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Abstract. We consider the problem of estimating the density g of identically distributed vari-

ables Xi, from a sample Z1, . . . , Zn where Zi = Xi + σεi, i = 1, . . . , n and σεi is a noise inde-

pendent of Xi with known density σ−1fε(./σ). We generalize adaptive estimators, constructed

by a model selection procedure, described in Comte et al. (2005). We study numerically their

properties in various contexts and we test their robustness. Comparisons are made with respect

to deconvolution kernel estimators, misspecification of errors, dependency,... It appears that

our estimation algorithm, based on a fast procedure, performs very well in all contexts.
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1. Introduction

In this paper, we consider the problem of the nonparametric density deconvolution of g, the
density of identically distributed variables Xi, from a sample Z1, . . . , Zn in the model

Zi = Xi + σεi, i = 1, . . . , n,(1)

where the Xi’s and εi’s are independent sequences, the εi’s are i.i.d. centered random variables
with common density fε, that is σεi is a noise with known density σ−1fε(./σ) and known noise
level σ.

Due to the independence between the Xi’s and the εi’s, the problem is to estimate g using
the observations Z1, · · · , Zn with common density fZ(z) = σ−1g ? fε(./σ)(z). The function
σ−1fε(./σ) is often called the convolution kernel and is completely known here.

Denoting by u∗ the Fourier transform of u, it is well known that since g∗(.) = f∗Z(.)/f∗ε (σ.),
two factors determine the estimation accuracy in the standard density deconvolution problem
: the smoothness of the density to be estimated, and the one of the error density which are
described by the rate of decay of their Fourier transforms. In this context, two classes of errors
are usually considered: first the so called “ordinary smooth” errors with polynomial decay of
their Fourier transform and second, the “super smooth” errors with Fourier transform having
an exponential decay.
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For further references about density deconvolution see e.g. Carroll and Hall (1988), Devroye
(1989), Fan (1991a, b), Liu and Taylor (1989), Masry (1991, 1993a, b), Stefansky (1990), Ste-
fansky and Carroll (1990), Taylor and Zhang (1990), Zhang (1990) and Cator (2001), Pensky
and Vidakovic (1999), Pensky (2002), Fan and Koo (2002), Butucea (2004), Butucea and Tsy-
bakov (2004), Koo (1999).

The aim of the present paper is to provide a complete simulation study of the deconvolution
estimator constructed by a penalized contrast minimization on a model Sm, a space of square
integrable functions having a Fourier transform with compact support included into [−`m, `m]
with `m = πLm. Comte et al. (2005) show that for Lm being a positive integer, this penalized
contrast minimization selects the relevant projection space Sm without any prior information on
the unknown density g. In most cases, it is an adaptive estimator in the sense that it achieves
the optimal rate of convergence in the minimax sense, studied by Fan (1991a), Butucea (2004)
and Butucea and Tsybakov (2004). It is noteworthy that, contrary to what usually happens,
`m does not correspond here to the dimension of the projection space but to the length of the
support of the Fourier transform of the functions of Sm. Thus we will refer in the following to
`m as the ”length” of the model Sm.

Moreover, in the context of integer Lm, Comte et al. (2005) provide a brief simulation which
shows that the selected Lm are rather small and therefore far from the asymptotic. Our present
study shows that it is relevant to choose `m = πLm on a thinner grid than one included in πN.

Thus we start by stating a modification of the results in Comte et al. (2005) to take into
account this thinner grid of values `m and we show that the resulting penalized minimum
contrast estimator is an adaptive estimator in the sense that it achieves the optimal rate of
convergence in the minimax sense. Here, the penalty depends on the smoothness of the errors
density and therefore we consider two cases: Laplace density (ordinary smooth) and Gaussian
density (super smooth).

We illustrate, through examples, the influence of over-penalization and under-penalization
and propose practical calibrations of the penalty in all considered cases.

Then we study in very large simulations the non asymptotic properties of our estimator
by considering various types of densities g, with various smoothness properties like Cauchy
distribution, Gaussian density and finally Féjer-de-la-Vallée Poussin-type density.

We present some examples, that illustrate how the algorithm works. We give the mean
integrated squared error (MISE) for the two types of errors density, for all the test densities, for
various σ, and for various sample size. Our results present global tables of MISE and comparisons
between MISE and the theoretical expected rates of convergence.

Lastly, the robustness of our procedure is tested in various ways: when the observations are
dependent, when σ is very small (leading to a problem of density estimation) and when the errors
density fε is misspecified or not taken into account. In those cases, we compare our procedure
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with previous results of Delaigle and Gjibels (2004a, 2004b) and Dalelane (2004) (direct density
estimation).

The conclusions of our study are the following. Our estimation procedure provides very good
results; better than the kernel deconvolution methods described and studied in Delaigle and
Gijbels (2004a). Our estimation procedure is robust when the Zi’s are no longer independent
and even not strongly mixing. We underline the importance of the noise level in the quality of
estimation, and we check that, in the case of a very small noise, we obtain MISE’s that have
the same order as some recent results obtained by Dalelane (2004) for direct density estimation.
Lastly our results show that a misspecification of the errors density slightly increases the error
of estimation, but less than the use of the direct density estimator (without deconvolving), as it
was already mentioned in Hesse (1999). From a practical point of view it is important to note
that our algorithm is a fast algorithm (O(n ln(n)) operations) based on the Inverse Fast Fourier
Transform (IFFT).

The paper is organized as follows. In section 2, we present the model, the assumptions, the
adaptive estimator and its expected rates of convergence. In Section 3, we describe the imple-
mentation of the estimates (see 3.2) and the computations of the associated integrated squared
errors (3.3). Section 4 presents the chosen penalties (see 4.2) and describes the framework of
our simulations. The simulation results are gathered in Section 5 and an appendix is devoted
to the proof of our theorem.

2. General framework and theoretical results

2.1. Notations and assumptions. For u and v two square integrable functions, we denote
by u∗ the Fourier transform of u, u∗(x) =

∫
eitxu(t)dt and by u ∗ v the convolution product,

u ∗ v(x) =
∫
u(y)v(x− y)dy. Moreover, we denote by ‖u‖2 =

∫
R |u(x)|

2dx.
Consider Model (1) under the following assumptions.

The Xi’s and the εi’s are independent and identically distributed random(A1)

variables and the sequences (Xi)i∈N and (εi)i∈N are independent.

The density fε belongs to L2(R) and is such that for all x ∈ R, f∗ε (x) 6= 0.(Aε
2)

Under assumption (A1), the Zi’s are independent and identically distributed random variables.
Assumption (Aε

2), usual for the construction of an estimator in density deconvolution, ensures
that g is identifiable.

The rate of convergence for estimating g is strongly related to the rate of decrease of the
Fourier transform of the errors density f∗ε (x) as x goes to infinity. More precisely, the smoother
fε, the quicker the rate of decay of f∗ε and the slower the rate of convergence for estimating g.
Indeed, if fε is very smooth, so is fZ the density of the observations Z and thus it is difficult to
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recover g. This decrease of f∗ε is described by the following assumption.

There exist nonnegative real numbers γ, µ, and δ such that(Aε
3)

|f∗ε (x)| ≥ κ0(x2 + 1)−γ/2 exp{−µ|x|δ}

When δ = 0 in assumption (Aε
3), fε is usually called “ordinary smooth”, and when µ > 0 and

δ > 0, the error density is usually called “super smooth”. Indeed densities satisfying assumption
(Aε

3) with δ > 0 and µ > 0 are infinitely differentiable. For instance, Gaussian or Cauchy
distributions are super smooth of order γ = 0, δ = 2 and γ = 0, δ = 1 respectively, and the
symmetric exponential (also called Laplace) distribution with δ = 0 = µ and γ = 2 is an
ordinary smooth density. Furthermore, when δ = 0, (Aε

2) requires that γ > 1/2 in (Aε
3). By

convention, we set µ = 0 when δ = 0 and we assume that µ > 0 when δ > 0. In the same way,
if σ = 0, the Xi’s are directly observed without noise and we set µ = γ = δ = 0.

For the construction of the estimator we need the following more technical assumption.

The density g belongs to L2(R) and there exists some positive real M2(AX
4 )

such that g belongs to
{
t density such that

∫
x2t2(x)dx ≤M2 <∞

}
.

This assumption (AX
4 ), quite unusual but unrestrictive, already appears in density deconvolution

in a slightly different way in Pensky and Vidakovic (1999) who assume, instead of (AX
4 ) that

supx∈R |x|g(x) <∞. The main drawback of this condition is that it is not stable by translation,
but an empirical centering of the data seems to avoid practical problems.

Since rates of convergence depend on the smoothness of g we introduce regularity conditions.

There exists some positive real numbers s, r, b such that the density(RX
1 )

g ∈ Ss,r,b(C1) =
{
t density :

∫ +∞

−∞
|t∗(x)|2(x2 + 1)s exp{2b|x|r}dx ≤ C1

}
.

There exists some positive real numbers K and d such that the density(RX
2 )

g ∈ Sd(C2) =
{
t density such that for all x ∈ R, |t∗(x)| ≤ C21I[−d,d](x)

}
.

Note that densities satisfying (RX
1 ) with r = 0 belong to some Sobolev class of order s, whereas

densities satisfying (RX
1 ) with r > 0, b > 0 are infinitely differentiable. Moreover, such densities

admit analytic continuation on a finite width strip when r = 1 and on the whole complex plane if
r = 2. The densities satisfying (RX

2 ), often called entire functions, admit analytic continuation
on the whole complex plane (see Ibragimov and Hasminskii (1983)).

In order to clarify the notations, we denote by greek letters the parameters related to the
known distribution of the noise ε and by latin letters the parameters related to the unknown
distribution g of X.

Let us now present and motivate the estimator.
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2.2. The projection spaces and the estimators.

2.2.1. Projection spaces. Let ϕ(x) = sin(πx)/(πx) and ϕm,j(x) =
√
Lmϕ(Lmx− j). Using that

{ϕm,j}j∈Z is an orthonormal basis of the space of square integrable functions having a Fourier
transform with compact support included into [−πLm, πLm] = [−`m, `m] (see Meyer (1990)),
we denote by Sm such a space and consider the collection of linear spaces (Sm)m∈Mn , with
`m = m∆, ∆ > 0, and m ∈Mn with Mn = {1, . . . ,mn}, as projection spaces. Consequently,

Sm = Vect{ϕm,j , j ∈ Z}, = {f ∈ L2(R), with supp(f∗) included into [−`m, `m]},

and the orthogonal projection of g on Sm, gm is given by gm =
∑

j∈Z am,jϕm,j , with am,j =<
ϕm,j , g >. Since this orthogonal projection involves infinite sums, we consider in practice, the
truncated spaces S(n)

m defined as

S(n)
m = Vect {ϕm,j , |j| ≤ Kn}

where Kn is an integer to be chosen later. Associated to those spaces we consider the orthogonal
projection of g on S

(n)
m denoted by g

(n)
m and given by g

(n)
m =

∑
|j|≤Kn

am,jϕm,j with am,j =<
ϕm,j , g > .

2.2.2. The non penalized estimators. Associate this collection of models to the following contrast
function, for t belonging to some Sm of the collection (Sm)Lm∈Mn

γn(t) = ‖t‖2 − 2
n

n∑
i=1

u∗t (Zi), with ut(x) =
1
2π

(
t∗

f∗ε (σ.)

)
(−x).

Since E [u∗t (Zi)] = 〈t, g〉, we find that E(γn(t)) = ‖t − g‖2 − ‖g‖2 which is minimum when
t ≡ g. Since γn(t) estimates the L2 distance between t and g, it is well adapted for estimating
g. Associated to the collection of models, the collection of the non penalized estimators ĝ(n)

m is
defined by

(2) ĝ(n)
m = arg min

t∈S(n)
m

γn(t).

