a symmetric unimodal density, bounded
in the neighborhood of the origin, IE(εt) = 0, Var(εt) = 1 and IE(ε32

t ) < ∞. In
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addition, ht is independent of {εt, εt+1, ...}. The main difference between Lums-
daine’s [22] and Weiss’ [30] conditions is that the former are imposed on the noise
density whereas the latter are imposed on the process. In particular, Weiss assumed
E(x4

t ) <∞. Lee and Hansen [20] also considered the univariate GARCH(1,1) model
with the possibility that the process is integrated or even mildly explosive. In con-
trast with Lumsdaine’s [22] work, no assumption was made on the shape of the
density. For nonintegrated GARCH, Lee and Hansen [20] gave a first proof of con-
sistency of the quasi-MLE under the assumptions that εt is strictly stationary and
ergodic with E(|εt|2+δ|Ft−1) ≤ Sδ < ∞, where Sδ is a positive constant, δ > 0,
Ft = σ{xt, xt−1, ...} and α1 + β1 < 1. Asymptotic normality for the IGARCH case
was given under the additional assumption IE(ε4

t |Ft−1) ≤ K < ∞. Ling and Li
[21] established asymptotic theory for the estimators of the ARMA parameters in
unstable ARMA processes with GARCH innovations. They derived the limiting
distribution of the MLE in a unified manner for all types of roots of the ARMA
part inside/outside the unit circle. The limiting distribution involves a sequence of
independent bivariate Brownian motions with correlated components.

Parallel to the asymptotic theory of estimation, Bougerol and Picard [8] estab-
lished strict stationarity and ergodicity of the univariate GARCH(p, q) model in
terms of the top Lyapunov exponent

λ = inf
t∈IN

(t+ 1)−1IE{log ‖A(ε0)A(ε−1) · · · A(ε−t)‖} < 0,

where A(εt) is a matrix composed of the coefficients of the process and the noise
εt, the εt are iid and ‖.‖ is the Euclidian norm. Their result is a generalization of
Nelson’s [26] result for the stable GARCH(1,1) case. Bougerol and Picard [8] proved
their main theorem by writing the model as a first-order recursion with random
coefficients. The intuition is given by Bougerol’s ([7], Theorem 3.1) conditions
under which the function of recursion is Lipschitz. A model Yt+1 = F (Yt, ηt+1) with
ηt ∼ iid(0, 1) is said to satisfy a Lipschitz property if

‖F (x, η)− F (y, η)‖ ≤ α(η)‖x− y‖

for a positive valued function α with IE(α(ηt)m) < 1 and IE(‖F (0, ηt)‖m) < ∞ for
some real number m ≥ 1. In the GARCH(p, q) context the components of Yt are
the past and current values of xt, and ht. The Lipschitz idea works for univariate
GARCH(p, q) models. Unfortunately, Bougerol and Picard’s [8] approach does not
extend in general to the multivariate case. Boussama [9] gave a counter-example
to this extent. Recently, Hansen and Rahbek [16] used an operational drift crite-
rion from Markov chain theory to obtain stationarity, ergodicity and existence of
moments in a simple multivariate ARCH(1) process. The simple model discussed
in their work retains the Lipschitz property used in Bougerol’s [7] work. Bous-
sama [9] proved the existence of a stationary and ergodic solution for multivariate
GARCH(p, q) models by using Markov chain theory and algebraic topology.

Starting under Bougerol and Picard’s [8] conditions, Elie and Jeantheau [12]
established strong consistency of the quasi–MLE in the univariate GARCH(p, q)
model and Boussama [10] proved asymptotic normality of the quasi–MLE in the
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same model under moment conditions of order 6 on the noise and under the minimal
strict stationarity conditions that allow for IGARCH models.

As opposed to the univariate case, asymptotic theory of estimation for multi-
variate GARCH processes is far from being coherent. Bollerslev and Wooldridge [6]
proposed the condition that the likelihood follows a uniform weak law of large num-
bers for consistency of the MLE. They also assumed asymptotic normality of the
score but have not verified whether any of the conditions actually holds for specific
multivariate GARCH models. Tuncer [29] established weak convergence of the MLE
of a multivariate GARCH(1,1) BEKK1 representation, a model proposed by Engle
and Kroner [14]. Jeantheau [19] gave conditions for strong consistency of the MLE
for multivariate GARCH and verified that the conditions hold for the multivariate
model with constant correlation (e.g., Bollerslev [4]). Jeantheau’s [19] work does
not require conditions on the log-likelihood derivatives. His main condition is that
the process admits a unique strictly stationary and ergodic solution.

In this paper we establish asymptotic theory for the multivariate GARCH(p, q)
process. In Section 3 we prove strong consistency of the quasi-MLE by verifying
conditions given by Jeantheau [19]. In Section 4 we establish asymptotic normality
of the quasi-MLE when the initial state of the process is either in the stationary law
or fixed. We assume existence of a density with support containing the origin for
the rescaled innovation εt and the finiteness of moments of the process up to order
8. We emphasize that the tools adopted by Lumsdaine [22] and Lee and Hansen
[20] in the univariate setting do not seem to be of much use in the multivariate
framework. In addition, our model is non-Lipschitz and so our conditions are set
on the process. Finally, our model excludes the IGARCH case. For the clarity of
the exposition, we include only the chief results in the main body of the paper. All
detailed proofs are placed in the Appendix.

2. NOTATION AND PRELIMINARIES

We consider the multivariate GARCH(p, q) model defined as follows. Let (Xt)t∈Z
be a sequence of random variables of IRd and let Ft be the σ -field generated by
past Xt’s, i.e., Ft = σ(Xt, Xt−1, . . .). We assume that Xt is square integrable and
such that

Xt = H
1/2
t εt (3)

with
εt ∼ iid(0, Id) (4)

where Id is the d× d identity matrix. Without loss of generality, we choose H1/2
t to

be symmetric. The process Xt is a martingale-difference

IE(Xt|Ft−1) = 0 a.s. (5)

with a conditional covariance matrix

IE(XtX
′
t|Ft−1) = Ht. (6)

1The acronym BEKK stands for Baba, Engle, Kraft and Kroner who wrote an earlier version of the
paper by Engle and Kroner [14].
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Engle and Kroner’s [14] BEKK representation is given by

Ht = C +
q∑
i=1

 k∑
j=1

AijXt−iX
′
t−iA

′
ij

+
p∑
i=1

 k∑
j=1

BijHt−iB
′
ij

 , (7)

where the matrices C, Aij , for i = 1, . . . , q, j = 1, . . . , k and Bij , for i = 1, . . . , p, j =
1, . . . , k satisfy the assumption:

C is positive definite, Aij , Bij are real d× d matrices, (8)

and k is an integer less than d(d+ 1)/2. The main advantage of this model is that
it guarantees positive definiteness of Ht. Denote by vec and vech the operator that
stacks the columns of a matrix, and the vector-half operator, which stacks the lower
triangular portion of a matrix, respectively. Then (7) can be rewritten as

vec(Ht) = vec(C) +
q∑
i=1

A?i vec(Xt−iX
′
t−i) +

p∑
i=1

B?
i vec(Ht−i) (9)

with A?i =
∑k
j=1Aij ⊗Aij for i = 1, . . . , q and B?

