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Medical Image Analysis

• Large collection of research fields:
– developing mathematical algorithms to extract and relate 

information from medical images
– For clinical and basic science research

• No “Physics of Medical Image Analysis”
– Groups of suitable algorithms and mathematical approaches to 

specific engineering problems

• Historically two key (and related) aspects of research:
– Image Registration: 

• finding spatial/temporal correspondences between image data and/or 
models

– Image Segmentation
• Extracting/detecting specific features of interest from image data

• Many clinical motivations: 
– one of the key areas has been brain imaging, but many more!
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Medical Image Registration: Overview

• What is Registration?
– Definitions
– Classifications: Geometry, Transformations, Measures

• Motivation for work: Medical Image mis-registration
– Where is image registration used in medicine and biomedical 

research?

• Measures of Image Alignment:
– Landmark/Feature Based Methods

– Voxel Based Methods: 
• Image Intensity Difference and Correlation
• Multi-Modality Measures
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Registration

“the determination of a one-to-one 
mapping between the coordinates 
in one space and those in another, 

such that points in the two spaces that 
correspond to the same anatomical 
point are mapped to  each other.”

Calvin Maurer ‘93
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Image Registration

““ Establishing Establishing correspondencecorrespondence ,,
between between featuresfeatures

in in sets of imagessets of images ,,
and and 

using a transformation modelusing a transformation model
toto

infer correspondenceinfer correspondence
awayaway

from those features.from those features. ””

Bill Crum Bill Crum ‘‘0505

??

XX
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Key Applications I:Change detection

• Look for differences in the same type of images 
Taken at different times, e.g.:
– Mapping Pre and post contrast agent

• Digital Subtraction Angiography (DSA)
• MRI with Gadolinium tracer

– Mapping Structural Changes
• Different stages in tumor growth (Before and After treatment)
• Neuro degenerative disease-> Quantifying tissue loss patterns

– Detecting Changes due to function
• Functional MRI (fMRI) Before and After brain stimulus
• PET imaging: Quantitative tracer uptake measurements

• Problem:
– Subject scanned multiple times -> removed from scanner
– We cannot easily fix/know patient location and orientation with 

respect to imaging system
– Need to remove differences in patient positioning to detect true

differences in patient images
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Key Applications II:Image Fusion

• Relate contrasting information 
from different types of images

• Multi-Modality Imaging
– MRI-CT

– MRI-PET/SPECT

– structural MRI- functional MRI
– structural MRI to structural MRI

• Problem:
– Subject scanned multiple times -> Different scanners

– We cannot easily fix/know patient location and orientation with 
respect to different imaging systems

– Need to remove differences in patient positioning to relate 
information from different types of images
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Some imaging Modalities (sagittal slices shown)
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Components of Image 
Registration Algorithms

–Image Data Geometries

•2D-2D, 2D-3D, 3D-3D

•Transformation Type

•Rigid/Affine/Non-Rigid

•Correspondence Criteria/Measure
•Feature Based Methods

•Voxel Based/Dense Field Methods

•Optimization Method : 

maximizing/minimizing criteria wrt T()

y=T(x)

PET(x)

MRI(y)
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Examples of Image Geometries and 
Transformation Models 
in Medical Applications
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Registration and display of the combined bone scan and radiograph
in the diagnosis and  management of wrist injuries Hawkes et al, EJNM 1991

Technetium 99m and X-ray radiograph

2D-2D Inter Modality Image Registration Problem
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X-Ray

Nuc. Medicine
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2D-2D image transformations
–Simple Case: parallel projection

2 translation (up-down/left-right) and one rotation

e.g. Hand radiographs

Rigid 2D transformation controlled by a 

rotation 
�

and two translation parameters t1 and t2:

This is a Linear mapping from (x1, x2) to (y1, y2)

y1= cos�.x1-sin�.x2+t1
y2= sin�.x1+cos�.x2+t2

y

x

x1

x2 y1
y2

t1
t2

�
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2D-2D image transformations

y1= cos�.x1-sin�.x2+t1
y2= sin�.x1+cos�.x2+t2
y1=a11.x1+a12.x2+a13

y2=a21.x1+a22.x2+a23

y1 a11 a12 a13 x1

y2  = a21 a22 a23 x2

1 0  0  1 1

Matrix form:
extend to 3x3 Matrix

Homogeneous 
coordinate

Transformation

y

x

y=Ax

x1

x2 y1
y2

t1=a13
t2=a23

�
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Rotating around a given location
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Image Scaling
• Scaling with respect to a fixed point (x,y)

• Scaling Along an Arbitrary Axis:
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Influence of Affine Transformations on Images

