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This is complementary material for ICIP’05 tutorial ”Image Registration: A Survey and
Recent Advances”. It aims to present a review of recent as well as classic image registration
methods. Image registration is the process of overlaying two or more images of the same scene
taken at different times, under different lighting conditions, from different viewpoints and/or
by different sensors. The major registration purpose is to remove or suppress geometric
distortions between the reference and sensed images. Image registration is a crucial step
in all image analysis tasks in which the final information is gained by combining various
data sources. Image registration is required, among others, in remote sensing (multispectral
classification, image fusion, environmental monitoring, change detection, image mosaicing,
weather forecasting, integrating information into GIS), in medicine (combining CT and NMR
data to obtain more complete information about the patient, monitoring of tumor growth,
comparison of the patient data with anatomical atlases), in cartography (map updating),
and in military applications (target localization, missile navigation).

Keywords: Image registration, feature detection, feature matching, mapping function, re-
sampling



Part I: Survey

1 Introduction

Image registration is the process of overlaying two or more images of the same scene taken
at different times, from different viewpoints, and/or by different sensors. It geometrically
aligns two images - the reference and sensed images. The present differences between im-
ages are introduced due to different imaging conditions. Image registration is a crucial
step in all image analysis tasks in which the final information is gained from the combina-
tion of various data sources like in image fusion, change detection, and multichannel image
restoration. Typically, registration is required in remote sensing (multispectral classification,
environmental monitoring, change detection, image mosaicing, weather forecasting, creating
super-resolution images, integrating information into geographic information systems - GIS),
in medicine (combining CT and NMR data to obtain more complete information about the
patient, monitoring tumor growth, treatment verification, comparison of the patient’s data
with anatomical atlases), in cartography (map updating), and in computer vision (target
localization, automatic quality control), to name a few.

During the last decades, image acquisition devices have undergone rapid development
and growing amount and diversity of obtained images invoked the research on automatic
image registration. A comprehensive survey of image registration methods was published in
1992 by Brown [26]. This material is based on the survey [237] covering relevant approaches
introduced later and in this way mapping the current development of registration techniques.
According to the database of the Institute of Scientific Information (ISI), in the last ten years
more than 1000 papers were published on the topic of image registration. Methods published
before 1992 that became classic or introduced key ideas, which are still in use, are included as
well to retain the continuity and to give complete view of image registration research. We do
not contemplate to go into details of particular algorithms or describe results of comparative
experiments, rather we want to summarize main approaches and point out interesting parts
of the registration methods.

In Section 2 various aspects and problems of image registration will be discussed. Both
area-based and feature-based approaches to feature selection are described in Section 3. Sec-
tion 4 reviews the existing algorithms for feature matching. Methods for mapping function
design are given in Section 5. Finally, Section 6 surveys main techniques for image transfor-
mation and resampling. Evaluation of the image registration accuracy is covered in Section
7. Section 8 concludes main trends in the research on registration methods and offers the
outlook for the future.

2 Image registration methodology

Image registration, as it was mentioned above, is widely used in remote sensing, medical
imaging, computer vision etc. In general, its applications can be divided into four main
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groups according to the manner of the image acquisition:

Different viewpoints (multiview analysis):
Images of the same scene are acquired from different viewpoints. The aim is to gain larger
a 2D view or a 3D representation of the scanned scene.

Examples of applications: Remote sensing – mosaicing of images of the surveyed area. Com-

puter vision – shape recovery (shape from stereo).

Different times (multitemporal analysis):
Images of the same scene are acquired at different times, often on regular basis, and possibly
under different conditions. The aim is to find and evaluate changes in the scene which
appeared between the consecutive image acquisitions.

Examples of applications: Remote sensing – monitoring of global land usage, landscape
planning. Computer vision – automatic change detection for security monitoring, motion
tracking. Medical imaging - monitoring of the healing therapy, monitoring of the tumor
evolution.

Different sensors (multimodal analysis):
Images of the same scene are acquired by different sensors. The aim is to integrate the
information obtained from different source streams to gain more complex and detailed scene
representation.

Examples of applications: Remote sensing – fusion of information from sensors with different
characteristics like panchromatic images, offering better spatial resolution, color/multispectral
images with better spectral resolution, or radar images independent of cloud cover and solar
illumination. Medical imaging – combination of sensors recording the anatomical body struc-
ture like MRI (magnetic resonance image), ultrasound or CT (computer tomography) with
sensors monitoring functional and metabolic body activities like PET (positron emission
tomography), SPECT (single photon emission computed tomography) or MRS (magnetic
resonance spectroscopy). Results can be applied, for instance, in radiotherapy and nuclear
medicine.

Scene to model registration:
Images of a scene and a model of the scene are registered. The model can be a computer
representation of the scene, for instance maps or digital elevation models (DEM) in GIS,
another scene with similar content (another patient), ”average” specimen, etc. The aim is
to localize the acquired image in the scene/model and/or to compare them.

Examples of applications: Remote sensing – registration of aerial or satellite data into maps
or other GIS layers. Computer vision – target template matching with real-time images,
automatic quality inspection. Medical imaging – comparison of the patient’s image with
digital anatomical atlases, specimen classification.

Due to the diversity of images to be registered and due to various types of degradations it
is impossible to design a universal method applicable to all registration tasks. Every method
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should take into account not only the assumed type of geometric deformation between the
images but also radiometric deformations and noise corruption, required registration accu-
racy and application-dependent data characteristics.

Figure 1: Four steps of image registration: Top row - feature detection (corners were
used as the features in this case). Middle row - feature matching by invariant descriptors
(the corresponding pairs are marked by numbers). Bottom left - transform model estimation

exploiting the established correspondence. Bottom right - image resampling and transfor-

mation using appropriate interpolation technique.

Nevertheless, the majority of the registration methods consists of the following four steps
(see Fig.1):

• Feature detection. Salient and distinctive objects (closed-boundary regions, edges,
contours, line intersections, corners, etc.) are manually or, preferably, automatically
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detected. For further processing, these features can be represented by their point
representatives (centers of gravity, line endings, distinctive points), which are called
control points (CPs) in the literature.

• Feature matching. In this step, the correspondence between the features detected in
the sensed image and those detected in the reference image is established. Various
feature descriptors and similarity measures along with spatial relationships among the
features are used for that purpose.

• Transform model estimation. The type and parameters of the so-called mapping func-

tions, aligning the sensed image with the reference image, are estimated. The pa-
rameters of the mapping functions are computed by means of the established feature
correspondence.

• Image resampling and transformation. The sensed image is transformed by means of
the mapping functions. Image values in non-integer coordinates are computed by the
appropriate interpolation technique.

The implementation of each registration step has its typical problems. First, we have to
decide what kind of features is appropriate for the given task. The features should be dis-
tinctive objects, which are frequently spread over the images and which are easily detectable.
Usually, the physical interpretability of the features is demanded. The detected feature sets
in the reference and sensed images must have enough common elements, even in situations
when the images do not cover exactly the same scene or when there are object occlusions or
other unexpected changes. The detection methods should have good localization accuracy
and should not be sensitive to the assumed image degradation. In an ideal case, the algo-
rithm should be able to detect the same features in all projections of the scene regardless of
the particular image deformation.

In the feature matching step, problems caused by an incorrect feature detection or by
image degradations can arise. Physically corresponding features can be dissimilar due to the
different imaging conditions and/or due to the different spectral sensitivity of the sensors.
The choice of the feature description and similarity measure has to consider these factors.
The feature descriptors should be invariant to the assumed degradations. Simultaneously,
they have to be discriminable enough to be able to distinguish among different features as
well as sufficiently stable so as not to be influenced by slight unexpected feature variations
and noise. The matching algorithm in the space of invariants should be robust and efficient.
Single features without corresponding counterparts in the other image should not affect its
performance.

The type of the mapping functions should be chosen according to the a priori known
information about the acquisition process and expected image degradations. If no a priori

information is available, the model should be flexible and general enough to handle all
possible degradations which might appear. The accuracy of the feature detection method,
the reliability of feature correspondence estimation, and the acceptable approximation error
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need to be considered too. Moreover, the decision about which differences between images
have to be removed by registration has to be done. It is desirable not to remove the differences
we are searching for if the aim is a change detection. This issue is very important and
extremely difficult.

Finally, the choice of the appropriate type of resampling technique depends on the trade-
off between the demanded accuracy of the interpolation and the computational complexity.
The nearest-neighbor or bilinear interpolation are sufficient in most cases; however, some
applications require more precise methods.

Because of its importance in various application areas as well as because of its complicated
nature, image registration has been the topic of much recent research. The historically first
survey paper [66] covers mainly the methods based on image correlation. Probably the most
exhaustive review of the general-purpose image registration methods is in [26]. Registration
techniques applied particularly in medical imaging are summarized in [204], [128], [90], and
[116]. In [9] the surface based registration methods in medical imaging are reviewed. Volume-
based registration is reviewed in [40]. The registration methods applied mainly in remote
sensing are described and evaluated in [61], [84] and [111]. Big evaluation project of different
registration methods was run in Vanderbilt university [217].

Registration methods can be categorized with respect to various criteria. The ones usually
used are the application area, dimensionality of data, type and complexity of assumed image
deformations, computational cost, and the essential ideas of the registration algorithm. Here,
the classification according to the essential ideas is chosen, considering the decomposition
of the registration into the described four steps. The techniques exceeding this four-step
framework are covered according to their major contribution.

3 Feature detection

Formerly, the features were objects manually selected by an expert. During an automation
of this registration step, two main approaches to feature understanding have been formed.

