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Abstract

We describe a randomized incremental algorithm for computing the Delaunay triangulation of a set of
points and a recent technique of applying it to terrain generation. The algorithm is optimal, using a
Directed Acyclic Graph (DAG)-based location structure for the incremental insertion which achieves an
expected running time of O(n log n) and O(n) expected storage. The analysis of the expected storage is
simplified, and the algorithm is implemented and tested. The implementation is done, in its integrality,
with CGAL-Python which is fast and friendly, followed by numerical statistics on different distributions.
The terrain generation technique is based on gaussian functions and the plotting is made with the Open
Source software Blender 3D which is probably its first combination with CGAL-Python. A high quality
rendering of three simple terrains is shown as a demonstration of the terrain generator.

Mamaritra tetika fanamboarana ny fanatelozoroan’ i Delaunay ao aminy velarana R
2 amin’ny fomba

kisendrasendra isika ary ny fampiasana azy io aminy famoronana vohitra. Ilay tetika dia maty paika izay
mampiasa grafy misy toro-lalana ary tsy misy fihodonana aminy fanatsofoana ireo teboka isan’isany,
ny fandalinana ny hafainganany kosa dia natao faran’izay tsotra. Ny famolavolana dia natao, aminy
akapobeny, tamin’ny CGAL-Python izay aingana sady mora ampiasaina, ny vokatra numerika dia nomena
ihany koa. Ilay fanamboarana vohitra dia tsy voafetra izay afaka mamboatra tendrombohitra arak’izay
ilainy mpampiasa. Ilay vohitra dia natao kisary tamin’ilay fitaovana maimaimpona Blender 3D izay mety
ho voalohany aminy fampiasana azy io sy CGAL-Python miaraka. Hisy vohitra roa haseho aminy endriny
farany izay kanto mba anehoana ny fahatsaran’ilay fanamboarana.
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1. Introduction

The Delaunay triangulation of a set of points is one of the classical problems in computational geometry.
It was discovered in 1934 by the French mathematician Boris Nikolaevich Delone or Delaunay [2]. Many
algorithms have since been proposed by computer scientists as well as mathematicians. In 1985, Guibas
and Stolfi [10] proposed a Divide and Conquer algorithm which achieves the optimal bound of O(n log n).
Later on, Steve Fortune [7] proposed a Sweepline algorithm for Voronoi diagrams which also achieves this
bound. Unfortunately, they are hard to implement, so that engineers instead use incremental insertion
algorithms because of their simplicity and the fact that they are not hard to implement. Guibas and Stolfi
[10] proposed an incremental algorithm using a walking strategy to locate points which achieves O(n1/2)
per point location, and it was improved by Mucke [6] to an O(n1/3) per point location. Although these
algorithms provide good implementations, they are still sub-optimal algorithms. Thus we will present
an optimal randomized incremental algorithm which uses a DAG-based data structure for the point
location, using the analysis proposed in [9] and which solves the problem in O(n log n) expected time
and O(n) expected storage.

Nowadays, generating artificial terrains are indispensable. They are used in flight simulator, in making
texture map to use as a background, in creating virtual worlds in game programming as well as in 3D
animated movies. They are many ways to generate them, a simple randomize-and-smooth technique
[13] can be used, or a more complicated way is based on fractal methods [16], whereas fluid simulation
can also be used [16]. In this report, we present a recent technique based on gaussian functions and
the Delaunay triangulation. The statistics parameters of the gaussian enable us to control the quality
and the quantity of features in the heighten map.

The report follows the general approach of randomized incremental construction of the Delaunay trian-
gulation, but differs in the following respects:

(i) the analysis of the expected storage is proved by backwards analysis;

(ii) the implementation is done with CGAL-python combined with Blender 3D which makes the drawing
easier and produces results of high quality;

(iii) a technique of generating terrain based on the Delaunay triangulation is developed.

The work is divided in two parts. The first part introduces the definition of Delaunay triangulation and
the theoretical analysis of the algorithm, while the second part is its application to terrain generation.
The Delaunay triangulation is known to be the dual of the Voronoi diagram, as described in Chapter
2. We then study some properties of a Delaunay triangle from the empty circle criterion to the local
max-min angle criterion. In Chapter 3, several algorithms are given and contrasted with the randomized
incremental method, especially the Divide and Conquer algorithm [10] and the Plane Sweep algorithm
[7]. The location structure is explained in Chapter 4 with the DAG-based datastructure, followed by
pseudo code of the full algorithm. The analysis of the algorithm is simplified as much as possible, using
basic tools from probability and backwards analysis. Finally, in Chapter 5, statistics on the speed of the
point location are given, and the application of the Delaunay triangulation to the perspective view of
topographic maps is explained. We then develop one method to generate terrain.
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2. Voronoi diagram and Delaunay triangulation

In this section, we first introduce the notion of Voronoi cells and half-planes, and then give the duality
properties of the Delaunay triangulation.

2.1 The Voronoi diagram

2.1.1 Voronoi Cells

Let P = {p1, p2, p3, . . . , pn} be a set of points in the Euclidian plane which are called the sites. A region
of the plane obtained by assigning every point to its nearest site pi is called the Voronoi cell V(pi), that
is,

V(pi) = {x ∈ R
2 : d(x, pi) ≤ d(x, pj), ∀i 6= j}.

It can be interpreted as the set of all points which are closer to pi than the other sites. Some points
do not have an unique nearest site or nearest neighbor. The set of all points that have more than one
nearest neighbor is called the Voronoi diagram V (P) for the set of sites.

