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Abstract

We consider the problem of estimating the stationary density of the process Vt in the

stochastic volatility model dYt =
√

VtdWt where Wt is a standard Brownian motion and Vt a

Markov stationary mixing process. We propose a nonparametric adaptive strategy for which

we give non asymptotic risk bounds. We discuss the resulting rate and show that it is quite

good in some classical examples of volatility models.
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1 Introduction

In this paper, we consider a stochastic volatility (SV) model:

dYt =
√

VtdWt, Y0 = 0,

where Wt is a standard Brownian motion, independent of the process (Vt) assumed to be sta-

tionary and ergodic. Our aim is to estimate the stationary density of the so-called volatility

process V . When Y is a log-price, this model is widely used in finance to take into account the

stochastic feature of the volatility, which was modelled as a constant in the original Black and

Scholes model.

Stochastic volatility models have been introduced in finance by Hull and White (1987) and

popularized by Renault (1997) or Shephard (2005) and the references therein. Statistical

properties of the volatility process or of the integrated volatility process have been studied by

Genon-Catalot et al. (1999, 2000), by Bibby et al. (2004), by Gloter (2000a, b), by Gloter and
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Jacod (2001), in different settings: parametric rather than nonparametric, discrete observations

with fixed or tending to zero time interval between two observations. In this work, we consider a

discretely observed process at times k∆n, for k = 1, . . . , n where ∆n tends to zero and n∆n tends

to infinity when n tends to infinity and we are interested in the problem of the nonparametric

estimation of the stationary density of the process (Vt).

The tools we use to solve the problem are related to the deconvolution literature. Indeed,

this model can be written as if the variables with unknown density where not directly observed

but observed up to an additive noise having known density. There is a wide literature on

deconvolution methods, which were first based in the nonparametric setting on kernel estimators,

see e.g. Carroll and Hall (1988), Stefansky and Carroll (1990), Fan (1991). These works were

concerned with the estimation of densities with standard smoothness (i.e. belonging to Sobolev

or Hölder spaces) and were constrained by minimax rates (Fan (1991)) which were very slow in

the context of what is usually called “super-smooth” errors. Our model belongs to this class,

and this explains why van Es et al. (2003) obtain logarithmic rates with the kernel estimator

they study in the context of a SV model. But recent developments in this field show that, if the

function to be estimated has the same kind of smoothness as the noise, then the rates can be

significantly improved. This context has been first considered by Pensky and Vidakovic (1999)

with a wavelet estimator which is adaptive in some cases. Lower bounds for the rates have

been studied by Butucea (2004) and Butucea and Tsybakov (2004). The work by Comte et

al. (2005a) proposes an adaptive projection estimator reaching automatically the optimal rates

in most cases and with negligible loss in the other cases. Comte et al. (2005b) study intensively

the very good finite sample properties of the estimator.

These improvements lead to a natural construction of a nonparametric, projection estimator

in the context of the SV model seen as a convolution model. Heuristical justifications are easy to

provide and the risk bounds can be much better than logarithmic, if the function to be estimated

has the same smoothness as the noise. The procedure can be made adaptive by penalization of

the projection contrast, leading to a data-driven selection of the projection space. The resulting

estimator has very good theoretical properties in term of its mean square integrated risk.

The model and the assumptions are detailed in Section 2, the estimator is defined and

heuristically discussed in Section 3. Section 4 studies the risk bound for the estimator whereas

Section 5 generalizes the non asymptotic risk bound to an adaptive estimator. The rates are

discussed and examples are provided in Section 6, for which we can check that the assumptions

are fulfilled and compute the asymptotic rates. Most proofs are gathered in Section 7.
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2 Model and assumptions

2.1 Stationarity conditions

Consider the process (Yt) given by

dYt =
√

VtdWt, Y0 = 0 (1)

where:

(A0) (Wt) is a Wiener process; (Vt) is a process with values in (0,+∞), independent of (Wt).

(A1) (Vt) is a time-homogeneous Markov process, with continuous sample paths, strictly sta-

tionary and ergodic. Moreover its stationary (marginal) distribution admits a density π(v)

with respect to the Lebesgue measure on (0,+∞) (hereafter denoted by dv).

(A2) Either (Vt) is β-mixing and its β-mixing coefficient βV satisfies
∫ +∞
0 βV (t)dt = A2 < +∞;

or (Vt) is ρ-mixing. In this case, we set
∫ +∞
0 ρV (t)dt = A2(< +∞) where ρV is the ρ-mixing

coefficient.

Note that if Vt is ρ-mixing under (A1), then ρV tends to zero exponentially fast. Under (A1), if

we denote by Pt(v, dv′) the transition probability of (Vt), then it is well-known that the β-mixing

coefficient βV (t) of (Vt) has the following explicit expression that will allow to check condition

(A2) on our examples:

βV (t) =
∫ +∞

0
π(v)dv‖Pt(v, dv′)− π(v′)dv′‖TV

where ‖ · ‖TV denotes the total variation distance between probability measures.

Below, we focus on the case where (Vt) is a diffusion process, defined by a stochastic differ-

ential equation:

dVt = b(Vt)dt + a(Vt)dBt, V0 = V, (2)

where (Wt, Bt) is a Brownian motion of R2, and in that case, we can consider the following

assumption:

(A’1) (i) b and a are continuous real valued functions on R and C1 functions on (0,+∞) with:

∃K > 0, ∀v > 0, |b(v)|+ |a(v)| ≤ K(1 + v) and ∀v > 0, a(v) > 0. (3)

(ii) For v0 > 0, let

s(v) = exp
[
−2
∫ v

v0

b(u)
a2(u)

du

]
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be the scale density of (2), then∫
0+

s(v)dv = +∞,

∫ +∞
s(v)dv = +∞,

∫ +∞

0
dv/(a2(v)s(v)) = M0 < +∞.

(iii) Let π(v) = (M0a
2(v)s(v))−11I]0,+∞[(v), then the initial random variable V has distri-

bution π(v)dv.

(iv) The random variable V is independent of the two-dimensional Brownian motion

(Wt, Bt).

In this case, Assumption (A1) holds, and (Vt) is automatically β-mixing, that is limt→+∞ βV (t) =

0. The checking of the integrability condition of βV (t) may be obtained on specific examples

under criteria detailed e.g. in Pardoux and Veretennikov (2001). Under (A’1), there exists a

necessary and sufficient condition (see Genon-Catalot et al. (2000)) to prove that the process is

ρ-mixing and in that case, the mixing is exponential (i.e. ρV (t) = e−λt,∀t ≥ 0, with λ > 0), and

is therefore such that
∫ +∞
0 ρV (t)dt < +∞.

2.2 Moment-type conditions

The sample path of (Yt) is observed at regularly spaced instants ti = i∆, i = 1, . . . , n with

sampling interval ∆. From the observations (Yi∆, 1 ≤ i ≤ n), we want to estimate the stationary

density π of the diffusion (Vt). More precisely, we shall build a nonparametric estimator of the

stationary density f of

Xt = ln(Vt). (4)

This density is linked with π through the relation f(x) = exπ(ex).