3.1 Area-based methods

Area-based methods put emphasis rather on the feature matching step than on their detec-
tion. No features are detected in these approaches so the first step of image registration is
omitted. The methods belonging to this class will be covered in sections corresponding to
the other registration steps.

3.2 Feature-based methods

The second approach is based on the extraction of salient structures – features – in the
images. Significant regions (forests, lakes, fields), lines (region boundaries, coastlines, roads,
rivers) or points (region corners, line intersections, points on curves with high curvature)
are understood as features here. They should be distinct, spread all over the image and
efficiently detectable in both images. They are expected to be stable in time to stay at fixed
positions during the whole experiment.
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The comparability of feature sets in the sensed and reference images is assured by the
invariance and accuracy of the feature detector and by the overlap criterion. In other words,
the number of common elements of the detected sets of features should be sufficiently high,
regardless of the change of image geometry, radiometric conditions, presence of additive
noise, and of changes in the scanned scene. The ”remarkableness” of the features is implied
by their definition. In contrast to the area-based methods, the feature-based ones do not
work directly with image intensity values. The features represent information on higher
level. This property makes feature-based methods suitable for situations when illumination
changes are expected or multisensor analysis is demanded.

Region features. The region-like features can be the projections of general high contrast
closed-boundary regions of an appropriate size [75], [54], water reservoirs, and lakes [74],
[92], buildings [96], forests [174], urban areas [170] or shadows [24]. The general criterion of
closed-boundary regions is prevalent. The regions are often represented by their centers of
gravity, which are invariant with respect to rotation, scaling, and skewing and stable under
random noise and gray level variation.

Region features are detected by means of segmentation methods [144]. The accuracy of
the segmentation can significantly influence the resulting registration. Goshtasby et al. [75]
proposed a refinement of the segmentation process to improve the registration quality. The
segmentation of the image was done iteratively together with the registration; in every iter-
ation, the rough estimation of the object correspondence was used to tune the segmentation
parameters. They claimed the subpixel accuracy of registration could be achieved.

Recently, selection of region features invariant with respect to change of scale caught
attention. Alhichri and Kamel [2] proposed the idea of virtual circles, using distance trans-
form. Affinely invariant neighborhoods were described in [203], based on Harris corner
detector [141] and edges (curved or straight) going through detected corners. Different ap-
proach to this problem using Maximally Stable Extremal Regions based on homogeneity of
image intensities was presented by Matas et al. [132].

Line features. The line features can be the representations of general line segments [216],
[137], [96], object contours [117], [36], [77], coastal lines, [177], [129], roads [119] or elongated
anatomic structures [213] in medical imaging. Line correspondence is usually expressed by
pairs of line ends or middle points.

Standard edge detection methods, like Canny detector [28] or a detector based on the
Laplacian of Gaussian [131], are employed for the line feature detection. The survey of
existing edge detection method together with their evaluation can be found in [236]. Li et
al. [117] proposed to exploit the already detected features in the reference image (optical
data) for the detection of lines in the sensed images (SAR images with speckle noise, which is
a typical degradation present in this type of data). They applied elastic contour extraction.
The comparison of different operators for the feature edge detection and the ridge detection
in multimodal medical images is presented by Maintz et al. [127], [126].

Point features. The point features group consists of methods working with line intersec-
tions [184], [207], road crossings [170], [82], centroids of water regions, oil and gas pads [199],
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high variance points [45], local curvature discontinuities detected using the Gabor wavelets
[233], [130], inflection points of curves [3], [11], local extrema of wavelet transform [60], [94],
the most distinctive points with respect to a specified measure of similarity [120], and corners
[20], [215], [96].

The core algorithms of feature detectors in most cases follow the definitions of the ”point”
as line intersection, centroid of closed-boundary region or local modulus maxima of the
wavelet transform. Corners form specific class of features, because ”to-be-a-corner” prop-
erty is hard to define mathematically (intuitively, corners are understood as points of high
curvature on the region boundaries). Much effort has been spent in developing precise, ro-
bust, and fast method for corner detection. A survey of corner detectors can be found in
[234], [181], [164] and the most up-to-date and exhaustive in [165]. The latter also analyzes
localization properties of the detectors. Corners are widely used as control points mainly
because of their invariance to imaging geometry and because they are well perceived by a
human observer.

Kitchen and Rosenfeld [105] proposed to exploit the second-order partial derivatives of
the image function for corner detection. Dreschler and Nagel [43] searched for the local
extrema of the Gaussian curvature. However, corner detectors based on the second-order
derivatives of the image function are sensitive to noise. Thus Förstner [64] developed a
more robust, although time consuming, corner detector, which is based on the first-order
derivatives only. The reputable Harris detector (also referred to as the Plessey detector)
[141] is in fact its inverse. The application of the Förstner detector is described in [112],
where it is used for the registration of dental implants images.

More intuitive approach was chosen by Smith and Brady [182] in their robust SUSAN
method. As the criterion they used the size of the area of the same color as that of the central
pixel. Trajkovic and Hedley [201] designed their operator using the idea that the change
of the image intensity at the corners should be high in all directions. Recently, Zitová et
al. [239] proposed a parametric corner detector, which does not employ any derivatives and
which was designed to handle blurred and noisy data. Rohr et al. designed corner detectors,
even for 3-D data, allowing user interaction [167].

The number of detected points can be very high, which increases the computational time
necessary for the registration. Several authors proposed methods for an efficient selection of
a subset of points (better than random) which does not degrade the quality of the resulting
registration. Goshtasby [74] used only points belonging to a convex hull of the whole set.
Lavine [109] proposed to use points forming the minimum spanning trees of sets. Ehlers [45]
merged points into ”clumps” – large dense clusters.

Summary. To summarize, the use of feature-based methods is recommended if the images
contain enough distinctive and easily detectable objects. This is usually the case of appli-
cations in remote sensing and computer vision. The typical images contain a lot of details
(towns, rivers, roads, forests, room facilities, etc). On the other hand, medical images are
not so rich in such details and thus area-based methods are usually employed here. Some-
times, the lack of distinctive objects in medical images is solved by the interactive selection
done by an expert or by introducing extrinsic features, rigidly positioned with respect to
the patient (skin markers, screw markers, dental adapters etc.) [128]. The applicability
of area-based and feature-based methods for images with various contrast and sharpness is
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analyzed in [160]. Recently, registration methods using simultaneously both area-based and
feature-based approaches have started to appear (for example see [89]).

4 Feature matching

The detected features in the reference and sensed images can be matched by means of the
image intensity values in their close neighborhoods, the feature spatial distribution, or the
feature symbolic description. Some methods, while looking for the feature correspondence,
simultaneously estimate the parameters of mapping functions and thus merge the second
and third registration steps.

In the following paragraphs, the two major categories (area-based and feature-based
methods, respectively) are retained and further classified into subcategories according to the
basic ideas of the matching methods.

4.1 Area-based methods

Area-based methods, sometimes called correlation-like methods or template matching [61]
merge the feature detection step with the matching part. These methods deal with the
images without attempting to detect salient objects. Windows of predefined size or even
entire images are used for the correspondence estimation during the second registration
step, see e.g. [153], [12], [4].

The limitations of the area-based methods originate in their basic idea. Firstly, the
rectangular window, which is most often used, suits the registration of images which locally
differ only by a translation. If images are deformed by more complex transformations, this
type of the window is not able to cover the same parts of the scene in the reference and sensed
images (the rectangle can be transformed to some other shape). Several authors proposed to
use circular shape of the window for mutually rotated images. However, the comparability
of such simple-shaped windows is violated too if more complicated geometric deformations
(similarity, perspective transforms, etc.) are present between images.

Another disadvantage of the area-based methods refers to the ”remarkableness” of the
window content. There is high probability that a window containing a smooth area without
any prominent details will be matched incorrectly with other smooth areas in the reference
image due to its non-saliency. The features for registration should be preferably detected in
distinctive parts of the image. Windows, whose selection is often not based on their content
evaluation, may not have this property.

Classical area-based methods like cross-correlation exploit for matching directly image
intensities, without any structural analysis. Consequently, they are sensitive to the intensity
changes, introduced for instance by noise, varying illumination, and/or by using different
sensor types.
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Correlation-like methods. The classical representative of the area-based methods is the
normalized cross-correlation (CC) and its modifications [154].

CC(i, j) =

∑

W (W − E(W ))(I(i,j) − E(I(i,j)))
√

∑

W(W − E(W ))2
√

∑

I(i,j)
(I(i,j) − E(I(i,j)))2

This measure of similarity is computed for window pairs from the sensed and reference
images and its maximum is searched. The window pairs for which the maximum is achieved
are set as the corresponding ones (see Fig.2). If the subpixel accuracy of the registration
is demanded, the interpolation of the CC measure values needs to be used. Although the
cross-correlation based registration can exactly align mutually translated images only, it can
also be successfully applied when slight rotation and scaling are present.

There are generalized versions of CC for geometrically more deformed images. They
compute the cross-correlation for each assumed geometric transformation of the sensed image
window [86] and are able to handle even more complicated geometric deformations than the
translation – usually the similarity transform. Berthilsson [17] tried to register in this manner
even affinely deformed images and Simper [179] proposed to use a divide and conquer system
and the cross-correlation technique for registering images differing by perspective changes
as well as changes due to the lens imperfections. The computational load, however, grows
very fast with the increase of the transformation complexity. In case the images/objects
to be registered are partially occluded the extended CC method based on increment sign
correlation [102] can be applied [103].