2.1.2 Example

Consider three sites in the plane. Geometrically, the Voronoi diagram of these three sites is the per-
pendicular bisectors of the three sides of the triangle formed by the three (non-collinear) points which
intersect at the circumcenter, the center of the unique circle that passes through the triangle’s vertices.
Thus the Voronoi diagram for three points must appear as in Figure 2.1.

pi

pj

pk

Bik

Bij

Bkj

V (P)

pi
pj

pk

V (P)

Figure 2.1: Three sites: bisectors meet at the circumcenter

2.1.3 Half-Planes

Let H(pi, pj) be the closest half-plane bounded by Bij and containing pi (Figure 2.1). We can interpret
H(pi, pj) as,

H(pi, pj) = {x ∈ R
2 | d(x, pi) < d(x, pj)}, for i 6= j,

2
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Using this notation for the definition of the Voronoi diagram, we have that

V(pi) =
⋂

j 6=i

H(pi, pj).

The intersection is taken over all j’s which are different from i. We will use this characterisation of the
Voronoi diagram later on.

2.2 Dual of V (P)

Definition 2.2.1. The dual of a planar graph G is constructed as follows: each face in G is represented
by a vertex, and for each edge e ∈ E(G), we draw an edge between the vertices that represent the faces
which share the edge e.

Definition 2.2.2. A triangulation of a set of point P is defined to be a planar subdivision S such that
adding an edge connecting two points of P which is not in S will destruct its planarity.

2.2.1 Construction

In 1934, Delaunay [2] proved that the dual graph of the Voronoi diagram drawn with straight lines
produces a planar triangulation of the Voronoi sites P, now called the Delaunay triangulation D (P).
Figure 2.2 shows the Voronoi diagram of n = 11 sites and its corresponding dual graph, the Delaunay
triangulation.

Convex Hull

V(P)

D(P)

Figure 2.2: Voronoi diagram, Delaunay triangulation and the convex hull of n = 11 sites

2.2.2 Duality Properties

The duality of those graphs links them into a one to one correspondence between edges, vertices and
faces which, thus, imply the following observations:

D1. D (P) is the straight line dual graph of V (P) (by definition);
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D2. D (P) is a triangulation if no four points of P are cocircular (see Remark 2.3.2);

D3. every triangle of D (P) corresponds to a vertex of V (P);

D4. each edge of D (P) corresponds to an edge of V (P);

D5. each node of D (P) corresponds to a region of V (P);

D6. The boundary of D (P) is the convex hull1 of the sites P (Figure 2.2);

D7. The interior of each triangle face of D (P) contains no site.

Remark 2.2.3. Properties D6 and D7 are the most interesting and can be verified in Figure 2.2.
Property D7 has its equivalence in the property of Voronoi diagram saying that the circumcircle of
every three sites contains no other sites [15].

2.3 The Delaunay triangulation

Definition 2.3.1 (Illegal Edge). Let pipj be the edge incident to the triangles ∆pipjpk and ∆pipjpl

(Figure 2.3). We say that the edge pipj is illegal if the point pl lies in the interior of the circumcircle of
∆pipjpk or pk in that of ∆piplpj.

Illegal

pk

pj

pl

pi

Figure 2.3: Illegal Edge

Remark 2.3.2. This definition is valid only if the points pi, pj , pk and pl do not lie in a common circle.
It gives a degeneracy and violates the uniqueness of the triangulation, since any cross edge is legal. The
two graphs in Figure 2.4 are geometrically different but define each a Delaunay triangulation. In this

Figure 2.4: Two different Delaunay triangulation spanning the same set of points

case, one can fix a rule such that a point lying on the circumcircle of a given triangle is set to be outside
of this circle.

1The convex hull of a set of points is the smallest convex set that includes all the points
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Definition 2.3.3 (The empty circle criterion). Given a triangulation T of a set of points P, if the
circumcircle of a triangle in the triangulation is an empty circle, we say that the triangle satisfies the
empty circle criterion.

This empty circle criterion is equivalent to the fact that every edge in the triangulation is legal. The
triangle in Figure 2.3 do not satisfy the empty circle criterion.

Theorem 2.3.4 (The empty circle theorem). Let P be a set of points in the plane. A triangulation T
of P satisfies the empty circle criterion if and only if T is a Delaunay triangulation of P.

Proof. The sufficient condition is given by Remark ??. Let us show that the triangulation T is in fact
the dual of a Voronoi diagram and then conclude with Property D1.

pi2

pi3

pi4

pi1

pi

qi1

qi2

qi3

qi4

ph

BH(pi, rh)

BH(pi, ph)

rh

Figure 2.5: Illustration of the proof of the empty circle theorem[14]

Let pi ∈ P and pi1, . . . , pik be the vertices of the triangles sharing pi. Moreover, let qi1, . . . , qik be the
centres of the circumcircles Ci1, . . . , Cik corresponding respectively to the triangles
∆pipi1pi2, . . . ,∆pipikpi1 in counterclockwise order (Figure 2.5). Since pipij is orthogonal to qijqij−1

, j = 1, . . . , k, the polygon with vertices qi1, . . . , qik is given by
⋂k

j=1 H(pi, pij). By hypothesis,
Ci1, . . . , Cik are empty circles, which means that there exists at least one ph ∈ P \{pi1, . . . , pik} which
lies outside these circles. The edge piph intersects a boundary of an arc of circumcircle Cij at a point
called rh. Then the boundary of H(pi, rh) passes through qij since rh ∈ Cij, and

k
⋂

j=1

H(pi, pij) ⊂ H(pi, rh) ⊂ H(pi, ph).