i =
∑k
j=1Bij ⊗Bij for i = 1, . . . , p,

and ⊗ denoting the Kronecker product.
Since the matrices involved in the representation are symmetric, we may also write

vech(Ht) = vech(C) +
q∑
i=1

Ãivech(Xt−iX
′
t−i) +

p∑
i=1

B̃ivech(Ht−i), (10)

where Ld and Kd are matrices of dimension d(d + 1)× d2 satisfying Ãi = LdA
?
iK
′
d

for i = 1, . . . , q and B̃i = LdB
?
iK
′
d for i = 1, . . . , p . Note that dim(vec(Ht)) = d2

and dim(vech(Ht)) = d(d + 1)/2. Without loss of generality, we can set k = 1.
All proofs in the paper trivially extend to any arbitrary k. We denote by θ the
parameter vector of the process, so that the matrices C, Ãi and B̃i are functions
of θ: C = C(θ), Ãi = Ãi(θ) and B̃i = B̃i(θ). Note that in most applied work the
entries in the matrices C, Ãi and B̃i are simply the components of θ.

The model is not assumed to be necessarily Gaussian, but we work with the
Gaussian log-likelihood. So, the quasi-MLE θ̂n is defined as minimizing

Ln(θ) =
1

2n

n∑
t=1

`t(θ)

with
`t(θ) = log[det(Ht,θ)] +X ′tH

−1
t,θ Xt

where det(A) denotes the determinant of the matrix A. Note that the likelihood
depends on the observed Xt and also on Ht which needs to be calculated recursively.
We consider two possibilities for the choice of the initial value of the process. The
first option is to assume that the initial value of the Ht sequence is drawn from the
stationary law. This approach is of little practical use but of important theoretical
conveniency: indeed it allows to work first with a stationary process. For practical
purposes it is easier to assume a fixed initial value. This leads to non–stationarity
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of Ht. We show in the paper that either option leads to the same asymptotic
results. The key point is that non–stationary Ht’s converge to stationarity with an
exponential rate.

We further make use of the following notation. ‖ · ‖ is the Euclidian norm for
both vectors and matrices, ‖A‖2 = Tr(A′A) =

∑
i,j A

2
i,j , ρ(A) the spectral radius of

A , i.e., the largest modulus of the eigenvalues of A. N (A) is the spectral norm of
A, namely, the square root of ρ(A′A). The following inequalities (see Magnus and
Neudecker [23]) will be used extensively in our work.

|Tr(AB)| ≤ ‖A‖ ‖B‖, N (AB) ≤ N (A) N (B) , (11)

‖AB‖ ≤ N (A) ‖B‖, ‖AB‖ ≤ ‖A‖N (B) , N (A+B) ≤ N (A) + N (B) . (12)

If A is d× d, then
N (A) ≤ ‖A‖ ≤

√
dN (A) . (13)

3. STRONG CONSISTENCY

In this section we establish strong consistency of the quasi MLE by appealing
to Jeantheau’s [19] conditions. Let Θ be the parameter space and θ0 ∈ Θ ⊂ IRr be
the true parameter value. Jeantheau’s [19] conditions for strong consistency of the
quasi-MLE are:

A0 Θ is compact.

A1 ∀θ0 ∈ Θ, the model admits a unique strictly stationary and ergodic solution,
following a stationary law Pθ0 .

A2 There exists a deterministic constant c such that ∀t,∀θ ∈ Θ,det(Ht,θ) ≥ c.
A3 ∀θ0 ∈ Θ, IEθ0(| log(det(Ht,θ0))|) <∞.

A4 The model is identifiable.

A5 Ht,θ is a continuous function of θ.

We now verify that the conditions hold for the model under consideration. First,
A0 is always assumed. For A1, we recall the following theorem from Boussama [9].

Theorem 1 For the model given by (3)–(4) and (7), assume that the εt’s admit a
density absolutely continuous w.r.t. the Lebesgue measure, positive in a neighbour-
hood of the origin. Assume moreover that

ρ(
q∑
i=1

Ãi +
p∑
i=1

B̃i) < 1,

and let Y be defined by

Yt = (vech(Ht+1)′, vech(Ht)′, . . . , vech(Ht−p+2)′, X ′t, X
′
t−1, . . . , X

′
t−q+1)′. (14)

Then the recurrence relations (3)–(4) and (7) for Y have an almost surely unique
strictly stationary causal solution which constitutes a positive Harris recurrent Markov
chain which is geometrically ergodic and β-mixing.
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Boussama [9] proved the theorem on an application of theorems by Meyn and
Tweedie [24] together with some results given in Mokkadem [25]. Both Boussama
[9] and Mokkadem [25] make extensive use of algebraic topology.

To show A2, we note that for any positive definite matrix W and for any positive
semidefinite matrix D, det(W + D) ≥ det(W ) + det(D). It follows from (7) that
det(Ht,θ) ≥ det(C(θ)). As Θ is compact, we may set c := infθ∈Θ det(C(θ)) as soon
as C(θ) is a continuous function of θ and we assume that c > 0. For A3, let xi(θ)
be the (positive) eigenvalues of Ht,θ for a fixed t. Then

log[det(Ht,θ)] =
d∑
i=1

log(xi(θ)) ≤
d∑
i=1

xi(θ) = Tr(Ht,θ)

implying that

IE(log(detHt,θ)) ≤ IE(Tr(Ht,θ)) =
d∑
i=1

IE([Ht,θ]ii).

By the square integrability of Xt, IE(vech(Ht,θ)) < +∞. Thus, IE(log(detHt,θ))+ <
∞ and IE(log(detHt,θ))− ≤ sup(− log(c), 0) < ∞. Therefore, IE| log(detHt,θ)| <
+∞ and A3 is fulfilled. For Assumption A4, we recall the following proposition
by Engle and Kroner [14]. Defining two representations to be equivalent if each
sequence {Xt} generates the same sequence {Ht} for both representations, they
prove:

Proposition 1 For the model

Ht = C0C
′
0 +

k∑
j=1

A′1jXt−1X
′
t−1A1j +

k∑
j=1

B′1jHt−1B1j ,

suppose the diagonal elements of C0 are restricted to be positive. Assume that A1ks,
with ks = d(s − 1) + 1, . . . , ds and s = 1, . . . , d , is the matrix obtained by setting
the first s− 1 columns and the first ks− d(s− 1)− 1 rows to zero. Assume also that
[A1ks ]dd > 0, ∀ks and that similar restrictions are set on the B1j matrices. Then a
fully general BEKK model is obtained which has no other equivalent representations
in this class.