By using that t 7→ ut is linear, and that {ϕm,j}|j|≤Kn
is an orthonormal basis of S(n)

m , we have

ĝ
(n)
m =

∑
|j|≤Kn

âm,jϕm,j where âm,j = n−1
∑n

i=1 u
∗
ϕm,j

(Zi), with E(âm,j) =< g, ϕm,j >=
am,j .

2.2.3. The adaptive estimator. The adaptive estimator is computed by using the following pe-
nalized criteria

(3) g̃ = ĝ
(n)
m̂ with m̂ = arg min

m∈Mn

[
γn(ĝ(n)

m ) + pen(`m)
]
,

where pen(.) is a penalty function based on the observations and the known distribution of σε1
without any prior information on g.
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2.3. Rate of convergence of the non adaptive estimator. We recall here, using our setup,
the bound for the risk of ĝm, proved in Comte et al. (2005).

(4) E(‖g − ĝ(n)
m ‖2) ≤ ‖g − gm‖2 + ‖gm − g(n)

m ‖2 +
Lm
πn

∫ ∣∣∣∣ ϕ∗(x)
f∗ε (σLmx)

∣∣∣∣2 dx.
First, the variance term

Lm
πn

∫
|ϕ∗(x)|2|(f∗ε (σLmx)|−2dx =

`m
πn

∫ 1

−1

dx

|f∗ε (σ`mx)|2
,

depends, as usual in deconvolution problems, on the rate of decay of the Fourier transform of fε,
with larger variance for smoother fε. Under assumption (Aε

3), for `m ≥ `0, the variance term
satisfies

`m
πn

∫ 1

−1

dx

|f∗ε (σ`mx)|
2 ≤ λ1`

2γ+1−δ
m exp(2µ(σ`m)δ)/n,

where

λ1 =
(σ2 + `−2

0 )γ

κ2
0R(µ, σ, δ)

and R(µ, σ, δ) =


1 if δ = 0
2µδσδ if 0 < δ ≤ 1
2µσδ if δ > 1.

(5)

Second, under assumption (AX
4 ), ‖gm− g(n)

m ‖2 is of order (M2 + 1)`2m/(π
2Kn). Consequently,

under (Aε
3), Kn ≥ (M2 + 1)n ensures that the risk E(‖g − ĝ

(n)
m ‖2) has the order

‖ g − gm ‖2 +(2λ1 + 1)`(2γ+1−δ)
m exp

{
2µσδ`δm

}
/n.

Finally, the bias term ‖g − gm‖2 depends on the smoothness of the function g and has the
expected order for classical smoothness classes since it is given by the distance between g and
the classes of entire functions having Fourier transform compactly supported on [−`m, `m] (see
Ibragimov and Hasminskii (1983)).

If g satisfies (RX
2 ), then the bias term ‖ g − gm ‖2= 0, by choosing `m = d. It follows that in

that case the parametric rate of convergence for estimating g is achieved.
If g belongs to some Ss,r,b(C1) defined by (RX

1 ), then the squared bias term can be evaluated
by using that

‖g − gm‖2 =
1
2π

∫
|x|≥`m

|g∗(x)|2dx ≤ C1

2π
(`2m + 1)−s exp{−2b`rm}.

Consequently, under (AX
4 ), if Kn ≥ (M2 + 1)n, the rate of convergence of ĝ(n)

m is obtained by
selecting the space S(n)

m , and thus `m, that minimizes

C1

2π
(`2m + 1)−s exp{−2b`rm}+ (2λ1 + 1)

`
(2γ+1−δ)
m exp

{
2µσδ`δm

}
n

.

One can see that if `m becomes too large, the risk explodes, due to the presence of the second
term. Hence `m appears to be the cut between the relevant low frequencies used in the Fourier
transforms to compute the estimate and the high frequencies which are not used (and may even
degrade the quality of the risk).
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We give the resulting rates in Table 1. For a density g satisfying (RX
1 ), rates are, in most

cases, known to be the optimal one in the minimax sense (see Fan (1991a), Butucea (2004),
Butucea and Tsybakov (2004)). We refer to Comte et al. (2005) for further discussion about
optimality.

fε

δ = 0 δ > 0
ordinary smooth super smooth

g

r = 0
Sobolev(s)

`m̆ = O(n1/(2s+2γ+1))
rate = O(n−2s/(2s+2γ+1))
optimal rate

`m̆ = [ln(n)/(2µσδ + 1)]1/δ

rate = O((ln(n))−2s/δ)
optimal rate

r > 0
C∞

`m̆ = [ln(n)/2b]1/r

rate = O

(
ln(n)(2γ+1)/r

n

)
optimal rate

`m̆ implicit solution of
`m̆

2s+2γ+1−r exp{2µσδ`δm̆ + 2b`rm̆}
= O(n)

optimal rate if r < δ

Table 1. Optimal choice of the length (`m̆) and resulting (optimal) rates.

In the case δ > 0, r > 0, the rates are not explicitly given in a general setting. For instance, if
r = δ, the rate is of order

(6) [ln(n)]bn−b/(b+µσ
δ) with b = [−2sµσδ + (2γ − r + 1)b]/[r(µσδ + b)].

On the other hand, if r/δ ≤ 1/2, then the rate is given by

(7) ln(n)−2s/δ exp

[
−2b

(
ln(n)
2µσδ

)r/δ]
.

Remark 2.1. First, it is important to note that the condition Kn ≥ (M2 + 1)n allows us to
construct truncated spaces S(n)

m using O(n) basis vectors and hence to construct a tractable and
fast algorithm from a practical point of view (see Section 3). Second, the choice of larger Kn

does not change the efficiency of our estimator from a statistical point of view but only changes
the speed of the algorithm from a practical point of view.

2.4. Rate of convergence of the adaptive estimator. The following theorem is an extension
of Theorems 4.1 and 4.2 in Comte et al. (2005). This new version states that, for any fixed ∆,
we can take `m = m∆, with m = 1, · · · ,mn, instead of `m = mπ.
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Theorem 2.1. Consider the model described in section 2.1 under (A1),(A
ε
2),(A

ε
3) and (AX

4 )
and the collection of estimators ĝ(n)

m defined by (2) with `m = m∆ for m = 1, · · · ,mn. Let λ1

and λ2 be two constants depending on γ, κ0, µ, δ and σ. Let κ be some numerical constant, not
necessary the same in each case. Consider

1) pen(`m) ≥ κλ1`
2γ+1−δ
m exp{2µ(σ`m)δ}/n, if 0 ≤ δ < 1/3,

2) pen(`m) ≥ κ[λ1 + µσ1/3π1/3λ2]`
2γ+2/3
m exp{2µσ1/3`

1/3
m }/n, if δ = 1/3,

3) pen(`m) ≥ κ[λ1 + µπδλ2]`
2γ+((1/2+δ/2)∧1)
m exp{2µ(σ`m)δ}/n, if δ > 1/3,

then, if Kn ≥ (M2 +1)n and mn is such that pen(`mn) is bounded, the estimator g̃ = ĝ
(n)
m̂ defined

by (3) satisfies

(8) E(‖g − g̃‖2) ≤ C inf
`m∈{1,...,mn}

[‖g − gm‖2 + pen(`m)] +
c

∆n
,

where C and c are constants depending on fε.

In the first two cases, the lower bound of the penalty has the same order as the variance term
and the risk of the adaptive estimator g̃ has the order of the smallest risk among the estimators
associated to the collection of ĝ(n)

m . Hence we get an adaptive to the smoothness of g statistical
procedure, that can choose the optimal `m in a purely data driven way, up to the knowledge of
M2 through the choice of Kn ≥ (M2 + 1)n.

In the last case, a small loss of order `(3δ/2−1/2)∧δ
m may occur. Nevertheless, this loss does

not affect the rate of convergence if the bias is the dominating term, that is when δ > 1/3, and
0 < r < δ. This loss changes the rate only when the variance is the dominating term, that
is when 1/3 < δ ≤ r and consequently when the considered `m are powers of ln(n)). When
1/3 < δ ≤ r, the rate is faster than logarithmic, and only a logarithm loss occurs, as a price to
pay for adaptation. This loss occurs in particular when both the density g to be estimated and
the density of the errors fε are gaussian.

The interest of taking `m = m∆ lies in the possibility of choosing the best `m among more
values. Nevertheless, the theorem highlights that too small ∆’s make the remainder term c/(n∆)
become larger. For instance, according to Table 1, when g satisfies (RX

1 ), we can choose ∆ =
1/ ln(n) and, when ν ≤ 2, since γ > 1/2 (in order to guarantee that fε belongs to L2(R)), we
do not lose anything in term of rate of convergence. Clearly if g is an entire function satisfying
(RX

2 ), ∆ has to be fixed. Since we do not know in which smoothness class the true density is,
the only strategy ensuring that the good rate is achieved is to take a fixed ∆.

3. Estimates and associated MISE implementation

3.1. Steps of the simulations. Given a density g, a distribution of error ε, a sample size n,
a value of σ, we sample the Zi’s and do the following steps:
− compute the estimators via their coefficients (âm,j).
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− compute the contrast using that

γn(ĝ(n)
m ) = −

∑
|j|≤Kn

|âm,j |2 = −‖ĝ(n)
m ‖2

− minimize γn(ĝ
(n)
m ) + pen(`m) and deduce the selected m̂ and the associated g̃ = ĝ

(n)
m̂

− evaluate the estimation error by a computation of the integrated squared error (ISE), ‖g̃−g‖2.
− repeat all the previous steps 1000 times and compute an empirical version of MISE, E‖g̃−g‖2.

3.2. Computation of the estimators. We fixed arbitrarily ∆ = 1/10. Given the data
Z1, . . . , Zn, we need to compute for several values of `m = ∆, 2∆, . . . , the coefficients of the
estimate ĝ(n)

m , ĝ(n)
m =

∑
|j|≤Kn

âm,jϕm,j , ϕm,j =
√
Lmϕ(Lmx − j) with ϕ(x) = sin(πx)/(πx).

Since

âm,j =
1
n

n∑
k=1

u∗ϕm,j
(Zk) =

1
2πn

n∑
k=1

∫
e−ixZk

ϕ∗m,j(x)
f∗ε (σx)

dx

we get that by denoting ψZ(x) = n−1
∑n

k=1 e
ixZk , the empirical Fourier transform of fZ(.) =

σ−1g ∗ fε(./σ)), then

âm,j =
1
n

n∑
k=1

1
2π
√
Lm

∫ πLm

−πLm

eix(Zk−j/Lm)

f∗ε (σx)
dx =

√
`m

2
√
π

∫ 1

−1
e−2iπjx ψZ(`mx)

f∗ε (σ`mx)
dx.