This holds for all ph in P \ {pi1, . . . , pik}. Therefore,

k
⋂

j=1

H(pi, pij) =
⋂

j 6=i

H(pi, pj) = V(pi).

Then, the polygon constructed by qi1, . . . , qik is the Voronoi polygon of pi. If we carry out the above
procedure for every pi ∈ P, we obtain V (P). Since T is the dual of V (P), it follows from Property D1
that the given triangulation is the Delaunay triangulation of P.
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Definition 2.3.5 (The local max-min angle criterion). Given a triangulation T , let pipj be an edge in
T which the triangle ∆piplpj and ∆pipjpk share, and Q the quadrilateral formed by these triangles.
Furthermore, let αi, 1 ≤ i ≤ 6, be the six angles of Q and α′

i, 1 ≤ i ≤ 6, those of Q′ obtained by
flipping the diagonal of Q. If

min
1≤j≤6

α′
j ≤ min

1≤j≤6
αj ,

then we say that the edge pipj satisfies the local max-min angle criterion. In Figure 2.6, we use the
notations α∗ = min1≤j≤6 αj and α′∗ = min1≤j≤6 α′

j, from which we see that Figure 2.6 (a) satisfies
the local max-min since α′∗ ≤ α∗,whereas Figure 2.6 (b) does not.

pi

α∗

pj

pk

pl

pi

α′∗

pj

pk

pl

(a) Q (b) Q′

Figure 2.6: The local max-min angle criterion

Remark 2.3.6. Finding the minimum angle of a quadrilater appears slightly complicated. In practice,
we use the following relation [14].

α′∗ ≤ α∗ ⇐⇒ pl lies outside the circumcircle of ∆pipkpj.

Theorem 2.3.7 (The local max-min angle theorem [14]). Let P be a set of points in the plane. A
triangulation T of P satisfies the max-min angle criterion if and only if T is a Delaunay triangulation
of P.

Proof. Remark 2.2.3 and Remark 2.3.6 imply that if a triangle T ∈ D (P), every internal edge satisfies
the local max-min angle criterion. It remains to prove that if every internal edge of ∆pipjpk in T
satisfies the max-min angle criterion, then T ∈ D (P). Since, pipj satisfies the local max-min angle
criterion, pl is outside the circumcircle of ∆pipjpk. Since the edges pipl, pjpl, pipk and pkpj satisfy the
local max-min angle criterion, the triangles ∆pipjpk and ∆pipjpl cannot contain other sites. Therefore,
there are no points in the circumcircle of ∆pipjpk and ∆pipjpl. Applying the same procedure to every
triangle, we can prove that every corresponding circumcircle is an empty circle. From Property D6, the
triangulation T is D (P).



3. The Algorithm

Having described the Delaunay triangulation, we introduce here an optimal algorithm which computes
directly the Delaunay triangulation of a set of points in the plane. The algorithm is in the class of
randomized incremental constructions and will be contrasted with other optimal algorithms.

3.0.1 Basic Concepts

Let P be a set of points in the plane and D (Pr) a triangulation of Pr ⊂ P at stage r. The triangulation
D (Pr+1) is obtained by inserting a point pr, randomly taken from P \ Pr, in D (Pr). The algorithm
locates pr using a DAG for point location based on the history of the Delaunay triangulation called the
Delaunay tree (Section 4.2). At this stage two cases can happen: either the point lies on an edge or
strictly inside the triangle. In the first case, we construct two edges connecting pr to the vertices of
the two adjacent triangles, whereas in the second case, we construct three edges connecting the point
and the three vertices of the triangle (Figure 3.1) . Since we look for a legal triangulation, we check if
every edge of the containing triangle is valid with respect to the empty circle criterion. We then proceed
recursively until all the points are inserted. At last, we get the Delaunay triangulation of P. Figure 3.2
shows the insertion process.

pl

pj

pk

pi

pr

pi

pj

pk

pr

Figure 3.1: Two cases of the positions of pr

3.0.2 Why Randomized Incremental Algorithm?

Interesting algorithms have been implemented. The most remarquable of them are:

• Plane Sweep Algorithm

In 1985, Fortune invented a clever Plane Sweep algorithm which attains the optimal bound
O(n log n). Plane-sweep algorithms pass a sweep line over the plane, leaving at any time the
problem solved for the portion of the plane already swept and unsolved for the portion not yet
reached. A plane-sweep algorithm for the Voronoi diagram would have the diagram constructed
behind the line. It seems quite impossible, as Voronoi edges of a Voronoi region V(p) would be
encountered by the sweep line L before L encounters the site p responsible for the region. Fortune
surmounted this seeming impossibility by an extraordinary clever idea [15].

7
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point location building the three edges

legalization of edges the new Delaunay triangulation

Figure 3.2: The insertion process

• Divide and Conquer Algorithm

Given a set of points P, instead of computing the Delaunay triangulation of P, we sort the set
of points P in x coordinates and divide it in two subsets P1 and P2. The Delaunay triangulation
D (P) is obtained by merging the two triangulations. Recursively applied, this method leads,
in principle, to the consideration of an elementary problem. This algorithm attains the optimal
running time O(n log n).