Similar conditions for identification can be set for higher order BEKK processes,
see Engle and Kroner [14]. This definition is consistent with Jeantheau’s ([19], p.72)
definition of identifiability, namely, ∀θ ∈ Θ,∀θ0 ∈ Θ,

Ht,θ = Ht,θ0 , IPθ0 − a.s.⇒ θ = θ0.

Finally, A5 is obviously fulfilled. We summarize our findings so far in Theorem 2.

Theorem 2 For the GARCH(p, q) process defined by (3)–(4) and (7) and for θ̂n
as defined above, assume that:

1. Θ is compact, C, Ãi, B̃i are continuous functions of θ, and there exists c > 0
such that infθ∈Θ det C(θ) ≥ c > 0,
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2. The model is identifiable,

3. The rescaled errors εt admit a density absolutely continuous w.r.t. the Lebesgue
measure and positive in a neighbourhood of the origin,

4. ∀θ ∈ Θ, ρ(
∑q
i=1 Ãi(θ) +

∑p
i=1 B̃i(θ)) < 1.

Then θ̂n is strongly consistent, that is, θ̂n →n→+∞ θ0, IPθ0 − a.s.

The result was stated without proof by Boussama [9]. Theorem 2 is valid only
under a random initial condition drawn in the stationary law (see Jeantheau [19]).
An extension is required for the fixed initial condition case and this we shall provide
in Section 4.2.

4. ASYMPTOTIC NORMALITY

4.1. The Initial State Is Stationary

In this section we establish asymptotic normality of the quasi-MLE. We first
assume that the initial conditions for Ht are in the stationary law. In the next
subsection we will deal with the fixed initial state case. Basawa, Feigin and Heyde
[2] gave conditions for asymptotic normality of the MLE for general stochastic pro-
cesses. These conditions were previously employed by, among others, Weiss ([30],
p.130) and Lumsdaine ([22], p.594). The conditions are:

(i) − 1
T

T∑
t=1

∂2`t(θ0)
∂θ∂θ′

IP−→ C1 when T → +∞ for a nonrandom positive definite

matrix C1.

(ii)
1√
T

T∑
t=1

∂`t(θ0)
∂θ

L−→ N (0, C0) when T → +∞ for a nonrandom C0.

(iii) For all i, j, k, IE

(
sup

‖θ−θ0‖≤δ

∣∣∣∣∣ ∂3`t(θ)
∂θi∂θj∂θk

∣∣∣∣∣
)

is bounded for all δ > 0.

Similar conditions are given by Amemiya ([1], Theorem 4.1.3). By Theorem 1 and
under the assumptions of Theorem 2, ∂2`t(θ0)/∂θ∂θ′ is ergodic and so, condition
(i) will be satisfied if C1 is finite and positive definite. As

∂`t
∂θi

(θ) = Tr
(
∂Ht,θ

∂θi
H−1
t,θ −XtX

′
tH
−1
t,θ

∂Ht,θ

∂θi
H−1
t,θ

)
,

we find, using (6), that

IEθ0

[
∂`t
∂θi

(θ0)|Ft−1

]
= 0 a.s.

Thus, the score is a martingale difference. Moreover, it also follows from Theorem 1
and under the assumptions of Theorem 2 that ∂`t(θ0)/∂θ is a strictly stationary and
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ergodic process, because it is a measurable function of a strictly stationary and er-
godic process. Thus, we may apply the CLT for martingales (e.g., Billingsley [3], p.
788) to obtain condition (ii) above, as long as C0 = IEθ0{(∂`t(θ0)/∂θ)(∂`t(θ0)/∂θ′)}
is finite. Note that we only require the finiteness of the second moment of ∂`t(θ0)/∂θ
for the application of Billingsley’s [3] martingale CLT, whereas Lumsdaine [22] re-
quired the finiteness of the 2+δ order moment of ∂`t(θ0)/∂θ, for some δ. Lumsdaine
[22] applied Theorem 6.3 of Serfling [28] which imposes this additional restriction
but reduces the assumptions {strict stationarity, ergodicity} to {weak stationarity,
eq’n (6.7) of Serfling }. See Serfling ([28] p. 1174) for discussion. This additional
restriction effectively forced Lumsdaine ([22], p. 594) to show existence of the third
order moment. Finally, we note that condition (iii) above follows from Basawa et
al.’s [2] condition B7. In our case, we shall see in the proofs that condition (iii)
holds with the supremum taken over all Θ.

To prove asymptotic normality of the quasi-MLE, it will suffice then to verify
the following conditions:

B1 C1 = IE

(∂2`t(θ0)
∂θi∂θj

)
1≤i,j≤r

 is finite and positive definite.

B2 C0 = IE
(
∂`t(θ0)
∂θ

∂`t(θ0)
∂θ′

)
is finite.

B3 Condition (iii) above.

In addition, we require that the components of εt (for a fixed t) are independent.
These requirements are fullfilled in the Gaussian case, but of course not in general.
We prove B1-B3 in the Appendix.

Theorem 3 Under the Assumptions:

(i) (1)–(4) of Theorem 2, and C(θ), Ãi(θ), B̃i(θ) admit continuous derivatives up
to order 3 on Θ,

(ii) The components of εt are independent,

(iii) Xt admits bounded moments of order 8,

(iv) The initial value (in H) is drawn for the stationary ergodic law,

√
n(θ̂n − θ0) D−→n→∞ N (0, C−1

1 C0C
−1
1 ), under IPθ0 .

Note that if moreover εt ∼ N (0, I), then C0 = 2C1 and the asymptotic law
reduces to N (0, 2C−1

1 ).

4.2. The Initial State Is Fixed

We considered above a random initial condition for the process, drawn from
the stationary law. Here we assume that the initial value of the process is fixed.
Let Ht = (vech(Ht)′, . . . , vech(Ht−m+1)′)′ where m = max(p, q). Let x = H0 ∈
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IRmd(d+1)/2
+ be the initial state. Let ht,x,θ be the values of ht given the initial state.

θ̂x,n denotes the quasi-MLE given the initial state. That is, the value that minimizes

Ln(x, θ) =
1

2n

n∑
t=1

`t(x, θ)

with
`t(x, θ) = log[det(Ht,x,θ)] +X ′tH

−1
t,x,θXt,

with Hx,t,θ built of the hx,t,θ’s. We establish the following result:

Theorem 4 Under the Assumptions of Theorem 3, with the exception that the
initial condition x ∈IRmd(d+1)/2

+ of the process Ht is fixed, θ̂x,n is strongly consistent
and √

n(θ̂x,n − θ0) D−→n→+∞ N (0, C−1
1 C0C

−1
1 ), under IPθ0 .

From p.19 and p.41 of Jeantheau [18] and from Theorem 2.2 of Elie and Jeantheau
[12], strong consistency is obtained under the additional condition

sup
θ∈Θ
|`t(θ)− `t(θ, x)| −→ 0 a.s.

The condition is proved in Appendix B. The asymptotic normality is then a conse-
quence of this result and Theorem 3.