Let us first note that, setting, for ∆ > 0,

V̄i =
1
∆

∫ i∆

(i−1)∆
Vsds, X̄i = ln(V̄i). (5)

we have, using (A0),
1√
∆

(Yi∆ − Y(i−1)∆) = V̄
1/2
i εi

where (εi, i = 1, . . . , n) are independent identically distributed random variables having distri-

bution N (0, 1), independent of (Vt, t ≥ 0). Now we set ηi = ln(ε2
i ) and we consider the equation

Zi = ln

{[
1√
∆

(Yi∆ − Y(i−1)∆)
]2
}

= ln(V̄i) + ηi = X̄i + ηi. (6)

The following assumptions on f and on the moments of X0 are required:

(A3) Mf = supx f(x) < +∞.
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(A4) E[ln2(V0)] = E(X2
0 ) < +∞ and E{[ln(V̄1)− ln(V0)]2} ≤ c∆, ∆ ≤ 1.

(A5) The variables V̄i (and therefore X̄i) admit a density, we denote by g∆ the density of X̄i

and we assume that g∆ belongs to L2(R).

Comments on the assumptions.

• Assumption (A3) is not very strong and can be slightly weakened since we only need that∫
x2f2(x)dx < Cf < ∞. (7)

Under (A3) and the first part of (A4), Cf = MfE(X2
0 ) suits. Moreover, this ensures that f

belongs to L2(R).

• Assumption (A4) can be checked by using one of the lemmas:

Lemma 2.1 Let (Xt) be a strictly stationary and ergodic diffusion process on R satisfying dXt =

µ(Xt)dt + σ(Xt)dBt with µ, σ ∈ C1(R), |µ(x)|+ |σ(x)| ≤ K(1 + |x|),∀x ∈ R, and E(X2
0 ) < +∞,

then (A4) holds for Vt = eXt.

Lemma 2.2 Assume that (A’1) holds, that E(V 4
0 ) + E[supt∈[0,1] 1/V 4

t ] < +∞. Then (A4) is

fulfilled.

In particular, we use some bounds given in Gloter (2000b) implying that E[supt∈[0,∆](1/V 4
t )] ≤

cE[1/V 4
0 ] in almost all the cases studied in the examples below (see Section 6).

• Let us now turn to Assumption (A5). On the one hand, the existence and the properties of

such a density is known in some particular cases (for instance, for the Cox-Ingersoll-Ross process,

see Cox et al. (1985)). On the other hand, for diffusion processes given by (2), the existence of g∆

can be obtained as a consequence of the existence of a transition density for the two-dimensional

diffusion process (Vt,
∫ t
0 Vsds). This in turn is obtained by checking the Hörmander condition

for (Vt,
∫ t
0 Vsds) (see Gloter (2000a)). For instance, we may use the following proposition:

Proposition 2.1 Assume that Vt is solution of (2) with a and b infinitely differentiable with

bounded derivatives of any order n ≥ 1. Assume moreover that for any x ∈ R, a(x) 6= 0 or

(b(x) 6= 0 and ∃n ≥ 1, a(n)(x) 6= 0). Then V̄1 admits a density.

Concerning the square integrability condition, an available criterion is to check that

sup
u∈R

|u2E(eiuX̄1)| < +∞.

Such a condition implies both that g∆ exists and is bounded. This criterion is natural to get

regularity conditions on densities. In our case, it can be checked by means of Malliavin calculus

through an integration by part formula, as it is done e.g. in Yoshida (1997).
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3 The estimation method

Equation (6) suggests to build first, by a deconvolution approach a nonparametric estimator of

g∆. Then, we will simply consider it as an estimator of f and study its asymptotic properties

as ∆ = ∆n tends to zero.

3.1 Some notations

We denote by u∗(x) =
∫

eitxu(t)dt the Fourier transform of a square-integrable function, by

‖u‖2 =
∫
|u(x)|2dx the square of the L2(R)-norm (for possibly complex valued functions) and

by 〈u, v〉 =
∫

u(x)v̄(x)dx the scalar product (z̄ denotes the conjugate of z). We recall that for

any two functions u(x) and v(x) in L2(R) and complex valued, the following relation holds

〈u, v〉 =
∫

u(x)v̄(x)dx =
1
2π
〈u∗, v∗〉.

If u is real valued, u∗(−.) = ū∗(.) and if u∗ is in L2(R) then (u∗)∗(.) = 2πu(−.). We also use the

following notation for the convolution: u?v(x) =
∫

u(t)v(x−t)dt, and recall that (u?v)∗ = u∗v∗.

3.2 Heuristical approach

For any function t belonging to L2(R), such that t∗ is compactly supported, we can define

γn(t) = ‖t‖2 − 2
n

n∑
k=1

ut(Zk), where ut(x) =
1
2π

∫
eiux t∗(−u)

f∗η (u)
du =

1
2π

[
t∗(−.)
f∗η (.)

]∗
, (8)

where the Zk’s are defined by (6).

Elementary computations lead to the following density for ηi = ln(ε2
i ) with εi ∼ N (0, 1):

fη(x) =
1√
2π

ex/2e−ex/2

and it is proved in Comte (2004) that

f∗η (t) =
1√
π

2itΓ(
1
2

+ it), |f∗η (t)| =
√

2/e e−π|t|/2 (1 + O(1/|t|)) for |t| → +∞. (9)

The following notation is useful:

Φη(L) =
∫
|x|≤πL

dx

|f∗η (x)|2
. (10)

Observe that E(ut(Zk)) = 〈ut, g∆ ? fη〉 = 1
2π 〈u

∗
t , g

∗
∆f∗η 〉. Due to the definition of ut, u∗t =

t∗(.)/f∗η (−.) and therefore

E(ut(Zk)) =
1
2π
〈 t∗(.)
f∗η (−.)

, g∗∆f∗η 〉 =
1
2π

∫
t∗(u)

f∗η (−u)
g∗∆(−u)f∗η (−u)du =

1
2π
〈t∗, g∗∆〉 = 〈t, g∆〉.
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Consequently Eγn(t) = ‖t‖2 − 2〈t, g∆〉 = ‖t − g∆‖2 − ‖g∆‖2. This equality justifies the choice

of an estimator of g∆ obtained by minimizing the criterion t 7→ γn(t). Actually, our aim is to

estimate f (and not g∆). Proposition 3.1 below explains why the choice of γn is relevant to

estimate f .

3.3 The contrast property.

Let us first state a simple convergence result that explains why our function γn may be called a

contrast function for the estimation of f .

Proposition 3.1 Under Assumptions (A0)-(A5), for any function t in L2(R) such that t∗ is

compactly supported, then

1
n

n∑
k=1

ut(Zk) → 〈t, f〉 in probability, if n → +∞,∆ = ∆n → 0, n∆n → +∞.

This implies straightforwardly if f∗ is compactly supported that

γn(t)− γn(f) → ‖t− f‖2 in probability, if n → +∞,∆ = ∆n → 0, n∆n → +∞.

The constraint of compact support for t∗ or f∗ is strong and due the exponential decay of f∗η

near infinity (see equation (9)). But, as we shall see below, this constraint is not useful for

f . In particular γn(f) is not assumed to exist in the following. However, this explains why

the functions t which are considered are chosen such that t∗ is compactly supported. These

considerations just give a glance to the heuristic of the nonparametric contrast method.

The proof of Proposition 3.1 is obtained as a by-product of the general study of our estimator

below. We extract this simple result to establish the link with parametric methods based on

contrast functions (see e.g. Genon-catalot et al. (1999)).

3.4 The projection method

To construct our estimator of the density f , we use a projection method on an adequate sequence

of subspaces of L2(R).