• Map lines to lines

• Map parallel lines to parallel lines

• Preserve ratios of distance along a line

• Do NOT preserve absolute distances and angles

C.Studholme U.C.S.F. 18

Composing Transformations:
• To Apply:                     We need to COMPOSE:

• But: Matrix multiplication is not commutative

• i.e.:

)90( °−R )3,( xT

)3,()90()90()3,( xx TRRT °−≠°−⋅

Translation
followed by

rotation

Rotation
followed by
translation
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2D-3D registration problems
•Radiotherapy:  

•Treatment verification (Portal images)
•Treatment planning (simulator images)
•Treatment guidance (Cyberknife system)

• Orthopaedic Surgery
•Spinal surgery (Brain Lab, Medtronic)
•Hip or Knee Arthroplasty (ROBODOC)

•Verification of implant position

•Neurointerventions
•Matching MRA to DSA

•Surgical Microscope 
•MRI/CT neurosurgery guidance

•Virtual Endoscopy
:
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2D-3D Registration Geometry

•(A) Imaging/Acquisition Parameters ( intrinsic )
•(B) Subject Parameters (extrinsic)

3D Image Data

2D Image Data

“the determination of a projection mapping, 

from a 3D to a 2D coordinate system such that 

points in each space which correspond to the 
same 

anatomical points are mapped to each other.”
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2D-3D Acquisition parameters:
Pinhole Camera Model (projection)

4 Intrinsic Parameters: 
Imaging System:
Mapping points in 3D space 
to imaging plane

k1,  k2, uRPP,  vRPP
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Scaling/Resolution:
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2D-3D: Subject (extrinsic) parameters

6 rigid body extrinsic parameters

X, Y, Z,    θθθθx, θθθθy, θθθθz
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3D to 3D image registration

• Many different 3D clinical imaging modalities
– MRI probably still the least common

• Images used in many different clinical settings
– diagnosis
– treatment planning
– treatment guidance
– clinical research: studying disease

• Transformation types:
– Rigid positioning of subject: still most common
– Non rigid deformations to describe 

• tissue deformation
• imaging distortion
• differences between subjects
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3D-3D Registration

X, Y, Z,    θθθθx, θθθθy, θθθθz

θθθθz

θθθθx

θθθθy

X

Z
Y

θθθθz

θθθθx
θθθθy

X

Z
Y

Patient Imaging Visit 1 Patient Imaging Visit 2

θθθθz

θθθθx
θθθθy

X

Z
Y

θθθθz

θθθθx
θθθθy

X

Z
Y

Voxels Voxels

k1,k2,k3
scaling

k1,k2,k3
scaling

Differences in Patient Positioning 
within scanner

Image Visit 1 Image Visit 2

Imaging 
Process
(inc.planning)

Imaging 
Process
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3D Rigid Transformations
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Feature Based Registration
–Image Data Geometries

•2D-2D, 2D-3D, 3D-3D

•Transformation Type
•Rigid/Affine/Non-Rigid

•Correspondence Criteria/Measure
•Feature Based Methods

•Voxel Based/Dense Field Methods

•Optimization Method : 
Maximizing/minimizing Measure wrt T()

y=T(x)

PET(x)

MRI(y)

1. Extract Features From Images
2. Evaluate Physical Distance Between Features
3. Minimize Distance
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Feature Based Approaches

–Point set->Point set 

(homologous)

–Point set->Point set 

(non homologous..

so need to find order)

–Point set -> Surface

–Surface -> Surface

(also [space] Curve -> Surface)

1

3

2

1

3

2

1

3

2

?

3

?
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CT
MR
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MR-CT REGISTRATION

• Manual point landmark identification 
(around 12 points) in MR and CT

• Accuracy of  1mm at center, and around 2 mm at the 
edge

• Relates soft tissue structures such as enhancing 
tumor and blood flow to bone features in CT

1

3

2

1

3

2
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Homologous Feature Based 
Alignment 1

3

2

1

3

2

•General case of two lists of 
correspondingfeature locations

[p1, p2… pN] and
[q1, q2… qN]

both with N points
•We want to Find:

Transformation T(q) that Minimizes 
squared distance between 
corresponding points:

E= Σr ||pr-T(qr )||2

•Where one set of points, q, is transformed by T()

-> Extrapolate Transformation for all  image voxels/pixels

A

B

qqrr

pprr
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Procrustes Point Alignment
[Golub&VanLoan, Matrix Computations, 1989]

• Remove Translational differences: 
Calculate translation that brings each of the point sets to the origin and subtract from each of 

the point sets to create centered point sets:

q’ i=qi- 1/N�i qi

p’ i=pi- 1/N�i pi

Re-write centered point lists as matrices

p1         x1, y1  z1                 q1         x’1, y’1  z’1
p2         x2, y2  z2 q2         x’2, y’2  z’2
p3  =     x3, y3  z3 q3  =     x’3, y’3  z’3

pN xN, yN zN qN x’N, y’N z’N

• Estimate Rotations: we want to find the 
rotation matrix R such that

– PT=R.QT

The system PT=R.QT is over-determined and there is noise, 
thus we want to find the rotation matrix R such that

minR = ||PT-R.QT||2

K. S. Arun, T. S. Huang, and S. D. Blostein. Least square fitting of two 3-d point sets. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 9(5):698 - 700, 1987.