Unfortunately, the implementation of these algorithms still requires codes of significant programming
complexity, which is why people prefer to use randomized incremental because it is less difficult to
implement when the datastructure is correctly chosen; it is randomized, so that its complexity can be
analysed using tools from probability theory [17]; it is “on line” in the sense that the input is inserted
piece-by-piece and the computation is made accordingly without having the entire input available from
the start. Finally, it can have an expected running time of O(n log n) when the insertion is made in
random order [9].



4. Computation of the Delaunay Triangulation

We have now enough information to build the algorithm. We proceed in four phases. We first start with
the initialisation of three dummy points which enclose all the points of P; we then describe an efficient
location technique to locate queries; we next discuss the Legalization which is a procedure verifying
the empty circle criterion; and finally, give pseudo-code of the algorithm. The last section contains the
analysis of the algorithm

4.1 Initialisation of the Three Dummy Points

Our approach in Section 3.0.1 is already in the step case, which means going from D (Pr) to D (Pr+1).
One question is left: what is the base case, since we do not have any triangle to make an insertion?
There is a recent construction of a universal triangle ∆Ω1Ω2Ω3 which encloses all the points such that
Ω1 = (3M, 0),Ω2 = (0, 3M) and Ω3 = (−3M,−3M) where M is the maximum in absolute value of
any coordinate of a point in P [1]. In this report, we just make sure that these three points are far away
in such a way that every edge of ∆Ω1Ω2Ω3 always satisfies the local max-min criterion (Figure 4.1).

Ω1

Ω2 Ω3

Figure 4.1: Initialisation of the three dummy points

4.2 The Delaunay Tree

The most complicated part of this algorithm is the point location based on a Directed Acyclic Graph
(DAG) data structure, also called the Delaunay tree. The basic idea is that, whenever we replace some
triangle ∆pipjpk by new triangles, we leave ∆pipjpk as part of the structure DTree, mark it as “old”
and maintain a pointer from ∆pipjpk to each of the newly generated triangles that partially overlaps
it. More explicitly, we start to locate the point by the root Ω1Ω2Ω3 in DTree. We check the three
children of this root to know in which triangle the new inserted point is. We then recursively descend to
the corresponding child. The point location ends when the triangle which contains the current inserted
point is reached. Since the out-degree of a node is at most three, this step takes linear time in the
number of nodes on the search path, or in the number of triangles stored in D (P) that contains P .

As it is often the case, an edge flip can affect the structure of DTree. Suppose that we have inserted
a point P in some triangle ∆1 which splits this one into three subtriangles ∆11,∆12,∆13 (or two if the
inserted point lies on an edge). In DTree, we have to add three (or two) new leaves and then make a

9
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∆1

∆2

∆3

P

∆2

∆3

∆11

∆12 ∆13

P

∆4

∆3∆5

P

∆4

∆7

∆6

∆1 ∆2 ∆3

∆1 ∆2 ∆3

∆1 ∆2 ∆3

∆1 ∆2 ∆3

∆11 ∆12 ∆13

∆11 ∆12 ∆13

∆11 ∆12 ∆13

∆4 ∆5

∆4 ∆5

∆6 ∆7

∆4 ∆5

Insertion of P

Edge flip

Edge flip

Figure 4.2: The change due to several edge flips on the data structure DTree

pointer from ∆1 to those leaves. In the same way, when we replace two triangles ∆2 and ∆13 by ∆4

and ∆5 by an edge flip, we create leaves for the two new triangles, and keep a pointer from ∆2 and
∆13 to the two new leaves. An example is illustrated in Figure 4.2 where we left out the other part of
the structure which is not affected by the insertion of P .
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4.3 Legalization

After finding in which triangle pr is inserted, we have to construct three edges which connect pr to the
three vertices of the triangle. At this stage, we need to test if all the edges of the initial triangle remain
valid. Observe that an edge pipj that was initially valid becomes invalid if one of the new triangle
incident to it has changed by the insertion of a new point or an edge flip of some other triangles. We
thus need to use the geometric predicate Incircle(A,B,C,D) which returns true if D lies in the
circumcircle of ∆ABC. This condition is equivalent to,

Incircle(A,B,C,D) ⇐⇒ det









xA yA x2
A + y2

A 1
xB yB x2

B + y2
B 1

xC yC x2
C + y2

C 1
xD yD x2

D + y2
D 1









> 0 [10].

Remark 4.3.1. In order to know if an edge pipj is legal or not, it is sufficient to test whether pr lies in
the circumcircle of the triangle ∆i, i = 1, 2, 3, lying in the other side of an edge pipj of ∆pipjpk [9].

Since the occurrence of an edge flip may affect the validity of the other edges, we need to build a
sub-routine called ValidEdge, which takes a face and a vertex and verifies the empty circle criterion
for the face adjacent and opposite to this vertex. In Algorithm 1, flip is a function which flips the
diagonal of a quadrilater formed by the triangles ∆ and ∆′.

Algorithm 1 ValidEdge(∆, pr,D (P))

1: Let ∆adj be the triangle opposite to pr and adjacent to ∆
2: if InCircle(∆adj , pr) then

3: (* We have to make an edge flip *)
4: flip(∆,∆adj , pr,D (P))
5: Let ∆′ and ∆′′ be the two new triangles, recursively legalize them
6: ValidEdge(∆′, pr,D (P))
7: ValidEdge(∆′′, pr,D (P))
8: end if

Moreover, we need to introduce another geometric predicate discussed in [10], the CClockwise(A,B,C)
test which returns true if the triangle path from A to B to C is oriented counterclockwise. In terms of
coordinates, this can numerically be implemented as

CClockwise(A,B,C) ⇐⇒ det





xA yA 1
xB yB 1
xC yC 1



 > 0.