Let ϕ(x) = sin(πx)/(πx) so that ϕ∗(x) = 1I[−π,π](x). For L ∈ N and j ∈ Z, set ϕL,j =
√

Lϕ(Lx − j). The functions {ϕL,j , j ∈ Z} constitute an orthonormal system in L2(R). For

L = 2k, it is also known as the Shannon basis. Moreover, we choose here integer values of L

but a grid with smaller step (for instance with step 1/10 or 1/4) would also be possible. Let us

define

SL = Vect (ϕL,j , j ∈ Z) , L ∈ N.
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The space SL is exactly the subspace of L2(R) of the square integrable functions t with Fourier

transform compactly supported with support [−πL, πL]. It can be proved that if f is a square

integrable function, then f∗L = f∗1I[−πL,πL] and this yields:

‖f − fL‖2 =
1
2π

∫
|x|≥πL

|f∗(x)|2dx.

This evaluation of what becomes in the following a squared bias term is most useful.

Thus, for all t ∈ SL, ut is well defined in spite of the exponential order of 1/f∗η (see (8) and

(9)). We will define an estimator f̂L as an element of SL. To obtain a representation of f̂L

having a finite number of “coordinates”, we must introduce

S
(n)
L = Vect (ϕL,j , |j| ≤ Kn) . (11)

Now we may define

f̂L = arg min
t∈S

(n)
L

γn(t). (12)

These estimators admit a very simple expression:

f̂L =
∑

|j|≤Kn

âL,jϕL,j , with âL,j =
1
n

n∑
k=1

uϕL,j (Zk). (13)

In a second step, the problem of the optimal and automatic choice of L leads to consider a

penalized contrast estimator

L̂ = arg min
L∈{1,...,mn}

[
γn(f̂L) + pen(L)

]
.

This procedure selects a relevant estimator in the collection (f̂L)L∈{1,...,mn} provided that the

penalty function pen is well chosen.

4 Quadratic risk of the estimators

This section is devoted to the study of the quadratic risk of f̂L, R(f̂L, f) = E(‖f̂L−f‖2), leading

to an evaluation of the optimal L.

4.1 Decomposition of the risk

We denote in the following by fL and by f
(n)
L the orthogonal projections of f on SL and on S

(n)
L

respectively. Let

νn(t) =
1
n

n∑
k=1

(ut(Zk)− 〈t, g∆〉).
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For t in S
(n)
L , γn(t) is well defined. Therefore, for s, t ∈ S

(n)
L , we have the following decomposition

of the contrast:

γn(t)− γn(s) = ‖t− f‖2 − ‖s− f‖2 − 2νn(t− s) + 2〈t− s, f − g∆〉.

Then since, by (12), γn(f̂L) ≤ γn(f (n)
L ), we obtain

‖f̂L − f‖2 ≤ ‖f − f
(n)
L ‖2 + 2νn(f̂L − f

(n)
L ) + 2〈f̂L − f

(n)
L , g∆ − f〉.

The first right-hand-side term is the standard deterministic projection bias term, the second

one corresponds to a kind of variance term and the last one to a random bias term due to the

implicit approximation of f by g∆.

4.2 Projection bias term

The regularity conditions for f are described as follows and the functions considered in our

examples will belong to such classes.

(Reg) There exist some positive real numbers s, r, b such that the density f belongs to

Ss,r,b(M) =
{

t density :
∫ +∞

−∞
|t∗(x)|2(x2 + 1)s exp{2b|x|r}dx ≤ M

}
.

Note that densities satisfying (Reg) with r = 0 belong to some Sobolev class of order s, whereas

densities satisfying (Reg) with r > 0, b > 0 are infinitely many times differentiable. Moreover,

such densities admit analytic continuation on a finite width strip when r = 1 and on the whole

complex plane if r = 2.

We know that under Assumption (A3) and the first part of (A4), f is square integrable, so

‖f − f
(n)
L ‖2 ≤ ‖f − fL‖2 + ‖fL − f

(n)
L ‖2. (14)

The term ‖f − fL‖2 depends on the smoothness of the function f and has the standard order

for classical smoothness classes since it is given by the distance between f and the classes of

entire functions having Fourier transform compactly supported on [−πL, πL] (see Ibragimov and

Hasminskii (1983)). More precisely, the following inequalities hold:

Proposition 4.1 Assume that f belongs to a class Ss,r,b(M), that (A3) is fulfilled and that

E[ln2(V0)] = E(X2
0 ) < +∞, then

‖f − fL‖2 ≤ M

2π
(L2π2 + 1)−s exp{−2b(πL)r}, ‖fL − f

(n)
L ‖ ≤

(1 + C
1/2
f )L2

Kn
, (15)

where Cf is defined by (7).
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In our case, the values of L which must be considered are of order at most ln(n). This implies

that the term of order L2/Kn is less than ln2(n)/Kn and is negligible as soon as Kn is of order

n. The choice of Kn is free from a theoretical point of view, but in practice, the larger Kn, the

slower our estimation procedure.

4.3 Bound for the risk

The two other terms are controlled as follows:

Lemma 4.1 Under Assumptions (A0)-(A2), (A4) and (A5),

2E(〈f̂L − f
(n)
L , g∆ − f〉) ≤ 1

4
E(‖f̂L − f‖2) +

1
4
‖f − f

(n)
L ‖2 + C∆L3. (16)

Lemma 4.2 Under Assumptions (A0)-(A2) and (A5),

2E[νn(f̂L − f
(n)
L )] ≤ 1

2
E‖f̂L − f‖2 +

1
2
‖f − f

(n)
L ‖2 +

2
πn

Φη(L) +
8πL(1 + A2)

n∆
, (17)

where Φη(L) is defined by (10).

By gathering the bounds in (14), (16) and (17), we obtain the following result:

Theorem 4.1 Under Assumptions (A0)-(A5),

E(‖f̂L − f‖2) ≤ 7‖f − fL‖2 +
8

πn
Φη(L) +

CL2

Kn
+

C ′L(1 + A2)
n∆

+ C”∆L3.

The first three right-hand-side terms are the usual ones in deconvolution theory, and the last

ones are due to the implicit approximation of f by g∆.

Therefore, if f belongs to a class described by Ss,r,b(M), then the bound for ‖f − fL‖2 is given

by (15). On the other hand, it follows from (9) that

Φη(L) =
∫ πL

−πL

dx

|f∗η (x)|2
≤ Ceπ2L.

Note that we have as a consequence the consistency of our estimator:

Corollary 4.1 Under Assumptions (A0)-(A5), and if Kn ≥ n, and L = Ln ≤ ln(n)/(2π2) with

Ln → +∞ when n → +∞, then the quadratic risk E(‖f̂L− f‖2) tends to zero if ∆ = ∆n is such

that ∆n ln3(n) → 0 and n∆n/ ln(n) → +∞ when n → +∞.

Some rates can be deduced from Theorem 4.1.
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4.4 Discussion about the rates

We want to illustrate here that Sobolev classes are not large enough for this kind of problem and

more precisely in deconvolution. Indeed, with a noise of super-smooth type as we have here (i.e.

with exponential rate of decay of its Fourier transform), the optimal rates for the estimation of

a function belonging to a classical Sobolev class are logarithmic. An a priori selection of the

space (i.e. of L) can then be done.

Now if more general classes are considered, and if the Fourier transform of the function to

estimate is allowed to have the same rate of decay as the noise, then the rates can be improved

and are much faster than logarithmic. However, these rates are very complicated to compute

(see the discussion in Comte et al. (2005a)). Moreover the choice of the optimal L depends on

the unknown function. Thus, since the regularity of the function to estimate is unknown (in

particular it may or may not be of Sobolev type), an adaptive procedure is required to select L.

An additional advantage of the adaptive selection of L is that it avoids the uneasy computation

of the optimal value of L. Actually, the adaptive procedure automatically selects a value of L

close to the optimal one. At the same time, it also makes the bias-variance trade-off. Let us

show it more precisely by some examples.