Similar to the cross-correlation methods is the sequential similarity detection algorithm
(SSDA) [12]. It uses the sequential search approach and a computationally simpler distance
measure than the cross-correlation. It accumulates the sum of absolute differences of the
image intensity values (matrix l1 norm) and applies the threshold criterion – if the accu-
mulated sum exceeds the given threshold, the candidate pair of windows from the reference
and sensed images is rejected and the next pair is tested. The method is likely to be less
accurate than the cross-correlation but it is faster. Sum of squared differences similarity
measure was used in [222] for iterative estimation of perspective deformation using piecewise
affine estimates for image decomposed to small patches.

Recently big interest in the area of multimodal registration has been paid to the correla-
tion ratio based methods. In opposite to classical cross-correlation, this similarity measure
can handle intensity differences between images due to the usage of different sensors - multi-
modal images. It supposes that intensity dependence can be represented by some function.
Comparison of this approach to several other algorithms developed for multimodal data can
be found in [163]. In case of noisy images with certain characteristic (fixed-pattern noise),
projection-based registration [27], working with accumulated image rows and columns, re-
spectively, outperforms classical cross-correlation.

Huttenlocher et al. [99] proposed a method working with other type of similarity measure.
They registered binary images (the output of an edge detector) transformed by translation
or translation plus rotation, by means of the Hausdorff distance (HD). They compared the
HD based algorithm with the cross-correlation. Especially on images with perturbed pixel
locations, which are problematic for cross-correlation, HD outperforms the cross-correlation.

Two main drawbacks of the correlation-like methods are the flatness of the similarity
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measure maxima (due to the self-similarity of the images) and high computational com-
plexity. The maximum can be sharpened by preprocessing or by using the edge or vector
correlation. Pratt [153] applied, prior to the registration, image filtering to improve the CC
performance on noisy or highly correlated images. Van Wie [205] and Anuta [6] employed
the edge-based correlation, which is computed on the edges extracted from the images rather
than on the original images themselves. In this way, the method is less sensitive to intensity
differences between the reference and sensed images, too. Extension of this approach, called
vector-based correlation, computes the similarity measures using various representations of
the window.

Despite the limitations mentioned above, the correlation-like registration methods are
still often in use, particularly thanks to their easy hardware implementation, which makes
them useful for real-time applications.

Fourier methods. If an acceleration of the computational speed is needed or if the images
were acquired under varying conditions or they are corrupted by frequency-dependent noise,
then Fourier methods are preferred rather than the correlation-like methods. They exploit
the Fourier representation of the images in the frequency domain. The phase correlation
method is based on the Fourier Shift Theorem [23] and was originally proposed for the
registration of translated images. It computes the cross-power spectrum of the sensed and
reference images and looks for the location of the peak in its inverse (see Fig.2).

F(f)F(g)∗

|F(f)F(g)∗| = e2πi(ux0+vy0)

The method shows strong robustness against the correlated and frequency dependent noise
and nonuniform, time varying illumination disturbances. The computational time savings
are more significant if the images, which are to be registered, are large.

De Castro and Morandi [29] introduced an extension of the phase correlation for addi-
tional rotation transform. If the change of image scale is present too, the images can be
registered using the combination of polar-log mapping of the spectral magnitude (which
corresponds to Fourier-Mellin transform) and the phase correlation [159], [31] or cepstrum
filter [112]. The applications of the extended algorithm in remote sensing (SPOT images)
and medical imaging (MR images) are described in [31]. The testing of the accuracy of the
method in simulated conditions (registration of deformed and noisy images of ocular fun-
dus) was performed with satisfying results [34]. Affinely distorted images were registered by
means of phase correlation and log-polar mapping in [221]. Application of phase correlation
in 3D is described in [124]. Another application exploiting the Fourier transform is described
in [6]. The authors proposed to compute the correlation in frequency domain. This method
can handle multimodal images when applied to the edge representations instead of the origi-
nal graylevel images. Extension of phase correlation to subpixel registration by means of the
analytic expression of phase correlation on downsampled images was introduced by Foroosh
et al. [63].

Mutual information methods. The mutual information (MI) methods are the last group
of the area-based methods to be reviewed here. They have appeared recently and represent
the leading technique in multimodal registration. Registration of multimodal images is the
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Figure 2: Area-based matching methods: registration of small template to the whole
image using normalized cross-correlation (middle row) and phase correlation (bottom row).
The maxima identify the matching positions. The template is of the same spectral band as
the reference image (the graphs on the left depict red–red channel matching) and of different
spectral band (the graphs on the right demonstrate red–blue channel matching). In a general
case the normalized cross-correlation could fail in case of multimodal data.

difficult task, but often necessary to solve, especially in medical imaging. The comparison of
anatomical and functional images of the patient’s body can lead to a diagnosis which would
be impossible to gain otherwise. Remote sensing often makes use of the exploitation of more
sensor types, too.

The mutual information, originating from the information theory, is a measure of sta-
tistical dependency between two data sets and it is particularly suitable for registration of
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images from different modalities. Mutual information between two random variables X and
Y is given by

MI(X,Y ) = H(Y ) − H(Y |X) = H(X) + H(Y ) − H(X,Y ),

where H(X) = −EX(log(P (X))) represents entropy of random variable and P(X) is the
probability distribution of X. The method is based on the maximization of MI (see Fig.3)
Often the speed up of the registration is implemented, exploiting the coarse-to-fine resolution
strategy (the pyramidal approach).

Figure 3: Mutual information: MI criterion (bottom row) computed in the neighborhood
of point P between new and old photographs of the mosaic (top row). Maximum of MI
shows the correct matching position (point A). Point B indicates the false matching position
selected previously by the human operator. The mistake was caused by poor image quality
and by complex nature of the image degradations.

One of the first articles proposing this technique is Viola and Wells [210]. The authors
described the application of MI for the registration by magnetic resonance images as well as

12



for the 3-D object model matching to the real scene. MI was maximized using the gradient
descent optimization method. Thévenaz and Unser [196], [195], [197] tried to combine various
approaches, solving individual steps of MI registration. They employed the Parzen window
for the joint probability computation and the Jeeves method ([196]) or the Marquardt-
Levenberg method ([195]) to maximize the MI. To speed up the computation, they used spline
pyramids [197]. Ritter et al. [161] used hierarchical search strategy together with simulated
annealing to find the maximum of the MI. Studholme et al. [186] compared three similar
measures of information dependency – the joint entropy, the MI, and the normalized MI (a
new idea, claimed to outperform the others). They applied discrete histogram estimates of
the joint probability distribution instead of application of the Parzen window used in previous
work. Maximization was achieved by using a multiresolution hill climbing algorithm. They
registered MR-CT and MR-PET images of a human brain. Maes et al. [125] optimized
the MI by means of the Brent’s method and the Powell’s multidimensional direction set
method to register MR, CT, and PET images of a human brain that differ by similarity
transform. MI applied to breast MR images is described in [171]. The authors proposed
to model the global deformation present between the images by a combination of the affine
transformations and the spline-based free form deformation. Likar and Pernus [121] studied
the performance of different methods for the joint probability estimation in registration of
muscle fibre images. The comparison of the basic MI registration with the version employing
the coarse-to-fine speed up was done in [151]. The comparison of MI to six other registration
methods including the normalized cross-correlation and the gradient correlation is described
in [150]. The relation of MI to other area-based similarity (correlation coefficients, correlation
ratio) measures is described in [162] using the formulation of maximum likelihood estimation
problem.

The above mentioned MI methods work with the entire image data and directly with
image intensities. Rangarajan et al. [157] applied MI on extracted features (points of the
area borders), but this approach is still rare. Similar to MI, coming form the theory of
information, is similarity measure based on cross-entropy [235].

Optimization methods. Finding the minimum of dissimilarity measure (penalty func-
tion) or the maximum of similarity measure is a multidimensional optimization problem,
where the number of dimensions corresponds to the degrees of freedom of the expected geo-
metrical transformation. The only method yielding global extreme solution is an exhaustive
search over the entire image. Although it is computationally demanding, it is often used if
only translations are to be estimated.

In case of transformations with more degrees of freedom or in case of more complex sim-
ilarity measures, sophisticated optimization algorithms are required, which help to localize
the maxima or minima, respectively. The application of Gauss-Newton numerical minimiza-
tion algorithm for minimizing the sum of squared differences is described in [175], where
the projective geometric deformation was used. In [210] maxima of mutual information was
found using the gradient descent optimization method. Levenberg-Marquardt optimization
method was applied in [173] to minimize the variance in intensities of corresponding pixels.
The images were registered by means of the projective transformation model plus the lens
distortion model. The combination of the Levenberg-Marquardt method and the sum of
the squared differences metric is described in [194]. Similarly, Wolberg and Zokai [222] used
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this combination for registering of perspectively deformed images. The Powell’s multidi-
mensional direction set method [100] is applied in Maes et al. [125]. Starink and Backer
[183] tried to minimize a dissimilarity measure defined on point pairs by means of simulated
annealing. Another optimization method, suited for multimodal data registration was in-
troduced in [101] and its applicability was proved in combination with mutual information
and correlation ratio. Again, the optimization methods can be speeded up by the pyramidal
approach.

There should be noted one thing with respect to these optimization methods. Sometimes
next to the dissimilarity measure term the formula to be minimized contains as well so-
called regularization or penalty term, which interconnects the transformation and data to be
transformed (see [85]). These two terms together form the cost function (energy) associated
with the registration and the aim of the optimization methods is to minimize it. In literature
such methods can be referred to as energy minimization methods. The regularization term
is usually omitted in case of rigid body transforms, but in nonrigid transformations such as
elastic or fluid registration methods, described more in detail in Section 5, is present.