To compute integrals of type 2−1
∫ 1
−1 e

2iπjxu(x)dx, we use their approximations via Riemann
sums:

1
N

N−1∑
k=0

eij
−π+2kπ

N u(
−1 + 2k

N
).(9)

Note that the IFFT (Inverse Fast Fourier Transform) Matlab function is defined as the function
which associates to a vector (X(1), . . . , X(N))′ a vector (Y (1), . . . , Y (N))′ such that, for N =
2M ,

Y (j) =
1
N

N∑
k=1

X(k)ei(j−1)
2π(k−1)

N =
1
N

N−1∑
k=0

X(k + 1)ei(j−1) 2πk
N .(10)

Hence, for X(k) = (ψZ/f∗ε (σ.))(2(k − 1)`m/N) for k = 1, . . . , N and for Y = (Y1, . . . , YN )′ =
IFFT (X), we get âm,j = Yj+1

√
`m/π for j = 0, . . . , N −1 = 2M −1. The quantity to be chosen

is M such that Kn = 2M − 1 ≥ (M2 + 1)n. Indeed the âm,j ’s can be computed by using this
IFFT with Kn = N = 2M − 1 and with adequate shifts. In that way, he quantity ‖gm − g

(n)
m ‖2

is always negligible with respect to the others.
One should take M ≥ log2(n+ 1). After checking that a choice of a larger values (up to 11)

does not change the estimation quality, we finally choose M = 8.
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3.3. Computation of the integrated squared error (ISE), ‖g̃−g‖2. We have two different
ways for computing the integrated squared error ‖g̃ − g‖2.

(E1) Standard approximation and discretization of the integral on an interval of R as it is
done in Delaigle and Gijbels (2004a) and Dalelane (2004). In order to compare our
results to theirs, we proceed to this valuation on the same intervals.

Since this evaluation on finite interval may lead to an under-valuation of the ISE, we also propose
an exact calculation of the ISE on R as described in the following.

(E2) Evaluation of the ISE on the whole real line. We use the decomposition

‖ĝ(n)
m − g‖2 = ‖g − gm‖2 + ‖gm − g(n)

m ‖2 + ‖g(n)
m − ĝ(n)

m ‖2.

In the cases we consider, g∗ is available and the bias term is computed by using the
standard formula ‖g − gm‖2 = (1/(2π)

∫
|x|≥`m |g

∗(x)|2dx. We bound ‖gm − g
(n)
m ‖2 by a

term of order `2m/Kn ≤ `2m/2
M . Finally, the variance term ‖gm − ĝ

(n)
m ‖2, is calculated

using that

‖g(n)
m − ĝm‖2 =

∑
|j|≤Kn

|am,j − âm,j |2.

Consequently, we need the computation of am,j =
√
`m/(2

√
π)
∫ 1
−1 e

−2πijxg∗(`mx)dx,

coefficients of the development of the projection g(n)
m =

∑
|j|≤Kn

am,jϕm,j on S(n)
m . Again,

using IFFT (see (9) and (10)), with G = (G1, · · · , GN ) and Gk = g∗(2(k − 1)π/N) for
k = 1, . . . , N , we get G? = (G?1, . . . , G

?
N )′ = IFFT (G). Then am,j =

√
`m/πG

?
j+1 for

j = 0, . . . , N − 1 = 2M − 1. This second method requires the knowledge of g∗ and is
unavoidable for stable distributions for which the analytical form of g is not available.

Remark 3.1. Speed of the algorithm: Since the IFFT is a fast algorithm, the computation
of our estimates is also a fast algorithm and requires only O(2M ln(2M )) = O(n ln(n)) operations
if Kn = 2M − 1 is of order n.

4. The practical framework

4.1. Description of the test densities g. We consider several types of densities g, and for
each density, we give the interval I on which the ISE is computed by the method (E1), which
is the case in all examples except for stable distributions, where the use of method (E2) is
unavoidable. The set of test densities can be split in three subsets. First we consider densities
having classical smoothness properties like Hölderian smoothness with polynomial decay of their
Fourier transform. Second we consider densities having stronger smoothness properties, with
exponential decay of the Fourier transform. And finally we consider densities with Fourier
transform compactly supported, that is satisfying Condition (RX

2 ).
Except in the case of densities leading to infinite variance, we consider density functions g

normalized with unit variance so that 1/σ2 represents the usual signal-to-noise ratio (variance



FINITE SAMPLE PENALIZATION IN ADAPTIVE DENSITY DECONVOLUTION 11

of the signal divided by the variance of the noise) and is denoted in the sequel by s2n defined
as s2n = 1/σ2.

(a) Uniform distribution: g(x) = 1/(2
√

3)1I[−√3,
√

3](x), g
∗(x) = sin(x

√
3)/(x

√
3), I = [−5, 5].

(b) Exponential distribution: g(x) = e−x1IR+(x), g∗(x) = 1/(1− ix), I = [−5, 10].
(c) χ2(3)-type distribution: X = 1/

√
6U , gX(x) =

√
6g(

√
6x), U ∼ χ2(3) where we know

that U ∼ Γ(3
2 ,

1
2),

gU (x) =
1

25/2Γ(3/2)
e−|x|/2|x|1/2, g∗U (x) =

1
(1− 2ix)3/2

,

and I = [−1, 16].
(d) Laplace distribution: as given in (11), I = [−5, 5].
(e) Gamma distribution: Γ(2, 3/2), with density g(x) = (3/2)2x exp(−3x/2)1IR+(x), g∗(x) =

−9/(4x2 + 12ix− 9). This density has variance 8/9, and is renormalized for simulation,
I = [−5, 25].

(f) Mixed Gamma distribution: X = 1/
√

5.48W with W ∼ 0.4Γ(5, 1) + 0.6Γ(13, 1),

gW (x) = [0.4 ∗ x
4e−x

Γ(5)
+ 0.6

x12e−x

Γ(13)
]1IR+(x), g∗W (x) =

0.4
(1− ix)5

+
0.6

(1− ix)13
,

and I = [−1.5, 26].
(g, h, i) Stable distributions of index r = 1/4 (g), r = 1/2 (h), r = 3/4 (i). In those cases, the

explicit form of g is not available but we use that |g∗(x)| = exp(−|x|r). The ISE is
computed with method (E2).

(j) Cauchy distribution: g(x) = (1/π)(1/(1 + x2)), g∗(x) = e−|x|, I = [−10, 10].
(k) Gaussian distribution: X ∼ N (0, σ2) with σ = 1, I = [−4, 4].
(l) Mixed Gaussian distribution: X ∼

√
2V with V ∼ 0.5N (−3, 1) + 0.5N (2, 1)

gV (x) = 0.5
1√
2π

(e−(x+3)2/2 + e−(x−2)2/2)), g∗V (x) = 0.5(e−3ix + e2ix)e−x
2/2,

and I = [−8, 7].
(m,n, o, p) Scale transforms of the Féjer-de la Vallée-Poussin distribution:

g(x) =
1− cos(px)

pπx2
, g∗(x) = (1− |x|/p)+,

for p = 1 in (m), p = 5 in (n), p = 10 in (o) and p = 13 in (p) and I = [−10, 10].

Densities (a,b,c,d,e,f) correspond to cases with r = 0 (Sobolev smoothness properties) with
different values of s, whereas densities (g,h,i,j,k,l) correspond to cases with r > 0 (infinitely
times differentiable) with different values for the power r. Clearly, (a,b) are not even continuous.

Since the stable distributions (g,h,i) as well as the Cauchy distribution (j), have infinite
variance, s2n = 1/σ2 is not properly defined.

The stable distributions (g,h,i) also allow to study the robustness of the estimation procedure
when assumption (AX

4 ) is not fulfilled. When the density to be estimated g is of type (g,h,i)
the tails of g(x) are known to behave like |x|−(r+1) (see Devroye (1986)). It follows that, for such
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densities, assumption (AX
4 ) is fulfilled only if r > 1/2. Consequently only the stable distribution

(i), satisfies (AX
4 )

The case of distributions (m,n,o,p) deserves some special comments: they correspond to
densities whose Fourier transform has compact support included in [−1, 1] for (m), [−5, 5] for
(n), [−10, 10] for (o) and [−13, 13] for (p). As a consequence, the bias term

∫
|x|≥`m |g

∗(x)|2dx
equals zero as soon as `m ≥ 1 for (m), `m ≥ 5 for (n), for `m ≥ 10 for (o), `m ≥ 13 for (p).
Therefore, the asymptotic rate for estimating this type of density is the parametric rate.

All above listed densities are plotted in Figure 1. Note that for the stable distributions, since
no explicit form is available, we give in fact the plot of the projection of the distribution on the
space S(n)

m (for `m = 10π) as computed by the projection algorithm.
We refer to Devroye (1986) for simulation algorithms of stable and Fejer-de la Vallée-Poussin

distributions.

4.2. Two settings for the errors and the associated penalties. We consider two types
of error density fε, the first one is the Laplace distribution which is ordinary smooth (δ = 0 in
(Aε

3)), and the second one is the Gaussian distribution which is super smooth (δ > 0 in (Aε
3)).

The penalty is connected to the variance order. In both settings, we will precise this variance
order and the value of the integral appearing in it. Since the theory only gives the order of
the penalty, by simulation experiments, we fixed the constant κ and precise some additional
negligible (with respect to the theory) terms used to improve the practical results. In both cases
we give the penalty given in Comte et al. (2005) with ∆ = π in `m = ∆m and the new penalty
allowing to use a thinner grid for the `m’s: here we take ∆ = 1/10.

• Case 1: Double exponential (or Laplace) ε’s.
In this case, the density of ε is given by

(11) fε(x) = e−
√

2|x|/
√

2, f∗ε (x) = (1 + x2/2)−1.

This density corresponds to centered ε’s with variance 1, and satisfying (Aε
3) with γ = 2,

κ0 = 1/2 and µ = δ = 0.
The variance order is evaluated as

κ(`m/(2πn))
∫ 1

−1
1/|f∗ε (σ`mx)|2dx = κ(`m/(πn))

(
1 +

σ2`2m
3

+
σ4`4m
20

)
.

Let us recall that, in Comte et al. (2005), ∆ = π, κ = 6π and the penalty is the following

pen(`m) =
6
n

[
`m + π ln2.5(`m/π) +

σ2`3m
3

+
σ4`5m
20

]
.(12)

The additional term (ln(`m/π))2.5 is motivated by the works of Birgé and Rozenholc (2002)
and Comte and Rozenholc (2004). This term improves the quality of the results by making the
penalty slightly heavier when `m becomes smaller.
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Here, using intensive simulations study we propose the following penalty:

(13) pen(`m) =
2.5
n

(
1− 1

s2n

)2
[
`m + 8 ln2.5(ζ(`m)) + 2

σ2`3m
3

+ 3
(

1 +
1
s2n

)2 σ4`5m
10

]
,

with

(14) ζ(`m) = π1I`m<4 +
(`m − 2)2

4(π − 2)
1I2≤`m<4 + `m1I`m≥4.

• Case 2: Gaussian ε’s. In that case, the errors density fε is given by

(15) fε(x) =
1√
2π
e−x

2/2, f∗ε (x) = e−x
2/2.

This density satisfies (Aε
3) with γ = 0, κ0 = 1, δ = 2 and µ = 1/2.

According to Theorem 2.1, the penalty is slightly heavier than the variance term, that is of
order

κ`(3δ/2−1/2)∧δ
m (`m/(2πn))

∫ 1

−1
1/|f∗ε (σ`mx)|2dx = κ`(3δ/2−1/2)∧δ

m (`m/(2πn))
∫ 1

−1
exp(σ2`2mx

2)dx.

Comte et al. (2005), for ∆ = π, choose κ = 6π and their penalty is the following

pen(`m) =
6
n

[
`m + π ln2.5(`m/π) +

`3mσ
2

3

] ∫ 1

0
exp[(σ`mx)2]dx.(16)

According to the theory, the loss, due to the adaptation is the term σ2`2m/3. As previously,
the additional term ln(`m/π)2.5 is motivated by simulations and the works of Birgé and Rozen-
holc (2002) and Comte and Rozenholc (2004).

Using intensive simulation study we propose the following penalty

pen(`m) =
2.5
n

(
1− 1

s2n

)2 [
`m + 8 ln2.5(ζ(`m)) +

σ2`3m
3

] ∫ 1

0
exp[(σ`mx)2]dx,(17)

where ζ(`m) is defined by (14) and the integral is numerically computed.