If f belongs to a Sobolev space with order s (b = r = 0) then, by using (15) and Theorem

4.1, the orders are the following, for Kn = n:

E(‖f̂L − f‖2) ≤ C1L
−2s + C2

eπ2L

n
+

C4L
2

n
+

C3L

n∆
+ C5∆L3.

In that case, choose L = ln(n)/(2π2) and this yields

E(‖f̂L − f‖2) ≤ C ′
1[ln(n)]−2s +

C ′
2√
n

+
C ′

3 ln(n)
n∆

+ C ′
4∆ ln(n)3.

If we have ∆ = ∆ = n−δ for 0 < δ < 1,

E(‖f̂L − f‖2) ≤ C ′
1[ln(n)]−2s +

C ′
2√
n

+
C ′

3 ln(n)
n1−δ

+ C ′
4

ln(n)3

nδ
.

In that case, the discretization terms are negligible with respect to the deconvolution bias. The

rate [ln(n)]−2s corresponds to the optimal deconvolution rate for a density belonging to this

class of regularity (see Fan (1991)). This is the rate exhibited by van Es. et al. (2003) with a

non adaptive kernel method and s = 2.

Now, if f is supersmooth i.e. b 6= 0, r 6= 0, then the rate can be improved. Let us take

s = 0 for simplicity. By using (15) and Theorem 4.1 again, the orders are now the following, for

Kn = n:

E(‖f̂L − f‖2) ≤ C1e
−2b(πL)r

+ C2
eπ2L

n
+

C4L
2

n
+

C3L

n∆
+ C5∆L3.
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The deconvolution rate can reach any of the rates n−α for 0 < α ≤ 1. For instance, if r = 1,

the order of the bias is e−βL. The optimal choice of L is L = ln(n)/(β + π2) and the associated

deconvolution rate is n−β/(β+π2). This is faster than n−1/2 if β ≥ π2 and slower if β < π2.

Then, in this case, to obtain the global rate, the discretization terms must be taken into

account. For these terms, the better reachable rate is ln2(n)/
√

n and is obtained for ∆n =

1/[ln(n)
√

n]. The global rate is the worse of this rate and the deconvolution rate. In the

previous situation of a bias of order e−βL, the rate is the optimal deconvolution rate if β < π2

and is ln2(n)/
√

n if β > π2.

In any case, the rates in this class of functions are much better than logarithmic and can

reach the upper bound ln2(n)/
√

n. This is illustrated in the examples below that describe some

standard volatility models.

4.5 Some closely related noises.

Note that the noise η has the law of ln(N (0, 1)2) = ln(χ2(1)) = ln(G(1/2, 1/2)) where G denotes

the Gamma distribution. Our result may be extended to the case where η ∼ ln(G(a, λ)). In

that case,

fη(x) = e−λex
eax λa

Γ(a)
.

Then it is also easy to see that f∗η (x) = λixΓ(a + ix)/Γ(a). By using the Stirling formula, we

find |f∗η (x)| ∼+∞
√

2πe−a|x|a−1/2e−π|x|/2/Γ(a), which yields

Φη(L) =
∫ πL

−πL
dx/|f∗η (x)|2 = O((πL)1−2aeπ2L).

In other words, results as Theorem 4.1 are still valid for that type of extended noise, and the order

of the corresponding term is slightly improved when a > 1/2. Nevertheless, the improvement in

the rate is of a logarithmic factor.

5 Adaptive procedure: data driven selection of L

5.1 Main result

The general formula for the choice of L as a function of s, b and r is not easy to describe.

Some examples are given in Comte et al. (2005a) that illustrate that the optimal choice of

L is different when r ≤ 1/2 or 1/2 < r ≤ 2/3, and more generally depends on k such that

k/(k + 1) < r ≤ (k + 1)/(k + 2). It follows that the selection of L needs to be automatic. The

adaptive procedure is based on the following data-driven choice:

L̂ = arg min
L∈{1,...,ln(n)}

{
γn(f̂L) + pen(L)

}
, pen(L) = κ

(1 + L)Φη(L)
n

, (18)

12



where pen(L) stands for a penalty function and κ is a numerical constant. This criterion is

deduced from the results of Comte et al. (2005a) in a pure deconvolution framework.

Theorem 5.1 shows that the optimization of the deconvolution terms (first two terms in the

upper bound of Theorem 4.1) can be done automatically, and in a nonasymptotic way. This is

useful because, even if in the examples of Section 6 we compute asymptotic rates, the selected

dimensions are of logarithmic order and in practice often very small. For illustrations of this

fact, we refer to Comte et al. (2005b).

Theorem 5.1 Assume that Assumptions (A0)-(A5) are fulfilled, then the estimator f̂L̂ defined

by (12) and (18) for some universal constant κ with a collection L ≤ ln(n), satisfies

E(‖f̂L̂ − f‖2) ≤ K inf
L∈{1,...,ln(n)}

(
‖f − fL‖2 +

(1 + L)Φη(L)
n

)
+

C ′ ln(n)2

Kn
+

4π ln(n)(1 + A2)
n∆n

+ C∆n ln(n)3. (19)

Note that a (standard) loss of order L occurs in the penalty and consequently in the variance

term of (19), compared to the variance term of Theorem 4.1. This implies a small loss in the

rate, which can be proved to be always negligible with respect to the order of the rate. The

asymptotic order for great L of the penalty is therefore Leπ2L/n and the rate depends on the

squared bias-variance compromise. Some examples follow in Section 6.

5.2 Estimation of the integrated volatility

A process of interest is often the integrated volatility itself, rather than the volatility. It is

interesting from this point of view to mention that our method may be directly considered

as a method of estimation of g∆ itself. A consequence of the previous bounds is that, under

Assumptions (A0)-(A2), if g∆ exists, is bounded, and if E(ln2(V̄1)) < +∞, then for Kn ≥
n ln(n), L ≤ ln(n) and for any fixed ∆,

E(‖f̂L̂ − g∆‖2) ≤ K inf
L∈{1,...,ln(n)}

(
‖g∆ − g∆,L‖2 +

(1 + L)Φη(L)
n

)
+

C ′ ln(n)
n

+
4π ln(n)(1 + A2)

n∆
. (20)

Here g∆,L denotes the orthogonal projection of g∆ on SL.

It follows that f̂L̂ is also an adaptive estimator of g∆, and in this context, the rate is better

when ∆ is chosen as a fixed positive number, rather than as a function of n. The last two terms

of inequality (20) are then negligible, and the rate is the standard deconvolution rate.

To obtain information on the regularity properties of g∆, we may check that supu∈R |ukE(eiuX̄1)|
is finite. See the comments on Assumption (A5) in Section 2.2.
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6 Examples

In the following, we consider model (1) under (A0) and we propose different models for the

volatility Vt. In each case, we check Assumptions (A1)-(A4) and compute the rate of the adap-

tive estimator of f . For Assumption (A5), we refer to the general comments and to Proposition

2.1 in Section 2.2. The checking of (A2) requires a special comment: the β-mixing and the

ρ-mixing coefficients are not comparable. Depending on the model, it may be easier to check

(A2) via the β- or the ρ-mixing coefficient. For the β-mixing coefficient we rely on a useful

proposition given in Pardoux and Veretennikov (2001). For the ρ-mixing coefficient, we rely on

a proposition given in Genon-Catalot et al. (2000). Note that (A2) may hold for both the β

and the ρ-mixing coefficient, or only for the β-mixing coefficient and not for the ρ-mixing.