5. REMARKS

For the univariate GARCH(1,1) model, Lumsdaine [22] established consistency
and asymptotic normality of the quasi-MLE under strong assumptions on the shape
of the normalized innovation density and boundedness of the conditional moment
of order 32. Together with the contributions of Weiss [30], Nelson [26], Lee and
Hansen [20], and others, asymptotic theory for the univariate GARCH(1,1) model
is fairly well covered. The univariate GARCH(p, q) is treated in Boussama [9, 10].

In this paper, we established asymptotic theory for the multivariate GARCH(p, q)
model. The tools usually used in the univariate case do not seem to be suitable for
the multivariate model. We appealed to Jeantheau’s [19] conditions in proving
strong consistency of the MLE. Asymptotic normality of the MLE is proven then
with the aid of Basawa et al.’s [2] conditions. The results of the paper enable
practitioners to apply tools of statistical inference in a justified manner, whereas
previously these tools were only used as a rule of thumb.
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APPENDIX A: Proof of Theorem 3.

The proof of Theorem 3 requires B1-B3. The proofs make extensive use of the
relations (7)–(9). First, we find a deterministic bound for the norms of H−1

t , since
it will be useful in several points. For a positive definite matrix C and a positive
semidefinite matrix D, we have:

0 ≤ Tr[(C +D)−2] = ‖C−1/2(I + C−1/2DC−1/2)−1C−1/2‖2

≤ Tr(C−2(I + C−1/2DC−1/2)−2)

≤
(
Tr(C−4)Tr((I + C−1/2DC−1/2)−4)

)1/2
.

As the eigenvalues of I+C−1/2DC−1/2 are all greater than unity, those of its inverse
are necessarily in (0, 1] as well as those of any power of the inverse. This implies
that

Tr(I + C−1/2DC−1/2)−4 < d .

Thus:
N
(
H−1
t,θ

)2
≤ ‖H−1

t,θ ‖
2 ≤
√
d‖C−2(θ)‖ ≤ K2. (15)

The bound is uniform in t and also uniform on Θ using Assumption 1 of Theorem
2 which implies that all eigenvalues admit a uniform lower bound. Equation (15)
implies that if X admits finite moments of order 8, i.e., if IE(‖X‖8) < +∞, then
IE‖ε‖8 < +∞, because

‖ε‖8 = Tr4(ε′ε) = Tr4(X ′H−1X)
= Tr4(XX ′H−1) ≤ K4‖X‖8.

Lemma 1 Denote Ḣt,i = ∂Ht/∂θi and µ4,p = IE(ε4
t,p). Then

IEt−1

[
∂`t
∂θi

(θ0)
∂`t
∂θj

(θ0)

]
=

d∑
p=1

(µ4,p − 3)[H−1/2
t

.
Ht,i H

−1/2
t ]pp[H

−1/2
t

.
Ht,j H

−1/2
t ]pp

+2Tr(
.
Ht,i H

−1
t

.
Ht,j H

−1
t ) (16)

and

IEt−1

[
∂2`t
∂θi∂θj

(θ0)

]
= Tr(

.
Ht,i H

−1
t

.
Ht,j H

−1
t ). (17)

Proof of Lemma 1. For simplicity, Ht denotes Ht,θ in the first two equalities and
Ht,θ0 later on. First,

∂`t
∂θi

(θ) = Tr
[ .
Ht,i H

−1
t −XtX

′
tH
−1
t

.
Ht,i H

−1
t

]
and

∂2`t
∂θj∂θi

(θ) = Tr
[ ..
Ht,i,j H

−1
t −

.
Ht,i H

−1
t

.
Ht,j H

−1
t +XtX

′
tH
−1
t

.
Ht,j H

−1
t

.
Ht,i H

−1
t

−XtX
′
tH
−1
t

..
Ht,i,j H

−1
t +XtX

′
tH
−1
t

.
Ht,i H

−1
t

.
Ht,j H

−1
t

]
. (18)

11



Using the fact that all terms in Ht and its derivatives are in Ft−1, we obtain (17).
Further,

IEt−1

(
∂`t(θ0)
∂θi

∂`t(θ0)
∂θj

)
= IEt−1

(
Tr(XtX

′
tH
−1
t

.
Ht,i H

−1
t )Tr(XtX

′
tH
−1
t

.
Ht,j H

−1
t )

)
−IEt−1

(
Tr(XtX

′
tH
−1
t

.
Ht,i H

−1
t )Tr(

.
Ht,j H

−1
t )

)
−IEt−1

(
Tr(XtX

′
tH
−1
t

.
Ht,j H

−1
t )Tr(

.
Ht,i H

−1
t )

)
+IEt−1

(
Tr(

.
Ht,i H

−1
t )Tr(

.
Ht,j H

−1
t )

)
= IEt−1

(
Tr(XtX

′
tH
−1
t

.
Ht,i H

−1
t )Tr(XtX

′
tH
−1
t

.
Ht,j H

−1
t )

)
−Tr(

.
Ht,i H

−1
t )Tr(

.
Ht,j H

−1
t ).

Let H−1/2
t be a symmetric root of Ht and Mi = H

−1/2
t

.
Ht,i H

−1/2
t . Then

IEt−1(Tr(εtε′tMi)Tr(εtε′tMj)) = IEt−1

[(
d∑
r=1

d∑
u=1

εt,rεt,u [Mi]k,p

)(
d∑
s=1

d∑
v=1

εt,sεt,v [Mj ]l,q

)]

=
d∑

u=1

d∑
r=1

d∑
s=1

d∑
v=1

[Mi]r,u [Mj ]v,s IE (εt,rεt,uεt,sεt,v)

=
d∑
r=1

[Mi]r,r [Mj ]r,r (µ4,r − 3) +
d∑
r=1

d∑
s=1

[Mi]r,r [Mj ]s,s

+
d∑
r=1

d∑
u=1

[Mi]r,u [Mj ]r,u +
d∑
r=1

d∑
u=1

[Mi]u,r [Mj ]r,u

=
d∑
r=1

(µ4,r − 3) [Mi]r,r [Mj ]r,r + Tr(Mi)Tr(Mj)

+2Tr(MiMj) ,

where we used that IEt−1(εt,rεt,uεt,sεt,v) = IE(εt,rεt,uεt,sεt,v) = µ4,r if r = s = u = v,
1 if r = u, s = v with r 6= s, or r = s, u = v with r 6= u or r = v, u = s with r 6= u
and 0 otherwise. The Lemma is proved on recalling that Tr(Mi)Tr(Mj) = Tr(

.
Ht,i

H−1
t )Tr(

.
Ht,j H

−1
t ). 2

Proof of B1. From eq’n (14),

IEt−1

(
∂2`t(θ0)
∂θi∂θj

)
= |Tr(

.
Ht,i H

−1
t

.
Ht,j H

−1
t )| ≤ ‖H−1

t ‖2‖
.
Ht,i ‖‖

.
Ht,j ‖

so that ∣∣∣∣∣IE
(
∂2`t(θ0)
∂θi∂θj

)∣∣∣∣∣ ≤ K2IE1/2(‖
.
Ht,i ‖2)IE1/2(‖

.
Ht,j ‖2).