Expanding the determinant and rearranging gives the simple condition,

(xB − xA)(yC − yA)− (xC − xA)(yB − yA) > 0.

4.4 Efficient Incremental Algorithm

We give here a high-level description of the algorithm using the four processes described above.
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Algorithm 2 Delaunay Triangulation of P

Input: A set P of n + 1 points in the plane
Output: A Delaunay triangulation of P
1: Initialise the triangulation D (P) to be Ω1Ω2Ω3

2: Make a random permutation [p1, p2, p3, . . . , pn] of P
3: for r ← 1 to n do

4: (* Take the point pr which should not be already selected *)
5: Find a triangle ∆ which contains pr

6: if If pr lies in the interior of ∆ then

7: Divide ∆ to ∆1,∆2 and ∆3

8: (* Check for the validity of edges *)
9: ValidEdge(∆1, pr,D (P))

10: ValidEdge(∆2, pr,D (P))
11: ValidEdge(∆3, pr,D (P))
12: else

13: (*pr lies on an edge e of ∆*)
14: Let ∆′ be the triangle sharing the edge e with ∆, then divide ∆′to ∆′

1,∆
′
2 and ∆ to ∆1,∆2

15: (* Check for validity of edges *)
16: ValidEdge(∆′

1, pr,D (P))
17: ValidEdge(∆′

2, pr,D (P))
18: ValidEdge(∆1, pr,D (P))
19: ValidEdge(∆2, pr,D (P))
20: end if

21: end for

22: Delete all triangles containing Ω1, Ω2 or Ω3 as vertices from D (P)
23: return D (P)

4.5 Correctness and Efficiency

The goal of this section is to prove that the Delaunay triangulation of a set of planar points constructed
with the incremental randomized algorithm can be computed in O(n log n) expected time and O(n)
expected storage. Before starting, let Pr := {p1, . . . , pr} be the set of points already inserted at the
stage r which contains r elements and D (Pr) := D({Ω0,Ω1,Ω2} ∪ Pr) the corresponding Delaunay
triangulation.

Lemma 4.5.1. (General results)

1. Let P be a set of n points in the plane which are not all collinear, and let k denote the number
of points in P that lie on the boundary of the convex hull of P . Then any triangulation of P has
2n− 2− k triangles and 3n − 3− k edges.

2. For n ≥ 3, the number of vertices in the Voronoi diagram of a set of n point sites in the plane is
at most 2n− 5 and the number of edges is at most 3n− 6.

Proof. The proof is not complicated, but quite long, using some results from graph theory. For more
details, we refer to [1].

Lemma 4.5.2. The expected degree of a random point of Pr is at most 6.
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Proof. Let deg(pr,D (Pr)) be the degree of pr in D (Pr). For the moment, we fixe the set Pr and
make backwards analysis. It follows from the second result of Lemma 4.5.1 that D (Pr) has at most
3(r+3)−6 edges, where the extra three edges come from the initial triangle Ω1Ω2Ω3, and therefore, the
Handshake Lemma 1 implies that the total degree of the vertices in Pr is less than 2[3(r +3)− 9] = 6r.
We deduce that the expected degree of a random point of Pr is at most 6.

Theorem 4.5.3. The expected number of flips done by ValidEdge after inserting pr is O(1).

Proof. The key observation is that the number of flips that we make when we insert pr is given by
deg(pr,D (Pr))− 3 (see Figure 4.3). Therefore,

E[number of flips after inserting pr] = E[deg(pr,D (Pr))]− 3

=
1

r + 3

r+3
∑

i=1

deg(pi,D (Pr))− 3

, =
1

r + 3
.6(r + 3) − 3 (according to Lemma 4.5.2)

≤ 3

= O(1).

pr pr

Figure 4.3: Backwards analysis on the degree of pr

Lemma 4.5.4. The expected number of triangles created by the full algorithm is at most 9n + 1.

Proof. The insertion of pr splits the current triangle to three or four new triangles, and gives the same
number of edges incident to pr. Every edge which is flipped in procedure ValidEdge creates two new
triangles and two new edges incident to pr, creating at most 2deg(pr,D (Pr))− 3 triangles. Hence,

E[number of triangles created at step r] ≤ E[2deg(pr,D (Pr))− 3]

= 2E[deg(pr,D (Pr))]− 3

≤ 2 · 6− 3 = 9,

1For any graph G, we have the relation

X

v∈V (G)

degv = 2|E(G)|,

where V (G) is the set of vertices of G and E(G) is the set of edges.
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having also used Lemma 4.5.2.

The desired result is then obtained by summing over r and using the linearity of the expectation and
then adding the initial triangle Ω1Ω2Ω3.

Definition 4.5.5. The scope of a triangle is defined in [9] to be the number of sites contained in the
interior of its circumcircle. The scope of a triangle can assume values between 0 and n−3, and triangles
with zero scope are the Delaunay triangles.

Lemma 4.5.6. [9] Let ∆pipjpk be a triangle with scope k. Then the probability that ∆2 appears as a
Delaunay triangle during the incremental construction is given by

Proba(∆ appears as Delaunay triangle) =
6

(k + 1)(k + 2)(k + 3)
. (4.1)

Proof. The only possibility for ∆ to be Delaunay is that pi, pj and pk are inserted first before any of the
k sites inside its circumcircle. This condition is equivalent to compute the event E:“insert pi, pj and pk

first (without any order) and independently on the time of insertion of the sites of its scope”. Hence,

Proba(E) =
3!k!

