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Abstract

In this paper, we study the problem of the nonparametric estimation of the marginal
density f of a class of continuous time processes. To this aim, we use a projection
estimator and deal with the integrated mean square risk. Under Castellana & Lead-
better (1986) condition, we show that our estimator reaches a parametric rate of
convergence and coincides with the projection of the local time estimator. Discus-
sions about the optimality of this condition are provided. We also deal with sampling
schemes and the corresponding discretized processes.
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1 Introduction

1.1 The problem and the framework

Consider a weakly stationary process X = (Xt, t ∈ R) observed either in
continuous time for t varying in [0, T ] or in discrete time for t = t1, . . . , tn and
denote by f its common unknown marginal density with respect to Lebesgue
measure.
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In this paper, we are interested in the problem of giving non asymptotic risk
bounds in term of the L2-integrated risk for an estimator f̂ of f . Namely
we study E‖f̂ − f‖2 where ‖h‖ = (

∫
A h

2(x)dx)1/2 is the L2(A)-norm and A
is a compact set. We will consider both the process (Xt, t ∈ R) observed
continuously over the time interval [0, T ] and the process X = (Xt, t ∈ R)
observed at sampling instants δn, 2δn, . . . , nδn where δn → 0 and Tn = nδn →
∞. Then we construct the discrete time process (Xti)1≤i≤n by setting ti = iδn
for 1 ≤ i ≤ n. In all the sequel, we denote by f(Xs,Xt) the bivariate density of
(Xs, Xt). Moreover we will suppose throughout this paper that the process X
belongs to the class X defined as follows:

Definition 1 We define X as the class of real processes X with common
marginal density f with respect to Lebesgue measure on R and such that
the joint density of (Xs, Xt) exists for all s 6= t, is measurable and satis-
fies f(Xs,Xt) = f(Xt,Xs) = f(X0,Xt−s) and is denoted by f|t−s| for all s, t ∈ R. We
also denote by gu, gu = fu − f ⊗ f where (f ⊗ f)(x, y) = f(x)f(y).

If X is assumed to belong to X , then it is weakly stationary. In particular
strict stationarity is not required.
Historically, Castellana & Leadbetter (1986) first introduced, in the context of
processes belonging to X , the following condition, in order to exhibit a partic-
ular order for the rate of convergence of the quadratic risk of a nonparametric
estimator of f :

CL u 7→ ‖gu‖∞ is integrable on ]0,∞[ and gu (·, ·) is continuous at (x, x) for
each u > 0.

In the following, we use a slightly different condition:

WCL There exists a positive integrable function k(·) (defined on R) such that

∀x ∈ R, sup
y∈R

+∞∫

0

|gt(x, y)|dt ≤ k(x).

If X is restricted to a compact set, then Condition CL entails WCL. Condition
WCL is in the spirit of Leblanc (1997), who imposes in addition that k(·) is
bounded, and shows that this condition is satisfied for a wide class of diffusion
processes. Note also that Assumption WCL does not impose continuity either
and does not require gt(x, y) to be integrable for all x, y ∈ R.

1.2 Some bibliographic remarks

The problem of estimating the marginal density of a continuous time process
has been mainly studied using kernel estimators by Banon (1978), Banon &
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N’Guyen (1981), N’Guyen (1979), and Bosq (1998a). Under some mixing
conditions, their pointwise non-integrated L2-risk (namely E[(f̂n(x)− fn(x))

2]
if f̂n is denotes their estimator), reaches the standard rate of convergence
T−2s/(2s+1) when f belongs to the Hölder class Cs and s is known, and these
rates are minimax in their context. Castellana & Leadbetter (1986) proved,
under the specific assumption on the joint density of (X0, Xt) described by
CL, that the non-integrated quadratic risk of kernel estimators can reach the
parametric rate T−1. To be more precise, they enlightened the fact that if the
distribution of (X0, Xt) is not too close to a singular distribution for |t| small,
then the pointwise quadratic risk of the kernel density estimator can reach the
”full rate ”: T−1. In fact this can be explained as follows: local irregularities
of the sample paths provide some additional information to the statistician.
The work of Castellana and Leadbetter led to a lot of works concerning the
problem of estimating the common marginal distribution of a continuous time
process. We refer to Bosq (1997, 1998b), Cheze-Payaud (1994), Kutoyants
(1997) and Blanke (1997), among others, for results of this kind and various
examples. Kutoyants (1998), in the case of diffusion processes, and Bosq &
Davydov (1999), in a more general context, have given an alternative to the
kernel density estimator, by studying the local time density estimator which
has the advantage to be an unbiased estimator of the density. In particular,
Bosq & Davydov (1999) have studied its properties and showed that the mean
square error reaches the “full rate” T−1, under slightly weaker assumptions
than Condition CL. Concerning now the study of the integrated risk, Leblanc
(1997) built a wavelet estimator of f when f belongs to some general Besov
space and proved that its Lp-integrated risk converges at rate T−1 as well, pro-
vided that the process is geometrically strong mixing, still under a condition
like CL. In this paper, we build a projection estimator for which we show that
its L2-integrated risk attains the parametric rate T−1 under WCL, but with-
out any additional mixing condition. This rate is achieved without knowing
the regularity of f . Moreover, we provide counter-examples in order to prove
that this rate cannot be attained if we some parts of WCL are not fulfilled.
However, if data are collected using a sampling scheme, one may ask if some
optimal sampling schemes allow to keep parametric rates. Various schemes
have been already proposed such as deterministic or randomized ones, see
e.g. Masry (1983) or Prakasa Rao (1990). In this paper, we consider some
discretization schemes in accordance with the sample paths properties of the
underlying process. Specifically we suppose that the statistician may dispose
of frequent observations during a long time. We explore what kind of sampling
schemes allow to recover the parametric rate and what is the influence of the
sample step on the rate when we consider an adaptive procedure.
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1.3 Outline of the paper

Since our study involves several technical conditions, we start by a general
description of our results.

The first part of the work is devoted to the estimation of the density of the
process when using continuous time observations. All the tools are available
from the literature, in order to prove that the local time estimator, precisely
defined below and denoted by f̂ , satifies, under WCL and some other addi-
tional conditions:

E‖f̂ − f‖2 ≤ 2

T

∫
k(x)dx.

It follows from this bound that this estimator reaches the “super optimal” rate
T−1. The present paper states and improves this result in several directions.
Indeed, the local time estimator may be uneasy to compute so that it is natural
to look for more realistic continuous time estimators. We show, and this is both
simple and new, that the projection f̂S of f̂ on a finite dimensional linear sub-
space S of L

2(A) coincides with the minimum contrast estimator associated
to the projection contrast:

γT (h) = ‖h‖2 − 2

T

T∫

0

h(Xs)ds,

for h a function belonging to S. This result allows to check, by using the
known properties of the local time estimator f̂ , that f̂S keeps the super op-
timal rate T−1 when considering some standard finite dimensional functional
spaces (trigonometric polynomials, piecewice polynomials, wavelets) with large
enough dimension and as soon as the function to be estimated belongs to some
class of regularity (described by Besov spaces). Another consequence of this
result is that by considering directly the projection estimator, we can give a
self-contained (namely, without using the local time estimator nor any of the
results previously obtained for it) and quite simple proof of the super optimal
rate of f̂S, under lighter conditions.

The second part of the work is concerned with discrete time observation of the
continuous time process. First, we study the links that can be found between
WCL, the condition for obtaining super optimal rates in continuous time, and
the standard condition for obtaining standard rates in discrete time, namely
a mixing condition. For this purpose, WCL is decomposed into a local irreg-
ularity condition WCL1 plus an asymptotic independence condition WCL2.
Secondly, it follows from the first part of the work that it is natural to con-
sider the minimum projection contrast estimator based on the discrete time
sample. Then we illustrate that the standard discrete time results and rates
can be generalized to arbitrary sample step, but do not lead to super optimal
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rates. The point then is to find what kind of conditions are required in order
to replace WCL in discrete time. Such conditions are exhibited and discussed.

The last part of the work is devoted to the illustration of those conditions.
Since they are quite technical, some examples of processes satisfying them are
given, in classes of general Markov processes or more specifically among diffu-
sion processes. The sharpness of condition WCL (namely of both WCL1 and
WCL2) is also studied and counter-examples are provided in cases where either
WCL1 or WCL2 is violated. Most of those examples and counter-examples are
new and help to understand the meaning and the non emptiness of some tech-
nical assumptions.
The paper is organized as follows. In section 2, we exhibit the link between the
local time estimator and our projection estimator. We explain how the rate of
the integrated mean square risk of our projection estimator can be either de-
duced from the results concerning the local time estimator, or directly proved.
Section 3 concerns discretely observed processes and the conditions required
to keep parametric rates. Section 4 is devoted to some examples of Markov
processes satisfying Assumption WCL and to the study of the optimality of
WCL. Detailed proofs of our results are postponed to section 5.