P Q

P= Q=
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Procrustes Point Alignment

• Scale (procrustes normally includes estimate of scaling)
– But can assume scanner voxel dimensions are accurate

• Rewrite expression PT=R.QT

QTPT=R.(QT Q)

• Now can decompose symmetric matrix QT Q using singular value 
decomposition (SVD): 

(QT Q) -> (USVT)

• Here S is a diagonal matrix and 
VUT is the rotation matrix. 
For 2D:

VUT =     cos(
�

)   -sin(
�

)

sin(
�

)    cos(
�

)

K. S. Arun, T. S. Huang, and S. D. Blostein. Least square fitting of two 3-d point sets. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 9(5):698 - 700, 1987.

[        ]

P
�

Q
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Alternatives to SVD alignment

Alternative transformation decompositions and parameterizations 
can be used eg:

• Quaternion methods:
– B. K. P. Horn. Closed-form solution of absolute orientation using unit quaternions. 

Journal of the Optical Society of America A, 4(4):629 - 642, April 1987. 

• Orthonormal matrices:
– B. K. P. Horn, H. M. Hilden, and Sh. Negahdaripour. 

Closed-form solution of absolute orientation using orthonormal matrices. 
Journal of the Optical Society of America A, 5(7):1127 - 1135, July 1988. 

• Dual quaternions: 
– M. W. Walker, L. Shao, and R. A. Volz.Estimating 3-d location parameters 

using dual number quaternions. CVGIP: Image Understanding, 54:358 -
367, November 1991.

• These algorithms generally show similar performance and 
stability with real world noisy data: 

– A. Lorusso, D. Eggert, and R. Fisher. A Comparison of Four Algorithms for 
Estimating 3-D Rigid Transformations. In Proceedings of the 4th British 
Machine Vision Conference (BMVC '95), pages 237 - 246, Birmingham, 
England, September 1995.
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Manual Landmark Based Registration

D.L.G. Hill, et al, Accurate Frameless Registration of MR and CTImages of the Head: 
Applications in Surgery and Radiotherapy Planning, Radiology, 191, 1994, pp 447-454. 

C.Studholme U.C.S.F. 35 C.Studholme U.C.S.F. 36
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Extrapolating Transformations:
THEORETICAL POINT BASED REGISTRATION ERROR

(points on circle 50mm radius selected with RMS err or of 2mm)

1

3

2

1

3

2

Important factor: registration error lowest where 3D landmarks can be found

The distribution of target registration error in rigid-body point-based registration
Fitzpatrick, J.M.; West, J.B. Medical Imaging, IEEE Transactions on
Volume 20, Issue 9, Sep 2001 Page(s):917 - 927
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Approaches to Landmark/Feature Extraction 
and Matching

• Markers Attached to Subject (rigid bone attachment?)
– Need to be visible in different types of Images
[Hawkes et al Registration and display of the combined bone scan and radiograph in the 

diagnosis and  management of wrist injuries, EJNM 1991]

• Manual Landmark identification
– Time consuming, introduce errors, difficult to find true consistent 3D 

landmarks: But VERY flexible and can adapt to data.
[D.L.G. Hill, et al, Accurate Frameless Registration of MR and CT Images of the Head: 
Applications in Surgery and Radiotherapy Planning, Radiology, 191, 1994, pp 447-454.]

• Automated Landmark Identification: geometric models of local anatomy: 
– Need to be true unique 3D points in intensity map: tip-like, saddle-like, and sphere-like 

structures.
– Need to be consistent in different subjects and image types
[Stefan Wörz, Karl Rohr Localization of anatomical point landmarks in 3D medical images 

by fitting 3D parametric intensity models, Medical Image Analysis Volume 10, Issue 1, 
Page 41-58, Feb 2006.]