(k + 3)!
=

6

(k + 1)(k + 2)(k + 3)
.

We next introduce the new variable Tl defined to be the set of triangles ∆pipjpk whose scope is l, and
we use the notation T≤m =

⋃m
d=0 Td.

Lemma 4.5.7. [9] The number of triangles ∆pipjpk whose scope is m is

‖T≤m‖ = O(n(m + 1)2). (4.2)

Proof. This proof is an extended version of the one presented in [9] but the probabilistic technique is
from Clarkson and Shor [17]. The idea is to take a random sample R of size r (r ≥ 3) among the given
sites, and denote by D (R) the set of Delaunay triangles formed by this sample. The expected number
of such triangles is thus

E [‖D (R) ‖] =
∑

∆

Proba(∆ ∈ D (R))

=

n−3
∑

l=0

∑

∆∈Tl

Proba(∆ ∈ D (R))

≥
m

∑

l=0

∑

∆∈Tl

Proba(∆ ∈ D (R)).

A necessary condition for ∆pipjpk to be in D (R) is that pi, pj , pk ∈ R, where as a sufficient condition
is that none of the l sites in the interior of its circumcircle is in R. Denoting this event as F, we have

Proba(F ) =

( r−3

n−j−3

)

(r
n

) ≥

( r−3

n−k−3

)

(r
n

) for j ≤ k.

2Here, the triangle ∆ has pi, pj and pk as vertices but we use this notation for simplicity
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Since ‖D (R) ‖ is at most 2r (first result of Lemma 4.5.1), we obtain

2r ≥ E [‖D (R) ‖] ≥

k
∑

l=0

‖Tl‖.

(

r−3

n−k−3

)

(

r
n

) ,

which amounts to

‖T≤k‖ ≤
2r

(r
n

)

(

r−3

n−k−3

) =
2n

(

r−1

n−1

)

(

r−3

n−k−3

) = 2nB(n− 1, k + 2, r − 3, 2),

where

B(N,M, s, t) =

(

s+t
N

)

( s
N−M

) .

In order to obtain the best upper bound, we have to minimise B(n− 1, k + 2, r − 3, 2) with respect to
r. In general, we have for successive values of s the ratio [9].

B(N,M, s + 1, t)/B(N,M, s, t) = t(N −M + 1)/M.

Hence, the minimum of B(N,M, s, t) for fixed N,M and t occurs when s = [t(N −M + 1)/M ].

In our case, the function B is minimised when

r = [2n/(k + 2)] + 1. (4.3)

Now,

B(n− 1, k + 2, r − 3, 2) =
n− 1

r − 1
·
n− 2

r − 2
·
n− 3

n− r
·

n− 4

n− r − 1
· · · · ·

n− k − 2

n− r − k + 1
.

Observing that

n− 1

r − 1
<

n− 2

r − 2
, r < n

fracn− in− (r + i− 3) ≤
n− k − 2

n− r − k + 1
, 3 ≤ i ≤ k + 2,

we find

B(n− 1, k + 2, r − 3, 2) <

(

n− 2

r − 1

)2 (

n− k − 2

n− r − k + 1

)k

.

Using the minimum value r in (4.3), we obtain

B(n− 1, k + 2, r − 3, 2) <

(

(n + 2)(k + 2)

2n − 2k − 4

)2 (

1 +
2

k

)k

<

(

n− 2

2

)2

(k + 2)2
(

1 +
2

k

)k

= O((k + 1)2),

having also used the fact that k ≤ n− 3.
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Theorem 4.5.8. [9] The Delaunay triangulation of a set P of n points in the plane can be computed
within O(n log n) expected running time using O(n) expected storage.

Proof. In Algorithm 2, if line 5 is not taken into account, then the running time of the algorithm is
proportional to the number of created triangles. According to Lemma 4.5.4, we can conclude that the
expected running time without the time for point location is O(n).

The search structure DTree could use more than linear storage. However, since every node of DTree
is formed by a triangle created by the algorithm, it follows from Lemma 4.5.4 that the corresponding
expected number is O(n) which gives the O(n) expected storage.

To locate a point pr, we have to visit every node of DTree until we reach the current triangulation
containing pr. Therefore, the time to locate pr is O(1) plus the number of visited triangles marked as
“old” which contains pr and have been destroyed. Let ∆pipjpk be a triangle (Delaunay or not) and
∆adjpipjpl its adjacent triangle. One of the following events can destroy the triangle ∆pipjpk:

(i) a new point pr has been inserted inside (or on one of the edges of) ∆ which subdivides it into
three (or two) subtriangles;

(ii) an edge flip has replaced ∆ and ∆adj by the pair ∆′ and ∆′
adj .

In the first case, ∆ was a Delaunay triangle before pr was inserted. In the second case, either ∆ was
a Delaunay and the opposite vertex pl was inserted, or ∆adj was a Delaunay triangle and the opposite
vertex pk was inserted, in which case pk must have been the newly inserted site, and pk and pr lie within
the circumcircle of ∆adj .