4.2 Feature-based methods

We assume that two sets of features in the reference and sensed images represented by the
control points (CPs) (points themselves, end points or centers of line features, centers of
gravity of regions, etc.) have been detected. The aim is to find the pair-wise correspondence
between them using their spatial relations or various descriptors of features.

Methods using spatial relations. Methods based primarily on the spatial relations
among the features are usually applied if detected features are ambiguous or if their neigh-
borhoods are locally distorted. The information about the distance between the CPs and
about their spatial distribution is exploited.

Goshtasby in [74] described the registration based on the graph matching algorithm.
He was evaluating the number of features in the sensed image that, after the particular
transformation, fall within a given range next to the features in the reference image. The
transformation parameters with the highest score were then set as a valid estimate.

Clustering technique, presented by Stockman et al. [184], tries to match points con-
nected by abstract edges or line segments. The assumed geometrical model is the similarity
transform. For every pair of CPs from both the reference and sensed images, the parameters
of the transformation which maps the points on each other are computed and represented
as a point in the space of transform parameters. The parameters of transformations that
closely map the highest number of features tend to form a cluster, while mismatches fill the
parameter space randomly. The cluster is detected and its centroid is assumed to represent
the most probable vector of matching parameters. Mapping function parameters are thus
found simultaneously with the feature correspondence. Local errors do not influence globally
the registration process. The clustering technique was implemented, for example, in [75] and
[30].

Barrow et al. [14] introduced the chamfer matching for image registration. Line features
detected in images are matched by means of the minimalization of the generalized distance
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between them. Borgefors [22] proposed an improved version, where better measure of corre-
spondence – the sequential distance transform together with the root mean square average
– was applied. The algorithm employs also the pyramidal speed-up.

Even that this overview does not intend to cover 3D registration methods, here the
well-known Iterative Closest Point (ICP) algorithm, introduced by Besl and McKay [18] is
mentioned, because it represents a key approach for registering 3D shapes (including free-
form curves and surfaces).

Methods using invariant descriptors. As an alternative to the methods exploiting the
spatial relations, the correspondence of features can be estimated using their description,
preferably invariant to the expected image deformation (see Fig.4). The description should
fulfill several conditions. The most important ones are invariance (the descriptions of the
corresponding features from the reference and sensed image have to be the same), uniqueness

(two different features should have different descriptions), stability (the description of a
feature which is slightly deformed in an unknown manner should be close to the description
of the original feature), and independence (if the feature description is a vector, its elements
should be functionally independent). However, usually not all these conditions have to (or
can) be satisfied simultaneously and it is necessary to find an appropriate trade-off.

Features from the sensed and reference images with the most similar invariant descriptions
are paired as the corresponding ones. The choice of the type of the invariant description
depends on the feature characteristics and the assumed geometric deformation of the images.
While searching for the best matching feature pairs in the space of feature descriptors, the
minimum distance rule with thresholding is usually applied. If a more robust algorithm
is needed, the matching likelihood coefficients [51], which can better handle questionable
situations, can be an appropriate solution. Guest et. al. proposed to select features according
to the reliability of their possible matches [83].

The simplest feature description is the image intensity function itself, limited to the
close neighborhood of the feature [1], [112]. To estimate the feature correspondence, authors
computed the cross-correlation on these neighborhoods. Other types of similarity measures
can be used, too. Zheng and Chellapa make use of the correlation coefficients [233]. They
assumed the similarity geometric deformation. In their approach, firstly the rotation between
images was compensated by the estimation of the illuminant direction and then the coarse-
to-fine correlation based registration was performed. In [238] the mutual information was
used for the improvement of the feature correspondence.

The following references are examples of the intuitive descriptions, which usually do not
fulfill some of the mentioned criteria of invariant descriptors. Sester et. al. [174] proposed to
describe forests, used as the region features, by elongation parameter, compactness, number
of holes, and several characteristics of the minimum bounding rectangle. To register stars
with a catalog, Murtagh [138] assigned to every point feature the description of the spatial
distribution of other features lying around. Vujovic and Brzakovic in [213] represented every
detected feature (elongated structure intersections) by its signature formed by the longest
structure and angles between all other structures, participating in the intersection. Similarly,
Zana [229] described each feature point by means of angles between relevant intersecting lines.
Montesinos et. al. [136] proposed to use differential descriptors of the image function in the
neighborhood of the detected CPs. Yang and Cohen [227] used border triangles generated

15



Figure 4: Feature-based method using invariant descriptors: in these two satellite
images, control points (corners) were matched using invariants based on complex moments
[57]. The numbers identify corresponding CP’s. The bottom image shows the registration
result.

by object convex hull and computed on them affine geometric invariants.
Many authors used closed-boundary regions as the features. In principle, any invariant

and discriminative enough shape descriptor can be employed in region matching. Peli [149]
proposed simple and fast description by radial shape vector but the usage of this method
is limited to star-shape regions only. A generalized shape description in a form of a binary
matrix was proposed in [68], [189]. In [75], the shape matrices were used for registration
of rotated and scaled satellite images. In [117] a chain code representation of contours was
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proposed as the invariant description and a chain code correlation-like measure was used for
finding the correspondence. Skea et al. [180] represented non-collinear triplets of CPs by
the sphericity. Suk [187] proposed the invariant shape description of the regions represented
by polygons and further developed this approach in [188]

A large group of methods uses moment-based invariants for description of closed-boundary
region features. Considering the most often assumed deformations, Hu [97] introduced mo-
ment invariants to the similarity transform.

Flusser and Suk derived the affine transform invariants [53] and used them successfully
for registration of SPOT and Landsat images [54]. Holm [92] extracted closed boundary
regions and proposed to represent them by their perimeter, area, compactness, moments,
and moment invariants. Bhattacharya [20] suggested the application of complex moments.
Brivio et al. [24] modeled shadow structures in mountain images by means of their inertia
ellipses. The ellipses are here described by their area, inclination of the main axis and
ellipticity. All these attributes are functions of moments. Li et al. [117] used first two Hu’s
moments as preselectors for matching of closed contours. The candidate matches were tested
using the chain code representation of the contours. A similar method was described in [35],
where the moment invariants are used together with the chain codes. Sato and Cipolla
[172] computed directly, without correspondence estimation, the parameters of the present
geometric deformations (an affine transform was expected) using the circular moments of
distribution of the line features orientation. They combined moments and the scale-space
representation of the images. Recently, Flusser and Suk [55] introduced a new class of
moment invariants that are invariant to image blurring and demonstrated their performance
in registering SPOT and AVHRR satellite images. Bentoutou [16] et al. registered mutually
shifted and blurred digital subtraction angiography images using these invariants. Flusser
et al. further developed this approach in [57] by introducing the combined blur-rotation
invariants. In [52] they generalized the previous invariants to register 3-D images.

Invariant combination of the basic geometric properties of features can form geometrically
oriented descriptors. Govindu et al. [77] represented the extracted contours from possibly
rotated images by the slopes of tangents in the contour points. They did not look for contour
correspondence, but only for the distributions of the proposed descriptors. By comparison
of the corresponding distributions from the reference and sensed images the mutual image
rotation can be estimated. They derived a similar type of descriptors for the affine transform,
too. A detailed study of the practical aspects of the proposed method can be found in [76].
Wang and Chen [216] computed the histogram of line-length ratios and the histogram of angle
differences of any two line segments in the reference and sensed images. They assumed the
similarity transform. Griffin and Alexopoulos [80] used the ratio of the smallest enclosing
circle radii, the difference of the locations of centroids of gravity, and the sorting of the
neighbors lexicographically according to the angle with the x axis and the distance from the
centroid. All these methods skip the step of finding the feature correspondence and establish
directly the mapping function parameters.

Hsieh et al. [95] used the angle histogram computed on line feature points for the com-
pensation of rotation difference. After the removal of the rotation difference, the feature
point correspondence is found by means of cross-correlation. They compared their rotation
compensation with the one described in [233].

Shekhar et al. [176] combined different types of features and their descriptors. They
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decomposed the present geometric deformation into elementary steps and then estimated
transform parameters using the feature consensus – every type of feature descriptor votes
for the corresponding value of the parameter. The value of the parameter which maximizes
the number of votes over all descriptor types is then chosen.

Ventura et al. [209] described image features by various descriptors (ellipticity, angle,
thinness, etc.) and represented relations among them by a multi-value logical tree (MVLT).
Then they compared the MVLTs of the reference and sensed images to find the feature
correspondence. MVLTs are applied also in [24], together with moment invariants.

Invariant descriptors can be used as well in situations, when no precedent feature detec-
tion was done and the invariants are successively computed for the window sliding across the
whole image [55]. For translated and rotated images, Goshtasby [69] proposed to calculate
the moment invariants [97] from the circular-shaped windows and then to apply the cross-
correlation criterion on the moment window representation. A similar idea was used earlier
by Wong and Hall [224]. Along with the moment-based window description, they applied
hierarchical search strategy to match radar and optical images.

Relaxation methods. A large group of the registration methods is based on the relaxation
approach, as one of the solutions to the consistent labeling problem (CLP): to label each
feature from the sensed image with the label of a feature from the reference image, so it is
consistent with the labeling given to the other feature pairs [135]. The process of recalculating
the pair figures of merit, considering the match quality of the feature pairs and of matching
their neighbors, is iteratively repeated until a stable situation is reached. The reference
work was done by Ranade and Rosenfeld [156]. Here, the displacement of the feature sets
transformed by a certain geometric transformation defines the figures of merit of the feature
pairs. This method can handle shifted images and it tolerates local image distortions.