Remark 4.1. Note that when σ = 0, both penalties are equal to (2.5/n)(`m + 8 ln(ζ(`m))2.5).

Remark 4.2. Since ∆ = 1/10 we choose new constants and add a factor depending on s2n in
(13) and (17) with respect to (12) and (16). The function ζ(`m) is only chosen to give a smoother
version of `m ∨ π. The comparison of the penalty (12) for integer Lm’s, the new penalty with
ζ(`m) = `m ∨ π (not smoothed) and our final choice in (13) is given in Figure 2 for σ2 = 0 and
for σ2 = 0.1. The difference between the two ζ functions clearly vanishes when σ2 increases.

Remark 4.3. The influence of over- or under-penalization is illustrated in Figure 3, where
three penalties are tested for the estimation of the mixed gaussian distribution. The figure plots
the selected `m’s related to the ISE for 100 simulated path of the distribution. This shows that
over-penalization leads to smaller selected `m’s with increased ISE’s, whereas under-penalization
leads to greater selected `m’s with a more important increase of both the dimensions and the
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ISE’s. The central cloud of diamonds gives the selected `m’s for our penalization and shows that
for this distribution our penalty is very well calibrated.

As illustrated by Figure 3, usually under penalization leads to larger values of `m and increases
the variance which degrades the MISE more than over penalization. Hence it is better to prevent
from under penalization, the penalty is therefore increased. Here, since `m takes values on a
thin grid, preventing against under penalization is less important and one can choose a smaller
penalty which leads to a better trade-off between bias and variance. This leads to a better
control of the risk.

Remark 4.4. It is noteworthy that the penalty functions (13) and (17) depend on s2n which
is unknown. In Section 5.4, we propose a study of the robustness of the algorithm when s2n =
Var(X)/σ2 = Var(Z)/σ2−1 is replaced by a simple estimator (empirical variance of the observed
Zi’s instead of the theoretical one).

4.3. Theoretical rates in our examples. In order to compare the MISE resulting from our
simulations, we give in the Table 2 the expected theoretical (and asymptotic) rates corresponding
to each cases we study.

It is noteworthy that even if theoretical results are established for densities satisfying Con-
dition (RX

1 ), since we are in a simulation study, we consider the explicit form of the Fourier
transform of g to evaluate the bias. Consequently, for the calculation of the expected theoretical
rates given in Table 2, we denote by s, r and b, the constants such that

(18) ‖ g − gm ‖2≤ 1
2π

∫
|x|≥`m

|g∗(x)|2dx ≤ As
2π

(`2m + 1)−s exp{−2b`rm}.

Then, we evaluate the theoretical rate of convergence by using the results in Table 1 with those
s, r and b.

Let us briefly comment this table 2. Let us mention that with those choices of test densities,
we describe all types of behavior of the rates. According to Theorem 2.1, except in the case
where fε is the Gaussian density and the density to be estimated is also the Gaussian density
(0 ≤ δ ≤ 1/3 or r < δ), the expected rates of convergence of the adaptive estimator g̃ is the
expected rate of convergence of the non penalized estimator ĝm̆ with asymptotically optimal
rate, that is the rate given in Table 1, with the convention (18) about s, r and b.

In the remainder case, when fε is the Gaussian density and the density g is also the Gaussian
density, r = δ = 2 > 1/3, the penalty is larger, of a logarithmic factor, than the variance of the
non penalized estimator ĝm̆. Since the penalty is the dominating term in the trade-off with the
bias, the rate of convergence of g̃ is slower than the rate of convergence of the corresponding
non penalized estimator ĝm̆. Let us be more precise. When g is Gaussian, we have a bias term
given by ∫

|x|≥`m
|g∗(x)|2dx = 2

∫ +∞

`m

exp(−x2)dx ≤ 2
∫ +∞

`m

exp(−`mx)dx ≤
exp(−`2m)

`m
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and a variance term of order `m−1 exp(2µ(σ`m)2). So that, according to the convention (18),
we apply Formula (6) with s = 1/2, b = 1/2, r = 2, δ = 2 and µ = 1/2, to get that the rate of
convergence of the non penalized estimator ĝm̆ is of order

ln(n)−
1
2n

− 1
σ2+1 .

Now, according to Theorem 2.1, the penalty is of order `m exp(2µ(σ`m)2). We obtain that the
rate of convergence of the adaptive estimator g̃ is of order

(ln(n))−
1
2

σ2−1

σ2+1n
− 1

σ2+1 .

This implies a negligible loss of order ln(n)1/(1+σ2) for not knowing the smoothness of g.

Remark 4.5. Let us mention that taking σ = 0 in columns 2 and 3 in Table 2 does not always
provide the theoretical rates in the last column, with σ = 0. Some of the results above are not
continuous when σ → 0, especially when we consider Gaussian errors. This comes partly from
the constants depending on σ that could completely change when σ becomes small, and from
the bound ∫ `m

0
exp(σ2x2)dx ≤

∫ `m

0
exp(σ2`mx)dx =

exp(σ2`2m)− 1
σ2`m

.

The last term is globally equivalent to `m when σ tends to zero. But only the first part
exp(σ2`2m)/(σ2`2m) is retained for σ > 0 to evaluate the rate of convergence. In a general
setting, the dominant term for the variance term changes when σ gets smaller.

5. Simulation results

5.1. Some examples. Figures 4 and 5 illustrate the performances of the algorithm and the
quality of the estimation for ordinary and super smooth functions g. Not surprisingly, the
uniform distribution or the stable 1/2 distribution are not very well estimated, whereas the
quality of the estimation for the four other functions is very good.

Let us start a brief comparison with the results in Comte et al. (2005). It is noteworthy that
for the mixed gaussian density for instance, the length selected by the algorithm with ∆ = 1/10,
corresponds to a Lm which is much smaller than 1 since `m = πLm. Moreover, the other choices
illustrate that the algorithm takes full advantage of the more numerous possible choices that
can be done for the `m’s. Besides, the selected lengthes are always quite small and thus far from
asymptotic.

5.2. Mean Integrated Squared Errors. For all simulations, the MISE is evaluated by em-
pirical estimation over 1000 samples. Table 3 presents the MISE for the two types of errors, the
different tested densities, different s2n and different sample sizes.

The first comment on Table 3 concerns the importance of σ. Clearly the MISE are smaller
when there is less noise (σ small, s2n large).

The second comment is about the relative bad results for the estimation of stable distributions,
especially for stable distribution with parameter 1/4. If we have a look at the theoretical rate
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of order (ln(n))20/n, we easily see that this rate tends to zero but the asymptotic is very far
compared with the considered sample sizes as it is illustrated in Section 5.3. Also note that,
in those cases, the computation of the MISE is done by using the method (E2), which leads to
larger MISE than those computed with (E1) (two or three times (or more) larger MISE with
(E2) than with (E1)), as illustrated by the comparisons in Section 5.8.

Table 3 specifies that we take M = 8.

5.3. Comparison of empirical and theoretical rates. The rates can be illustrated from
Table 3 by plotting the MISE obtained in function of n. This allows to compare the empirical
and the theoretical asymptotic rates and to evaluate the influence of the value of σ2. It is worth
emphasizing anyway that in the case where the error is Gaussian and g super-smooth (densities
(g,l)), the rate is directly function of σ2. Moreover, the rate is clearly better than logarithmic.

In order to compare the empirical MISE with the theoretical MISE, we plot in all cases for
all values of n and of s2n, the log-MISE in function of ln(n). In order to allow the comparison
with the theoretical rates, these log-rates are plotted with dashed lines abacuses in function of
ln(n). Each abacus corresponds to a different value of the (unknown) multiplicative constant in
the rate. The results are plotted in Figures 7 (Laplace errors) and 8 (Gaussian errors).

Consider for instance the case of Mixed Gamma distribution with Laplace errors in Figure 7,
sixth subplot. The dashed abacuses give the log of n−9/14 (theoretical rate, see Table 2) up to
an additive constant. The full lines give the empirical rates for s2n = 2 to s2n = 1000 from top
to bottom. As −(9/14) ln(100) ∼ −3, one can deduce from the plot that, since the intercept is
between -5.5 and -6, the constant is between e−2.5 and e−3 and the rate of order 0.08n−9/14 for
s2n = 2 and 0.05n−9/14 for s2n = 1000.

We can see that most results are in very good accordance with the theoretical predictions,
but a few results in the case of Laplace errors are less satisfactory. Figure 6 explains the reason
of this last fact: when we plot the theoretical log-rates in function of n in those cases, we find
out that the asymptotic that make the logarithmic part of the rate negligible is reached for only
very huge values of the sample size n. It is quite positive anyway to see that in those bad cases,
our method behaves much better than what could be hoped from the asymptotics. Figure 9
plots these curves including some higher values of n going up to n = 25000, to show how further
are the asymptotics in practice.

Note that, for the rates depending on σ, we arbitrarily chose s2n = 4 since it was not possible
to give several theoretical curves. On the one hand, it appears from the Cauchy distribution
that even if assumption (AX

4 ) is not satisfied, the procedure can work. On the other hand,
stable distributions show nevertheless that a narrow pick can be quite difficult to estimate.

5.4. Robustness when s2n is estimated. We now propose a study of the robustness of the
algorithm when s2n = Var(X)/σ2 = Var(Z)/σ2− 1 is replaced by a simple estimator (empirical
variance of the observed Zi’s instead of the theoretical one). The MISE is computed with the
algorithm built on a penalty with an estimated s2n with a lower bound 1/0.6 that is about
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1.67. This lower bound is required for s2n = 2 mainly. As we already mention it, an under-
penalization can make the MISE explode and must be avoided. We compute the ratio of the
MISE obtained with the estimated s2n over the MISE of Table 3 when s2n is known, and we
obtain ratios equal to one, except in the cases given in Table 4, which remain of order one for
most of them. The empirical s2n in the penalty has therefore very small influence.

5.5. Comparison with some dependent samples.

5.5.1. Two β-mixing examples. In Comte et al. (2005), most of the asymptotic properties of the
adaptive estimator g̃ are stated in the i.i.d. case, but some robustness results are also provided.
More precisely, it is shown that, when both the Xi’s and the εi’s are absolutely regular, under
some weak condition on the β-mixing coefficients, then the L2-risk of the adaptive estimator g̃ has
the same order as in the independent case. The main change is the multiplicative constant in the
penalty term, which involves the sum of the β-mixing coefficients. In other words, the adaptive
procedure remains relevant for dependent data. Here we propose to study the performances of
the computed estimator when the Xi’s are now β-mixing, and so are the Zi’s.

This study is done by comparing the MISE obtained respectively for the Gaussian (k) and
the mixed Gaussian (l) distributions in the independent case with the distributions obtained in
the dependent cases generated as follows.

• Construction of the dependent sequence of the Xi’s with stationary standard Gaussian
distribution (k).

Let (ηk)k≥0 be a sequence of i.i.d. Gaussian random variables with mean 0 and variance σ2
η.

Let (Yk)0≤k≤n+1000 be a sequence recursively generated by

Yk+1 = aYk + b+ ηk+1, Y0 = 0, 0 < a < 1.(19)

In that case, the distribution of the sequence of the Yk’s converges with exponential rate to
a unique stationary distribution which is the Gaussian distribution N (b/(1 − a), σ2

η/(1 − a2)).
Therefore, we take, as an n-sample of X, the sequence (X1, · · · , Xn) = (Y1001, · · · , Yn+1000), and
we choose b = 0, and σ2

η = 1 − a2, in (19), so that the resulting distribution of the Xi’s is the
standard Gaussian N (0, 1). Consequently, the stationary distribution of the Xi’s distribution is
the standard Gaussian density (k).