To show that C1 is finite, we require the following Lemma.

12



Lemma 2 Assume that the true model for Y is such that X is strictly stationary
and admits moments till order 4, and in particular that the initial condition in H
is given (and depends only on θ0) and is drawn in the stationary law. Then for all
1 ≤ k, l ≤ d, i = 1, . . . , r,

IE

{
sup
θ∈Θ

[
∂Ht

∂θi
(θ)
]2

k,l

}
< +∞.

The uniformity requirement of Lemma 2 is only needed for B3.

Proof of Lemma 2. Let Xt and Ht be defined by

Xt = (vech(XtX
′
t)
′, . . . , vech(Xt−q+1X

′
t−m+1))′,

Ht = (vech(Ht)′, . . . , vech(Ht−m+1)′)′ (19)

where m = max(p, q) and let the vector C1 be defined by:

C1 = (vech(C)′, 0, . . . , 0)′

with size md(d+ 1)/2. Then Ht+1 = C1 +BHt + AXt, where A and B are defined
by

A =



Ã1 . . . . . . . . . Ãm
I 0 0 . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . 0 I 0


, B =



B̃1 . . . . . . . . . B̃m
I 0 0 . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 . . . 0 I 0


, (20)

with convention Ãi = 0 if i > q and B̃i = 0 if i > p. The model can be written as

Ht(θ) =
t−1∑
k=0

Bk(θ)C1(θ) +Bt(θ)H0 +
t−1∑
k=0

Bk(θ)A(θ)LkXt−1(θ0), (21)

where L is the backshift operator LXt = Xt−1.
Boussama [9] proved the following result:

Proposition 2

ρ

( q∑
i=1

Ãi +
p∑
i=1

B̃i

)
< 1⇒ ρ(

p∑
i=1

B̃i) < 1 and ρ(
p∑
i=1

B̃i) < 1⇒ ρ(B) < 1.

Thus Assumption 4 of Theorem 2 implies that ∀θ ∈ Θ, ρ(B(θ)) := ρ1(θ) < 1.
We shall denote by ρ0 = supθ∈Θ ρ1(θ) and ρ1 being continuous we know that ρ0 < 1
(see Horn and Johnson [17], for the continuity of the eigenvalues). This allows to
prove the following Lemma:

Lemma 3 There exists a constant Ψ independent of θ such that N(Bk) ≤ Ψkd0ρk0
for all k ≥ 1, where d0 = md(d+ 1)/2.

13



Since under our assumptions,

∂

∂θi
H0 =

∂

∂θi
Xt = 0,

because H0 is fixed and X depends on θ0 but is not a function of θ, we have,

∂Ht
∂θi

=
∂

∂θi

(
t−1∑
k=0

BkC1

)
+

∂

∂θi
(Bt)H0 +

∂

∂θi

(
t−1∑
k=0

BkLkA

)
Xt−1. (22)

As
∂Bk

∂θi
=

k−1∑
j=0

Bj ∂B

∂θi
Bk−1−j ,

we get ∥∥∥∥Bj ∂B

∂θi
Bk−1−j

∥∥∥∥ ≤ N(Bj)
∥∥∥∥∂B∂θi

∥∥∥∥N(Bk−1−j), j = 0, . . . , k − 1,

so that for j = 0, . . . , k − 1, using Lemma 3,

‖Bj ∂B

∂θi
Bk−1−j‖ ≤ Ψ2kd0ρk−1

0

∥∥∥∥∂B∂θi
∥∥∥∥ .

First, we note that the norms of the derivatives N (∂B/∂θi), N (∂A/∂θi) and
‖∂C1/∂θi‖ are uniformly bounded on Θ because these derivatives are all contin-
uous functions of the parameters and θ belongs to a compact set. Then we denote
by Si = supθ∈Θ N (∂A/∂θi), S′i = supθ∈Θ N (∂B/∂θi) and S”i = supθ∈Θ ‖∂C1/∂θi‖.
Moreover let S0 = supθ∈Θ N(A). The derivative given by (22) involves three terms
to bound:∥∥∥∥∥ ∂

∂θi

(
t−1∑
k=0

BkC1

)∥∥∥∥∥ =

∥∥∥∥∥
t−1∑
k=1

∂Bk

∂θi
C1 +

t−1∑
k=0

Bk ∂C1

∂θi

∥∥∥∥∥
≤ Ψ2

∥∥∥∥∂B∂θi
∥∥∥∥ t−1∑
k=1

kd0ρk−1
0 + Ψ

∥∥∥∥∂C1

∂θi

∥∥∥∥ t−1∑
k=0

kd0ρk0

≤ Ψ(d0 − 1)!
ρ0(1− ρ0)d0

(
Ψ
∥∥∥∥∂B∂θi

∥∥∥∥+
∥∥∥∥∂C1

∂θi

∥∥∥∥)
using

∑t−1
k=1 k

d0ρk0 ≤
∑∞
k=1 k

d0ρk0 = (d0 − 1)!/(1 − ρ0)d0 . Of course, we implicitely
assume that ρ0 6= 0, but if it is, the terms are straightforwardly bounded because
B is then nilpotent and all sums are finite. Then we have:

sup
θ∈Θ

∥∥∥∥∥ ∂

∂θi

(
t−1∑
k=0

BkC1

)∥∥∥∥∥ ≤ Ψ(d0 − 1)!
√
d0

ρ0(1− ρ0)d0

(
ΨS′i + S”i

)
.

In the same way, ∥∥∥∥ ∂

∂θi
(Bt)H0

∥∥∥∥ ≤ (d0 − 1)!Ψ
ρ0(1− ρ0)d0

∥∥∥∥∂B∂θi
∥∥∥∥ ‖H0‖ .
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Finally, ∥∥∥∥∥ ∂

∂θi

(
t−1∑
k=0

BkLkA

)
Xt−1

∥∥∥∥∥ ≤
∥∥∥∥∥
[
t−1∑
k=0

(
∂

∂θi
BkLkA

)]
Xt−1

∥∥∥∥∥
+

∥∥∥∥∥
[
t−1∑
k=0

BkLk
(
∂

∂θi
A

)]
Xt−1

∥∥∥∥∥
= ‖T1‖+ ‖T2‖.

Then for the second term, we write

‖T2‖ ≤ Ψ2
t−1∑
k=0

kd0ρk0N
(
∂A

∂θi

)
‖Xt−k‖,

and

IE

(
sup
θ∈Θ
‖T2‖2

)
≤ Ψ2S2

i

t−1∑
k,k′=0

kd0(k′)d0ρk+k′

0 IE (‖Xt−k‖‖Xt−k′‖)

≤ Ψ2S2
i

(
t−1∑
k=0

kd0ρk0IE1/2
(
‖Xt−k‖2

))2

≤ Ψ2S2
i

[(d0 − 1)!]2

(1− ρ0)2d0
IE(‖X0‖2).