6.1 Exponential of diffusion processes on the real line

6.1.1 Exponential of the Ornstein-Uhlenbeck process

Assume that Vt = exp(Xt) where dXt = −αXtdt+ cdBt, Bt is a standard Brownian motion, X0

is independent of (Bt,Wt). We consider α > 0 and X0 ∼ N (0, ρ2) with ρ2 = c2/(2α), which is

the stationary distribution of (Xt).

Checking the Assumptions (A1)-(A4). The process (Xt) satisfies (A’1) so that (Vt) satisfies

(A1). For (A2), the integrability property of the β-mixing coefficient can be deduced from

Proposition 1 p.1063 in Pardoux and Veretennikov (2001). Consider dXt = µ(Xt)dt+σ(Xt)dBt

and the following conditions:

(A’2) µ is a locally bounded borel function, ∃M0 ≥ 0 and d ≥ 0 such that sgn(x)µ(x) ≤ −r|x|d

for |x| ≥ M0; σ is uniformly continuous and there exists σ0, σ1 > 0 such that 0 < σ0 ≤
σ(x) ≤ σ1 < +∞, for all x ∈ R.

Then the stationary solution of the equation is β-mixing with β-mixing coefficient βX(t) such

that βX(t) ≤ ce−λt. Note that we also have ρX(t) ≤ e−λt. (Actually in this model, λ = α.)

Since (A’2) is fulfilled by (Xt), (A2) holds for (Xt) and (Vt).

Assumption (A3) and the first part of (A4) are fulfilled. For the second part of (A4), Lemma

2.1 gives the result.

Rate of the adaptive deconvolution estimator of f . We have f∗(x) = e−ρ2x2/2, and

‖f − fL‖2 =
1
2π

∫
|x|≥πL

e−ρ2x2
dx ≤ 1

π

∫
x≥πL

e−ρ2πLxdx =
2

π2Lρ2
e−π2L2ρ2

.
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Then if we choose πL =
√

ln(n)/ρ, the bias is of order (n
√

ln(n))−1 and the variance is of

order Leπ2L/n that is of order
√

ln(n) exp(π2 ln1/2(n)/ρ − ln(n)). This term gives the rate in

the infimum term of the bound (19). Note that, for any δ, 0 < δ < 1, this term is o(n−δ).

We take Kn ≥ n ln2(n). In that case, asymptotically for any δ, 0 < δ < 1,

E(‖f̂L̂ − f‖2) ≤ o(n−δ) +
4π ln(n)(1 + A2)

n∆n
+ C∆n ln(n)3.

The rate is therefore determined by the choice of ∆ = ∆n = 1/(
√

n ln(n)) and is asymptotically

of order (much better than logarithmic):

E(‖f̂L̂ − f‖2) = O(ln(n)2/
√

n).

6.1.2 Exponential of an hyperbolic diffusion.

We consider here Vt = exp(Xt) with dXt = −αXtdt + c
√

1 + X2
t dBt.

Checking the Assumptions (A1)-(A4). The stationary solution of this equation, Xt, satisfies

(A’1) for α + c2/2 > 0 so that Vt satisfies (A1). Here the stationary density of X is given by

f(x) = A(1 + x2)−1−α/c2 for a constant A of normalization. We have (A3) and the first part

of (A4) for α > c2/2. And we have (A4) by Lemma 2.1. For the ρ-mixing condition, we use

Proposition 2.8 of Genon-Catalot et al. (2000), namely for dXt = µ(Xt)dt + σ(Xt)dBt, it is

required that

(i) limx→±∞ σ(x)m(x) = 0, for m(x) = exp(2
∫ x

µ(u)/σ2(u)du)/σ2(x),

(ii) Let γ(x) = µ′(x)− 2µ(x)/σ(x). The limits limx→±∞ 1/γ(x) exist and are finite.

Here m(x) = (1 + x2)−(1+α/c2), and σ(x)m(x) = (1 + x2)−(1/2+α/c2) tend to zero when x

tends to +∞ and −∞, as soon as α + c2/2 > 0, which holds for α > 0. Moreover γ(x) =

(c2 + 4α)x/(c
√

1 + x2) so that limx→−∞ 1/γ(x) = −1/[c(c2 + 4α)] and limx→+∞ 1/γ(x) =

1/[c(c2 + 4α)]. It follows that (i) and (ii) are fulfilled, so that the process is ρ-mixing and

therefore exponentially ρ-mixing. We can conclude that (A2) is satisfied.

Rate of the adaptive deconvolution estimator of f . We consider only the cases where α/c2 =

m ∈ N with m ≥ 1. Let us denote by fm the stationary density associated with the value

α/c2 = m. For m = 0, f = f0 corresponds to the Cauchy density, with Fourier Transform

f∗0 (x) = e−|x| and in the general case f∗m satisfies (f∗m)” = f∗m − f∗m−1 so that is can be proved

(by recursion) that f∗m(t) = Pm(|t|)e−|t| where Pm is a polynomial of degree m. The optimal

asymptotic rate is obtained by the minimization of L−2me−2πL + Leπ2L/n. Therefore choosing

πL = ln(n)/(2 + π)− (2m + 1)/(2 + π) ln(ln(n)) leads to the rate n−2/(2+π) ln(n)−[2/(2+π)](πm−1)

for the deconvolution terms.
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Here, the discretization terms can be made negligible for instance when ∆ = ∆n = 1/(
√

n ln(n)).

Therefore the rate is entirely determined by the deconvolution rate and is of order

E(‖f̂L̂ − fm‖2) = O

(
n−

2
2+π ln(n)−

2(πm−1)
2+π

)
. (21)

6.1.3 A non ρ-mixing model

We consider here Vt = exp(Xt) with Xt = −αXt/(1 + X2
t )dt + cdBt.

Checking the Assumptions (A1)-(A4). The stationary solution of this equation, Xt, satis-

fies (A’1) for 2α/c2 > 1 so that Vt satisfies (A1). The stationary density of X is given by

f(x) = A(1 + x2)−α/c2 for a constant A of normalization. We have (A3) and the first part

of (A4) for 2α/c2 > 3. And we have (A4) by Lemma 2.1. Here, the process is not ρ-mixing

(ρX(t) ≡ 1), but b(x) = −αx/(1+x2), σ(x) = c satisfy (A’2) so that the process is geometrically

β-mixing.

Rate of the adaptive deconvolution estimator of f . As previously, we consider only the cases

where α/c2 = m+1 ∈ N with m ≥ 1 and fm(x) = A(1+x2)−(m+1), for which we know that the

rate is given by (21).

6.2 The Cox-Ingersoll-Ross process

Another standard modelization of the volatility is the square-root process, often called the Cox-

Ingersoll-Ross (CIR) process. Then, Vt is solution of the equation dVt = α(β−Vt)dt+ c
√

VtdBt.

This equation has been widely studied, in particular in Cox et al. (1985). The stationary density

of Vt is π(x) = [(α/c2)2αβ/c2/Γ(2αβ/c2)]x2αβ/c2−1e−α/c21Ix≥0, which is a Gamma density. It

follows that

f(x) = exπ(ex) = [(α/c2)2αβ/c2/Γ(2αβ/c2)]e2αβ/c2xe−αex/c2 .

Checking the Assumptions (A1)-(A4). Condition (A’1), and thus Condition (A1), is satisfied

if α > 0 and 2αβ/c2 ≥ 1. It follows as a consequence of Proposition 2.8 in Genon-Catalot et

al. (2000), see the examples p.1064, that the process is ρ-mixing and therefore exponentially

ρ-mixing under the same condition α > 0 and 2αβ/c2 ≥ 1. If this holds, (A2) is satisfied.