• Construction of the dependent sequence of the Xi’s with stationary mixed Gaussian distri-
bution (l).

We propose here to mix two such gaussian sequences, independent from each other. More
precisely, we generate two sequences, using the method described previously. We first generate
Y

(1)
k , k = 1, · · · , n+ 1000 with σ2

η = 1− a2, b = −3(1− a) and second Y (2)
k , k = 1, · · · , n+ 1000

with σ2
η = 1 − a2, b = 2(1 − a). Finally we generate some uniform variable on [0, 1], denoted

by U and propose to take Xk as Xk = Y
(1)
k+1000 if U < 0.5 and Xk = Y

(2)
k+1000 else. Clearly, the



18 F. COMTE, Y. ROZENHOLC, AND M.-L. TAUPIN

covariance between the Xi and Xi+1 is divided by two thanks to the independent additional uni-
form sequence standardly used for the mixing of the distributions. It follows that the stationary
distribution of the Xi’s is the mixed Gaussian distribution (l).

In both contexts, we generate such sequence of Xi’s for different values of a, 0 < a < 1. Such
sequences are known to be geometrically β-mixing, with β-mixing coefficients (βk)k≥0 such that
βk ≤Me−θk, for some constants M and θ. The nearer a of 1, the stronger the dependency.

We study the properties of g̃, for different values of a, by computing the ratio between the
resulting MISE and the MISE obtained in the independent cases (k,l). The results are presented
in Table 5 and Table 6.

We can see that the procedure behaves in the same way in both cases, and that the resulting
MISE ratios comparing the dependency to independence get higher when a increases and gets
nearer of one. The result remain quite good until a = 0.8 and even 0.9 for small s2n’s, if we
keep in mind that the MISE is very low in the independent case for these two distributions.

Globally, for reasonable values of a (at least between 0 and 0.75), the dependency does not
seem to bring any additional problem.

5.5.2. A dependent but non mixing example. We also simulate the following dependent model.
Generate (ηi)1≤i≤n+1000 an i.i.d. Bernoulli sequence (η1 = 0 or 1 with probability 1/2). Then
generate Ui+1 = (1/2)Ui+ηi+1 with U0 = 0, for i = 1, . . . , n+1000. Take Xk =

√
3(Uk+1000−1)

for k = 1, . . . , n. The stationary distribution of the Uk’s is a uniform density on [0, 2] and
therefore the distribution of the Xi’s is the distribution (a), uniform on [−

√
3,
√

3]. This model
is however known to be dependent and non mixing (see e.g. Bradley (1986)). We experiment
the estimation procedure and we compute the ratio of the MISE for this model with the MISE
in the independent case (a), for the different values of s2n and sample sizes. The resulting table
is not given here because it contains essentially ones, the non ones number being at most 1.1.
This may be due to the poor quality of our estimation of the uniform distribution even in the
independent context which is then not worse in this special dependent context. But this shows
also that the procedure may be robust to some form of dependency quite different of the one
usually met in the statistical literature.

5.6. Comparison with Delaigle and Gijbels’(2004a). We propose here to compare the
performances of our adaptive estimator with the performances of the deconvolution kernel as
presented in Delaigle and Gijbels (2004a). This comparison is done for densities (e,f,k,l) which
correspond to the densities #2, #6, #1 and #3 respectively, in Delaigle and Gijbels (2004a).
They give median ISE obtained with kernel estimators by using four different methods of band-
width selection. The comparison is given in Table 7 between the median ISE computed for 1000
samples generated with the same length and signal to noise ratio as Delaigle and Gijbels (2004a).
We compute the MISE’s with direct approximation of the integrals on the same intervals as they
do, see Section 4.1. We also give our corresponding means since we think that they are more
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meaningful than medians. With a multiplicative constant in the penalty smaller than the one
we chose, it may happen that medians are much better but means become huge simply because
of a few number of bad paths. The cost of such bad paths seems therefore to have a price given
by means and completely hidden by medians.

We can see that our estimation procedure provides results of the same quality for the ordinary
smooth densities, namely for the χ2(3) and the Mixed Gamma densities, but that our results are
globally quite better for super-smooth densities (namely, the Gaussian and the mixed Gaussian
densities). It is noteworthy that in this case the new penalty functions given in (13) and (17)
give better MISE than the penalty functions (12) and (16) provided in Comte et al. (2005).

5.7. Comparison with direct density estimation when s2n is large. We propose now to
study the robustness of our procedure when s2n is large, that is when the Xi’s are in fact almost
observed. We propose to compare the non asymptotic properties of our deconvolution estimator
when s2n = 10000, with those, presented in a recent work by Dalelane (2004), about adaptive
data driven kernel estimator for density estimation, (based on the sample (X1, · · · , Xn)). We
consider here three of the four densities considered by Dalelane (2004), namely the normal
density (k), the scale transform of the Féjer-de la Vallée Poussin density, the Féjer 5 distribution
given by (n) and the Γ(2, 3/2) distribution (d). The results are given in Table 8. We give the
MISE for Laplace errors since the MISE for Gaussian errors are essentially the same when
s2n = 10000.

Even in these circumstances which are very unfavorable to our estimator, we find out that
our method performs very well for the Gaussian distribution (even often better than Dale-
lane’s (2004) estimator), quite well for the Gamma density where the MISE’s are of the same
order, and also for the Féjer 5 for n = 500 or n = 1000. Only the results for the Féjer 5
distribution when n is small (n = 50, 100) give much higher MISE’s.

Therefore, it appears that our density deconvolution estimator performs quite well despite the
great number of additional numerical approximations as compared to Dalelane’s (2004) results.

5.8. Comparison of methods (E1) and (E2): evaluation of the MISE on R versus
on an interval. Here, we want to compare the two methods of computation of the MISE on
an interval and on R as described in section 3.2, for a set of densities for which both methods
are possible: exponential, χ2(3), Laplace, Cauchy. In those cases, we can evaluate the bias as
follows:

‖g − gm‖2 =
1
2π

∫
|x|≥`m

|g∗(x)|2dx

with
* for g an exponential distribution (b),

∫
|x|≥`m |g

∗(x)|2dx = 2Arctan (1/`m) .
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* for g a normalized χ2(3) (c),∫
|x|≥`m

|g∗(x)|2dx =
√

6

1− 2
√

6`m√
1 + (2

√
6`m)2

 .

* for g a normalized Laplace density (d),∫
|x|≥`m

|g∗(x)|2dx =
√

2

(
Arctan

(√
2

`m

)
− `m/

√
2

1 + `2m/2

)
.

* for g a Cauchy distribution (j),
∫
|x|≥`m |g

∗(x)|2dx = e−2`m .

This allows to apply method (E2) to compute the “true” MISE on the whole real line.
It appears from Table 9 that the computation of the MISE’s with method (E2) gives results

which are about two or three times greater than with method (E1), except in the case of the
exponential law where some numerical problems seem to occur when s2n becomes greater and
for the χ2(3) distribution where small samples or high levels of noise seem to induce ratios of
order 10. In the other cases, the ratio decreases when s2n gets greater. The difference between
the two methods of evaluation comes of course from the oscillations of the estimate over the
whole real line, even when the true function tends to zero.

5.9. Results when the errors density is misspecified. We propose here to study the non
asymptotic properties of the estimator when the error density is not correctly specified. For
both type of errors, we study the behavior of the estimator using one type of the error density
to choose the penalty when the other type of errors density is used for the simulations of the
Zi’s. Table 10 presents the ratio between the resulting MISE if the errors density is not correct
with the MISE if the errors density is correct. For instance, in the first column, the errors are
Laplace but the estimator is constructed as if the error density were Gaussian. Some theoretical
results on the effect of misspecifying the errors distribution can be found in Meister (2004).

Some comments follow. As expected, since the construction uses the knowledge of the error
density, if it is misspecified, the estimator presents some bias and the MISE becomes slightly
larger. Nevertheless, this difference does not clearly appear when n is not very large. In-
deed in that case, the optimal length `m is small and therefore the variance term of order∫ `m
0 |f∗ε (σx)|−2dx is not so quite different between the two errors. In order to underline our

comments we present in Figure 10, the Fourier transform of the two error densities, the Laplace
and the Gaussian density. Here, σ is known. Globally, if we hesitate between Laplace and
Gaussian errors, Table 10 seems to indicate that until n = 1000, it is a good strategy to always
choose Gaussian errors for the estimation procedure.

We also study the behavior of our algorithm when ignoring the noise, that is by using our
algorithm with σ = 0 when σ is not null. This amounts to consider that the Xi’s are observed
(Zi = Xi) when it is not the case. In order to do this comparison, we simulate noisy data
(s2n = 2, 4, 10) and run the estimation procedure as if σ = 0 by putting s2n = 10000 in the
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associated penalty. Table 11 presents the ratios between MISE resulting from the procedure used
with s2n = 10000 and MISE resulting from the normal procedure which uses the knowledge of
σ and then s2n.

Surprisingly, one can remark two different behaviors of the ratios on Table 11. No deterioration
and even improvements for small values of n. This can be explained by the fact that the penalty
is smaller when σ = 0 so the algorithm can choose larger `m which may be of interest for certain
densities when n is small. For larger values of n, we clearly see an improvement to use our
deconvolution algorithm against a direct density estimation ignoring the noise.

6. Concluding remarks

As a conclusion, let us emphasize that we provide a complete simulation study involving all
types of possible theoretical behaviors and rates, which are very various in the context of density
deconvolution, depending on the type of the errors and of the distribution to be estimated. The
results are obtained with a fast algorithm using in particular the well-known good performances
of IFFT, and are globally very satisfactory, as compared with some other results given in the
literature. The method is very stable and reliable, even when some conditions set by the theory
are violated (as in the case of stable distributions), and is robust to dependency in the variables.
The standard way of computing the ISE on an interval is nevertheless proved to be more favorable
than a more global method that can be implemented here. Nevertheless the first method is the
standard one. The procedure seems also robust to a misspecification of the error density provided
that the level of the noise is well calibrated, and is numerically stable enough to recover good
orders as compared to direct density estimation in spite of much more (and useless in a case of
direct estimation) computations. Therefore, our global results show that the procedure works
very well, even for finite sample leading to selected lengthes very far from the asymptotic orders.

Appendix : proof of Theorem 2.1

The proof essentially follows the lines of the proof of Theorem 4.1 and 4.2 in Comte et
al. (2005), and details the role of ∆. We define νn(t) = 1

n

∑n
i=1[u

∗
t (Zi)−〈t, g〉] and Bm,m′(0, 1) =

{t ∈ S(n)
`m∨`′m

/ ‖t‖ = 1}. Arguing as in Comte et al. (2005), for x > 1 we have

‖g̃ − g‖2 ≤
(
x+ 1
x− 1

)2

‖g − g(n)
m ‖2 +

x(x+ 1)
x− 1

sup
t∈Bm,m̂(0,1)

ν2
n(t) +

x+ 1
x− 1

(pen(`m)− pen(`m̂)).

Choose some positive function p(`m, `m′) such that xp(`m, `m′) ≤ pen(`m) + pen(`m′). Conse-
quently, for κx = (x+ 1)/(x− 1) we have

(20) ‖g̃ − g‖2 ≤ κ2
x

[
‖g − gm‖2 + ‖gm − g(n)

m )‖2
]

+ xκxWn(`m̂)

+ κx (xp(`m, `m̂) + pen(`m)− pen(`m̂))
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with Wn(`m′) := [supt∈Bm,m′ (0,1) |νn(t)|2 − p(`m, `m′)]+, and hence

(21) ‖g̃ − g‖2 ≤ κ2
x‖g − gm‖2 + κ2

x

(M2 + 1)`2m
π2Kn

+ 2κxpen(`m) + xκx
∑

m′∈Mn

Wn(`m′).