In either case, the charged triangle should be Delaunay before the insertion step that caused its destruc-
tion, and pr lies in the circumcircle of that triangle. Observe also that a triangle ∆ can be charged at
most k sites where k is the scope of this triangle. Moreover, a necessary condition for a triangle ∆ to be
charged at all is that it arises as a Delaunay triangle at some stage during the incremental construction.
Therefore, the total time for the point location is at most,

O



n +
n−3
∑

j=0

∑

∆∈Tj

j · Prob(∆ appears as a Delaunay triangle)





= O



n + 6

n−3
∑

j=0

j · ‖Tj‖

(j + 1)(j + 2)(j + 3)



 (according to Lemma 4.5.6)

= O



n + 6
∑

j≥0

[

‖T≤j‖

(j + 1)(j + 2)(j + 3)
−

‖T≤j−1‖

(j + 1)(j + 2)(j + 3)

]





= O



n + 12
∑

j≥0

‖T≤j‖

(j + 2)(j + 3)(j + 4)





= O



n + 12n ·

n
∑

j=0

1

j + 1





= O(n log n).
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Remark 4.5.9. We have given here an amortized analysis of the algorithm. There are cases where the
running time of the algorithm is Θ(n2). Those cases happen when the order of insertion is taken into
account. Consider, for example, a set of points P containing n points such that n/2 points lie on the
negative portion of the x− axis, and n/2 on the positive portion of the line y = 1 (Figure 4.5). The
order of insertion follows the label of each points. In this case, when point n/2 + k is inserted, Many
Delaunay triangles will thus arise quadratically.

n/21 2 3 4 . . .

n
n
2

+ 1

n
2

+ 2

. . .

Figure 4.4: Worst case distribution

n/21 2 3 4 . . .

n
n
2

+ 1

n
2

+ 2

. . .

Figure 4.5: The final triangulation



5. Applications

The implementation of such optimal algorithms are quite complicated and need a considerable amount
of lines of code. Since the edge flips can be done in O(1) time (Theorem 4.5.3), we can, at least,
test the speed of the Delaunay tree point location without this procedure. Some results on different
prove that the implementation gives good results even for huge number of points. We have chosen
the vertices-and-faces-based datastructure of CGAL-python. The last part will introduce the concept of
terrain modelling.

5.0.1 Vertices-and-Faces-Based Datastructure

The implementation is made with CGAL-Python (http://cgal-python.gforge.inria.fr/) using
vertices-and-faces-based datastructure. There are other structures which are standard in the field of
computational geometry such as the quad-edge data structure of Guibas and Stolfi [10] or the doubly-
connected edge list of Müller and Preparata [3]. However, our choice of CGAL is because it can be used
with Python and the vertices-and-faces-based datastructure is easy to manipulate.

The triangulation can be seen as a container of faces and vertices maintaining incidence and adjacency
relations among them. Each face keeps a pointer on its incident vertices and on its three adjacent faces.
Each vertex gives access to one of its incident faces and through that face to the circular list of its
incident faces (see Figure 5.1).

f

i

cw(i)

ccw(i)

neighbor(i)

neighbor(ccw(i))

n
e
ig

h
bo

r(cw
(i))

Figure 5.1: Adjacency relation between faces and vertices

5.0.2 Statistics

The following results are obtained using CGAL-Python library on Ubuntu 8.04.2, Intel Centrino Core
@ Duo T6400 2.0 GHz, 2 MB L2 cache with 4 GB RAM, and interpreted with Ipython. The timing
is given by the function clock. This test is only for the speed of the Delaunay tree point location on
different distributions, which means that the legalization is not included and for simplicity, the case of
a point lying on an edge is considered to be inside the tested triangle. The distributions are: random
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points inside the unit square, the unit circle, a parabola, an ellipse and a ring. The number lies in the
range 500, 5000 and 50000. Since the implementation is made with Python, the speed may be a little
bit slower compared with the standards, but the results are satisfactory.

unit circle parabola ellipse

random points inside the unit square ring

Figure 5.2: Several distributions

distribution size time in s

random 500 0.26
5000 2.78
50000 36.77

circle 500 0.29
5000 3.61
50000 52.57

ellipse 500 0.31
5000 3.95
50000 50.47

parabola 500 0.26
5000 3.62
50000 46.55

ring 500 0.44
5000 5.67
50000 119.77

Table 5.1: Speed of Delaunay tree on different distributions
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5.1 Terrain Generation

In this section, we describe one application of the Delaunay triangulation: the perspective view of a
terrain. A terrain can be viewed as a 2D surface embedded in 3D space. The procedure is the same
as triangulating planar points, but each vertex will be associated with a certain height. The drawing is
made using the Open Source software Blender 3D (www.blender.org).

5.1.1 What is a Terrain?

A terrain is a 2-dimensional surface in 3-dimensional space with a special property: Every vertical line
intersects it at only one point. In other words, it is the graph of a function f : A ⊂ R

2 → R that assigns
a height f(p) to every point p ∈ A of the terrain [1]. We can model a piece of the earth’s surface as a
terrain.

5.1.2 The Modelling Technique

Knowing the height of every point on the earth is impossible. This means that when we talk about some
terrain, we only know the values of the function f on a finite set P ⊂ A of sample points. From this
sample points, we approximate the height of the other points in the domain. One can think of building
the Voronoi diagram of the site, and give to its Voronoi cells the height of the corresponding sites.
However, this gives a discrete terrain, which is not a good approximation of the terrain. Hence, the
approach is to project each 3D points in the plane, triangulate them with the algorithm and finally, put
them at their corresponding heights. We will then get a polyhedral terrain, the graph of a continuous
function that is piecewise linear, . The polyhedral terrain is used as an approximation of the original
terrain [1].

Consider the following topographic map taken from

http://www.compassdude.com/i/topographic-map.jpg.

In Figure 5.3 (b), we draw an approximation of the terrain, having taking 288 sample points from the
map.