Wang et al. [215] extended the classical relaxation by including the description of the
corner features. They used corner sharpness, contrast, and slope. This algorithm allows
to handle translation and rotation distortions in the images, but it is computationally de-
manding. Medioni and Nevatia [133] used line features and their descriptors (coordinates,
orientation, average contrast). Cheng and Huang [33] proposed a star-based registration
which considers individual feature points along with all links to their neighbors. Ton and
Jain [199] speeded up the algorithm by integrating the MergeSort concept. Their method
works with shifted and rotated images. Relaxation based method even for similarity trans-
formed images was proposed, for example, by Cheng [32], Ogawa [142] and Li [118]. Different
relaxation methods are compared in [155].

Another solution to the CLP problem and consequently to the image registration is
backtracking, where consistent labeling is generated in recursive manner. A registration
method based on backtracking is described in [135].

Pyramids and wavelets. We conclude the discussion about the feature matching by
mentioning some works that try to reduce the computational cost due to the large image
size by means of pyramidal approach.

First attempts were done back in 1977. Vanderbrug and Rosenfeld concentrated in their
work on the amount of computation needed for the window pair testing. In [206], they used
a subwindow first to find probable candidates of the corresponding window in the reference
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image and then the full-size window was applied. They discussed the appropriate choice of
the subwindow size to minimize the expected computational cost. In [169] they proposed
to use first both the sensed and the reference images at a coarser resolution and then, on
locations with small error measure, to match higher resolution images. Althof et al. [4]
proposed to decrease the necessary computational load by taking just a sparse regular grid
of windows for which the cross correlation matching is performed. These techniques are
simple examples of pyramidal methods.

In general, this coarse-to-fine hierarchical strategy applies the usual registration meth-
ods, but it starts with the reference and sensed images on a coarse resolution (generated
using Gaussian pyramids, simple averaging or wavelet transform coefficients, among others).
Then they gradually improve the estimates of the correspondence or of the mapping function
parameters while going up to the finer resolutions. At every level, they considerably decrease
the search space and thus save the necessary computational time. Another important advan-
tage resides in the fact that the registration with respect to large-scale features is achieved
first and then small corrections are made for finer details. On the other hand, this strategy
fails if a false match is identified on a coarser level. To overcome this, a backtracking or
consistency check should be incorporated into the algorithms.

Combining cross-correlation with the pyramidal approach that exploits a summing pyra-
mid (the pixel value at a coarser level corresponds to the summation of the pixel values on the
previous level), a median pyramid, and an averaging pyramid was proposed in [219], [233] and
[37] respectively. Wong and Hall [225] combined the SSDA method with pyramidal speed-up.
Wang and Chen [216] extracted features (centroids of closed boundary regions) at every res-
olution level and found the parameters of geometric deformation from the histogram of angle
differences and line-length ratios, as mentioned above. Thévenaz et al. applied a cubic spline
based pyramid along with the minimization of the mean square intensity difference between
the images [193] and the mutual information maximization [196], respectively. Sharma and
Pavel [175] used the multiresolution Laplacian pyramid for the infrared and radar images
registration. Kumar et al. [107] combined different types of pyramids (Laplacian, Gaussian)
with different similarity measures (cross-correlation, sum of squared differences) to register
aerial video sequences. Nonlinear min-max filters applied in a pyramidal scheme was used
in [178].

Recently, wavelet decomposition of the images was recommended for the pyramidal ap-
proach due to its inherent multiresolution character. Methods can differ in the type of the
applied wavelet and the set of wavelet coefficients used for finding the correspondence. Most
frequently used methods decompose the image recursively into four sets of coefficients (LL,
HL, LH, HH) by filtering the image successively with two filters, a low-pass filter L and a
high-pass filter H, both working along the image rows and columns.

Turcajova and Kautsky [202] tested various orthogonal and biorthogonal wavelets (they
used LL coefficients) together with cross-correlation on a regular grid of points to register
affine transformed images. Spline biorthogonal wavelets and Haar wavelet outperformed
others. Fonseca and Costa [60] detected the modulus maxima of LH and HL coefficients
and looked for the maxima of the correlation coefficients, computed from LL coefficients in
small surroundings of the detected maxima. Djamdji et al. [41] use just HH coefficients. Le
Moigne [110] applied the Daubechies wavelet to register Landsat images and AVHRR data.
They extracted LH and HL frequency coefficients and found the correspondence by means
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of cross-correlation. Liu et al. [123] proposed the application of Gabor wavelet transform
and Gaussian model of registration residua. You and Bhattacharya [228] use the maximum
compact fuzzy sets of wavelet coefficients as features and Hausdorff distance as similarity
measure. The robustness of the registration by means of the Daubechies and Haar wavelets
was studied in [185].

Summary. Area-based methods are preferably applied when the images have not many
prominent details and the distinctive information is provided by graylevels/colors rather than
by local shapes and structure. Area-based methods have two principal limitations. Reference
and sensed images must have somehow ”similar” intensity functions, either identical (and
then correlation-like methods can be used) or at least statistically dependent (this typically
occurs in multimodal registration).

From the geometric point of view, only shift and small rotation between the images are al-
lowed when using area-based methods (although the area-based methods can be generalized
to full rotation and scaling, it is practically meaningless because of an extreme computational
load). To speed up the searching, area-based methods often employ pyramidal image repre-
sentations and sophisticated optimization algorithms to find the maximum of the similarity
matrix.

Feature-based matching methods are typically applied when the local structural infor-
mation is more significant than the information carried by the image intensities. They allow
to register images of completely different nature (like aerial photograph and map) and can
handle complex between-image distortions. The common drawback of the feature-based
methods is that the respective features might be hard to detect and/or unstable in time.
The crucial point of all feature-based matching methods is to have discriminative and robust
feature descriptors that are invariant to all assumed differences between the images.

5 Transform model estimation

After the feature correspondence has been established the mapping function is constructed.
It should transform the sensed image to overlay it over the reference one. The correspondence
of the control points from the sensed and reference images together with the fact that the
corresponding CP pairs should be as close as possible after the sensed image transformation
are employed in the mapping function design.

The task to be solved consists of choosing the type of the mapping function (see Fig.5)
and its parameter estimation. The type of the mapping function should correspond to the
assumed geometric deformation of the sensed image, to the method of image acquisition (e.g.
scanner dependent distortions and errors) and to the required accuracy of the registration
(the analysis of error for rigid-body point-based registration was introduced in [48]).

In special situations when the geometric deformation is partially known, e.g. when there
exists a model for the distortion caused by the acquisition device and/or the scene geometry,
the pre-correction based on the inverse of the deformation can be performed (for example,
in [177], [190], and [98] the authors model the Earth’s shape and rotation, the satellite orbit
and the scanning geometry of the sensor).
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Figure 5: Examples of various mapping functions: – similarity transform (top left),
affine transform (top right), perspective projection (bottom left), and elastic transform (bot-
tom right).

Models of mapping functions can be divided into two broad categories according to the
amount of image data they use as their support. Global models use all CPs for estimating
one set of the mapping function parameters valid for the entire image. On the other hand,
the local mapping functions treat the image as a composition of patches and the function
parameters depend on the location of their support in the image. It leads to the tessellation
of the image, usually a triangulation, and to the defining of parameters of the mapping
function for each patch separately.

From another point of view, mapping functions can be categorized according to the ac-
curacy of overlaying of the CPs used for computation of the parameters. Interpolating func-
tions map the sensed image CPs on the reference image CPs exactly, whereas approximating
functions try to find the best trade-off between the accuracy of the final mapping and other
requirements imposed on the character of the mapping function. Since the CP coordinates
are usually supposed not to be precise, the approximation model is more common.
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Global mapping models. One of the most frequently used global models uses bivariate
polynomials of low degrees. Similarity transform (Fig.5 - top left) is the simplest model – it
consists of rotation, translation and scaling only

u = s(x cos(ϕ) − y sin(ϕ)) + tx

v = s(x sin(ϕ) + y cos(ϕ)) + ty

This model is often called ”shape-preserving mapping” because it preserves angles and cur-
vatures and is unambiguously determined by two control points.

Slightly more general but still linear model is an affine transform (Fig.5 - top right)

u = a0 + a1x + a2y

v = b0 + b1x + b2y,

which can map a parallelogram onto a square. This model is defined by three non-collinear
control points, preserves straight lines and straight line parallelism. It can be used for
multiview registration assuming the distance of the camera to the scene is large in comparison
to the size of the scanned area, the camera is perfect (a pin-hole camera), the scene is flat,
and the present geometric distortion has no local factors. If the condition on the distance of
the camera from the scene is not satisfied the perspective projection model (Fig.5 - bottom
left)

u =
a0 + a1x + a2y

1 + c1x + c2y

v =
b0 + b1x + b2y

1 + c1x + c2y

should be used. This model exactly describes a deformation of a flat scene photographed by
a pin-hole camera the optical axis of which is not perpendicular to the scene. It can map a
general quadrangle onto a square while preserving straight lines and is determined by four
independent control points.

Slight violations of these assumptions may lead to the use of the second or the third-order
polynomial models. Higher order polynomials usually are not used in practical applications
because they may unnecessarily warp the sensed image in areas away from the control points
when aligning with the reference image.

In general, the number of CPs is usually higher than the minimum number required
for the determination of the mapping function. The parameters of the mapping functions
are then computed by means of the least-square fit, so that the polynomials minimize the
sum of squared errors at the CPs. Such mapping functions do not map the CPs onto their
counterparts exactly. This approach was proved to be very effective and accurate for satellite
images, for instance.
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Local mapping models. However, a global polynomial mapping cannot properly handle
images deformed locally. This happens, for instance, in medical imaging and in airborne
imaging. The least square technique averages out the local geometric distortion equally over
the entire image which is not desirable. Local areas of the image should be registered with
the available information about the local geometric distortion in mind.