2 The local time and the projection estimators

2.1 The local time estimator

The role of the local time in density estimation has been noticed by N’Guyen
& Pham (1980) and also by Doukhan & Leon (1996). Later Kutoyants
(1997, 1998) has studied an unbiased estimator based on the local time when
the observed process is a stationary diffusion process, whereas a more general
context was studied in Bosq (1997) and also in Bosq & Davydov (1999). Let
us recall the definition of this estimator. First, if X is observed over [0, T ], its
occupation measure νT is defined by

νT (B) =

T∫

0

1B(Xt)dt, B ∈ BR ,

where BR denotes the σ-algebra of Borel sets in R. If νT is a.s. absolutely
continuous with respect to Lebesgue measure λ, then a local time for X is
defined as a measurable random function lT (x, ω) such that lT (·, ω) is a version
of dνT/dλ for almost all ω in Ω. In the following “ a.s.” is omitted and we use
the notation lT (x) instead of lT (x, ω). Obviously the problem of the existence
of the local time arises. We refer to Geman & Horowitz (1973, 1980) for
existence criteria. However it is more convenient to work with the conditions
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introduced in Bosq & Davydov (1999) even if they are slightly stronger;
namely,

A1 The function ((s, t), (x, y)) 7→ f|t−s|(x, y) is defined and measurable over
(Dc ∩ [0, T ]2) × U where U is an open neighborhood of D = {(x, x), x ∈ R}.

A2 The function FT (x, y) =
∫
[0,T ]2 f(Xs,Xt)(x, y)dsdt is finite in a neighborhood

of D and is continuous at each point of D for all T .

Remark 1. It is noteworthy that A1 together with A2 entail the existence of
a square integrable local time (see Bosq & Davydov (1999)). Furthermore it
is useful to notice that if we assume that

A3 gu(·, ·) is continuous at (x, x) for each u > 0,

in addition of WCL, then A1 and A2 hold.

Since lT is the density of νT it is natural to define a density estimator by
setting

f̂(x) =
lT (x)

T
, x ∈ R . (2.1)

This estimator is called the local time density estimator. It is shown in Bosq
& Davydov (1999) that f̂ is an unbiased density estimator which reaches the
so-called parametric rate T−1. Indeed, according to Corollary 5.2 in Bosq &
Davydov (1999), if X belongs to X and A1 and A2 hold, then

Var(f̂(x)) =
2

T

T∫

0

(1 − u

T
)gu(x, x)du, x ∈ R . (2.2)

A continuity condition is needed to get (2.2) since the proof is mainly based
on the fact that a kernel estimator is introduced to approximate the local time
(see Proposition 5.1 in Bosq & Davydov (1999)). Using (2.2) together with
the fact that f̂ is an unbiased density estimator, we get that

E‖f̂ − f‖2 ≤ 2

T

∫

R

k(x)dx , (2.3)

provided that WCL and A3 hold.
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2.2 Projection of the local time estimator

Let S be a linear subspace of L
2(A) with dimension D, let ΠS denote the

orthogonal projection (in the L2-sense) on S and let (ϕj,D)1≤j≤D be an or-
thonormal basis of S. Assume that X is a continuous time process admitting
a local time. Then for any measurable function h,

T∫

0

h(Xt)dt =
∫

R

h(x)lT (x)dx .

It follows that the projection on S of f̂ , denoted by ΠS f̂ = f̂S satisfies f̂S =∑D
j=1 âj,Dϕj,D and since f̂ − f̂S is orthogonal to S,

âj,D = 〈f̂ , ϕj,D〉 =
1

T

∫

A

lT (x)ϕj,D(x)dx =
1

T

T∫

0

ϕj,D(Xs)ds .

It appears that f̂S coincides with the minimum contrast estimator associated
with the contrast function:

γT (h) = ‖h‖2 − 2

T

T∫

0

h(Xs)ds .

This is a new result which allows to consider the local time estimator in a
quite different way. To be more precise, we have that

f̂S = Argmin h∈SγT (h) . (2.4)

Notice that f̂S is an unbiased estimator of fS = ΠSf , the orthogonal projection
of f on S. As a consequence by using Pythagoras Theorem,

E‖f̂S − f‖2 = ‖f − fS‖2 + E‖ΠS(f̂ − f)‖2 (2.5)

as soon as the local time is square integrable. Therefore since E‖ΠS(f̂−f)‖2 ≤
E‖f̂ − f‖2, it follows from (2.3) and (2.5) that under WCL and A3,

E‖f̂S − f‖2 ≤ ‖f − fS‖2 +
2

T

∫

R

k(x)dx . (2.6)

Inequality (2.6) is most useful since it allows to compute the rate of the esti-
mator f̂S in a straightforward way.
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2.3 Application to Besov spaces

The order of the bias term : ‖f−fS‖, which appears in Inequality (2.6) is usu-
ally given by classical theorems of approximation theory, and three examples
of linear subspaces S of L2(A) with dimension D are standardly developed to
make this order precise. Let us recall them.

Tr Trigonometric spaces: S is generated by 1, cos(2πjx), sin(2πjx) for j =
1, . . . , m, A = [0, 1] and D = 2m+ 1.

P Regular piecewise polynomial spaces: S is generated by r polynomials of
degree less or equal to r−1 on each of the m subintervals of equal length
of A (e.g. intervals [(j − 1)/m, j/m], for j = 1, . . .m when A = [0, 1]),
D = rm.

W Dyadic wavelet generated spaces with regularity r − 1, as described e.g.
in Donoho & Johnstone (1998).

For a precise description of those spaces and their properties, we refer also to
Birgé & Massart (1997). The quantity ‖f − fS‖ is known to be of order D−α

provided that f belongs to some Besov space Bα,2,∞(A) with norm denoted by
|.|α,2 (see DeVore & Lorentz (1993), Chapter 2, Section 7, for the definition
of these spaces and the associated norms) and S is a regular model Tr, P or
W. This consideration together with (2.6) leads to the following result.

Proposition 2 Consider a model S in Tr, P or W with dimension D and
with r > α > 0. Assume that the continuous time process X = (Xt)t∈[0,T ]

belongs to the class X . In addition assume that WCL and A3 hold and let
L > 0. Then the estimator f̂S = ΠS f̂ of f defined by (2.4) satisfies

sup
f∈Bα,2,∞(L)

E‖f − f̂S‖2 ≤ C(α, L)D−2α +
2

T

∫

R

k(x)dx , (2.7)

where Bα,2,∞(L) = {h ∈ Bα,2,∞(A), |h|α,2 ≤ L}, C(α, L) is a constant depend-
ing only on α and L.

From this result it appears that if the dimension of S is great enough then the
integrated quadratic risk of f̂S reaches the parametric rate: T−1. For instance
if we consider a model S in Tr, P or W with dimension D = [T ] and if f
belongs to some Besov space Bα,2,∞(A) with 1/2 < α < r, then

sup
f∈Bα,2,∞(L)

E‖f − f̂D‖2 ≤ (C(α, L) + 2
∫
k(x)dx))/T , (2.8)

as soon as X belongs to X and satisfies WCL and A3. The important point
here is that, as soon as α > 1/2, D can be chosen independently of α.
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It follows that, in continuous time, making the dimension of the projection
space depend on the regularity of f is not necessary provided that a local
assumption on the irregularity of the sample paths is fulfilled. More generally,
if f belongs to some Besov space Bα,2,∞(A), then the integrated L

2-risk of our
projection estimator reaches the full rate T−1 whatever α > 0 provided that
the dimension of the projection space is great enough ([eT ] suits, even if it is
not realistic from a practical point of view, but is independent of α, contrary
to [T 1/2α], which would be the right choice if α were known). This is not really
surprising if we compare with what happens when kernel density estimators
are considered: it amounts in that case to make the bandwidth as small as
possible.

2.4 The direct study of the projection estimator

We want to emphasize here that it is possible to obtain straightforwardly
Inequality (2.6) without using any property of the local time estimator nor
any reference to kernel estimators. We will see in particular, that condition A3
is not necessary to get the parametric rate T−1. On the other hand, we cannot
deal with all types of bases simultaneously. Indeed, to deal with the variance
term in Decomposition (2.5), i.e. E‖f̂S− fS‖2, a localization constraint on the
basis of S is required:

A4 Let ϕD := (ϕλ,D)λ∈Λ be an L2-orthonormal basis of S with dim(S) = D.
Then there exists a finite constant Cϕ not depending on D but only on
the structure of the basis such that

sup
x∈A

∫

A

∣∣∣∣∣∣

∑

λ∈Λ

ϕλ,D(x)ϕλ,D(y)

∣∣∣∣∣∣
dy ≤ Cϕ.

Note that A4 is satisfied by the Haar basis and more generally we can check
that:

Proposition 3 The spaces W and P satisfy Assumption A4.

The proof of Proposition 3 is straightforward and is therefore omitted. We
only indicate that to check that the spaces P satisfy Assumption A4, we use
Equation (8) in Birgé & Massart (1997).

Note also that this localization constraint excludes the trigonometric polyno-
mial spaces for which a direct result would also be easy to prove, as it would
be the case for any space generated by orthonormal functions not depending
on the dimension D of the space, i.e. such that ϕj,D = ϕj. In that case A4
is not required even in a direct computation but some other regularity condi-
tions for the kernel qT (x, y) =

∫ T
0 (1−u/T )gu(x, y)dumust be imposed instead.
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To see how to study the variance term in (2.5), let us first define the following
centered empirical process: for any function h, let

νT (h) =
1

T

T∫

0

[h(Xs)− < f, h >] ds ,where 〈f, h〉 =
∫
f(x)h(x)dx.