For the first term we have

‖T1‖ ≤ Ψ2

(
t−1∑
k=1

kd0+1ρk−1
0 N (A) ‖Xt−k−1‖

)
N
(
∂B

∂θi

)

≤ Ψ2

(
t−1∑
k=1

kd0+1ρk−1
1 ‖Xt−k−1‖

)
N (A) N

(
∂B

∂θi

)
,

So,

IE

(
sup
θ∈Θ
‖T1‖2

)
≤ Ψ2S2

0(S′i)
2IE

(
t−1∑
k=1

kd0+1ρk−1
0 ‖Xt−k−1‖

)2

≤ Ψ2S2
0(S′i)

2IE

 t−1∑
k,k′=1

(kd0+1ρk−1
0 )((k′)d0+1ρk

′−1
0 )‖Xt−k−1‖‖Xt−k′−1‖


≤ (d0!ΨS0S

′
i)

2

[ρ0(1− ρ0)d0 ]2
IE(‖X0‖2).

As IE(‖X0‖2) <∞, the proof is completed. 2

Proof of Lemma 3. If we can find a complex unitary matrix P which satisfies
P ∗ = P−1, P ∗ being the conjugate transpose of P , such that B = P ∗DP , D
diagonal, then it immediately follows that

N(Bk) = N(P ∗DkP ) = ρ1/2(P ∗(DD∗)kP ) = ρ1/2((DD∗)k) = ρk1(B)
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so that the result holds with Ψ = 1. In general though, B cannot be diagonalized.
In this case, we can still find a complex unitary matrix P and a complex lower trian-
gular matrix T such that B = P ∗TP . The diagonal terms of T are the eigenvalues
of B. See Magnus and Neudecker ([23], Theorem 12). Write T = D+L where D is
diagonal and L is lower triangular with null diagonal. It follows that L is nilpotent
with Ld0 = 0. We have N(Bk) = N(T k) as above and

N(T k) ≤ N(Dk) +
d0∑
j=1

(
k
j

)
N(L)jN(D)k−j

≤ ρk1 +
d0∑
j=1

(
k
j

)
N(L)jρk−j1 ,

for any k ≥ d0. Let k = d0 + n. Then,

N(T k) ≤ ρn1

ρd0
1 +

d0∑
j=1

(
k
j

)
N(L)jρd0−j

1

 ,
and (

k
j

)
=

(
d0

j

)
n∏
p=1

 1
1− j

d0+p

 .
But for any real x, 0 ≤ x ≤ 1/d0, − log(1 − x) ≤ (d0/(1 + d0))x, so that for any
j ≥ 1,

log

 n∏
p=1

 1
1− j

d0+p

 = −
n∑
p=1

log
(

1− j

d0 + p

)
≤ d0

1 + d0

n∑
p=1

j

d0 + p

≤ j

1 + d0

n∑
p=1

1
1 + p/d0

≤ jd0

1 + d0
log

(
1 +

n

d0

)

≤ d0 log
(

1 +
n

d0

)
as j ≤ d0. Thus, (

k
j

)
≤
(
d0

j

)(
1 +

n

d0

)d0

and

N(T d0+n) ≤ ρn1
(

1 +
n

d0

)d0

(N(L) + ρ1)d0 . (23)

It is thus clear from (23) that

N(T k) ≤
(

1 +N(L)/ρ0

d0

)d0

kd0ρk0.

Since
N(L) = N(T −D) ≤ N(T ) + N(D) ≤ ρ0 + N(B),
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we find the result with Ψ = [(2 + supθ∈Θ N(B(θ))/ρ0)/d0]d0 , where the supremum
is finite since B is a continuous function of θ and Θ is compact. 2

Next, we prove that C1 is positive definite. Let Ai = H−1/2
.
Hi H

−1/2 where
the t index is omitted for brevity and H−1/2 is a symmetric root of H−1. Using
that for any matrices A,B, Tr(AB) = vec(A′)′ vec(B), we find that the matrix
IEt−1(∂2`t(θ0)/∂θ2) is equal to 2WW ′ where W ′ = (vec(A1)|vec(A2)| . . . |vec(Ar)).
Then using that vec(ABC) = (C ′ ⊗ A)vec(B) (see Magnus and Neudecker [23],
Theorem 2 p. 30), we have vec(Ai) = (H−1/2 ⊗ H−1/2)vec(

.
Hi). Using now that

(A⊗B)(C ⊗D) = (AC ⊗BD), we have

IEt−1

(
∂2`t(θ0)/∂θ2

)
= 2WW ′ = 2

(
vec(Ai)′vec(Aj)

)
1≤i,j≤r

= 2
(
vec(

.
Hi)′(H−1/2 ⊗H−1/2)(H−1/2 ⊗H−1/2)vec(

.
Hj)

)
1≤i,j≤r

= 2
(
vec(

.
Hi)′(H−1 ⊗H−1)vec(

.
Hj)

)
1≤i,j≤r

= 2P ′(H−1 ⊗H−1)P

where P = (vec(
.
H1)|vec(

.
H2)| . . . |vec(

.
Hr)). We know that H−1 ⊗ H−1 is positive

definite. Further, the eigenvalues of A ⊗ B are λiµj if λi are the eigenvalues of A
and µj are those of B (see Magnus and Neudecker [23], Theorem 1, p. 28). This
implies that the eigenvalues of H−1⊗H−1 are positive, H−1 being positive definite.
It follows that C1 is at least positive semi-definite. Now, assume that C1 is not full
rank. Then there exists a vector x, independent of t, such that

x′IE
(
P ′t(H

−1
t ⊗H−1

t )Pt
)
x = 0.

But x′IE(P ′t(H
−1
t ⊗H−1

t )Pt)x = IE((Ptx)′(H−1
t ⊗H−1

t )Ptx) = 0. As the term under
the expectation is nonnegative, it is necessarily zero, and H−1

t ⊗H−1
t being positive

definite we deduce that Ptx = 0, IPθ0 − a.s.,∀t ∈ IN. This implies that there exists
a vector y such that

y′
∂ht
∂θ

=
r∑
i=1

y′i
∂ht
∂θi

= 0, IPθ0-a.s., ∀t ∈ IN,

using the notations of Lemma 2 and denoting by ∂ht/∂θ the vector

(∂h′t/∂θ1, ∂h
′
t/∂θ2, . . . , ∂h

′
t/∂θr)

′.

Then differentiating relation (10)

y′
(
∂vech(C)

∂θ
+

m∑
i=1

∂Ãi
∂θ

ηt−i +
m∑
i=1

∂B̃i
∂θ

ht−i

)
= 0, IPθ0-a.s.

or (
y′
∂vech(C)

∂θ

)
+

m∑
i=1

(
y′
∂Ãi
∂θ

)
ηt−i +

m∑
i=1

(
y′
∂B̃i
∂θ

)
ht−i = 0, IPθ0-a.s.
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This would allow one to find another representation of ht and of the model and
imply a contradiction of the identifiability conditions which ensure (see Engle and
Kroner [14]) that the representation is unique.