(a) topographic map (b) the approximative terrain

Figure 5.3: The procedure of construction

www.blender.org
http://www.compassdude.com/i/topographic-map.jpg
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Note that the quality of the approximation is proportional to the number of the sample points. Unfor-
tunately, taking several samples points is costly and not very helpful for those in game programming
where generation of terrain should be fast and of good quality. This observation lead to the idea of
creating a terrain generator. We will next present a recent technique to generate them.

5.1.3 The Terrain Generator

5.1.4 Main Idea

The generation of the terrain is based on a very clever idea, where mountains are represented by the
two dimensional gaussian,

f(x, y) = (−1)M × exp(−σx(x− µx)2 − σy(y − µy)
2). (5.1)

Here,

• M is a boolean which decides if the surface is a valley or a mountain;

• h is the height of the mountain;

• σx, σy define how spread out the mountain is (it can be interpreted as the inverse of the variance
in statistics).

• µx, µy is the centre of the mountain (it is the mean value in statistics);

5.1.5 The Process of Construction

We have built a class called Terrain which gives access to the following variables:

nb_centre: the number of mountains and valleys;

centre: array of two rows which defines the coordinate of each mountain;

etal: array of two rows which defines how spread out each mountain should be;

height: vector which defines the height of each mountain.

mountain: vector formed by booleans

The initial terrain is initialised by the function Terrain_init which takes as inputnb_centre and
the dimension of the grid point xmin,xmax,ymin,ymax. It returns an initialisation of the terrain
by assigning random positions and random heights to each mountain. We then use the function
Mountain_construct which takes an initialised terrain and returns the final terrain by replacing each
mountain by the two dimensional gaussian .

At this stage, each point of the terrain is represented by three coordinates noted (x, y, h) where h is
a function of (x, y) generated by Mountain_construct. The user defines how many sample points
have to be taken for the triangulation. We do not use any location structure, instead we look for the
triangle with the bigger area and insert the point in the centroid of this triangle. Thus the running time
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of locating the triangle and inserting the point is O(1) when the list of triangles are sorted (in terms of
area) in decreased order. The sorting takes O(n) which gives an O(n2) of the total algorithm. Of course
we can use a location structure but the quality of the triangulation is better with the centroid technique
[19]. In Figure 5.4 (a), we triangulate a grid of 16 points, the same triangulation is done ni (b), but using
the centroid technique. The advantage of (b) is that there are triangles which minimum angle is less than
45 ◦. Note that at the beginning, we already have a triangulation formed by xmin,xmax,ymin,ymax,

(a) grid points (b) centroid technique

Figure 5.4: Quality of triangulation

so that we start the locating process with them. We can summarise the process by the following
pseudo-code

Algorithm 3 Terrain Generation

Input: xmin,xmax,ymin,ymax,nb_centre,the number of sample points n
Output: Perspective view of a generated terrain
1: Initialise the terrain with Terrain_init

2: Let DT be the Delaunay triangulation formed by xmin,xmax,ymin,ymax

3: (*Construct the triangulation of the rectangle formed by xmin,xmax,ymin,ymax,nb_centre*)
4: for r ← 1 to n do

5: for each face of DT do

6: Take the one which has the maximum area
7: end for

8: (*Let f be this face*)
9: Compute the centroid P of f

10: Use the process from line 6 to line 11 in Algorithm 2 with P and f
11: end for

12: Give a height to its point of DT by Mountain_construct

5.1.6 Visualisation

Below are presented the images of three explicit terrains obtained using the algorithm.
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Figure 5.5: The target terrain formed by 1 mountain and 3 valleys

Figure 5.6: The terrain after the Delaunay triangulation

Figure 5.7: The terrain without mesh
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Figure 5.8: The target terrain formed by 20 mountains and 10 valleys

Figure 5.9: The terrain after the Delaunay triangulation

Figure 5.10: The terrain without mesh
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Figure 5.11: The target terrain formed by 50 mountains and 20 valleys

Figure 5.12: The terrain after the Delaunay triangulation

Figure 5.13: The terrain without mesh and using a texture



6. Notes and Comments

There are several applications of the Delaunay triangulation which are well known outside the field of
computational geometry. Triangulations are used in finite element methods [8], in computer graphics,
in image morphing [18] and many more. The randomized incremental algorithm that we have given
here is due to Guibas et al. [9], but the analysis of the expected storage has been simplified and the
algorithm implemented and tested. The Delaunay tree is not the fastest point location in the class
of randomized incremental algorithms. Recently, Olivier Delliers [4] has proposed a new datastructure
called the Delaunay hierarchy which is based on the nearest neighbor paradigm and uses only 3% memory
during the point location compared to the one presented here. Nowadays, the triangulations of a set of
points are not sufficient, the reality implies introducing constraints in the input data which are edges
and holes. Sometimes, triangulating a set of points with small angles are difficult to obtain in terms
of quality, so that extra points, called Steiner points, are added during the triangulation. These new
considerations introduce us to the concept of high order constrained Delaunay triangulation which is
still a very active area of research in computational geometry.

The terrain generator is based on the idea of Jean Claude Isenman [12] with certain translations into
Python. Generating a terrain is one part of the work, yet there are a lot of details to modelise, much
more imagination to explore. The research will never end up as long as it imitates the reality, which is
the main objective .

All the codes of this project are accessible at

http://users.aims.ac.za/~faniry/essayproject.html,

where they can be used freely under the GNU General Public Licence as published by the Free Software
Foundation.
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