Since E‖f̂S − fS‖2 =
∑D
j=1 E(âj,D − 〈f, ϕj,D〉)2 , âj,D − 〈f, ϕj,D〉 = νT (ϕj,D)

and νT (f̂S − fS) =
∑D
j=1(âj,D − 〈f, ϕj,D〉)νT (ϕj,D), we get that E‖f̂S − fS‖2 =

∑D
j=1 E(νT (ϕj,D))2 = E(νT (f̂S − fS)) . It follows that

E(‖f̂S − f‖2)= ‖f − fS‖2 +
D∑

j=1

E

(
(νT )2(ϕj,D)

)

= ‖f − fS‖2 + E(νT (f̂S − fS)) (2.9)

Then from weak stationarity, we have

E‖f̂S − fS‖2 =
1

T 2

D∑

j=1

Var




T∫

0

ϕj,D(Xs)ds





=
1

T 2

D∑

j=1

T∫

0

T∫

0

cov(ϕj,D(Xs), ϕj,D(Xu))dsdu

=
2

T 2

D∑

j=1

∫

A

∫

A

ϕj,D(x)ϕj,D(y)




T∫

0

(T − v)(fv(x, y) − f(x)f(y))dv


dxdy. (2.10)

Therefore using WCL and A4, we derive that

E‖f̂S − fS‖2 ≤ 2

T

∫

A

∫

A

∣∣∣
D∑

j=1

ϕj,D(x)ϕj,D(y)
∣∣∣k(x)dxdy ≤ 2Cϕ

T

∫

A

k(x)dx .

This leads to the following result:

Proposition 4 Consider a linear subspace S of L2(A) with dimension D and
satisfying A4. Assume that the continuous time process X = (Xt)t∈[0,T ] belongs

to the class X and that WCL holds. Then the estimator f̂S defined by (2.4)
satisfies:

E(‖f̂S − f‖2) ≤ ‖f − fS‖2 +
CϕκA
T

, (2.11)
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where Cϕ is defined in A4, κA = 2
∫
A k(x)dx and k(·) is defined in WCL.

Note that compared to Section 2.2 we do not need to assume the continuity of
gu(·, ·) at (x, x) for each u > 0. Indeed to obtain the bound given by (2.11), the
study of the variance term is direct and does not use any preliminary study of
the local time estimator, which is rather tedious and requires the use of kernel
estimators to approximate the local time.

3 Rates for discretized processes

In continuous time, data are often collected by using a sampling scheme. In
light of the results of Section 2, it appears that building a discretized pro-
jection estimator must be a simpler idea than taking the projection of any
discretization of the local time estimator. For that purpose, we consider the
following contrast function associated to the observed process (Xkδn)1≤k≤n:

γdn(h) =
1

n

n∑

i=1

[
‖h‖2 − 2h(Xiδn)

]
.

Then we define our discretized projection estimator of f as follows:

f̂dS = Argmin h∈Sγ
d
n(h) . (3.12)

By introducing the discretized empirical centered process:

νdn(h) =
1

n

n∑

i=1

[h(Xiδn) − 〈f, h〉] , (3.13)

and by proceeding as in the continuous time case, it is easy to see that

E(‖f̂dS − f‖2) = ‖f − fS‖2 + E(‖f̂dS − fS‖2)

= ‖f − fS‖2 +
D∑

j=1

E

(
(νdn)

2(ϕj,D)
)
.

3.1 Mixing assumptions and links with WCL

At this point, it is useful to note that Assumption WCL contains both a local
irregularity condition and an asymptotic independence condition, respectively,
for some u0 > 0,
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WCL1 There exists a positive integrable function k(·) defined on R such that,
∀x ∈ R, supy∈R

∫ u0
0 |gt(x, y)|dt ≤ k(x),

and

WCL2 There exists a positive integrable function k(·) defined on R such that,
∀x ∈ R, supy∈R

∫+∞
u0

|gt(x, y)|dt ≤ k(x).

This is illustrated in section 4. Condition WCL1 means that the information
provided by (X0, Xt) and X0 respectively, differs significantly even if t is small.
In addition, as noticed by Bosq (1997), Section 4, it also means that sample
paths are not smooth.

In some situations (see Theorem 7), we will use the classical absolute reg-
ular coefficient, β∗, which quantifies the degree of inner dependence of the
continuous (or discrete) time process X and which is standardly defined as
follows.

Definition 5 Let PU⊗V be the unique probability measure on (Ω × Ω,U ⊗ V)
characterized by PU⊗V(U × V ) = P(U ∩ V ). We denote by PU and PV the
restriction of the probability measure P to U and V respectively. The β-mixing
(or absolute regular) coefficient β(U ,V) of Rozanov and Volkonskii (1959) is
defined by

β(U ,V) = sup{|PU⊗V(C) − PU ⊗ PV(C)| : C ∈ U ⊗ V} . (3.14)

Definition 6 Let F v
u be the σ-algebra of events generated by the random vari-

ables {Xt, u ≤ t ≤ v}. In the case of discrete time processes, u, t, v are taken
in a discrete set. A process {Xt}t∈R (or Z) is said to be absolutely regular or
β∗-mixing if

β∗
u := sup

t∈R+(or N)

β(F t
−∞,F+∞

u+t ) → 0 as u → ∞ . (3.15)

Moreover the process is said to be arithmetically β∗-mixing with rate θ if there
exists some θ > 0 such that β∗

u ≤ (1 + u)−(1+θ) for all u in N or R
+. Similarly

it will be said geometrically β∗-mixing with rate θ if there exists some θ > 0
such that β∗

u ≤ e−θu for all u in N or R
+.

According to (3.14), if we denote by βu the mixing coefficient

βu = sup
t∈R+

β(σ(Xt), σ(Xt+u)), (3.16)

where σ(Xs) is the σ-algebra generated by Xs, and if we suppose that the
process takes its values in a compact set A = [−R,R] (so that the density
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is compactly A-supported) and that WCL2 holds, we successively get for all
u0 > 0,

∞∫

u0

βudu=

∞∫

u0

sup
t∈R+

sup
B∈B([−R,R]2)

|PXt,Xu+t(B) − PXt ⊗ PXu+t(B)|du

=

∞∫

u0

sup
B∈B([−R,R]2)

|
∫

B

(fu(x, y) − f(x)f(y))dxdy|du (3.17)

≤ 2R

R∫

−R

(
sup
y∈R

∞∫

u0

|gu(x, y)|du
)
dx ≤ 2R

R∫

−R

k(x)dx <∞ .

Therefore in that case and since {βu} is always bounded by one, WCL2 implies
that

∫∞
0 βudu is finite. This illustrates in what sense WCL2 can be viewed

as an asymptotic independence condition. However note that WCL2 is not
strong enough to derive some properties on the sequence of absolute regular
coefficients (β∗

u, u ∈ R
+) involving the whole past and/or the whole future of

the process, which are needed for instance in the results established in Leblanc
(1997). Imposing some conditions on the coefficients (βu, u ∈ R

+) rather than
on the coefficients (β∗

u, u ∈ R
+) is clearly less restrictive since processes can

be β-mixing without being β∗-mixing.

3.2 The discrete adaptive procedure rate with small sampling step under mix-
ing condition

When the sampling step is fixed (i.e. δn = 1), several adaptive procedures have
been developed (see for instance Tribouley and Viennet (1998) or Comte &
Merlevède (2002), both in the mixing case). They all aim to choose auto-
matically the optimal dimension of the projection space, without requiring a
priori knowledge of the regularity of f . The optimal rate obtained in that case
is n−2α/(2α+1) provided that f belongs to some Besov space of regularity α.
Moreover this rate is known to be minimax (see Donoho et al. (1996)).
We would like here to enlighten the influence of the mesh δn of the observations
on the optimal rate of convergence. To this aim, we use the same penalization
procedure as done in Comte & Merlevède (2002); namely, we consider the
penalized estimator

f̃d = f̂dSm̂ with m̂ = Argmin m∈Mn

[
γdn(f̂

d
Sm) + pen(m)

]
, (3.18)

where (Sm)m∈Mn is a collection of spaces of the same kind as S with dimension
denoted byDm and where pen is a penalty function that happens to be of order
Dm/n. The collection of models is assumed to satisfy the following conditions:
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P1 For each m in Mn, Sm is a linear subspace of L2(A) with dimension Dm

and Nn = maxm∈Mn Dm satisfies Nn ≤ n.
P2 There exists a constant Φ0 such that ∀m,m′ ∈ Mn, , ∀h ∈ Sm and h′ ∈

Sm′ ,

‖h+ h′‖∞ ≤ Φ0

√
dim(Sm + Sm′)‖h+ h′‖ .

P3 For any positive c,
∑
m∈Mn

√
Dme

−c
√
Dm ≤ Σ(c), where Σ(c) denotes a

finite constant depending only on c.