Several authors have shown the superiority of the local or at least locally sensitive regis-
tration methods above the global ones in such situations (Goshtasby [72], Ehlers and Fogel
[46], Wiemker [220], and Flusser [50], among others). The weighted least square and weighted
mean methods [72] gain the ability to register images locally by introducing the slight varia-
tion to the original least square method. The local methods called piecewise linear mapping
[70] and piecewise cubic mapping [71], together with the Akima’s quintic approach [220],
apply the combination of the CP-based image triangulation and of the collection of local
mapping functions each valid within one triangle. These approaches belong to the group of
the interpolating methods.

Mapping by radial basis functions. Radial basis functions are representatives of the
group of global mapping methods but they are able to handle even locally varying geometric
distortions. The resulting mapping function has a form of a linear combination of translated
radially symmetric function plus a low-degree polynomial

u = a0 + a1x + a2y +
N

∑

i=1

ci g(x,xi)

and similarly for v.
Originally they were developed for the interpolation of irregular surfaces. Their name

”radial” reflects an important property of the function value at each point – it depends
just on the distance of the point from the control points, not on its particular position.
Multiquadrics, reciprocal multiquadrics, Gaussians, Wendland’s functions, and thin-plate
splines are several examples of the radial basis functions used in image registration.

The application of the multiquadrics in the airborne remote sensing, together with the
comparison to the third order polynomial method, is described in [46]. Its comparison to the
Akima’s method is presented in [220]. The medical application of multiquadrics is shown
in [122]. Wendland’s functions applied in medical image registration appear in [62]. These
functions have very small global influence and even significant local deformations can be well
registered by this approach. This property is advantageous for registering medical images,
where changes occur mainly locally.

The most often used representatives of the radial basis functions are the thin-plate splines
(TPS), where the radial terms have the form

g(x,xi) = ||x − xi||2 ln(||x − xi||)
(see Duchon [44] and Wahba [214] for the respective mathematical background). Although
they had been used in mechanics and engineering for decades [87], they were introduced to
image analysis community by Grimson [81] and Bookstein [21]. The TPS can be viewed as a
very thin plate, which is fixed at the positions determined by the CPs in the reference image
in the heights given by the x or y coordinates of the corresponding CPs in the sensed image
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[73]. The TPS minimizes the quadratic variation functional of potential energy that reflects
the amount of function variation and which should be small for a good mapping function.
The type of registration can be chosen – exact interpolation [73], approximation [168] or
generalized approximation taking into account that the anisotropic landmark errors [166]
are possible. A comprehensive study focused on TPS-based registration of medical images
can be found in [165].

The TPS registration gives good results but the computations can be very time con-
suming, namely if the number of CPs is high. Considerable attention has been paid to
the methods decreasing the complexity of the TPS evaluation while preserving reasonable
accuracy. Flusser [50] proposed an adaptive approximation of the TPS on square or trian-
gular regions by simpler functions. Beatson and Newsam [15] adapted an earlier method by
Greengard [78] for multipole expansion of radial functions. Powell [152] reduced the compu-
tational cost by the TPS tabulation. Barrodale et al. [13] paid attention to fast and robust
calculation of the TPS coefficients.

Numerous papers have dealt with the comparison of the performance of thin-plate splines
and other mapping functions. In [73], [220] and [59] they are compared with polynomials and
multiquadrics when registering aerial images. The comparison of the TPS with the Gaussian
radial basis functions and with multiquadrics considering their local properties was done in
[8]. It was concluded that the TPS have favorable properties when used as mapping functions
for image registration, while the other radial basis functions are more convenient for other
applications such as image warping and morphing [8].

The TPS are not the only representatives of the spline family used for the mapping
function design. A linear combination of translated cubic B-splines was used for the regis-
tration of the echo planar images [108]. Another type of spline-based function, the elastic
body spline (EBS), was proposed in [39]. It evolved from the description of the equilibrium
displacements of homogeneous isotropic elastic material subjected to a load. Body tissues
depicted in the image data to be registered often have properties of elastic material. The
EBS was used for the registration of 3-D MRI images of breasts. The authors claimed the
EBS had outperformed the TPS in their experiments.

Elastic registration. Another approach to the registration of images with considerable
complex and/or local distortions is not to use any parametric mapping functions, where the
estimation of the geometric deformation is reduced to the search for the ”best” parameters.
This idea were introduced by Bajcsy et al. [10] and is often called elastic registration (Fig.5
- bottom right).

The images are viewed as pieces of a rubber sheet, on which external forces stretching
the image and internal forces defined by stiffness or smoothness constraints are applied to
bring them into alignment with the minimal amount of bending and stretching. The feature
matching and mapping function design steps of the registration are done simultaneously.
This is one of the advantages of elastic methods, because feature descriptors invariant to
complicated deformations are not known and the feature correspondence is difficult to es-
tablish in the traditional way. The registration is achieved by locating the minimum energy
state in an iterative fashion. A pyramidal approach is often applied. The external forces
can be derived from the local optimization of the similarity function which is defined by
the intensity values or by the correspondence of boundary structures [38], among others.

24



In [148], no external forces were used and the prescribed displacements, derived from the
correspondence of boundary structures, were incorporated to the elastic image deformation.

Disadvantage of elastic registration is in situations when image deformations are very
localized. This can be handled by means of fluid registration. Fluid registration methods
make use of the viscous fluid model to control the image transformation. The reference
image is here modelled as a thick fluid that flows out to match the sensed image under
the control of the derivative of a Gaussian sensor model. This approach is mainly used in
medical applications [25]. The weakness of this approach is blurring introduced during the
registration process. Lester and Arridge [115] proposed to use fluid model just for finding
the correspondence of control points and then process the very transformation by means
of the thin plate splines. Comparison of three methods for fluid-based registration can be
found in [223].

Another examples of nonrigid methods are diffusion-based registration, level sets registra-

tion, and optical flow based registration. The diffusion registration handles object contours
and other features as membranes, setting the geometrical constraints. Three variations of this
approach are described in [198]. Different solution was proposed by Andersen and Nielsen
[5]. Vemuri et al. [208] introduced elastic registration method, based on evolution of level
sets, moving along their respective normals. Finally, the optical flow approach was originally
motivated by estimation of relative motion between images [19]. The class of optical flow
registration covers very large number of methods and is beyond the scope of this survey.

6 Image resampling and transformation

The mapping functions constructed during the previous step are used to transform the sensed
image and thus to register the images. The transformation can be realized in a forward or
backward manner. Each pixel from the sensed image can be directly transformed using the
estimated mapping functions. This approach, called a forward method, is complicated to
implement, as it can produce holes and/or overlaps in the output image (due to the dis-
cretization and rounding). Hence, the backward approach is usually chosen. The registered
image data from the sensed image are determined using the coordinates of the target pixel
(the same coordinate system as of the reference image) and the inverse of the estimated
mapping function. The image interpolation takes place in the sensed image on the regular
grid. In this way neither holes nor overlaps can occur in the output image.

The interpolation itself is usually realized via convolution of the image with an interpo-
lation kernel. An optimal interpolant – 2-D sinc function – is hard to implement in practice
because of its infinite extent. Thus, many simpler interpolants of bounded support have
been investigated in the literature. In order to reduce the computational cost, preferably
separable interpolants have been considered. The separability enables to replace an m × m
2-D convolution by (m + 1) 1-D convolutions which is much faster.

The nearest neighbor function, the bilinear and bicubic functions, quadratic splines [200],
[42], cubic B-splines [93], higher-order B-splines [113], Catmull-Rom cardinal splines [104],
[193], Gaussians [7], and truncated sinc functions [191] belong to the most commonly used
interpolants. Meijering et al. [134] investigated higher-order polynomial kernels (quintic and
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Figure 6: Image interpolation methods: the original image (top left) was enlarged five
times using three different interpolation techniques - nearest neighbor (top right), bilinear
(bottom left), and bicubic (bottom right).

septic). However, their experiments showed only marginal improvement in comparison with
cubic interpolation at an highly increased computational cost.

Several survey papers on resampling techniques have been published in the last years. A
detailed investigation and comparison of methods was carried out in [146] for 2-D images
and in [79] for 3-D data. Thevenaz et al. [191] paid attention to the elimination of undesired
interpolation artifacts. Lehman et al. [114] published a survey article covering main in-
terpolation methods (various versions of sinc functions, nearest neighbor, linear, quadratic,
cubic, cubic B-spline, Lagrange and Gaussian kernels) with the emphasis on medical imag-
ing applications. They compared them using the spatial and Fourier analysis and tested
the computational complexity as well as interpolation errors. Most recently, Thevenaz et
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al. [192] have proposed a different approach to image resampling. Unlike the other meth-
ods, their resampling functions do not necessarily interpolate the image graylevels. They
rather interpolate values calculated as certain functions of the graylevels. The authors have
demonstrated this approach outperforms traditional interpolation techniques.

Even though the bilinear interpolation is outperformed by higher-order methods in terms
of accuracy and visual appearance of the transformed image, it offers probably the best trade-
off between accuracy and computational complexity and thus it is the most commonly used
approach. Cubic interpolation is recommended when the geometric transformation involves
a significant enlargement of the sensed image. Nearest neighbor interpolation should be
avoided in most cases because of artifacts in the resampled image. The only exclusion is
when the image to be transformed contains low number of intensities and we do not want
to introduce ”synthetic” graylevels/colors by higher order interpolation.