The main point of the proof lies in studying Wn(`m′), and more precisely in finding p(`m, `m′)
such that for a constant K,

(22)
∑

m′∈Mn

E(Wn(`m′)) ≤ K/(n∆).

In that case, combining (21) and (22) we infer that, for all m in Mn,

(23) E‖g − g̃‖2 ≤ Cx inf
m∈Mn

[
‖g − gm‖2 + pen(`m) +

(M2 + 1)`2m
π2Kn

]
+ xκx

K

n∆
,

where Cx = κ2
x ∨ 2κx suits. It remains thus to find p(`m, `m′) such that (22) holds. This is done

by applying a version of Talagrand’s Inequality (see Talagrand (1996)), to the class of functions
F = Bm,m′(0, 1). If we denote by `m∗ = `m ∨ `m′ , we get that∑

m′∈Mn

E(Wn(`m′)) ≤ K
∑

m′∈Mn

[I(`m∗) + II(`m∗)],

where I(`m∗) and II(`m∗) are defined by

I(`m∗) =
λ2`

2γ+(1/2−δ/2)∧(1−δ)
m∗ exp{2µσδ`δm∗}

n
exp{−K1ξ

2(λ1/λ2)`
(1/2−δ/2)+
m∗ },

II(`m∗) =
λ1`

2γ+1−δ
m∗ e2µσ

δ(`m∗ )δ

n2
exp

{
−(K1ξC(ξ)

√
n/
√

2
}
,

with for `m ≥ `0,

λ2 =

{
1 if δ > 1
λ

1/2
1 (`−2

0 + σ2)γ/2‖f∗ε ‖κ−1
0 (2π)−1/2 if δ ≤ 1.

1) Study of
∑

m∈Mn
II(`m∗).

If we denote by Γ(`m) = `2γ+1−δ
m exp{2µσδ`δm} then∑

m∈Mn

II(`m∗) ≤ C(λ1)|Mn| exp
{
−(K1ξC(ξ)

√
n)/

√
2
}

Γ(`mn)/n2.

Consequently, as soon as Γ(`mn)/n is bounded (we only consider mn such that pen(`mn) is
bounded), then

∑
m∈Mn

II(`m∗) ≤ C/n

2) Study of
∑

m∈Mn
I(`m∗).

Denote by ψ = 2γ + (1/2− δ/2) ∧ (1− δ), ω = (1/2− δ/2)+, K ′ = K1λ1/λ2, then for a, b ≥ 1,
we infer that

(a ∨ b)ψe2µσδ(a∨b)δ
e−K

′ξ2(a∨b)ω ≤ (aψe2µσ
δaδ

+ bψe2µσ
δbδ)e−(K′ξ2/2)(aω+bω)

≤ aψe2µσ
δaδ
e−(K′ξ2/2)aω

e−(K′ξ2/2)bω + bψe2µσ
δbδe−(K′ξ2/2)bω .(24)
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Consequently, if we denote by Γ̃ the quantity Γ̃(`m∗) = `
2γ+(1/2−δ/2)∧(1−δ)
m∗ exp{2µσδ`δm∗} then∑

m′∈Mn

I(`m∗) ≤ C1(λ2)
Γ̃(m)
n

exp{−(K ′ξ2/2)`(1/2−δ/2)m }
∑

m′∈Mn

exp{−(K ′ξ2/2)`(1/2−δ/2)m′ }

+C1(λ2)
∑

m′∈Mn

Γ̃(`m′)
n

exp{−(K ′ξ2)`(1/2−δ/2)m′ }.(25)

a) Case 0 ≤ δ < 1/3. In that case, since δ < (1/2 − δ/2)+, the choice ξ2 = 1 ensures that
Γ̃(`m) exp{−(K ′ξ2/2)(`m)(1/2−δ/2)} is bounded and thus the first term in (25) is bounded by

C

n∆

∫ ∞

0
exp{−(K ′ξ2)x(1/2−δ/2)}dx ≤ C̃/(n∆).

In the same way,
∑

m′∈Mn
Γ̃(`m′) exp{−(K ′ξ2)`(1/2−δ/2)m′ }/n is bounded by

C

n∆

∫ ∞

0
(x+ 1)2γ+(1/2−δ/2)∧(1−δ) exp{2µσδ((x+ 1))δ} exp{−(K ′ξ2)x(1/2−δ/2)}dx ≤ ˜̃C/(n∆).

It follows that
∑

m′∈Mn
I(`m∗) ≤ C/(n∆). Consequently, (22) holds if we choose pen(`m) =

2x(1 + 2ξ2)λ1`
2γ+1−δ
m exp{2µσδ`δm}/n.

b) Case δ = 1/3. In that case, bearing in mind Inequality (24) we choose ξ2 such that 2µσδ`δm∗−
(K ′ξ2/2)`δm∗ = −2µσδ`δm∗ that is ξ2 = (4µσδλ2)/(K1λ1). By the same arguments as for the
case 0 ≤ δ < 1/3, this choice ensures that

∑
m′∈Mn

I(`m∗) ≤ C/(n∆), and consequently (22)
holds. The result follows by taking p(`m, `m′) = 2(1 + 2ξ2)λ1`

2γ+1−δ
m∗ exp(2µσδ`δm∗)/n, and

pen(`m) = 2x(1 + 2ξ2)λ1`
2γ+1−δ
m exp(2µσδ`δm)/n.

c) Case δ > 1/3. In that case, δ > (1/2 − δ/2)+. Bearing in mind Inequality (24) we choose
ξ2 = ξ2(`m, `m′) such that 2µσδ`δm∗ − (K ′ξ2/2)`ωm∗ = −2µσδ`δm∗ that is

ξ2 = ξ2(`m, `m′) = (4µσδλ2)/(K1λ1)`δ−ωm∗ .

This choice ensures that
∑

m′∈Mn
I(`m∗) ≤ C/(n∆), and consequently (22) holds and (8)

follows if p(`m, `m′) = 2(1 + 2ξ2(`m, `m′))λ1`
2γ+1−δ
m∗ exp(2µσδ`δm∗)/n, and pen(`m) = 2x(1 +

2ξ2(`m, `m))λ1`
2γ+1−δ
m exp(2µσδ`δm)/n. �
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Figure 1. Test densities.
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g ε ∼ Laplace ε ∼ Gauss ε = 0
(γ = 2, δ = 0) (γ = 0, δ = 2)

(a,b)
Uniform, Exponential n−1/6 [ln(n)]−1/2 n−1/2

s = 1/2, r = 0
(c)
χ2(3), n−2/7 [ln(n)]−1 n−2/3

s = 1, r = 0
(d,e)

Laplace, Γ(2, 3/2) n−3/8 [ln(n)]−3/2 n−3/4

s = 3/2, r = 0
(f)

Mixed Gamma n−9/14 [ln(n)]−4.5 n−9/10

s = 9/2, r = 0
(g) Stable 1/4

s = −3/8, r = 1/4,
[ln(n)]20

n
[ln(n)]3/8 exp

(
−2
(

ln(n)
σ2

)1/8
)

ln4(n)
n

b = 1
(h) Stable 1/2

s = −1/4, r = 1/2,
[ln(n)]10

n
[ln(n)]1/4 exp

(
−2
(

ln(n)
σ2

)1/4
)

ln2(n)
n

b = 1
(i) Stable 3/4

s = −1/8, r = 3/4,
[ln(n)]20/3

n
[ln(n)]1/8 exp

(
−2
(

ln(n)
σ2

)3/8
)

ln4/3(n)
n

b = 1
(j)

Cauchy, r = 1,
[ln(n)]5

n
exp

(
−2
√

ln(n)
σ2

)
ln(n)
n

s = 0, b = 1
(k,l) Gauss,

Mixed Gauss, r = 2,
[ln(n)]5/2

n
(ln(n))−

1
2

σ2−1

σ2+1

(
1
n

)1/(1+σ2) √
ln(n)

n

s = 1/4, b = 1/2
(m,n,o)

Féjer-DVP n−1 n−1 n−1

no bias
Table 2. Theoretical orders of the rates of the adaptive estimator as deduced
from Table 1 and formulae (6) and (7) when σ > 0 and (last column) when σ = 0.
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×10−2 n = 100 n = 250 n = 500 n = 1000 n = 2500
g s2n Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus.

U
ni

fo
rm

2 3.55 3.42 2.62 3.13 2.07 2.69 1.75 2.25 1.58 1.87
4 3.06 3.08 2.13 2.49 1.78 2.02 1.61 1.7 1.5 1.52

10 2.54 2.83 1.85 1.94 1.63 1.65 1.54 1.53 1.46 1.47
100 2.25 2.27 1.7 1.7 1.56 1.56 1.5 1.5 0.815 1.07

1000 2.21 2.22 1.68 1.7 1.56 1.55 1.5 1.49 0.785 0.79

E
xp

on
.

2 14.2 16.1 11.9 13.8 10.5 12.6 9.11 11.6 7.75 10.5
4 13 14.6 10.7 12.3 9.25 10.9 8.08 9.82 6.69 8.74

10 11.6 12.6 9.3 10.4 7.89 9.06 6.57 7.9 5.27 6.77
100 10.8 10.9 8.45 8.61 6.66 7.03 4.66 5.23 3.11 3.74

1000 10.7 10.8 8.37 8.4 6.55 6.58 4.37 4.49 2.53 2.71

C
hi

2(
3)

2 2.15 2.51 1.64 2 1.33 1.73 1.06 1.49 0.811 1.25
4 1.88 2.22 1.39 1.67 1.1 1.38 0.88 1.15 0.648 0.923

10 1.62 1.8 1.14 1.33 0.88 1.05 0.667 0.829 0.457 0.624
100 1.45 1.47 1 1.03 0.735 0.758 0.502 0.547 0.273 0.315

1000 1.43 1.44 0.995 0.995 0.723 0.726 0.499 0.499 0.253 0.259

L
ap

la
ce

2 3.87 5.19 2.6 3.52 1.92 2.74 1.4 2.17 0.921 1.7
4 3.24 4.77 2.09 2.84 1.48 2.09 1.01 1.53 0.63 1.07

10 2.61 3.25 1.61 2.03 1.03 1.36 0.677 0.916 0.39 0.577
100 2.24 2.33 1.3 1.36 0.753 0.798 0.375 0.422 0.213 0.199

1000 2.23 2.22 1.28 1.29 0.731 0.733 0.329 0.339 0.182 0.171

G
am

m
a

2 3.86 4.83 2.64 3.54 1.97 2.73 1.49 2.21 1.04 1.72
4 3.17 3.96 2.12 2.65 1.55 2.03 1.16 1.56 0.767 1.14

10 2.59 2.96 1.66 1.95 1.18 1.43 0.851 1.07 0.534 0.712
100 2.27 2.31 1.42 1.45 0.978 1.01 0.674 0.692 0.374 0.408

1000 2.2 2.22 1.4 1.42 0.974 0.968 0.663 0.661 0.359 0.361

M
ix

.G
am

m
a 2 0.465 0.47 0.277 0.362 0.172 0.241 0.109 0.144 0.0601 0.0838

4 0.432 0.428 0.237 0.352 0.135 0.206 0.086 0.112 0.0453 0.0605
10 0.396 0.423 0.196 0.279 0.106 0.135 0.0664 0.0773 0.035 0.0427