The three examples above (Tr, P, W) fulfill this set of assumptions, when
their dimensions vary in the set of integers or of dyadic integers. In addition,
it is noteworthy to indicate that, according to Lemma 6 of Birgé & Massart
(1998), Property P2 is equivalent to the following property of any orthonormal
basis {ϕλ,Dm}λ∈Λm spanning Sm of dimension Dm,

‖
∑

λ∈Λm

ϕ2
λ,Dm‖∞ ≤ Φ2

0Dm . (3.19)

Moreover in order to develop our results, we need the following notations:

Ar :=

∞∫

0

sr−2β∗
sds and Br(δn) :=

∞∑

k=0

(k + 1)r−2β∗
kδn , (3.20)

where {β∗
t }t∈R is defined by (3.15) and provided the integral (or the series) is

convergent.

Theorem 7 Consider a collection of models satisfying P1-P3. Let (Xiδn)1≤i≤n
be a discrete time sample of the continuous time process X = (Xt)t∈[0,Tn],
with nδn = Tn and δn = n−a for some 0 < a < 1/2. Assume that X is
weakly stationary with common marginal density f with respect to Lebesgue
measure on R and such that ‖f‖∞ < ∞. In addition assume that the process
is arithmetically β∗-mixing with mixing rate

θ > 3/(1 − 2a) . (3.21)

Then the estimator f̃d defined by (3.18) with pen(m) = κΦ2
0B2(δn)Dm/n,

where κ is a universal constant, satisfies

E(‖f̃d − f‖2) ≤ inf
m∈Mn

(
3‖f − fSm‖2 +K(1 + A2)Φ

2
0

Dm

Tn

)
+
K ′

Tn
(3.22)

where K is a numerical constant and K ′ is a constant depending on Φ0,
θ, A2, A3 and ‖f1IA‖∞. Moreover the choices δ−1

n = ln2(n) and pen(m) =
κ̃(1+A−2

2 )Φ2
0B2(δn)Dm/n (where κ̃ is a universal constant) lead also to (3.22)

provided that θ > 3.
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Note that the condition θ > 3 is the one obtained in Comte & Merlevède
(2002) for δn = 1. Besides, if the mixing is geometrical then δn = n−a for any
a in ]0, 1[ can be chosen, and no condition (3.21) is required.

Theorem 7 shows that the rate obtained does not really depend on the number
of observations n but rather on the length of the interval of observations, Tn.
As soon as f is assumed to belong to some Besov spaces, Bα,2,∞, then we
reach the rate T−2α/(2α+1)

n . In fact, if no assumption on the local behavior of
the sample paths is imposed, then we are not able to improve the rate by
considering more observations.

3.3 Using assumption WCL in discrete time

From the previous section, it appears that if we want the process (Xiδn)1≤i≤n
to reach the parametric rate of convergence, assumptions on the local behavior
of the sample paths have to be imposed. We use the following assumptions
which are in the spirit of the ones introduced in Bosq (1998b), Section 4.5.3,
in order to specify what he calls an admissible sampling, that is a sequence
(δn) such that the super optimal rate for the mean square risk remains valid
when the observations are Xδn , X2δn , . . . , Xnδn with a minimal sample size n.

B1 There exists a positive integrable function M(·) defined on R such that
for all u ∈]0, u0], ∀x ∈ R, supy∈R

fu(x, y) ≤M(x)u−γ , γ ∈]0, 1[ .

B2 There exist positive functions k(·) and π(·, ·) such that for all u ∈ [u0,∞[,

∀x ∈ R, sup
y∈R

|gu(x, y)|du ≤ k(x)f(x)π(u, x) .

In addition these functions are such that there exists two conjugate expo-
nents p, q ≥ 1 such that supu∈R+

∫
R
πp(u, x)f(x)dx <∞ and

∫
R
kq(x)f(x)dx <

∞. Lastly, we assume that
∫
R
πp(u, x)f(x)dx is an ultimately decreasing

function of u which satisfies for u1 > 0,
∫∞
u1

(
∫
R
πp(u, x)f(x)dx)1/p du <∞.

If f is bounded, these assumptions imply WCL and more precisely B1 implies
WCL1 and B2 implies WCL2. They are fulfilled by the Ornstein-Uhlenbeck
process and studied for Markov processes in Section 4.1. Note also that if
supx∈R π(u, x) ≤ π̃(u), then B2 holds under the stronger but simpler condition:

SB2 There exists a positive integrable function k̃(·) (defined on R) such that
for all u ∈ [u0,∞[,

∀x ∈ R, sup
y∈R

|gu(x, y)| ≤ k̃(x)π̃(u) ,
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where π̃(u) is a bounded and ultimately decreasing function which satis-
fies for u1 > 0,

∫∞
u1
π̃(u)du <∞.

Some assumptions closely related to B1 and SB2 (but slightly stronger) are
made in Blanke & Pumo (2003) where optimal discretization is discussed
when kernel density estimators and pointwise quadratic risk are considered.
Another assumption than B2 allows to find a similar order; namely,

B3 Assumption WCL2 holds and there exists u0 > 0 such that the function
gu(x, y) = fu(x, y) − f(x)f(y) is Lipschitz as a function of u, uniformly
in y ∈ R, that is: there exists a positive integrable function `(·) (defined
on R) such that for all u, v ≥ u0 > 0 and x ∈ R,

sup
y∈R

|gu(x, y) − gv(x, y)| ≤ `(x)|u− v|. (3.23)

Assumption B3 allows to substitute
∫ T
u0
|gt(x, y)|dt for its discretized counter-

part. As an illustration, if we consider a Gaussian stationary process (Xt, t ∈
R) with autocovariance ρ(u), then Condition B3 is fulfilled as soon as ρ(u)
is a Lipschitz function for all u ≥ u0. Again, this holds if X is an Ornstein-
Uhlenbeck process.

A property similar to P2 is also required, still equivalent to (3.19) when an
orthonormal basis is considered, which can in this simpler case be written:

A5 There exists a constant Φ0 independent of D such that ∀h ∈ S, ‖h‖∞ ≤
Φ0

√
D‖h‖.

Under Assumptions B1 and B2 or B1 and B3, we have the following result for
a suitably discretized continuous time process.

Proposition 8 Let S be a linear subspace of L2(A) with dimension D and
satisfying A4 and A5. Let (Xiδn)1≤i≤n be a discrete time sample of the contin-
uous time process X = (Xt)t∈[0,Tn], with nδn = Tn. Assume that X belongs to

the class X such that ‖f1IA‖∞ < ∞ and consider the estimator f̂dS by (3.12)
with dim(S) = D.
1) If B1 and B2 are fulfilled, then

E(‖f̂dS − f‖2) ≤
(
‖f − fS‖2 +

Φ2
0D

n

)
+
K

Tn
, (3.24)

where Φ0 is defined in A5, K is a constant depending on ‖f1IA‖∞, π(·, ·), M(·),
k(·) and Cϕ (defined in A4),
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2) If B1 and B3 are fulfilled, then

E(‖f̂dS − f‖2)≤
(
‖f − fS‖2 +

Φ2
0D

n

)
+

2Cϕ
Tn

∫

A

k(x)dx+ Cϕδn

∫

A

`(x)dx .(3.25)

As soon as f belongs to some Besov space Bα,2,∞(A), the classical theorems
of approximation theory previously mentioned lead to the following result:
under the assumptions of Proposition 8 and if S is a regular model P or W
with dimension D and with r > α > 0, we get, for any f ∈ Bα,2,∞(L) with
‖f1IA‖∞ <∞,

E‖f − f̂dS‖2 ≤ C(α, L)D−2α +
Φ2

0D

n
+
K

Tn
+K”δn , (3.26)

where we recall that Bα,2,∞(L) = {h ∈ Bα,2,∞, |h|α,2 ≤ L}.

Remark 2. The above inequality must be compared with Inequality (2.7) in
Proposition 2 and inequality (2.8) in the discussion following. From the above
result, if we choose δn ≤ T−1

n and if α > 1/2, it appears that the paramet-
ric rate T−1

n remains valid as soon as we consider a model with dimension
D = [Tn]. It is noteworthy to mention that the supremum of f1IA is uniformly
bounded on the Besov ball Bα,2,∞(L) if α > 1/2. More generally, it appears
from (3.26) that if D and δ−1

n are both great enough then the parametric rate
is attained. For instance if we take D = [eTn ] and δn ≤ e−Tn then we reach
the full rate whatever the regularity α of the Besov space. It follows that it
is always possible to make a choice of δn which does not depend on α. If α is
known, the conditions are δn ≤ T−1/(2α)

n and D ≥ T 1/(2α)
n .