7 Evaluation of the image registration accuracy

Regardless of the particular images, the used registration method, and the application area,
it is highly desirable to provide the user with an estimate how accurate the registration
actually is. The accuracy evaluation is a non-trivial problem, partially because the errors
can be dragged into the registration process in each of its stages and partially because it is
hard to distinguish between registration inaccuracies and actual physical differences in the
image contents. In this Section, we review basic error classes and methods for measuring
the registration accuracy.

Localization error. Displacement of the CP coordinates due to their inaccurate detection
is called localization error. Being an intrinsic error of the detection method, the localization
error cannot be measured directly on the given image. However, the mean precision of most
CP detection methods is known for various image types from computer simulation studies
and ground truth comparisons. This can be used for estimation of the expected localization
error in the particular case. Localization error can be reduced by selecting an ”optimal”
feature detection algorithm for the given data but usually there is a trade-off between the
number of detected CP candidates and the mean localization error. Sometimes we prefer
to have more CP with higher localization error rather than only few of them, yet detected
more precisely.

Matching error. Matching error is measured by the number of false matches when es-
tablishing the correspondence between CP candidates. It is a serious mistake which usually
leads to failure of the registration process and should be avoided. Fortunately, in most cases
it can be ensured by robust matching algorithms. False match can be identified by consis-
tency check, where two different matching methods are applied to the same set of the CP
candidates. Only those pairs found by the both methods are considered as valid CP pairs,
the other candidate points are excluded from the further processing. In case there is no other
reliable matching method, false CP pairs can be identified by cross-validation. In each step,
we exclude one pair from the set of CP’s and calculate the mapping parameters (translation
vector and rotation angle for instance). Then we check how well the excluded points are
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mapped one to the other by this model. If their displacement is below a given threshold,
they are accepted as a valid CP pair.

Alignment error. By the term alignment error we denote the difference between the
mapping model used for the registration and the actual between-image geometric distortion.
Alignment error is always present in practice because of two different reasons. The type of the
chosen mapping model may not correspond to the actual distortion and/or the parameters
of the model were not calculated precisely. The former case is caused by lack of a priori
information about the geometric distortion while the latter originates from the insufficient
number of CP’s and/or their localization errors.

Alignment error can be evaluated in several ways. The simplest measure is a mean square
error at the CP’s (CPE). Although commonly used, it is not good alignment error measure.
In fact, it only quantifies how well the CP coordinates can be fitted by the chosen mapping
model. For any CP set, zero CPE can be reached just by selection of a mapping model
with enough degrees of freedom (this well-known phenomenon is in numerical analysis called
”overfitting”). On the other hand, large CPE can be caused by CP localization errors and
does not necessarily reflect poor registration accuracy.

Very similar to the CPE is so called Test Point error (TPE). Test points are control
points that were deliberately excluded from the calculation of the mapping parameters. TPE
cannot be set to zero by overfitting which makes it more meaningful than CPE. However, the
localization error of the test points may negatively affect this measure. This method can be
used only if a sufficient number of the CP’s is available. Otherwise, the exclusion of several
CP’s may result in inaccurate estimation of mapping parameters. In medical applications,
CP’s can be far from the region of interest. Thus, Fitzpatrick et al. [47], [49] proposed to
detect anatomical points within the region of interest and to use them as test points (the
called them ”target points”). The concept of TPE can be extended such that the distance
between corresponding ”test” lines or surfaces is measured [140], [147].

Another approach to estimation of alignment accuracy is consistency check using multiple
cues. Here, the image registered by the method under investigation is compared (by a proper
metric in the image space) with the same image registered by another comparative method.
As the comparative method we use preferably ”gold standard method”, which is a method
commonly believed to be the best in the particular application area or for the given image
type (gold standard method then plays a role similar to ground truth). This approach is
often used in medical imaging [47], [218]. In application areas where any ”gold standard”
does not exist, like in remote sensing, computer vision, and industrial inspection, we take
as the comparative method any method of different nature. Small difference between the
registration results then indicates (although does not guarantee) good registration accuracy.

Different consistency check can be employed when a set of at least two sensed images
is registered to the same reference [34], [65], [226], [91]. The sensed images can be also
registered among themselves using the same set of CP’s, which provides another set of
mapping parameters. Using transitivity of mappings, we obtain for each sensed image two
sets of mapping parameters, i.e. two registered images, which should be theoretically the
same. The displacement of the test points can serve as a quality measure.

Finally, the oldest method of registration accuracy estimation – visual assessment by a
domain expert – should be mentioned. It is still in use at least as a complement of the above
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mentioned objective error measures.
Estimation of accuracy of registration algorithms is an substantial part of registration

process. Without quantitative evaluation, no registration method can be accepted for prac-
tical utilization. A lot of work has been done on validation of rigid-body registration (the
most comprehensive case-study is probably the Vanderbilt University project [218]) while
validation of nonlinear, local and elastic registration methods is still at the beginning.

8 Current trends and outlook for the future

Image registration is one of the most important tasks when integrating and analyzing in-
formation from various sources. It is a key stage in image fusion, change detection, super-
resolution imaging, and in building image information systems, among others. This paper
gives a survey of the classical and up-to-date registration methods, classifying them accord-
ing to their nature as well as according to the four major registration steps. Although a lot
of work has been done, automatic image registration still remains an open problem. Reg-
istration of images with complex nonlinear and local distortions, multimodal registration,
and registration of N -D images (where N > 2) belong to the most challenging tasks at this
moment.

When registering images with nonlinear, locally dependent geometric distortions, we
are faced with two basic problems – how to match the control points and what mapping
functions to use for registration. While the second one can be solved at least on theoretical
level by using appropriate radial basis functions, the first problem is generally unsolvable
due to its nature. Since the between-image deformations can be arbitrary, we cannot use any
automatic matching method. Another conceptual question here is how can we distinguish
between image deformations and real changes of the scene.

In multimodal registration, mutual information technique has become a standard ref-
erence, mainly in medical imaging. However, being an area-based technique, the mutual
information has principal limitations. To overcome them, some authors combined the mu-
tual information with other, preferably feature-based, methods to gain higher robustness
and reliability. To speed up the computation, they often employed pyramidal image rep-
resentation along with fast optimization algorithms. Unfortunately, when the images have
significant rotation and/or scaling differences, these methods either fail or become extremely
time expensive. The future development on this field could pay more attention to the feature-
based methods, where appropriate invariant and modality-insensitive features can provide
good platform for the registration. Besides, we trust that new application-specific methods
utilizing particular sensor characteristics appear soon in remote sensing.

The major difficulty of N -D image registration resides in its computational complexity.
Although the speed of computers has been growing, the need to decrease the computational
time of methods persists. The complexity of methods as well as the size of data still grows
(the higher resolution, higher dimensionality, larger size of scanned areas). Moreover, the
demand for higher robustness and accuracy of the registration usually enforces solutions
utilizing the iterations or backtracking, which also produces increase of computational com-
plexity of the method.
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Part II: Recent advances

A very challenging area is registration and fusion of blurred images. Since imaging
sensors and other devices have their physical limits and observational conditions use to
be imperfect, the acquired image represents only a degraded version of the original scene.
Most degradations are caused by such factors as wrong focus, motion of the scene, media
turbulence, and limited spatial and spectral resolution of the sensor. Such degradations
usually result in a blurring of the image and can be modelled as a convolution of the ideal
image with an unknown point-spread function (PSF) of the imaging system. Blurred images
require special registration techniques, which must be insensitive to image blurring.

1 Registration of blurred images

The methods for registration of blurred images can be, as well as the general-purpose regis-
tration methods, divided in two groups – area-based and feature-based ones. Regardless of
the particular technique, all feature extraction methods, similarity measures, and matching
algorithms used in the registration process should be invariant to image blurring.

Area-based methods do not search for particular landmarks in the images. They try to
estimate directly the between-image translation and rotation. Myles and Lobo [139] proposed
an iterative method working well if a good initial estimate of the transformation parameters
is available. Zhang et al. [230], [231] proposed to estimate the registration parameters
by bringing the images into canonical form. Since blur-invariant moments were used to
define the normalization constraints, neither the type nor the level of the blur influences the
parameter estimation. Kubota et al. [106] proposed a two-stage registration method based
on hierarchical matching, where the amount of blur is considered as another parameter of the
search space. Zhang and Blum [232] proposed an iterative multiscale registration based on
optical flow estimation in each scale, claiming that optical flow estimation is robust to image
blurring. All area-based methods require considerable (or even complete) spatial overlap of
the images to yield reliable results, which is their major drawback.

Feature-based blur-invariant registration methods have appeared very recently, just after
the first paper on the moment-based blur-invariant features [56]. Originally, these features
could only be used for registration of mutually shifted images [55], [16]. The proposal of
their rotational-invariant version [57] in combination with a robust detector of salient points
[239] led to the registration methods that are able to handle blurred, shifted and rotated
images [58], [52].

We present here an example how registration of blurred images can help to estimate the
motion parameters and the current position of the camera in the real indoor scene. The
camera, which takes one frame every second, moves parallel to the wall and rotates. The
system monitors the scene and looks for alien objets which may appear in the view of the
camera. When such an object appears in front of the camera, the camera is automatically
focused on it. Thus, the rest of the scene becomes out-of-focused (see Fig. 7). Position

30



Figure 7: Images of an indoor scene. Camera at the initial position (left); camera at an
unknown position, the scene is out-of-focused due to the inserted object (right). 30 CPC’s
are marked by crosses, those which form the corresponding CP pairs are numbered.

estimation can be resolved via registration of the initial (reference) frame and the image
acquired at the moment when the object has appeared. The registration parameters (mutual
rotation and shift of the reference and current frames) then unambiguously determine the
actual camera position.