We have thus shown that C1 is finite and positive definite.2

Proof of B2. The expectation of the second term on the rhs of (16) equals 2C1

which is finite by B1. As for the first term,∣∣∣∣∣∣IE
d∑
p=1

(µ4,p − 3)[H−1/2
t

.
Ht,i H

−1/2
t ]pp[H

−1/2
t

.
Ht,j H

−1/2
t ]pp

∣∣∣∣∣∣
≤ max

1≤p≤d
|µ4,p − 3|IE

 d∑
p=1

[H−1/2
t

.
Ht,i H

−1/2
t ]2pp

d∑
p=1

[H−1/2
t

.
Ht,j H

−1/2
t ]2pp

1/2

≤ max
1≤p≤d

|µ4,p − 3|

IE

 d∑
p=1

[H−1/2
t

.
Ht,i H

−1/2
t ]2pp

 IE

 d∑
p=1

[H−1/2
t

.
Ht,j H

−1/2
t ]2pp


1/2

≤ max
1≤p≤d

|µ4,p − 3|
{

IE
(
Tr(

.
Ht,i H

−1
t

.
Ht,i H

−1
t )

)
IE
(
Tr(

.
Ht,j H

−1
t

.
Ht,j H

−1
t )

)}1/2

using that for M = (mi,j)1≤i,j≤d,
∑d
i=1m

2
i,i ≤

∑d
i=1

∑d
k=1m

2
i,k = Tr(MM ′) and

that Tr(H−1/2
t M) = Tr(MH

−1/2
t ). So the finiteness of C0 is ensured by B1. 2

Proof of B3. The third order log-likelihood derivative involves terms of the form
Tr(

...
H t,i,j,k H

−1
t ), Tr(

..
Ht,i,j H

−1
t

.
Ht,k H

−1
t ), Tr(

.
Ht,i H

−1
t

.
Ht,j H

−1
t

.
Ht,k H

−1
t ), or

the traces of the same matrices premultiplicated by XtX
′
tH
−1
t . Thus, for instance

IE

(
sup
θ∈Θ

∣∣∣Tr (XtX
′
tH
−1
t

.
Ht,i H

−1
t

.
Ht,j H

−1
t

.
Ht,k H

−1
t )

)∣∣∣)

≤ K4IE

(
N
(
XtX

′
t

)
sup
θ∈Θ

(
‖

.
Ht,i ‖‖

.
Ht,j ‖‖

.
Ht,k ‖

))
≤ K4IE1/4(‖X‖8)IE1/4(sup

θ∈Θ
‖

.
Ht,i ‖4)IE1/4(sup

θ∈Θ
‖

.
Ht,j ‖4)IE1/4(sup

θ∈Θ
‖

.
Ht,k ‖4).

It is clear from Lemma 2 that if X admits moments of order 8, since

IE1/4(sup
θ∈Θ
‖

.
Ht,i ‖4) ≤ IE1/4

(
sup
θ∈Θ

∥∥∥∥∂Ht∂θi

∥∥∥∥4
)
,

where H is defined by (19), the terms above are bounded. Indeed, the result of
Lemma 2 can also be extended to get

IE

(
sup
θ∈Θ

[
∂Ht

∂θi

]4

k,l

)
< K1, IE

sup
θ∈Θ

[
∂2Ht

∂θi∂θj

]2

k,l

 < K2, IE

sup
θ∈Θ

[
∂3Ht

∂θi∂θj∂θk

]2

k,l

 < K3

for 1 ≤ k, l ≤ d, under our moment condition of order 8. 2
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APPENDIX B: Proof of Theorem 4.

First, θ̂x,n is strongly consistent (see Jeantheau [16] p. 19 and p. 41) if, for any
x ∈ IRmd(d+1)/2

+ ,

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
t=1

[`t(x, θ)− `t(θ)]
∣∣∣∣∣→ 0 almost surely. (24)

To prove (24), it suffices to check that

IE

[
sup
θ∈Θ
|`t(θ)− `t(x, θ)|

]

is bounded by a summable sequence in t. Indeed then

+∞∑
t=1

IP

(
sup
θ∈Θ
|`t(θ)− `t(x, θ)| > ξ

)
< +∞ for all ξ > 0,

so that the Borel–Cantelli Lemma implies that supθ∈Θ |`t(θ)− `t(x, θ)| tends to zero
almost surely. Cesaro’s mean theorem implies then that (24) holds. Now

`t(x, θ)− `t(θ) = log
(
det(Ir +H

−1/2
t,θ (Ht,x,θ −Ht,θ)H

−1/2
t,θ )

)
+X ′tH

−1
t,θ (Ht,θ −Ht,x,θ)H−1

t,x,θXt.

For the second term, we write

|X ′tH−1
t,θ (Ht,θ −Ht,x,θ)H−1

t,x,θXt| = |Tr(X ′tH−1
t,θ (Ht,θ −Ht,x,θ)H−1

t,x,θXt)|

= |Tr(H−1
t,θ (Ht,θ −Ht,x,θ)H−1

t,x,θXtX
′
t)|

≤ ‖XtX
′
t‖N(H−1

t,θ )N(H−1
t,x,θ)‖Ht,θ −Ht,x,θ‖

≤ K2‖Xt‖2‖Ht,θ −Ht,x,θ‖.

Using (21), we have
Ht −Hx,t = Bt(H0 −Hx,0)

where Hx,0 is the initial condition for H associated with x. This implies that

N (Ht,x −Ht) ≤ ‖Ht,x −Ht‖ ≤ ‖Ht −Hx,t‖ ≤ N
(
Bt
)
‖H0 −Hx,0‖

≤ Ψtd0ρt0‖H0 −Hx,0‖ (25)

by using Lemma 3. Therefore∣∣∣X ′t(H−1
t,x,θ −H

−1
t,θ )Xt

∣∣∣ ≤ K2Ψ‖H0 −Hx,0‖‖Xt‖2td0ρt0.

This implies

IE
[
sup
θ

∣∣∣X ′t(H−1
t,x,θ −H

−1
t,θ )Xt

∣∣∣] = O(td0ρt0) (26)
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if IE(‖Xt‖4) < +∞, and the bound in (26) is summable. For the first term, let
λi(t, x, θ) be the eigenvalues of the symmetric matrix H

−1/2
t,θ (Ht,x,θ − Ht,θ)H

−1/2
t,θ ,

i = 1, . . . , d . Then

log
{

det
[
Ir +H

−1/2
t,θ (Ht,x,θ −Ht,θ)H

−1/2
t,θ

]}
=

d∑
i=1

log(1 + λi(t, x, θ)).