Moreover f is bounded so that (A3) is fulfilled. For the first part of (A4), it is clear that

X0 = ln2(V0) admits moments of any order. For the second part of (A4), we use Lemma 2.2,

where the only condition to check is E[supt∈[0,1] 1/V 4
t ] < +∞. It follows from Gloter (2000b)
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that if 2αβ/c2 > 1, then,

∀k ∈ [0, 2αβ/c2 − 1[, E

[
sup

s∈[0,1]
V −k

s

]
≤ c E

(
V −k

0

)
.

Therefore, for k = 4, this requires that 4 < 2αβ/c2 − 1 and E(V −4
0 ) < +∞. The first condition

gives 2αβ/c2 > 5 and the second 2αβ/c2 > 4. Therefore, (A4) is satisfied if 2αβ/c2 > 5.

Rate of the adaptive deconvolution estimator of f . Let us consider then the CIR model with

α > 0, 2αβ/c2 > 5. Then f∗(x) =
(
c2/α

)ix Γ(2αβ/c2 + ix)/Γ(2αβ/c2). By using the Stirling

formula (Γ(z) ∼
√

2πzz−1/2e−z for |z| → +∞), we find that

2
∫

x≥πL
|f∗(x)|2dx ∼L→+∞

2πe−4αβ/c2

Γ2(2αβ/c2)
(πL)2(2αβ/c2−1/2)e−π2L.

Then choose π2L = ln(n)/2(2αβ/c2 − 1) ln ln(n) to obtain for the infimum term the order

[ln(n)]2αβ/c2/
√

n. The same choice as previously for ∆ = ∆n = 1/(
√

n ln(n)) gives for the

squared risk the global rate (which is also better than logarithmic):

E(‖f̂L̂ − f‖2) = O([ln(n)]2αβ/c2/
√

n).

6.3 The bilinear process

We consider here the case where Vt is the solution of dVt = α(β−Vt)dt+ cVtdBt. The stationary

density of Vt is given by π(x) = Cx−(2α)/c2−2 exp
(
−αβ/c2x

)
, an inverse Gamma density.

Checking the Assumptions (A1)-(A4). It is easy to see that Assumption (A’1), and therefore

(A1), is satisfied if αβ > 0 and α + c2/2 > 0. For (A2), we use the results in Genon-Catalot

et al. (2000, p.1064), where it is proved that this process is ρ-mixing under the same condition

(αβ > 0 and α + c2/2 > 0). Since f(x) = C exp
(
−(2α/c2 + 1)x− (αβ/c2)e−x

)
, it is clear that

f is bounded and thus (A3) is satisfied.

The first part of (A4) is satisfied since clearly
∫

x2f(x)dx < +∞. For the second part of (A4),

we use Lemma 2.2. From the formula for π, is easy to see that E(V 4
0 ) < +∞ if 2α/c2 > 3.

Moreover, it follows from Gloter (2000b) that for β > 0, α > 0, then

∀k ≥ 0, E

[
sup

s∈[0,1]
V −k

s

]
≤ c

[
1 + E

(
V −k

0

)]
and it is easy to see that E(V −k

0 ) < +∞ for all k. Therefore, (A4) is fulfilled as soon as 2α/c2 > 3.
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Rate of the adaptive deconvolution estimator of f . We consider now the bilinear process with α >

0, β > 0 and 2α/c2 > 3. We can compute f∗(t) = C ′Γ(2α/c2+1−it). We find that |f∗(t)| ∼t→+∞

C”t2α/c2+1/2e−πt/2 which ensures that ‖f − fL‖2 is of order e−π2LL4α/c2+1. Choosing L =

ln(n)/2 + (2α/c2) ln(ln(n)) gives, for ∆ = ∆n = 1/(
√

n ln(n)), a rate of order:

E(‖f̂L̂ − f‖2) = O(ln(n)
2α
c2

+1/
√

n).

7 Appendix: Proofs

Proof of Lemma 2.1. We have ln(V̄1)−ln(V0) = ln
(
∆−1

∫ ∆
0 eXs−X0ds

)
≤ sups∈[0,∆](Xs−X0) and

ln(V0)−ln(V̄1) = − ln
(
∆−1

∫ ∆
0 eXs−X0

)
ds ≤ − infs∈[0,∆](Xs−X0). Therefore, E(ln V̄1−lnV0)2 ≤

E
[
sups∈[0,∆](Xs −X0)2

]
. Applying the Burkholder-Davis-Gundy inequality, we get:

E

[
sup

s∈[0,∆]
(Xs −X0)2

]
≤ c

{
E
(∫ ∆

0
σ2(Xu)du

)
+ E

[(∫ ∆

0
µ(Xu)du

)2
]}

.

Using the linear growth condition on µ and σ, we obtain E
[
sups∈[0,∆](Xs −X0)2

]
≤ c[1 +

E(X2
0 )]∆. �

Proof of Lemma 2.2. Our assumptions imply E[V 4
0 + V −4

0 ] < +∞. Noting that | ln(V0)| ≤
V0 + V −1

0 , we deduce that E[ln2(V0)] < +∞. Now, let ∆ ≤ 1. By the Taylor formula,

ln(V̄1)− ln(V0) = (V̄1 − V0)
∫ 1

0

du

V0 + u(V̄1 − V0)
.

Since, for u ∈ [0, 1], V0 + u(V̄1 − V0) = V0(1− u) + uV̄1 ≥ infs∈[0,∆] Vs. We get:

E
[
(ln V̄1 − lnV0)2

]
≤

[
E(V̄1 − V0)4E

(
sup

s∈[0,1]

1
V 4

s

)]1/2

. (22)

Using the Hölder inequality, we obtain the bound

E(V̄1 − V0)4 ≤
1
∆

∫ ∆

0
E(Vs − V0)4ds. (23)

Now, we note that: (Vs−V0)4 ≤ 4
[(∫ s

0 b(Vu)du
)4 +

(∫ s
0 a(Vu)dWu

)4]
. For the ordinary integral

term, we use the Hölder inequality and (A’1) to obtain: for all s ≤ ∆,

E
(∫ s

0
b(Vu)du

)4

≤ C∆3E
(∫ s

0
(1 + V 4

u )du

)
≤ C∆4(1 + E(V 4

0 )).
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For the stochastic integral, we use the Burkholder-Davis-Gundy inequality and (A’1) to obtain:

E
(∫ s

0
a(Vu)dWu

)4

≤ CE
(∫ s

0
a2(Vu)du

)2

≤ C ′∆2(1 + EV 4
0 ).

Finally, for s ≤ ∆, E(Vs − V0)4 ≤ C”∆2. Joining this, (22) and (23), we get E(ln V̄1 − lnV0)2 ≤
C∆. �

Proof of Proposition 4.1. The bound for ‖f − fL‖2 is straightforward from the definition of the

class Ss,r,b(M) and the inequality ‖f −fL‖2 ≤ 1
2π

∫
|x|≥πL |f

∗(x)|2dx. The bound for ‖fL−f
(n)
L ‖2

can be found in Comte et al. (2005a) and is recalled here for the sake of completeness. First

note that ‖fL − f
(n)
L ‖2 =

∑
|j|≥Kn

a2
L,j ≤ (supj jaL,j)2

∑
|j|≥Kn

j−2. Now we write that

jaL,j = j
√

L

∫
ϕ(Lx− j)f(x)dx

≤ L3/2

∫
|x||ϕ(Lx− j)|f(x)dx +

√
L

∫
|Lx− j||ϕ(Lx− j)|f(x)dx

≤ L3/2

(∫
|ϕ(Lx− j)|2dx

)1/2(∫
x2f2(x)dx

)1/2

+
√

L sup
x
|xϕ(x)|.