The motion estimation proceeds as follows. First, control point candidates (CPC’s) are
detected both in the initial and the current frames. Significant corners and other corner-
like dominant points are considered as the candidates. To detect them, a method developed
particularly for blurred images [239] was employed. In this experiment we detected 30 CPC’s
in each frame.

Secondly, the correspondence between the CPC’s sets must be established and the can-
didates having no counterparts should be rejected. To do that, a vector of invariants is
computed for each CPC over its circular neighborhood (here, moment invariants described
in [57] were employed) and then the CPC’s are matched in the space of the invariants. Once
the control point correspondence has been established, their positions are refined by local
search in their neighborhoods.

Finally, as soon as the control point correspondence is established and their coordinates
refined, we can find an ”optimal” rotational-translational mapping whose parameters are
calculated via least-square fit. Knowing these parameters and the initial camera position,
the current position can be easily estimated.

2 Fusion of blurred images

Registration of blurred images is very often just a preprocessing step for image fusion. The
term fusion means in general an approach to extraction of information spontaneously adopted
in several domains. The goal of image fusion is to integrate information into one new image
containing information the quality of which cannot be achieved otherwise.
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We assume that several differently blurred images of the same scene are available. In that
case, fusion means obtaining one ”sharp” image. This can be done by Multichannel Blind

Deconvolution (MBD) technique. However, almost all MBD methods require a ”perfect”
registration of input images, which is far from being realistic in practice. Although the
above-cited registration methods are very sophisticated and can be applied almost to all
types of images, the result tends to be rarely perfect. The registration error usually varies
from subpixel values to few pixels. Here we present a fusion method which can handle
between-image misregistrations up to few pixels or, in other words, which performs accurate
registration and deconvolution at the same time.

Let us define the model in a more rigorous form. Assume that the k-th acquired image
zk can be modeled by blurring the ”ideal” image u and shifting the result by an unknown
vector (ak, bk) = tk, i.e.,

zk(x + ak, y + bk) = (u ∗ hk)(x, y) + nk(x, y) , (1)

where hk is an unknown PSF having a character of a low-pass filter, and nk denotes noise.
Images degraded according to this model cannot be fused by standard multichannel blind

deconvolution (MBD) methods proposed in the literature; see [88, 67, 143, 158, 145, 211] for
a survey and other references. If they were applied, the channel misregistrations would lead
to strong artifacts in the fused image. On the other hand, the misregistrations considered
in this model are too small to be fully removed by image registration techniques (in case of
blurred images, registration methods usually can suppress large spatial misalignments but
seldom reach subpixel accuracy).

Fusion of images degraded according to this model requires special blind deconvolution
methods, which can – in addition to the deconvolution itself – identify and compensate the
between-channel misregistration. A successful method based on a stochastic approach was
introduced in [212] and is described below.

Maximum a posteriori restoration

Eq. (1) can be expressed in a equivalent form

zi(x, y) = u(x, y) ∗ hi(x − ai, y − bi) + ni(x, y) ,

which can be further rewritten as

zi(x, y) = (u ∗ gi)(x, y) + ni(x, y) , (2)

where gi is a shifted version of the original PSF hi: gi(x, y) = hi(x − ai, y − bi). We can
therefore work only with gi. However, in this case the estimate of the blur size has to include
also the maximum shift between the channels. Since this is difficult to determine, standard
MBD techniques, which require an accurate blur-size estimate, cannot be applied in their
present form. One can deduce that the problem of channel misalignment is solved if the
MBD method is robust to blur size overestimation.

To overcome difficulties connected with the blur size, we adopt a stochastic approach
and formulate restoration as a maximum a posteriori (MAP) estimation. We assume that
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u, g = {g1, . . . , gN} and z = {z1, . . . , zN} are random vector fields with given probability
density functions (pdf) p(u), p(g) and p(z), respectively, and we look for such realizations
of u and g which maximize the a posteriori probability p(u, g|z). It is safe to assume that
u and g are statistically independent and ni is additive white (i.e. uncorrelated) Gaussian
noise (AWGN). Using the Bayes rule, the relation between a priori densities p(u), p(g) and
the a posteriori density becomes p(u, g|z) ∝ p(z|u, g)p(u)p(g). The conditional pdf p(z|u, g)
follows from our model (2) and from our assumption of AWGN. The MAP estimation is then
equivalent to minimizing L(u, g) = − log(p(u, g|z)) and we can write

L(u, g) =
N

∑

i=1

1

2σ2
i

‖gi ∗ u − zi‖2 − log(p(u)) − log(p(g)) , (3)

This equation can be solved by means of genetic algorithms that are robust but also very
complex. Instead, we have adopted an approach of alternating minimizations over u and q.
The advantage of this scheme lies in its simplicity. If the priors p(u) and p(g) are properly
selected, each term in (3) becomes convex and the derivatives w.r.t. u and g are easy to
calculate. One can then use the method of conjugate gradients to find a solution in every
minimization step.

We continue our discussion with a fundamental question of selecting the proper priors
p(u) and p(g).

In most of the cases, we do not have any prior knowledge of the original image and
therefore we must do with general image priors that only constrain local spatial behavior
of the image. Commonly used general image priors are based on Markov random fields
(MRF) and they are characterized by Gibbs distributions in the form p(u) ∝ exp(−F (u)/λ),
where λ is a constant and F is called the energy function. One can find various forms of the
energy function in the literature: first derivative operator

∫

‖∇u‖2 (Tikhonov regularization),
second derivative operator

∫

|∆u|2, Huber MRFs, etc. However, the most promising results
have been achieved for variational integrals of the form

F (u) =

∫

φ(|∇u|) ,

where φ is strictly convex, nondecreasing function that grows at most linearly. Examples
of φ(s) are s (total variation),

√
1 + s2 − 1 (hypersurface minimal function) or log(cosh(s)).

Nonconvex functions, such as log(1+s2), s2/(1+s2) or arctan(s2) (Mumford-Shah functional)
are also often used since they provide better results for segmentation problems.

If we adopted the same general approach as in the case of image priors, eq. (3) would
be too “generous” (flat) and obtained results would be very poor. Unlike the image priors,
the blur priors can take the advantage of the multichannel framework and derive p(g) from
the fundamental multichannel constraint stated in [88, 67]. If we consider again Gibbs
distribution, the energy function for the blur prior takes the form of

F (g) =
∑

1≤i<j≤N

‖zi ∗ gj − zj ∗ gi‖2 .

To further constrain this distribution and improve the stability in the case of overestimated
blur sizes, it suffices to assume only blurs with positive values and thus set p(g) = 0 for all
g(x) < 0.
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Figure 8: Slightly misaligned images: Three images of a text label attached to a vibrating
machine were acquired with a standard digital camera under low-light conditions. One can
observe motion blur of various kind and small spatial misalignments. The reconstructed text
label is perfectly legible and the estimated shifted PSFs compensate for the misalignment.
The results were obtained by the proposed MAP fusion method.

Experiments with real data

We demonstrate the performance and broad applicability of the proposed MAP fusion
method on three distinct examples: slightly misaligned images, severely misregistered images
and low-resolution images. It is important to note that only real data without any prepro-
cessing were used in all the examples. The first example in Fig. 8 reveals the capability of
the proposed fusion method to perform deconvolution and simple registration in parallel.
The second example in Fig. 9 illustrates that a registration step is often necessary in order
to remove more complex geometric deformations. However, registration of blurred images is
far from being perfect and a slight misalignment often remains. It is the MAP fusion method
that is robust enough to cope with such cases.

Up to this point, we have concerned solely the deconvolution and misregistration prob-
lems. One can also apply the proposed method to low-resolution images and perform si-
multaneously resolution enhancement (superresolution). This can be done by introducing a
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Figure 9: Severely misregistered images: Two long-exposure photos were taken from hand
with a standard digital camera. Severe blur due to long exposure degrades the images.
Complex misregistration due to the change of camera position is apparent and must be
removed in a preprocessing registration step. The fused image is very sharp and clear and
the estimated PSFs remove any misalignment left by the registration step. Compare the
result with the short-exposure photo (right bottom) that is sharp but underexposed due to
low-light conditions. The results were obtained by the proposed MAP fusion method.
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Figure 10: Low-resolution blurred images: Several photos (left column) of a car were taken
from hand with a digital camera and optical zoom 1x. Photos are slightly blurred and
misaligned due to the camera motion and they are of low resolution nature because of the
small optical zoom. The middle column shows the result of MAP fusion (deconvolution and
registration) and the “ideal” low-resolution photo acquired with the camera on a tripod and
the same optical zoom 1x. The right column shows the results of enhanced MAP fusion (with
resolution enhancement 2x) and the “ideal” photo acquired with the camera on a tripod and
the optical zoom 2x. One can see that the reconstructed high-resolution image is comparable
to the zoom shot.
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decimation operator D into our acquisition model (2) and we obtain

zi(x, y) = D(u ∗ gi)(x, y) + ni(x, y) ,

Operator D models the low-resolution acquisition of digital sensors by performing convolu-
tion with a Gaussian mask (sensor blur) and downsampling. In this case, the log-function
we minimize is similar to (3) except that D appears at several places. The third example
depicted in Fig. 10 demonstrates the superresolution feature.
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[195] P. Thévenaz and M. Unser. An efficient mutual information optimizer for multiresolution
image registration. Proc. IEEE Int’l. Conf. on Image Processing ICIP’98, pages 833–837,
Chicago, Illinois, 1998.

49
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