We have

|λi(t, x, θ)| ≤ ρ(H−1/2
t,θ (Ht,x,θ −Ht,θ)H

−1/2
t,θ ) ≤ N(H−1/2

t,θ )2N(Ht,x,θ −Ht,θ)

and therefore, using (25), there exists a constant κ independent of θ such that

|λi(t, x, θ)| ≤ κtd0ρt0.

Then there exist some fixed t0 such that for t ≥ t0, |λi(t, x, θ)| ≤ 1/2, and since
| log(1 + u)| ≤ 2|u| for |u| ≤ 1/2, for t ≥ t0,

∣∣∣log
(
det(Ir +H

−1/2
t,θ (Ht,x,θ −Ht,θ)H

−1/2
t,θ )

)∣∣∣ ≤ d∑
i=1

| log(1 + λi(t, x, θ))|

≤ 2
d∑
i=1

|λi(t, x, θ)| ≤ 2dκtd0ρt0

This implies that
sup
θ∈Θ

∣∣∣log
[
det(H−1

t,θ Ht,x,θ)
]∣∣∣ = O(td0ρt0) (27)

and the bound in (27) is summable (over t). The compactness of Θ is implicitely
used in the above considerations. Gathering the above summable bounds (26) and
(27) proves (24) and gives the strong consistency of θ̂n,x.

For the asymptotic normality, write

∇2Ln(x, θ∗n,x)
√
n(θ̂x,n − θ0) =

√
n (∇Ln(θ0)−∇Ln(x, θ0)) +∇2Ln(θ∗n)

√
n(θ̂n − θ0)

(28)
where |θ∗n,x−θ0| ≤ |θ̂n,x−θ0| and |θ∗n−θ0| ≤ |θ̂n−θ0|. In view of (28), the sufficient
conditions for θ̂x,n to have the same asymptotic distribution as θ̂n are:

1√
n

∣∣∣∣∣
n∑
t=1

(∇`t(θ0)−∇`t(x, θ0))

∣∣∣∣∣→ 0 in probability, (29)

and

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
t=1

(
∇2`t(x, θ)−∇2`t(θ)

)∣∣∣∣∣→ 0 in probability. (30)

Using Markov’s Inequality which implies that IP(|X| ≥ a) ≤ IE(|X|p)/ap for any
p ≥ 0, we know that (29) holds if for all i,

∞∑
t=1

IE
∥∥∥∥ ∂

∂θi
`t(θ0)− ∂

∂θi
`t(x, θ0)

∥∥∥∥ is bounded. (31)
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We omit the index θ0 for simplicity.∣∣∣∣ ∂∂θi `t(θ0)− ∂

∂θi
`t(x, θ0)

∣∣∣∣ =
∣∣∣X ′t(H−1

t

.
Ht,i H

−1
t −H−1

x,t

.
Ht,x,i H

−1
x,t )Xt

−Tr(H−1
t

.
Ht,i)− Tr(H−1

x,t

.
Ht,x,i)

∣∣∣ . (32)

There are thus two types of terms to study. First,

|Tr(H−1
t

.
Ht,i)− Tr(H−1

t,x

.
Ht,x,i)|

≤ |Tr(H−1
t (

.
Ht,i −

.
Ht,x,i))|+ |Tr((H−1

t −H−1
t,x )

.
Ht,x,i)|

≤ ‖H−1
t ‖‖

.
Ht,i −

.
Ht,x,i)‖+ ‖H−1

t −H−1
t,x ‖‖

.
Ht,x,i ‖

≤
√
dK

∥∥∥∥∂Ht∂θi
− ∂Ht,x

∂θi

∥∥∥∥+ N
(
H−1
t

)
N
(
H−1
t,x

)
‖Ht −Ht,x‖

∥∥∥∥∂Ht∂θi

∥∥∥∥
≤
√
dK

∥∥∥∥∂Ht∂θi
− ∂Ht,x

∂θi

∥∥∥∥+K2‖Ht −Ht,x‖
∥∥∥∥∂Ht∂θi

∥∥∥∥ . (33)

By Lemma 2, IE(‖∂Ht∂θi
‖2) <∞. Moreover, we saw above that the series with general

term IE1/2
(
‖Ht −Ht,x‖2

)
is summable. For the other term in (33), it is easy to see

that
∂Ht
∂θi
− ∂Ht,x

∂θi
=
∂Bt

∂θi
(H0 −H0,x)

which implies, by using Lemma 3∥∥∥∥∂Ht∂θi
− ∂Ht,x

∂θi

∥∥∥∥ ≤ Ψ2td0+1ρt−1
0 N

(
∂B

∂θ

)
‖H0 −H0,x‖

which is a convergent series in t. For the second term of (32), we write

X ′t(H
−1
t

.
Ht,i H

−1
t −H−1

t,x

.
Ht,x,i H

−1
t,x )Xt

= X ′t(H
−1
t −H−1

t,x )
.
Ht,i H

−1
t Xt +X ′tH

−1
t,x (

.
Ht,i −

.
Ht,x,i)H−1

t Xt

+X ′tH
−1
t,x

.
Ht,x,i (H−1

t −H−1
t,x )X ′t

and we bound each of the three terms in the same way. For instance

IE
∣∣∣X ′t (H−1

t −H−1
t,x

) .
Ht,i H

−1
t Xt

∣∣∣
= IE

∣∣∣X ′tH−1
t (Ht −Ht,x)H−1

t,x

.
Ht,i H

−1
t Xt

∣∣∣
= IE

∣∣∣Tr (H−1
t,x

.
Ht,i H

−1
t XtX

′
tH
−1
t (Ht −Ht,x)

)∣∣∣
≤ IE

(
‖

.
Ht,i ‖N

(
H−1
t

) ∥∥∥H−1
t,xXtX

′
tH
−1
t

∥∥∥ ‖Ht −Ht,x‖
)

≤ IE
(
‖

.
Ht,i ‖N

(
H−1
t

)
N
(
H−1
t,xH

−1
t

)
N
(
XtX

′
t

)
‖Ht −Ht,x‖

)
≤ K3IE1/4(N

(
XtX

′
t

)4)IE1/4(‖
.
Ht,i ‖4)IE1/2(‖Ht −Ht,x‖2)

≤ K3IE1/4(‖Xt‖4)IE1/4

(∥∥∥∥∂Ht∂θi

∥∥∥∥4
)

IE1/2(2‖Ht −Ht,x‖2)

≤ K3Ψtd0ρt0IE1/4(‖Xt‖4)IE1/4

(∥∥∥∥∂Ht∂θi

∥∥∥∥4
)

IE1/2(2‖H0 −H0,x‖2) .
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Thus again, the general term which appears here is summable (as of order constant
×td0ρt0). The two other terms can be treated in the same way. Note that our bounds
are uniform on Θ.
The same method is suitable for dealing with (30), i.e., when looking for a uniform
bound on

IE

(
sup
θ∈Θ

∣∣∣∣∣ ∂2

∂θi∂θj
`t(θ)−

∂2

∂θi∂θj
`t(x, θ)

∣∣∣∣∣
)

with the second order derivatives given by (18). 2
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