Remark 3. If we add to the Assumptions of Theorem 7, Assumptions B1 and
B2, then we obtain an adaptive estimator f̃d associated to a penalty function
pen(m) = κΦ2

0Dm/n and satisfying

E(‖f̃d − f‖2) ≤ inf
m∈Mn

(
3‖f − fSm‖2 +KΦ2

0

Dm

n

)
+
K ′

Tn

where K is a numerical constant and K ′ is a constant depending on Φ0, θ, A2,
A3 and ‖f1IA‖∞. In any case, the rate is improved.
Consider now in addition that the mixing is geometric and δn = n−a with
a ∈]0, 1[. Then, if f belongs to some Besov space Bα,2,∞ with 1/2 < α, we find
as usual:

E(‖f̃d − f‖2) ≤ C(|f |α,2,Φ0)n
−2α/(2α+1) +

K ′

Tn
. (3.27)
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As a consequence, if a ≥ 1/2, then n−2α/(2α+1) = (Tn/δn)
−2α/(2α+1) ≤ T−1

n and
the super optimal rate is also reached by the adaptive estimator, automat-
ically and without the a posteriori choice of D. But the procedure is more
complicated than the one involved by Proposition 8 associated to Remark 2
and requires more assumptions (namely the geometrical mixing assumption),
without any obvious gain. Nevertheless, it illustrates that the super optimal
rate can be reached if the step of observations δn is small enough (condition
a ≥ 1/2). Note that this could not be obtained for arithmetical mixing.

4 Condition WCL: discussions and examples

4.1 Condition WCL in case of Markov processes

In this section, we consider a stationary homogeneous Markov process X :=
(Xt, t ∈ R). Moreover, we assume that X belongs to the class M defined as
follows:

Definition 9 We define M as the class of real stationary homogeneous Markov
processes X such that X is ergodic with a unique invariant probability measure
Π having a density f(x) and such that the conditional density pu(x, y) of Xu

knowing X0 = x exists.

Then obviously such a X possesses a joint density fu(x, y) = f(x)pu(x, y). We
also denote by P u(·, ·) the probability transition associated to pu(·, ·).

For Markov processes, checking WCL1 or WCL2 amounts to study, for u0 > 0

H1
∫
R

(
supy∈R

∫ u0
0 f(x)|pu(x, y) − f(y)|du

)
dx <∞.

H2
∫
R

(
supy∈R

∫ +∞
u0

f(x)|pu(x, y) − f(y)|du
)
dx <∞.

First, as soon as the marginal density is bounded, H1 holds provided that
supy∈R

pu(x, y) ≤ C(x)u−γ, with C(·) an integrable function on R and γ < 1.
Examples of Markov diffusion processes satisfying such an assumption may
be found for instance in Dynkin (1965) or more recently in Leblanc (1997),
Proposition 11. Note that for these processes, γ = 1/2. Besides, in that case,
Assumption B1 holds as well.
Let us now turn to Assumptions H2 or B2. Several papers address the question
to describe the class of ergodic processes satisfying this assumption in term
of ”simple” characteristics (see Leblanc (1997), Theorem 3 or Veretennikov
(1999)). As a consequence of the proof of Theorem 1 in Veretennikov (1999),
we would like to give conditions for stationary Markov processes to satisfy H2,
in term of assumptions on the rate of convergence of the absolutely regular
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coefficients. Denote first ϕ(λ) = E exp(iλXt) and ϕx(λ, t) = E exp(iλXt|X0 =
x).

Proposition 10 Assume that X := (Xt, t ∈ R) is a stationary homogeneous
Markov process with absolute regular coefficient (βu)u∈R+, belonging to the class
M. Moreover assume that there exist constants γ > 1 and p > γ/(γ− 1) such
that

|ϕ(λ)| ≤ C1(1 + |λ|)−γ where C1 > 0 , (4.28)

and such that

∞∫

0

β1/p
u du <∞ . (4.29)

In addition assume that for all u ≥ u0 and any x ∈ R, there exists a nonneg-
ative function C2(·) satisfying

∫
R
C2(x)f(x)dx <∞ and such that

|ϕx(λ, u)| ≤ C2(x)(1 + |λ|)−γ . (4.30)

Then we have

∫

R

∞∫

u0

sup
y∈R

(
f(x)|pu(x, y) − f(y)|

)
dudx ≤ C3

∞∫

u0

β1/p
u du , (4.31)

where C3 is a positive constant. It follows that Assumption H2 holds.

Note that compared to Condition (H3) in Veretennikov (1999), we need not
assume C2(·) to be bounded. Analogously, we can prove that

Proposition 11 Assume that X := (Xt, t ∈ R) is a stationary homogeneous
Markov process with absolute regular coefficient (βu)u∈R, belonging to the class
M and satisfying the assumptions of Proposition 10. In addition assume that
the sequence (βu)u∈R+ is ultimately decreasing. Then the process X satisfies
Assumption B2.

Example 1. Consider an homogeneous Markov diffusion process, defined as
a solution of the stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt, t ≥ 0 , (4.32)

where (Wt, t ∈ R) is a Wiener process. Conditions for such an Xt to sat-
isfy (4.28)-(4.30) are given in Veretennikov (1997, 1999). Note that Leblanc
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(1997) also gives conditions for a diffusion process to be geometrically abso-
lutely regular (see her conditions (6), (7) and (13)).

Example 2. Here we enlighten the fact that a diffusion Markov process does
not need to satisfy the regularity assumptions given in Veretennikov (1997,
1999) to verify H2; indeed, b and σ are required to admit n ≥ 2 bounded con-
tinuous derivatives. With this aim, note first that the conclusion of Proposition
10 still holds if Condition (4.29) is replaced by

∫

R

( +∞∫

u0

sup
λ∈R

|ϕx(λ, u)| − ϕ(λ)|1/pdu
)
f(x)dx < +∞ . (4.33)

Consider now the process solution of the following stochastic differential equa-
tion

dXt = (a− bXt)dt+ σ
√
XtdWt, t ≥ 0 , (4.34)

where (Wt, t ∈ R) is a Wiener process, a, b and σ are positive numbers. Such
a model is called the Cox-Ingersoll-Ross model (see Cox et al. (1985)) and
is used in financial mathematics. In addition for X0 = x > 0, this process is
known to remain almost surely positive as soon as a ≥ σ2/2. It is clear that
the square root function does not satisfy the regularity condition mentioned
above. However, by setting

L(u) =
σ2

4b
(1 − e−bu) and ζx(u) =

4xb

σ2(ebu − 1)
,

and by using the fact that

ϕx(λ, u) =
( 1

1 − 2iλL(u)

)2a/σ2

e

(
iλL(u)ζx(u)
1−2iλL(u)

)

and ϕ(λ) =
( 1

1 − 2iλL(+∞)

)2a/σ2

(see for instance Lamberton & Lapeyre (1996), prop. 6.2.5 p. 130), we easily
derive that Conditions (4.28) and (4.30) are satisfied with γ = 2a/σ2 and
supx∈R

C2(x) < +∞. In addition simple calculations lead to the fact that
there exists u0 such that for all u ≥ u0,

sup
λ∈R

|ϕx(λ, u)| − ϕ(λ)| ≤ Ke−bu, where K is a positive constant.

Consequently it follows that the process {Xt, t ∈ R} solution of (4.34) satisfies
Assumption H2 as soon as a > σ2/2. Nevertheless, σ(x) = σ

√
x does not admit

bounded derivatives on R.
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4.2 Sharpness of Condition WCL

In this section, we enlighten the fact that Condition WCL is sharp in the sense
that if WCL1 or WCL2 is violated then there are continuous time processes
for which our projection estimator does not reach the parametric rate.

4.2.1 About WCL1 and the local behavior of the sample paths

The following example shows that, in some sense, making a local assumption
on the irregularity of the sample paths is necessary to obtain the super optimal
rate T−1.

Example 3. Let us give an example of process (Xt)t∈[0,T ] belonging to the
class X with ‖f1IA‖∞ <∞ and fulfilling WCL2 but not WCL1, and for which
the estimator f̂S of f defined by (2.4) satisfies,

lim
T→∞

T E‖f − f̂S‖2 = ∞ . (4.35)

To this aim, consider X = {Xt, t ∈ R} a real zero mean stationary Gaussian
process which is continuous and differentiable in mean square with variance
σ2 > 0 and positive autocorrelation ρ(·) on R

+ that is integrable over [u0,+∞[,
u0 > 0 and such that |ρ(u)| < 1 for u > 0. Then this process satisfies WCL2
but not WCL1. The bound (5.50) can be used to see this. If we consider
A = [0, 1], and if we build the estimator f̂S on the linear space S of L

2(A)
with dim(S) = DT → ∞ and spanned by the orthonormal basis (ϕj,DT )1≤j≤DT ,
ϕj,DT (x) =

√
DT1I[D−1

T (j−1),D−1
T j[, then we can prove in Appendix that (4.35)

holds. More precisely, we obtain that lim infT→∞(T/ lnT )E‖f − f̂S‖2 > 0.
This proves the sharpness of Condition WCL1. Moreover, this example illus-
trates the fact that, at least for Gaussian processes, WCL1 is closely linked
with the irregularity of the sample paths. Indeed ifX has differentiable sample
paths then they are differentiable in mean square (see Ibragimov and Rozanov
(1978)), and it follows that the Gaussian process X does not reach the para-
metric rate.