100 0.368 0.386 0.159 0.163 0.0897 0.091 0.0556 0.0573 0.0292 0.0299
1000 0.375 0.368 0.154 0.158 0.0867 0.0913 0.0552 0.0557 0.0288 0.0281

St
ab

le
1/

4 2 40.1 41.3 38.4 39.4 37.2 38.3 36.1 37.4 34.5 36.4
4 39.7 41.5 37.7 39.1 36.4 37.6 35.1 36.5 33.4 35.2

10 38.9 40.6 36.9 37.7 35.4 36.3 33.7 35 31.2 33.3
100 38.2 38.4 36.3 36.4 34.6 34.9 32.3 32.9 24.4 27.5

1000 38.1 38.2 36.3 36.3 34.6 34.6 32.2 32.3 18.1 20.7

St
ab

le
1/

2 2 5.84 6.71 4.58 5.34 3.8 4.42 3.17 3.8 2.45 3.19
4 5.59 6.78 4.13 4.96 3.38 3.96 2.74 3.3 2.03 2.62

10 5.02 6.1 3.66 4.14 2.91 3.3 2.24 2.64 1.51 1.94
100 4.55 4.64 3.37 3.42 2.62 2.68 1.91 1.99 0.791 1.03

1000 4.51 4.52 3.34 3.34 2.6 2.6 1.9 1.9 0.661 0.704

St
ab

le
3/

4 2 10.9 16.8 7.04 10.2 5 7.32 3.46 5.34 2 3.78
4 10.1 17.7 5.81 9.49 3.96 5.98 2.55 4.06 1.34 2.47

10 8 13.7 4.51 6.11 2.85 3.93 1.63 2.45 0.691 1.23
100 6.2 6.64 3.79 3.96 2.29 2.42 1.16 1.26 0.262 0.337

1000 6.08 6.17 3.72 3.77 2.25 2.27 1.13 1.14 0.225 0.235
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×10−2 n = 100 n = 250 n = 500 n = 1000 n = 2500
g s2n Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus.

C
au

ch
y

2 1.2 1.62 0.683 0.935 0.449 0.606 0.294 0.382 0.185 0.243
4 1.04 1.64 0.52 0.714 0.319 0.397 0.208 0.238 0.118 0.128

10 0.816 1.18 0.411 0.458 0.238 0.265 0.151 0.149 0.0947 0.0751
100 0.695 0.701 0.335 0.338 0.192 0.189 0.11 0.108 0.0736 0.0624

1000 0.671 0.69 0.321 0.338 0.186 0.18 0.107 0.104 0.0674 0.067

G
au

ss
.

2 0.928 1.09 0.537 0.538 0.416 0.397 0.314 0.281 0.23 0.194
4 0.649 0.838 0.415 0.312 0.305 0.225 0.226 0.173 0.149 0.108

10 0.609 0.48 0.37 0.28 0.248 0.2 0.178 0.146 0.128 0.0857
100 0.522 0.501 0.283 0.28 0.19 0.187 0.133 0.122 0.101 0.0827

1000 0.489 0.488 0.262 0.26 0.179 0.181 0.123 0.121 0.0911 0.0848

M
ix

.
G

au
ss

. 2 0.727 0.82 0.337 0.378 0.2 0.222 0.132 0.142 0.0892 0.0915
4 0.562 0.668 0.267 0.297 0.167 0.17 0.115 0.115 0.0788 0.08

10 0.498 0.529 0.242 0.244 0.151 0.147 0.107 0.103 0.0678 0.0762
100 0.471 0.459 0.213 0.225 0.141 0.139 0.1 0.0983 0.0516 0.0553

1000 0.453 0.457 0.216 0.224 0.141 0.142 0.0991 0.0979 0.0491 0.05

F
éj

er
1

2 0.884 1.02 0.531 0.426 0.372 0.393 0.276 0.262 0.191 0.181
4 0.655 0.813 0.388 0.285 0.271 0.215 0.196 0.146 0.12 0.094

10 0.616 0.465 0.341 0.281 0.23 0.185 0.147 0.117 0.0962 0.0736
100 0.522 0.504 0.274 0.269 0.17 0.172 0.112 0.104 0.0766 0.0667

1000 0.516 0.514 0.262 0.262 0.16 0.164 0.102 0.104 0.0684 0.0676

F
éj

er
5

2 9.43 13.7 5.53 9.33 3.29 6.85 1.66 5.04 0.557 3.41
4 7.5 11.6 3.81 6.66 1.87 4.28 0.672 2.62 0.32 1.24

10 5.16 7.52 1.98 3.56 0.556 1.66 0.361 0.543 0.273 0.16
100 3.92 4.24 1.03 1.22 0.363 0.311 0.32 0.229 0.243 0.157

1000 3.83 3.9 0.969 0.982 0.319 0.319 0.273 0.265 0.221 0.188

F
éj

er
10

2 44.5 53.5 35.2 46.1 27.9 41.4 21.3 37.3 13 32.9
4 40.1 48.5 29.3 38.9 21.7 33.3 14.6 28.3 7.37 22.9

10 32.5 39.5 20.1 28.5 10.8 21.5 5.21 15.6 1.24 9.49
100 27.7 29.1 9.47 13.3 0.854 2.37 0.736 0.418 0.52 0.3

1000 27.4 27.7 8.12 8.74 0.815 0.709 0.695 0.568 0.522 0.371

F
éj

er
13

2 70.6 81.7 59.1 73.1 49.5 67.7 40.3 62.9 28.6 57.6
4 64.9 75.4 51 64.1 40.6 57.3 30.6 51.1 18.9 44.1

10 54.8 64.2 37.3 50.1 23.4 41.1 14 32.8 5.85 24.1
100 47.4 49.7 13.2 21.7 1.13 6.26 0.972 0.829 0.706 0.377

1000 47 47.3 9.33 10.8 1.19 0.945 0.964 0.734 0.71 0.467
Table 3. Empirical MISE obtained with 1000 samples and approximations per-
formed with M = 8, for different sample size (n = 100, 250, 500, 1000, 2500) and
different values of s2n (2, 4, 10, 100, 1000, the higher s2n the lower the noise
level).
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Figure 7. Empirical MISE and theoretical asymptotical rates in logarithmic
scale, when the errors follow a Laplace distribution. From top to botton, full
lines correspond to increasing s2n (2,4,10,100,1000). Dashed lines are abacuses
(up to an additive constant) for the log-theoretical rates.



32 F. COMTE, Y. ROZENHOLC, AND M.-L. TAUPIN

102 103

- 8

- 6

- 4

- 2

0
uniform+Gaussian noise

log(n)-1/2 10

2 103

-8

-6

-4

-2

0
exponential+Gaussian noise

log(n)-1/2

102 103

-8

-6

-4

-2

0
chi2(3) +Gaussian noise

log(n)-1

102 103

-8

-6

-4

-2

0
Laplace+Gaussian noise

log(n)-3/2

102 103

- 8

- 6

- 4

- 2

0
gamma(3,2)+Gaussian noise

log(n)-3/2

102 103

-8

-6

-4

-2

0
mix-gamma+Gaussian noise

log(n)-9/2

102 103

-8

-6

-4

-2

0
stable(1/4)+Gaussian noise

log3/8(n) exp(-2(log(n) /σ2)1/8)

102 103

-8

-6

-4

-2

0
stable(1/2)+Gaussian noise

log1/4(n) exp(-2(log(n) /σ2)1/4)

102 103

- 8

- 6

- 4

- 2

0
stable(3/4)+Gaussian noise

log1/8(n) exp(-2(log(n) /σ2)3/8)

102 103

-8

-6

-4

-2

0
Cauchy+Gaussian noise

exp(-2(log(n) /σ2)1/2)

102 103

-8

-6

-4

-2

0
Gaussian+Gaussian noise

log(1- σ2)/2(1+σ2)(n) n-1/(1+ σ2)

102 103

-8

-6

-4

-2

0
mix-Gaussian+Gaussian noise

log(1- σ2)/2(1+σ2)(n) n-1/(1+ σ2)

102 103

- 8

- 6

- 4

- 2

0
Fejer(1)+Gaussian noise

n-1 10

2 103

-8

-6

-4

-2

0
Fejer(5)+Gaussian noise

n-1

102 103

-8

-6

-4

-2

0
Fejer(10)+Gaussian noise

n-1

102 103

-8

-6

-4

-2

0
Fejer(13)+Gaussian noise

n-1

Figure 8. Empirical MISE and theoretical asymptotical rates in logarithmic
scale, when the errors follow a Gaussian distribution. From top to botton, full
lines correspond to increasing s2n (2,4,10,100,1000). Dashed lines are abacuses
(up to an additive constant) for the log-theoretical rates.
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Figure 9. Empirical MISE and theoretical rates in logarithmic scale up to n =
25000 when the errors follow a Laplace distribution. The “bad cases”.
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n = 100 n = 250 n = 500 n = 1000 n = 2500
g s2n Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus.

M
ix

.G
a
m 2 0.96 0.92 1.3 1.1 1.4 1.6 1.3 2.2 1.3 1.6

4 1 0.97 1.2 1.1 1.1 1.5 1.1 1.3 1.1 1.2
10 1 1 1.1 1.1 1 1.1 1 1.1 1 1.1

st
a
b
le

1 2 2 1.2 1.4 1.2 1.4 1.2 1.3 1.2 1.3 1.2 1.3
4 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.1 1.1 1.1

10 1.1 1.1 1 1.1 1 1 1.1 1.1 1.1 1.1

st
a
b
le

3 4 2 1.8 2.2 1.6 2.2 1.6 2.1 1.6 2 1.6 1.8
4 1.4 1.5 1.3 1.5 1.2 1.5 1.3 1.4 1.2 1.4

10 1.2 1.2 1.1 1.2 1.1 1.1 1.1 1.2 1.1 1.2

C
a
u
ch

y 2 1.5 2.4 1.4 2.3 1.2 2.1 1.1 1.9 0.86 1.5
4 1.3 1.6 1.1 1.6 1.1 1.5 0.97 1.3 0.88 1.1

10 1.1 1.2 1 1.1 1 1.1 0.96 1 0.91 0.96

M
ix

.G
a
u 2 1.1 2.1 1 1.7 1 1.5 0.97 1.2 0.94 1.1

4 1 1.3 1 1.2 0.99 1.1 0.99 1 1 0.98
10 1 1.1 0.99 1 0.99 1 0.99 1 1.1 1

F
é
je

r
1 2 1.2 3.8 0.58 3.3 0.59 1.1 0.59 0.36 0.59 0.35

4 0.87 2.3 0.81 1.1 0.81 0.73 0.8 0.73 0.83 0.71
10 0.93 1.1 0.92 0.91 0.92 0.92 0.92 0.92 0.9 0.9

F
é
je

r
5 2 1.4 1.5 1.6 1.7 1.8 1.8 2 1.8 2.2 1.8

4 1.2 1.3 1.3 1.4 1.4 1.4 1.6 1.5 0.8 1.6
10 1.1 1.1 1.2 1.2 1.3 1.3 0.92 1.4 0.94 0.87

F
é
je

r
1
0 2 1.1 1.1 1.1 1.2 1.2 1.2 1.3 1.2 1.5 1.2

4 0.97 0.99 1.1 1.1 1.1 1.1 1.2 1.1 1.2 1.1
10 0.95 0.96 1 1 1.1 1.1 1.1 1.1 1.1 1.1