This implies finally that jaL,j ≤ L(Cf )1/2 +
√

L, and (15) follows. �

Proof of Lemma 4.1.

2E(〈f̂L − f
(n)
L , g∆ − f〉) ≤ 2E‖f̂L − f

(n)
L ‖ sup

t∈S
(n)
L ,‖t‖=1

|〈t, g∆ − f〉|

≤ 1
8

E(‖f̂L − f
(n)
L ‖2) + 8 sup

t∈S
(n)
L ,‖t‖=1

〈t, g∆ − f〉2

≤ 1
4

E(‖f̂L − f‖2) +
1
4
‖f − f

(n)
L ‖2 + 8

∑
|j|≤Kn

〈ϕL,j , g∆ − f〉2.

Note that ϕ∗L,j(x) = eixj/Lϕ∗(x/L)/
√

L. Then∑
|j|≤Kn

〈ϕL,j , g∆ − f〉2 ≤ 1
(2π)2

∑
j∈Z

〈ϕ∗L,j , g
∗
∆ − f∗〉2

and since 〈ϕ∗L,j , g
∗
∆ − f∗〉 =

∫
e−ixjϕ∗(x)(g∗∆ − f∗)(Lx)

√
Ldx, Parseval’s formula yields∑

|j|≤Kn

〈ϕL,j , g∆ − f〉2 ≤ L

2π

∫ π

−π
|g∗∆ − f∗|2(Lx)dx =

1
2π

∫ πL

−πL
|g∗∆ − f∗|2(x)dx.

Since |g∗∆ − f∗(x)| = |E
(
eix ln(V̄1) − eix ln(V0)

)
| and |eiux − eivx| ≤ |x(u− v)|,

∑
|j|≤Kn

〈ϕL,j , g∆ − f〉2 ≤ E
∣∣ln (V̄1/V0

)∣∣2 π2L3

3
.
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Then under Assumption (A4) if follows that
∑

|j|≤Kn
〈ϕL,j , g∆ − f〉2 ≤ c∆π2L3/3. This yields

to (16). �

Proof of Lemma 4.2. We first give here a lemma which is used in the sequel.

Lemma 7.1 The following inequalities hold.

In the β-mixing case, there exists a function b∆ such that

Var

(
1
n

n∑
k=1

h(X̄k)

)
≤ C

n

∫
h2(v)(1 + b∆(v))g∆(v)dv,

and such that E(b∆(X̄1)) =
∫

b∆(v)g∆(v)dv ≤ (1 +
∫ +∞
0 βV (u)du)/∆.

In the ρ-mixing case,

Var

(
1
n

n∑
k=1

h(X̄k)

)
≤ C

n
E(h2(X̄1))

1 +
∫ +∞
0 ρV (u)du

∆
.

Note that if h is bounded, both bounds becomes (C/n)‖h‖2
∞(1+A2)/∆, where A2 =

∫ +∞
0 βV (u)du

or A2 =
∫ +∞
0 ρV (u)du.

Proof of Lemma 7.1. In all cases, we write

Var

(
1
n

n∑
k=1

h(X̄k)

)
=

Var(h(X̄1))
n

+
2
n2

n∑
k=1

(n− k)cov(h(X̄1), h(X̄k+1)).

The ρ-mixing inequality follows then from

cov(h(X̄1), h(X̄k+1)) ≤ ρV ((k − 1)∆)E(h2(X̄1)), (24)

which implies that

Var

(
1
n

n∑
k=1

h(X̄k)

)
≤ E(h2(X̄1))

n
+

2E(h2(X̄1))
n

n∑
k=1

ρV ((k − 1)∆)

≤ CE(h2(X̄1))
1 +

∫ +∞
0 ρV (u)du

n∆
.

The first inequality is a straightforward adaptation of Viennet’s (1997) inequality when using

that the process (X̄k) is stationary with density g∆ and β-mixing coefficients bounded by βV ((k−
1)∆). This yields

Var

(
1
n

n∑
k=1

h(X̄k)

)
≤ E(h2(X̄1))

n
+

4
n

∫
h2(u)b∆(u)g∆(u)du,
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with
∫

b∆(u)g∆(u)du ≤
∑n

k=0 βk∆ ≤ C(1 +
∫

βsds)/∆. The β-mixing inequality follows. �

Now, the term of interest can be written

2νn(f̂L − f
(n)
L ) ≤ 2‖f̂L − f

(n)
L ‖ sup

t∈S
(n)
L ,‖t‖=1

|νn(t)| ≤ 1
4
‖f̂L − f

(n)
L ‖2 + 4 sup

t∈S
(n)
L ,‖t‖=1

ν2
n(t)

≤ 1
2
‖f̂L − f‖2 +

1
2
‖f − f

(n)
L ‖2 + 4

∑
j∈Z

ν2
n(ϕL,j). (25)

Then write that∑
j∈Z

ν2
n(ϕL,j) =

∑
j∈Z

1
4π2

(∫
ϕ∗L,j(x)
f∗η (x)

Ψ(x)dx

)2

, where Ψ(x) =
1
n

n∑
k=1

(
eixZk − E(eixZk)

)
.

As previously, Parseval’s formula yields∑
j∈Z

ν2
n(ϕL,j) =

1
2π

∫ πL

−πL

|Ψ(x)|2

|f∗η (x)|2
dx. (26)

It remains to bound E(|Ψ(x)|2) which is a variance.

E(|Ψ(x)|2) =
1
n2

 n∑
k=1

Var(eixZk) + 2
∑

1≤k<l≤n

cov(eixZk , eixZl)

 .

Then Var(eixZk) = 1− |E(eixZk)|2 = 1− |f∗η (x)g∗∆(x)|2 ≤ 1 and for k < l,

cov(eixZk , eixZl) = E(eix(Zk−Zl))− |f∗η (x)g∗∆(x)|2 = E(E(eix(Zk−Zl)|G))− |f∗η (x)g∗∆(x)|2,

where G = σ(Vt, t ≥ 0). Then, conditionally on G, Zk and Zl are independent for k 6= l and

E(E(eix(Zk−Zl)|G)) = E(E(eixZk |σ)E(e−ixZl |G)) = |f∗η (x)|2E(eix ln(V̄k)e−ix ln(V̄l))

It follows that

E(|Ψ(x)|2) ≤ 1
n

+ Var

(
1
n

n∑
k=1

eix ln(V̄k)

)
|f∗η (x)|2. (27)

Then, since h(x) = eiux is bounded, Lemma 7.1 implies, in both mixing contexts,

E

∑
j∈Z

ν2
n(ϕL,j)

 ≤ Φη(L)
2πn

+ C
(1 + A2)L

n∆
. �

Proof of Theorem 5.1. The proof of the result follows the same line as previously. By using that

for any L, γn(f̂L̂) + pen(L̂) ≤ γn(f (n)
L ) + pen(L) we have:

‖f̂L̂ − f‖2 ≤ ‖f − f
(n)
L ‖2 + 2νn(f̂L̂ − f

(n)
L ) + 2〈f̂L̂ − f

(n)
L , g∆ − f〉+ pen(L)− pen(L̂)

≤ 7
4
‖f − f

(n)
L ‖2 +

3
4
‖f̂L̂ − f‖2 + pen(L) + 8 sup

t∈Sln(n),‖t‖=1
[ν(1)

n (t)]2

+8 sup
t∈SL∨L̂,‖t‖=1

[ν(2)
n (t)]2 − pen(L̂) + 8 sup

t∈S
(n)

L̂∨L
,‖t‖=1

〈t, g∆ − f〉2,
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where

ν(1)
n (t) =

1
2πn

n∑
k=1

(∫
eixX̄kt∗(−x)dx− 〈g∗∆, t∗〉

)
, ν(2)

n (t) =
1

2πn

n∑
k=1

(
ut(Zk)−

∫
eixX̄kt∗(−x)dx

)
.