4.2.2 About WCL2, the integrability condition near infinity

In this section, we give an example showing that if WCL1 holds but not
WCL2, then the parametric rate is not necessarily reached. For that purpose,
we give a sufficient condition on the joint density of a stationary continuous
time process X belonging to the class X for X to satisfy WCL2. Following
Giraitis et al. (1996), we consider the following decomposition of the joint
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density fu of (X0, Xu). There exists u0 > 0 such that for all u ≥ u0,

fu(x, y) = f(x)f(y) + ρ(u)f ′(x)f ′(y) + hu(x, y) , x, y ∈ R , (4.36)

where ρ(u) is the autocovariance of the process X and hu(·, ·) is such that:

∀u ≥ u0, |hu(x, y)| ≤ |ρ(u)|εk1(x)k2(y) , x, y ∈ R, for some ε > 1 , (4.37)

where k1(·) and k2(·) are positive functions defined on R.

Remark 4. When fu(·, ·) is a bivariate normal density, hu(·, ·) is the remain-
der in the Taylor’s expansion and in this case, easy computations lead to the
fact that (4.37) is satisfied for ε = 2 and k1(x) = k2(x) = K(x) exp(−x2/4)
where K(x) is a certain univariate polynomial function.

It is clear that if X is a continuous time process belonging to the class X and
satisfying conditions (4.36) and (4.37) with

sup
y∈A

|f ′(y)| < +∞ , sup
y∈A

k2(y) < +∞ and
∫

A

k1(x)dx < +∞ ,

then WCL2 holds as soon as

∞∫

u0

|ρ(u)| < +∞ . (4.38)

Conversely, this consideration together with Remark 4 leads to the conclusion
that if X is a Gaussian process such that (4.38) is not satisfied but ρ(u) is
square-integrable, then WCL2 fails to hold. Since cases where (4.38) fails to
hold correspond to the situation of long-range dependence processes, this leads
to the following example of a continuous time process that does not to satisfy
WCL2 but that verifies the local integrability condition WCL1.

Example 4. Some fractional integrals of Gaussian processes have been con-
sidered in the literature. The fractional integral of order α, 0 < α < 1/2 of
e.g. a stationary Ornstein-Uhlenbeck process has two characteristics (see for
instance Comte & Renault (1998)):

• a fractional index of local regularity namely α + 1/2, which is illustrated
by the following development, for u in the neighbourhood of 0: ρ(u) = 1 +
cu2α+1 + o(u2α+2), where c is a constant.
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• a long memory property characterized by the following equivalent for u near
of +∞: ρ(u) ∼ c′u2α−1, where c′ is a positive constant.

Using the behaviour of ρ(u) in a neighbourhood of 0, we get that for u ∈]0, u0[,

|gu(x, y)| ≤ c̃(1 + u−α−1/2) , x, y ∈ R , where c̃ is a positive constant,(4.39)

which entails that WCL1 holds since 0 < α < 1/2.

On the other hand the long memory property of this Gaussian process implies
that for 0 < α < 1/4, ρ(u) is square integrable but not integrable near infinity,
and therefore WCL2 is not satisfied as soon as 0 < α < 1/4. When 1/4 < α <
1/2, the Taylor expansion as given in (4.36) does not allow any conclusion.
Thus for such a process with 0 < α < 1/4, the parametric rate is not reached
since we can prove that

lim inf
T→∞

T 1−2α
E‖f − f̂S‖2 > 0 . (4.40)

where the estimator f̂S of f is defined by (2.4) on a linear subspace S of
L2(A) with dimension DT such that limT→∞DT = +∞ and spanned by an
orthonormal basis (ϕj,DT )1≤j≤DT defined by ϕj,DT (x) =

√
DT1I[D−1

T (j−1),D−1
T j[(x)

(see section 5).

5 Proofs

5.1 Proof of Theorem 7

We first show the following auxiliary lemma which is a triangular version of
Viennet (1997)’s inequality.

Lemma 12 Let (Xiδn)1≤i≤n be a discrete time sample of the continuous time
process X = (Xt)t∈R assumed to be weakly stationary and with absolute reg-
ular mixing coefficients 1 (β∗

t )t≥0. Denote by P the distribution of X0 and
by EP (ψ) =

∫
R
ψ(x)dP (x). There exists a sequence of measurable functions

(bk,δn)k≥0 with b0,δn = 1, 0 ≤ bk,δn ≤ 1, EP (bk,δn) ≤ β∗
kδn such that for any

1 Here we consider the absolute regular coefficients (β∗
t )t≥0 (and not (βt)t≥0) be-

cause we need them to be nonincreasing in order to make use of β−1
δn

(u) in the
proof.

23



h ∈ L2(P ) and any positive integer n,

Var
( n∑

i=1

h(Xiδn)
)
≤ 4n

∫

R

( n∑

k=0

bk,δn
)
h2dP . (5.41)

Moreover for 1 ≤ p <∞, EP (
∑∞
k=0 bk,δn)

p ≤ p
∑
l≥0(l+ 1)p−1β∗

lδn = pBp+1(δn)
provided this last series is convergent.

Proof of Lemma 12. We first write that by weak stationarity, we have

Var
( n∑

i=1

h(Xiδn)
)
≤ 2

n∑

k=0

(n− k)|cov(h(X0), h(Xiδn))| .

Next following the proof of Theorem 2.1 of Viennet (1997), we infer that
there exist two function b′k,δn and b′′k,δn from R into [0, 1] such that EP (b′k,δn) =
EP (b′′k,δn) ≤ β∗

kδn and that

cov(h(X0), h(Xkδn)) ≤ 2E
1/2
P (b′k,δnh

2)E
1/2
P (b′′k,δnh

2) .

Thus

Var
( n∑

i=1

h(Xiδn)
)
≤ 4n

n∑

k=0

EP

(1

2
(b′k,δn + b′′k,δn)

)
h2 .

The proof of (5.41) is completed by setting bk,δn = (b′k,δn + b′′k,δn)/2. To prove
the second part of the lemma, we may proceed as follows. First we need some
notations. Let bδn :=

∑∞
k=0 bk,δn and β−1

δn (u) :=
∑
i≥0 II(u ≤ β∗

iδn) for u ∈ [0, 1].
For any measurable function ψ from R to R, we denote by Qψ the quantile
function of |ψ(X0)|, that is the pseudo inverse of the tail function t → P (x :
|ψ(x)| > t). With these notations and using Fréchet (1957)’s result combined
with the fact that for all k ≥ 0, EP (bk,δn) ≤ β∗

kδn , we easily derive that for any
positive and measurable function ψ such that β−1

δn Qψ is integrable, we have

∫
bδnψdP ≤

1∫

0

β−1
δn (u)Qψ(u)du . (5.42)

Now we notice that for any conjugate exponents p and q, we have

( ∫
bpδndP

)1/p
= sup

‖ψ‖q=1

∫
bδnψ dP .

Using this representation together with (5.42), we derive

( ∫
bpδndP

)1/p ≤ sup

(
∫ 1

0
Qq
ψ
(u)du)

1/q
=1

1∫

0

β−1
δn (u)Qψ(u)du .
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Next Holder’s inequality leads to

∫
bpδndP ≤

1∫

0

(β−1
δn )p(u)du .

We end the proof by noticing that
∫ 1
0 (β−1

δn )p(u)du ≤ p
∑
l≥0(l + 1)p−1β∗

lδn (see
for instance the bound pages 15-16 in Rio (2000)). 2

We turn now to the proof of Theorem 7. We proceed similarly to the proof
of Theorem 3.1 (discrete time case) in Comte & Merlevède (2002) with some
modifications due to Lemma 12. We also notice that the above mentioned
proof remains valid when the process is only supposed to be weakly stationary
instead of being strictly stationary. Let us now describe the methodology. We
consider the decompositions

‖f − f̃d‖2 ≤ ‖f − fm‖2 + 2νn(f̃
d − fm) + pend(m) − pend(m̂) ,

and

2|νdn(f̃ − fm)| ≤ 2|νdn(f̃ − fm) − νd∗n (f̃ − fm)| + 2|νd∗n (f̃ − fm)| .

where νd∗n denotes the empirical contrast computed on the X∗
iδn , where the

X∗
iδn are distributed as Xiδn and constructed using Berbee’s lemma Berbee

(1979). In fact they are such that blocks far from a certain distance, say qn,
are independent and such that the blocks obtained from the X∗

iδn ’s differ in
probability from the ones constructed with the initial sequence by no more
than βqn. Moreover if we denote by Bm,m′(0, 1) the unit ball of the linear space
Sm + Sm′ , then for any function p(m,m′) of m and m′, we also consider the
following decomposition

2|νd∗n (f̃ − fm)| ≤ 1

4
‖fm − f‖2 +

1

4
‖f − f̃‖2 + 8

∑

m′∈Mn

W d∗(m′) + 8p(m, m̂),

where W d∗(m′) :=
[(

suph∈Bm,m′ (0,1) |νd∗n (h)|
)2 − p(m,m′)

]

+
. The aim of the

proof is then to find p(m,m′) such that

∑

m′∈Mn

E(W d∗(m′)) ≤ CT−1
n . (5.43)

This is done using concentration inequalities from Talagrand (1996).
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Let us now indicate the changes compared to the proof given in Comte &
Merlevède (2002) for δn = 1. Equation (6.16) is now replaced for Nn ≤ n, by

nβ∗
qnδn ≤ C

Tn
=

C

nδn
(5.44)

and the function p(m,m′) is now taken as

p(m,m′) = 8(4 + ξ2)Φ2
0B2(δn)