F
é
je

r
1
3 2 1 1.1 1.1 3 1.1 1.1 1.2 1.1 1.3 1.1

4 0.94 0.95 1 1 1 1 1.1 1.1 1.1 1.1
10 0.9 0.93 0.99 0.99 1 1 1.1 1.1 1.1 1.1

Table 4. Ratio of the MISE with estimated s2n over MISE with known s2n
when not strictly equal to one.
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n = 100 n = 250 n = 500 n = 1000 n = 2500

g s2n Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus.
a
=

0
.5

2 1.4 1.2 1.3 1.1 1.3 1.2 1.2 1.4 1.1 1.3
4 1.6 1.3 1.4 1.6 1.2 1.4 1.2 1.2 1.2 1.2

10 1.6 1.6 1.4 1.5 1.4 1.4 1.3 1.2 1.1 1.1

a
=

0
.7

5 2 2 1.8 2 1.7 1.7 1.4 1.6 1.5 1.3 1.5
4 3 2 2.4 2.6 2 2.1 1.6 1.7 1.4 1.5

10 3 3.3 2.4 2.9 2.2 2.4 1.8 1.8 1.5 1.7

a
=

0
.8

2 2.5 2 2.3 2.1 1.9 1.7 1.7 1.6 1.3 1.5
4 3.5 2.4 2.7 3.1 2.3 2.5 1.8 2.1 1.5 1.7

10 3.8 4.2 2.9 3.8 2.6 2.9 2.1 2.3 1.6 1.9

a
=

0
.9

2 4.6 3.5 3.8 3.6 3.3 2.9 2.4 2.6 1.8 2.1
4 6.5 4.2 5 6 4.1 4.7 3.2 3.7 2.4 2.8

10 7.5 8 5.8 6.9 4.9 5.4 3.7 4.3 2.6 3.4

a
=

0
.9

5 2 8.2 6.1 7.5 24 5.9 5 4.2 4.4 2.8 3.2
4 12 7.8 9.7 11 7.5 9.2 5.8 6.6 4 4.7

10 15 16 11 14 9.5 11 7.2 7.8 4.9 6.4
Table 5. Ratio of the MISE obtained with 1000 samples and different values of
a over the MISE in the independent Gaussian case (k) .

n = 100 n = 250 n = 500 n = 1000 n = 2500
g s2n Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus.

a
=

0
.5

2 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.2 1.1 1.1
4 1.5 1.3 1.4 1.4 1.4 1.4 1.3 1.2 1.2 1.2

10 1.6 1.5 1.5 1.5 1.4 1.4 1.3 1.3 1.2 1.2

a
=

0
.7

5 2 2.2 1.9 2.2 1.9 2 1.9 1.8 1.7 1.5 1.5
4 2.6 2 2.5 2.1 2.3 2.1 1.9 1.8 1.5 1.5

10 2.9 2.6 2.7 2.5 2.5 2.3 2 2 1.6 1.5

a
=

0
.8

2 2.6 2.2 2.6 2.2 2.5 2.1 2.2 1.9 1.7 1.6
4 3.1 2.4 3 2.5 2.6 2.5 2.3 2.2 1.8 1.7

10 3.5 3 3.5 3 2.9 2.7 2.5 2.4 1.9 1.8

a
=

0
.9

2 4.4 3.5 4.7 3.9 4.5 3.6 3.7 3.2 2.7 2.4
4 5.9 4 5.6 4.6 5.4 4.6 4.2 3.7 2.9 2.7

10 6.8 5.6 6.7 5.8 5.6 5.4 4.5 4.4 3.3 2.8

a
=

0
.9

5 2 8.4 5.9 9.1 6.9 8.6 7.1 7.3 5.9 4.7 4.3
4 11 6.9 12 8.4 11 8.6 8.1 7.3 5.4 4.8

10 12 11 14 12 12 12 9.1 9.1 6.3 5.3
Table 6. Ratio of MISE obtained with 1000 samples and different values of a
over the MISE in the independent mixed Gaussian case (l).
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×10−2 n = 100 n = 250

density g method ε Lap. ε Gaus. ε Lap. ε Gaus.

(e) or #2
χ2(3)

(s2n=4)

DG, lower median 1.5 1.8 — —
DG, higher median 1.8 2.2 — —
Proj.: median 1.8 2.1 — —
Proj.: mean 1.9 2.2 — —

(f) or #6
Mix.Gamma

(s2n=10)

DG, lower median — — 0.21 0.23
DG, higher median — — 0.24 0.26
Proj.: median — — 0.17 0.27
Proj., mean — — 0.20 0.28

(k) or #1
Gauss

(s2n=4)

DG, lower median 0.71 0.80 0.41 0.51
DG, higher median 1.1 1.2 0.59 0.72
Proj.: median 0.45 0.76 0.31 0.22
Proj.: mean 0.65 0.84 0.42 0.31

(l) or #3
Mix.Gauss
(s2n=4)

DG, lower median 1.8 2.7 1.1 2.0
DG, higher median 3.1 3.4 2.3 2.8
Proj.: median 0.48 0.62 0.23 0.26
Proj.: mean 0.56 0.67 0.27 0.30

Table 7. Lower and higher Median ISE obtained by Delaigle and Gijbels (2004)
with four different strategies of bandwidth selection in kernel estimation com-
pared with median and mean for our penalized projection estimator.
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×10−2 method n = 50 n = 100 n = 500 n = 1000
g Gaussian D. Kernel 1.18 0.63 0.13 0.08

Gauss. Ker. 1.72 1.27 0.28 0.16
sinc Ker. 2.16 1.14 0.26 0.10

Proj. 0.84 0.53 0.18 0.12

g Féjer 5 D. Kernel 2.29 0.79 0.22 0.13
Gauss. Ker. 3.07 1.84 0.55 0.22

sinc Ker. 3.92 1.87 0.55 0.23
Proj. 6.74 3.93 0.32 0.27

g Gamma(2,3/2) D. Kernel 2.70 1.48 0.52 0.27
Gauss. Ker. 2.77 2.09 0.61 0.31

sinc Ker. 6.17 4.03 1.66 0.37
Proj. 3.13 2.19 0.96 0.65

Table 8. MISE for our projection estimator (Proj.) with Laplace penalty using
s2n = 10000 and for direct density estimation by kernel of Dalelane(2004), with
Gaussian kernel (D. Kernel) or with sin(x)/x kernel (sinc).

n = 100 n = 250 n = 500 n = 1000 n = 2500
g s2n Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus.

E
xp

.

2 2.7 2.3 3.4 2.7 3.9 3.1 4.6 3.4 5.6 3.8
4 3 2.5 3.8 3.1 4.5 3.6 5.3 4.1 6.5 4.7

10 3.4 3 4.5 3.8 5.4 4.6 6.7 5.3 8.6 6.4
100 3.7 3.7 5 4.9 6.6 6.2 9.8 8.6 15 12

1000 3.8 3.7 5 5 6.7 6.7 11 10 19 18

L
ap

la
ce

2 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3
4 1.3 1.2 1.3 1.2 1.2 1.2 1.3 1.2 1.3 1.2

10 1.3 1.2 1.2 1.2 1.3 1.2 1.3 1.2 1.4 1.2
100 1.3 1.3 1.2 1.2 1.3 1.2 1.4 1.3 1.7 1.5

1000 1.3 1.3 1.2 1.2 1.2 1.2 1.4 1.4 1.8 1.7

C
hi

2(
3)

2 12 15 11 13 9.2 12 7.8 11 6.1 9.9
4 12 15 9.6 12 8.1 11 6.6 9.2 5.1 7.7

10 10 12 8.1 9.8 6.5 8.2 5.1 6.7 3.4 5.2
100 9.6 9.9 7.4 7.7 5.6 5.9 3.9 4.3 1.9 2.3

1000 9.6 9.6 7.4 7.3 5.6 5.6 3.9 3.9 1.7 1.8

C
au

ch
y

2 4.6 6.1 4.2 5.3 3.8 4.9 3.3 4.6 2.7 4.3
4 4.6 6.5 4 5.6 3.6 4.9 3.1 4.4 2.5 3.8

10 4 5.8 3.5 4.5 3.1 3.9 2.5 3.4 2.2 2.7
100 3.5 3.7 3.3 3.4 2.8 2.9 2.3 2.5 2 2.1

1000 3.5 3.5 3.3 3.3 2.8 2.9 2.3 2.4 2 2
Table 9. Ratio of the MISE obtained by method (E2) over the MISE obtained
with method (E1).
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n = 100 n = 250 n = 500 n = 1000 n = 2500
Noise Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus.

Penalty Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap.
g s2n

L
a
p
la

c
e 2 0.93 1.1 0.92 1.2 1.1 1.3 1 1.5 1.6 2

4 0.97 1 0.96 1 0.96 1.1 0.98 1.2 1.1 1.5
10 0.99 0.99 0.99 0.99 1 1 0.99 1 1 1.2

M
ix

.G
a
m

.

2 0.98 1.1 0.93 1 0.91 1.1 1 1.2 1.2 1.5
4 0.99 1 1 1 0.98 1 0.99 1.1 1 1.2

10 1 1 0.98 1 0.98 1.1 0.98 1 1 1

C
a
u
ch

y 2 1.1 0.98 1 0.93 1.1 0.91 1.2 1 1.5 1.2
4 1 0.99 1 1 1 0.98 1.1 0.99 1.2 1

10 1 1 1 0.98 1.1 0.98 1 0.98 1 1

G
a
u
ss

2 0.95 1 0.93 1.2 0.88 1.2 1.2 1.1 1.5 1.1
4 0.96 1 0.96 1 1 1 0.95 1 1.1 1

10 1 0.97 1 0.96 1 1 0.97 1.1 0.99 1

F
é
je

r
1 2 0.91 0.98 1.1 0.97 1.1 1 1.2 1.1 1.1 1.1

4 0.99 1 1 1 0.95 0.99 1 0.96 1 1
10 1 0.97 0.93 1 0.96 0.96 1.1 1 1 0.98

Table 10. Ratio between MISE with misspecified error density (Laplace errors,
g estimated as if errors were Gaussian and reciprocally) and MISE with correctly
specified error density.

n = 100 n = 250 n = 500 n = 1000 n = 2500
g s2n Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus. Lap. Gaus.

L
a
p
la

c
e 2 1 0.9 1.3 1.2 1.5 1.4 1.9 1.8 2.9 2.2

4 0.95 0.68 1 0.87 1.2 1 1.5 1.3 2.3 1.9
10 0.96 0.78 0.98 0.79 1 0.83 1.1 0.99 1.6 1.4

M
ix

.G
a
m

.

2 0.9 0.89 0.92 0.78 0.99 0.81 1.2 1.1 1.8 1.6
4 0.93 0.94 0.9 0.62 0.95 0.67 1.1 0.91 1.5 1.3

10 0.96 0.89 0.92 0.65 0.96 0.77 1 0.92 1.2 1

C
a
u
ch

y 2 0.83 0.7 0.99 0.88 1.2 1.1 1.5 1.6 2.2 2.3
4 0.81 0.5 0.89 0.71 0.99 0.93 1.2 1.2 1.7 1.9

10 0.87 0.6 0.89 0.82 0.91 0.84 0.92 0.99 1 1.4

G
a
u
ss

2 1.2 1.2 1.6 2 1.8 2.4 2.1 3.1 2.8 4.4
4 1.1 0.95 1.1 1.6 1.2 1.8 1.4 2 1.9 3

10 0.94 1.1 0.87 1.1 0.87 1.1 0.87 1.1 1 1.6

F
é
je

r
1 2 0.97 0.92 1.1 1.6 1.3 1.5 1.5 1.9 2 2.6

4 0.96 0.82 0.97 1.4 0.99 1.3 1.1 1.5 1.4 2
10 0.9 1.2 0.86 0.99 0.83 0.98 0.82 1.1 0.89 1.2

Table 11. Ratio between MISE when ignoring noise and MISE with correctly
specified error density.