It follows straightforwardly from the study of the approximation bias term that

8 sup
t∈S

(n)

L̂∨L
,‖t‖=1

〈t, g∆ − f〉2 ≤ C∆(L ∨ L̂)3 ≤ C∆ ln3(n).

Moreover, by using Lemma 7.1 in the β-mixing context, we find

E

(
sup

t∈Sln(n),‖t‖=1
[ν(1)

n (t)]2
)

≤
∑

|j|≤Kn

E[ν(1)
n (ϕln(n),j)]

2 =
∑

|j|≤Kn

Var

(
1
n

n∑
k=1

ϕln(n),j(X̄k)

)

≤
∑

|j|≤Kn

C

n

∫
|ϕln(n),j(x)|2(1 + b∆(x))g∆(x)dx

and since ‖
∑

j∈Z |ϕL,j |2‖∞ ≤ L, we obtain

E

(
sup

t∈Sln(n),‖t‖=1
[ν(1)

n (t)]2
)
≤ C ln(n)(1 + A2)

n∆
.

In the ρ-mixing case, we have, still by using (24) and ‖
∑

j∈Z |ϕL,j |2(.)‖∞ ≤ L and Lemma 7.1:

∑
|j|≤Kn

Var

[
1
n

n∑
k=1

ϕln(n),j(X̄k)

]
≤ C ln(n)(1 + A2)

n
.

We introduce here the centering quantity p(L,L′) which will induce the choice of the penalty:

E(‖f̂L̂ − f‖2) ≤ 7‖f − f
(n)
L ‖2 + 4pen(L) + C1∆ ln3(n) +

C2 ln(n)(1 + A2)
n∆

+E

[
16

(
sup

t∈SL∨L̂,‖t‖=1
[ν(2)

n (t)]2 − p(L, L̂)

)
+

+ 16p(L, L̂)− pen(L̂)

]

Therefore, we fix pen(L) by assuming that, for all L,L′, 16p(L,L′) ≤ pen(L) + pen(L′). It

follows:

E(‖f̂L̂ − f‖2) ≤ 7‖f − f
(n)
L ‖2 + 5pen(L) + C1∆ ln3(n) +

C2 ln(n)(1 + A2)
n∆

+E

16
ln(n)∑
L′=1

( sup
t∈SL∨L′ ,‖t‖=1

[ν(2)
n (t)]2 − p(L,L′))+

 .

To bound the last term, we apply the following inequality, to the variables Zk conditionally on

G, which gives independent but non identically distributed random variables.
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Lemma 7.2 Let U1, . . . , Un be independent random variables and νn(r) = (1/n)
∑n

i=1[r(Ui) −
E(r(Ui))] for r belonging to a countable class R of uniformly bounded measurable functions.

Then for ε > 0

E
[
sup
r∈R

|νn(r)|2 − 2(1 + 2ε)H2

]
+

≤ 6
K1

(
v

n
e−K1ε nH2

v +
8M2

1

K1n2C2(ε)
e
−K1C(ε)

√
ε√

2
nH
M1

)
, (28)

with C(ε) =
√

1 + ε− 1, K1 is a universal constant, and where

sup
r∈R

‖r‖∞ ≤ M1, E
(

sup
r∈R

|νn(r)|
)
≤ H, sup

r∈R

1
n

n∑
i=1

Var(r(Ui)) ≤ v.

The inequality (28) is a straightforward consequence of Talagrand’s (1996) inequality given in

Ledoux (1996) (or Birgé and Massart (1997)), with f replaced by r = f − Ef(X1) and M1 by

2M1, and by taking η = (
√

1 + ε − 1) ∧ 1 = C(ε) ≤ 1. Moreover, standard density arguments

allow to apply it to the unit ball of a finite dimensional linear space. Therefore, denoting by EV

the conditional expectation given G, and by BL,L′(0, 1) = {t ∈ SL∨L′ , , ‖t‖ = 1}, we have

EV

[
sup

t∈BL,L′ (0,1)
|ν(2)

n (t)|2 − 2(1 + 2ε1)H2

]
+

≤ κ1

(
v

n
e−K1ε1

nH2

v +
M2

1

n2
e
−K2

√
ε1C(ε1) nH

M1

)
, (29)

where K2 = K1/
√

2 and H, v and M1 are defined by EV (supt∈BL,L′ (0,1) |ν
(2)
n (t)|2) ≤ H2,

sup
t∈BL,L′ (0,1)

VarV (ut(Z1)) ≤ v, and sup
t∈BL,L′ (0,1)

‖ut(Z1)‖∞ ≤ M1.

Let L∗ = L ∨ L′.

EV

(
sup

t∈BL,L′ (0,1)
|ν(2)

n (t)|2
)
≤

∑
|j|≤Kn

VarV

(
1
n

n∑
k=1

uϕL∗,j
(Zk)

)

≤ 1
(2πn)2

n∑
k=1

∑
j∈Z

EV

(∫
eixZk

ϕL∗,j(−x)
f∗η (−x)

dx

)2

≤ 1
2πn2

n∑
k=1

Φη(L∗) =
Φη(L∗)

2πn
:= H2

sup
t∈BL,L′ (0,1)

sup
x
|ut(x)| ≤ 1

2π
sup

t∈BL,L′ (0,1)

∫ ∣∣∣∣ t∗(−x)
f∗η (x)

∣∣∣∣ dx ≤ 1
2π

sup
t∈BL,L′ (0,1)

‖t∗‖
√

Φη(L∗)

≤
√

1
2π

Φη(L∗) := M1

Note that M1 =
√

nH2. Lastly, for v, the crude bound v = nH2 holds straightforwardly. It

follows that,

EV

[
sup

t∈BL,L′ (0,1)
|ν(2)

n (t)|2 − 2(1 + 2ξ)H2

]
+

≤ κ1

(
Φ(L∗)

n
e−K1ξ +

Φ(L∗)
n2

e−K2
√

ξC(ξ)
√

n

)
,
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Then by choosing ξ = 2πL∗/K1 and by considering a collection such that Φ(L)/n is bounded

(say by K), we find

EV

[
sup

t∈BL,L′ (0,1)
|ν(2)

n (t)|2 − 2(1 + 4πL∗/K1)
Φ(L∗)

n

]
+

≤ κ1

(
e−πL∗

n
+

1
n

e−K2
√

n

)
,

and
ln(n)∑
L′=1

EV

[
sup

t∈BL,L′ (0,1)
|ν(2)

n (t)|2 − 2(1 + 4πL∗/K1)
Φ(L∗)

n

]
+

≤ C3

n

since
∑

L′ e
−πL∗ =

∑
L′≤L e−πL +

∑
L′>L

e−πL′

n ≤ Le−πL + 1/(e − 1) ≤ K. Since the bound

does not depend on V , we can take the expectation with respect to V without changing it. By

gathering all terms, we obtain the bound given in the Theorem. �
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