Dm +Dm′

n
,

where ξ is positive. Using Lemma 12 in the proof given in Comte & Merlevède
(2002), this choice leads to

E(W d∗(m′)) ≤ C0




√
B3(δn)D

n
exp

(
−C1ξ

2
√
D
)

+
q2
n

n
exp


−K1ξ

2

√
nB2(δn)

qn






where C0 = C0(K1,Φ0, ‖f1IA‖∞) with K1 a universal constant, and

K1Φ0A2

4
√

2‖f1IA‖∞(1 + 2A2 + A3)
≤ C1 =

K1Φ0B2(δn)

4
√

2‖f1IA‖∞B3(δn)
≤ K1Φ0(1 + A2)

4
√

2‖f1IA‖∞A3

since from Relation (3.20), we have: δ−1
n A2 ≤ B2(δn) ≤ 1+δ−1

n A2 and δ−2
n A3 ≤

B3(δn) ≤ 1 + 2δ−1
n A2 + δ−2

n A3. It follows that

E(W d∗(m′)) ≤ C




√
D

Tn
exp

(
−C1ξ

2
√
D
)

+
q2
n

n
exp



−K1A2ξ

2

√
nδ−1

n

qn







 ,

where C = C(K1,Φ0, ‖f1IA‖∞, A2, A3). Consequently the term
∑
m′∈Mn

E(W d∗(m′))
is less than CT−1

n as soon as assumption P3 is fulfilled, qn = [n1/2] and δn = n−a

with a > 0. Replacing in (5.44) qn by [n1/2] and using that β∗
t ≤ 1/(1 + t)1+θ

leads then to the constraint (1 + θ)(1/2 − a) > 2 − a and therefore to (3.21).
If δ−1

n = ln2(n), then it suffices to choose qn = [n1/2] and ξ = 2/(K1A2) to get
(5.43). On an other hand (5.44) leads to the constraint θ > 3. We end the proof
by taking into account that δ−1

n A2 ≤ B2(δn) ≤ 1 + δ−1
n A2 ≤ (1 + A2)δ

−1
n .2

5.2 Proof of Proposition 8.

Case 1. First we consider the decomposition

E(‖f̂dS − fS‖2) =
D∑

j=1

Var

(
1

n

n∑

k=1

ϕj,D(Xkδn)

)
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=
1

n

D∑

j=1

Var(ϕj,D(X0)) +
2

n

D∑

j=1

n∑

k=1

∫

A

∫

A

ϕj,D(x)ϕj,D(y)

(
1 − k

n

)
gkδn(x, y)dxdy

:= T1,n + 2T2,n . (5.45)

Using (3.19) to bound T1,n, we find: T1,n ≤ (1/n)
∫
A(
∑D
j=1 ϕ

2
j,D(x))f(x)dx ≤

Φ2
0D/n. To study the last term in the right-hand side of Inequality (5.45), we

write the decomposition: T2,n = T
(1)
2,n + T

(2)
2,n + T

(3)
2,n , where

T
(i)
2,n =

1

n

D∑

j=1

m
(i)
n∑

k=m
(i−1)
n +1

∫

A

∫

A

ϕj,D(x)ϕj,D(y)

(
1 − k

n

)
gkδn(x, y)dxdy ,

where m(0)
n = 0, m(1)

n = [δ−1
n u0], m

(2)
n = [δ−1

n u1] with an arbitrarily large u1

and m(3)
n = n. Using first Assumptions B2 and A4 combined with Hölder’s

inequality, we derive

|T (2)
2,n | ≤

1

n

D∑

j=1

m
(2)
n∑

`=m
(1)
n +1

∫

A

∫

A

|ϕj,D(x)ϕj,D(y)|k(x)π(`δn, x)f(x)dxdy

≤ Cϕ
n

m
(2)
n∑

`=m
(1)
n +1




∫

A

kq(x)f(x)dx




1/q 


∫

A

πp(`δn, x)f(x)dx




1/p

. (5.46)

Next using again Assumption B2, we get that there exists a positive finite
constant K1 such that

|T (2)
2,n | ≤

Cϕ
nδn

(u1−u0)




∫

A

kq(x)f(x)dx




1/q 

 sup
]u0,u1]

∫

A

πp(u, x)f(x)dx




1/p

≤ K1

nδn
.

Similar arguments leading to the bound on (5.46) yield that T
(3)
2,n may be

bounded as follows |T (3)
2,n | ≤ Cϕ

n

∑n

`=m
(2)
n +1

(
∫
A k

q(x)f(x)dx)1/q (
∫
A π

p(`δn, x)f(x)dx)1/p .

Consequently since
∫
R
πp(u, x)f(x)dx is assumed to be an ultimately decreas-

ing function of u, we get

|T (3)
2,n | ≤

Cϕ
nδn




∫

A

kq(x)f(x)dx




1/q +∞∫

u1

( ∫

A

πp(u, x)f(x)dx
)1/p

du ,

and then under Assumption B2, there exists a positive finite constant K2 such
that: |T (3)

2,n | ≤ K2(nδn)
−1.

Thus it remains to treat T
(1)
2,n . To this aim we first write
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T
(1)
2,n =

1

n

D∑

j=1

m
(1)
n∑

`=1

∫

A

∫

A

ϕj,D(x)ϕj,D(y)

(
1 − `

n

)
f`δn(x, y)dxdy

−1

n

D∑

j=1

m
(1)
n∑

`=1

∫

A

∫

A

ϕj,D(x)ϕj,D(y)

(
1 − `

n

)
f(x)f(y)dxdy := I + II .(5.47)

By using A4 and with the choice ofm(1)
n , we easily derive |II| ≤ u0(Cϕ‖f1IA‖∞)/(nδn) .

Concerning the first term of decomposition (5.47), Assumption B1 together
with A4 yield

|I| ≤ 1

nδγn
(
∫

A

M(x)dx)
m

(1)
n∑

`=1

1

`γ
≤ 1

nδγn
(
∫

A

M(x)dx)(1 +

m
(1)
n∫

1

u−γdu)

≤ u1−γ
0

(1 − γ)nδn

(
Cϕ

∫

A

M(x)dx
)
.

Gathering all the bounds gives the result in case 1. 2

Case 2. We consider Decomposition (5.45) again. T1,n is treated as previously
whereas for T2,n, we set m(1)

n = [δ−1
n u0] and consider this time the decomposi-

tion: T2,n = I2,n + J2,n , where

I2,n =
1

n

D∑

j=1

m
(1)
n∑

k=1

∫

A

∫

A

ϕj,D(x)ϕj,D(y)

(
1 − k

n

)
gkδn(x, y)dxdy ,

J2,n =
1

n

D∑

j=1

n∑

k=m
(1)
n +1

∫

A

∫

A

ϕj,D(x)ϕj,D(y)

(
1 − k

n

)
gkδn(x, y)dxdy .

The term I2,n has already been treated in the proof of Proposition 8, Case 1,
and found to be of order (nδn)

−1 under Assumptions B1, A4 and ‖f1IA‖∞ <∞.
Concerning J2,n, we first notice that

|J2,n| ≤
1

Tn

∫

A

∫

A

|
D∑

j=1

ϕj,D(x)ϕj,D(y)|
(
δn

n−1∑

k=m
(1)
n +1

|gkδn(x, y)|
)
dxdy

≤ 1

Tn

∫

A

∫

A

|
D∑

j=1

ϕj,D(x)ϕj,D(y)|
( Tn∫

u0

|gs(x, y)|ds
)
dxdy

+
1

Tn

∫

A

∫

A

|
D∑

j=1

ϕj,D(x)ϕj,D(y)|
( Tn∫

u0

|gs(x, y) − gδn[s/δn](x, y)|ds
)
dxdy
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:= In + IIn ,

by using δn
∑n−1

k=m
(1)
n +1

|gkδn(x, y)| =
∫ Tn
u0

|gδn[s/δn](x, y)|ds. The first right-hand

side term In corresponds to the continuous time one and has already been
proved to be of the order CϕT

−1
n

∫
A k(x)dx under WCL2 and A4. To study the

second right hand side term, we use B3 which yields that for all x ∈ R,

sup
y∈R

Tn∫

u0

|gs(x, y) − gδn[s/δn](x, y)|ds ≤ `(x)

Tn∫

u0

|s− δn[s/δn]|ds

≤`(x)
n−1∑

k=m
(1)
n +1

(k+1)δn∫

kδn

(s− kδn)ds ≤ `(x)
n−1∑

k=m
(1)
n +1

δn∫

0

xdx ≤ `(x)
Tnδn

2

which in turn together with A4 leads to IIn ≤ (Cϕ/2)δn
∫
A `(x)dx. Gathering

all the bounds gives the result. 2

5.3 Proof of Proposition 10.

Using the inverse Fourier transform, we have

2π(pu(x, y) − f(y)) =
∫

R

exp(−iλy)(ϕx(λ, u) − ϕ(λ))dλ

Then using (4.28) and (4.30), we get for u ≥ u0

2π|pu(x, y) − f(y)|
≤ 2 (C1 + C2(x))

(p−1)/p ( sup
λ∈R

|ϕx(λ, u) − ϕ(λ)|)1/p
∫

R+

(1 + λ)−γ(p−1)/pdλ ,

and since it is assumed that γ(p− 1)/p > 1, we get that there exists a finite
constant K such that for all u > u0,

sup
y∈R

(
f(x)|pu(x, y) − f(y)|

)

≤K (C1 + C2(x))
(p−1)/p f(x)(sup

λ∈R

|ϕx(λ, u) − ϕ(λ)|)1/p . (5.48)

By using the fact that supλ∈R
|ϕx(λ, u)−ϕ(λ)| ≤ ‖P u(x, .)−Π‖v , (where ‖·‖v

denotes the variation norm), together with (5.48) and Fubini’s Theorem, we
get
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∫

R

∞∫

u0

sup
y∈R

(
f(x)|pu(x, y) − f(y)|

)
dudx

≤ K

∞∫

u0




∫

R

(C1 + C2(x))
(p−1)/p (‖P u(x, .) − Π‖v)1/pΠ(dx)



 du .

This combined with Hölder’s inequality with respect to the measure Π, gives

∫

R

∞∫

u0

sup
y∈R

(
f(x)|pu(x, y) − f(y)|

)
dudx

≤K

∞∫

u0




∫

R

‖P u(x, .) − Π‖vΠ(dx)




1/p


∫

R

(C1 + C2(x))f(x)dx




(p−1)/p

du .

According to Davydov (1973), the absolute regular coefficient for Markov
chains can also be defined as βu =

∫
R
‖P u(x, .) − Π‖vΠ(dx). Combining this

consideration with the fact that
∫
R
C2(x)f(x)(dx) < ∞, we derive that there

exists a finite constant C3 such that

∫

R

∞∫

u0

sup
y∈R

(
f(x)|pu(x, y) − f(y)|

)
dudx ≤ C3

∞∫

u0

β1/p
u du .2

5.4 Proof of Proposition 11.

According to (5.48) and the inequality after, under (4.28) and (4.30), there
exists a finite constant K such that for all u > u0 and all x ∈ R,

sup
y∈R

|gu(x, y)| ≤ K (C1 + C2(x))
(p−1)/p f(x)(‖P u(x, .) − Π‖v)1/p . (5.49)

Then take π(u, x) := (‖P u(x, .) − Π‖v)1/p and k(x) := K (C1 + C2(x))
(p−1)/p.

First it is clear from the condition on C2(·) that
∫

(k(x))p/(p−1)f(x)dx is finite.
Now we notice that since βu =

∫
R
πp(u, x)f(x)dx (see Davydov (1973)), then

we both get that supu∈R+

∫
R
πp(u, x)f(x)dx and

∫∞
u1

(
∫
R
πp(u, x)f(x)dx)1/pdu

are finite. The first assertion comes from the fact that the absolutely regular
coefficient is uniformly bounded by 1 and the second one from Condition
(4.29). Since (βu)u∈R is assumed to be ultimately decreasing so is the function∫
R
πp(u, x)f(x)dx in u. This achieves the proof. 2
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5.5 Proof of (4.35).

Since X is mean square differentiable then 1 − ρ(u) ∼ cu2 as u → 0. So there
exist constants c1 and c2 such that in a neighborhood of zero, 0 < 1 − c1u

2 ≤
ρ(u) ≤ 1 − c2u

2. In addition, we have for u ∈]0, u0[,

fu(x, y) ≥
u−1

2πσ2
√

2c1
exp

(
− x2 + 1

2σ2(1 + ρ(u))
− ρ(u)

(x− y)2

2σ2(1 − ρ2(u))

)
.(5.50)

Then for all j ∈ {1, · · · , DT}, all x, y ∈ [D−1
T (j − 1), D−1

T j] and all u ∈]0, u0[,
fu(x, y) ≥ Ψu(x,DT )/u with

Ψu(x,DT ) =
1

2πσ2
√

2c1
exp

(
− x2 + 1

2σ2(1 + ρ(u))
− ρ(u)

D−2
T

2σ2(1 − ρ2(u))

)
.

Then

lim inf
T→∞

inf
u∈[D−1

T ,u0[
Ψu(x,DT ) ≥ Ψ(x) , (5.51)

where Ψ(x) =
1

2πσ2
√

2c1
exp

(
− x2 + 1

2σ2(2 − c1u2
0)

− 1

2σ2c2

)
, for u2

0 < 2/c1 .

Due to (2.9), it suffices to show (4.35) to prove that

lim
T→∞

T E(νT (f̂S − fS)) = +∞ . (5.52)

Using (2.10), we write for T ≥ 2u0 that TE(νT (f̂S − fS)) = IT + JT , where

IT = 2
∑DT
j=1

∫
A

∫
A ϕj,DT (x)ϕj,DT (y)

(∫ T
u0

(1 − u
T
)gu(x, y)du

)
dxdy ,

JT = 2
∑DT
j=1

∫
A

∫
A ϕj,DT (x)ϕj,DT (y)

(∫ u0
0 (1 − u

T
)gu(x, y)du

)
dxdy .

(5.53)

First using Condition WCL2 and the definition of the ϕj,DT ’s, we easily obtain
the bound |IT | ≤ 2

∫
A k(x)dx . On the other hand, to treat JT , we write:

JT := J
(1)
T + J

(2)
T , with

J
(1)
T = −2

∑DT
j=1

∫
A

∫
A ϕj,DT (x)ϕj,DT (y)

(∫ u0
0 (1 − u

T
) du

)
f(x)f(y)dxdy and

J
(2)
T = 2

∑DT
j=1

∫
A

∫
A ϕj,DT (x)ϕj,DT (y)

(∫ u0
0 (1 − u

T
)fu(x, y)du

)
dxdy ,
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For the first term, we use ‖f1IA‖∞ < +∞ and the definition of the ϕj,DT ’s to
derive

|J (1)
T | ≤ 2u0

DT∑

j=1

∫

A

∫

A

|ϕj,DT (x)ϕj,DT (y)|f(x)f(y)dxdy ≤ 2u0‖f1IA‖∞ .

Consequently, gathering all the bounds, to prove (5.52) it remains to show

that limT→∞ J
(2)
T = +∞. Now T ≥ 2u0 implies 2(1 − u0T

−1) ≥ 1. Then by
using the definition of the ϕj,DT ’s, we derive

J
(2)
T ≥ DT

DT∑

j=1

j/DT∫

(j−1)/DT

j/DT∫

(j−1)/DT




u0∫

D−1
T

fu(x, y)du


dxdy .

This last inequality together with the lower bound for fu entails

J
(2)
T ≥

∫

A

u0∫

D−1
T

u−1Ψu(x,DT ) du dx ≥ (

u0∫

D−1
T

1

u
du)

∫

A

inf
u∈[D−1

T
,u0[

Ψu(x,DT )dx .

We get
1

lnDT

J
(2)
T ≥ ln u0 − lnD−1

T

lnDT

∫

A

inf
u∈[D−1

T ,u0[
Ψu(x,DT )dx .

Next Fatou’s Lemma and Inequality (5.51) yield that lim infT→∞(1/ lnDT )J
(2)
T ≥

∫
A Ψ(x)dx > 0 . Therefore limT→∞ J

(2)
T = +∞. This ends the proof of (5.52)

and of (4.35). 2

5.6 Proof of Equation (4.40).

As in the proof of (4.35), we use decomposition (5.53). Using decomposition
(4.39) together with the behaviour of ρ(u) in a neighbourhood of 0, we easily
derive that limT→∞ |JT | < +∞. By using the Taylor’s expansion (4.36), we
get

IT =2
DT∑

j=1

∫

A

∫

A

ϕj,DT (x)ϕj,DT (y)
( T∫

u0

(1 − u

T
)ρ(u)du

)
f ′(x)f ′(y)dxdy

+2
DT∑

j=1

∫

A

∫

A

ϕj,DT (x)ϕj,DT (y)
( T∫

u0

(1 − u

T
)hu(x, y)du

)
dxdy := I

(1)
T + I

(2)
T .

By using Remark 4, the long memory property, the fact that 0 < α < 1/4

and the definition of the ϕj,DT ’s, we derive that limT→∞ |I(2)
T | < +∞ . Next by
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using the definition of the ϕj,DT ’s, we clearly have that

2
DT∑

j=1

∫

A

∫

A

ϕj,DT (x)ϕj,DT (y)f ′(x)f ′(y)dxdy = K > 0 .

Then Fubini’s Theorem entails that I
(1)
T = K

∫ T
u0

(1 − u/T )ρ(u)du . By using

the long memory property, we derive that I
(1)
T ∼ {Kc′[(2α)(2α + 1)]−1} T 2α .

Consequently limT→∞ T−2αI
(1)
T > 0 . Gathering all the bounds ends the proof

of (4.40). 2
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ment observables. Publ. Inst. Statist. Univ. Paris, 40, 21-36.

Blanke D., Pumo B., 2003. Optimal sampling for density estimation in con-
tinuous time. J. Time Ser. Anal., 24, 1-23.

Bosq D., 1997. Parametric rates of nonparametric estimators and predictors
for continuous time processes. Ann. Statist., 25, 982-1000.

Bosq D., 1998a. Minimax rates of density estimators for continuous time pro-
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