• Non-Homologous Landmarks/ 3D Structures:
– Easier to automatically find general features: for example points on a surface using 

edge detection.
– But: Which point maps to which point? 
– Need to then find correspondence and alignment: Point Cloud Fitting

C.Studholme U.C.S.F. 38

Early Feature Based Brain/Head Matching

•“Head-hat” matching of Head surfaces. 
Retrospective Geometric Correlation of MR, CT and PET Images, 

Levin, Pelizzari, Chen, Chen Cooper, Radiology, 1988

•Chamfer Distance Matching: Borgefors 1986 Jiang 1992
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Alignment of non-Homologous 
Feature Locations: fuzzy correspondence

General case of two lists of point locations
P==[p1, p2… pN] and Q==[q1, q2… qM]
with N and M points respectively,
and a list of weights [kij ]to describe the fuzzy correspondence 
between every possible point pair:

Registration error can then be expressed as.

E(R,t)= Σi Σj kij||pi-(Rqj+t)||2

But… need to estimate both R, t and correspondence [[kkijij ].].

P
Q

k21

k23
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Iterative Closest Point Algorithm
Approximates correspondence matrix [[kkijij ]] by assigning each point to 

the current closest point.

• Applying current transformation R and t to Q==[q1, q2… qM]

So that

Q’ = RQi+t

• Take each point Pi=[p1, p2… pN] and search list Q’ i to find the 

nearest point Qi
i to create a new list with N points.

• Apply Least Squares fit of current nearest points (eg using 
Procrustes point matching) to estimate R and t

• Repeat Until Change in transformation falls below threshold.

P. Besl and N. McKay. A method for Registration of 3-D Shapes. 
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 14(2):

239 256, February 1992.
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I.C.P. advantages and disadvantages

• Can be applied to both discrete landmarks, lines, 
surfaces etc

• But: Highly dependent on starting estimate!
– Only finds a local optima

– Can use multi-start to improve search

• Search for closest point in large point lists or surfaces 
can be computationally expensive
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Improvements/Adaptations in ICP
•Orientation driven ICP:
Matches location and local 
boundary/surface 
orientation

[Godin 2001,Schutz 
1998]

•Subsampling: Choosing only meaningful points
•Eg points on curved parts of surface 

•Optimized Searching Techniques 
to find closest point

Multi-resolution Matching
•Outlier rejection: to handle outliers and also

incomplete overlap

[S. Rusinkiewicz, M. Levoy, Efficient Variants of the ICP Algorithm, Proc 3rd

international conference on 3D digital Imaging  2001]
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Fuzzy Correspondence and Point Matching

Now a very large field in both computer vision and 
medical image analysis, with many different 
approaches proposed

H. Chui and A. Rangarajan, A New point Matching Algorithm for non-rigid 
registration, Computer Vision and Image Understanding, vol 89, Issue 2-3, 2003.

Z. Xue, D.  Shen, E Khwang Teoh, An Efficient fuzzy algorithm for aligning shapes 
under affine transformations, Pattern Recognition, Volume 34, Issue 6, June 
2001.
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Validation of Rigid Body Registration

• Between Modality validation a difficult problem:
– Need to introduce corresponding features visible in different 

imaging systems 
– That can be found accurately in each modality 
– That have fixed relationship with underlying anatomy
Calvin R. Maurer, J. Michael Fitzpatrick, Matthew Y. Wang, Student Member, Robert L. 

Galloway, Robert J. Maciunas, George S. Allen, Registration of Head Volume 
Images Using Implantable Fiducial Markers (1997) IEEE Transactions on Medical 
Imaging 

• This successfully used to evaluate MRI-CT, MRI-MRI and MRI-
PET registration using bone implanted markers
J. West, J.M. Fitzpatrick, M.Y. Wang, B.M. Dawant, C.R. Maurer, R.M. Kessler, R.J. 

Maciunas, C. Barillot, D. Lemoine, A. Collignon, F. Maes, P. Suetens, D. 
Vandermeulen, P.A. van den Elsen,S. Napel,T.S. Sumanaweera, B. Harkness, P.F. 
Hemler, D.L.G. Hill, D.J. Hawkes, C. Studholme, J.B.A Maintz, M.A. Viergever, G. 
Malandain, X. Pennec, M.E. Noz,G.Q. Maguire, M. Pollack, C.A. Pelizzari, R.A. 
Robb,D. Hanson, R.P. Woods, Comparison and Evaluation of Retrospective 
Intermodality Brain Image Registration Techniques , J. Comp. Assist. Tomog. Vol
21(4), 1997, pp 554-566.
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Challenges in Automating medical image 
registration

–Finding suitable features 

–e.g. true 3D landmarks

–Finding the same feature in different types of images

–Not computer vision!

–no nice edges/corners and man made scenes

–Variable/limited anatomical coverage

–No scanner images the whole body

–truncated: part of head or at neck

–Makes using global methods 

–Variable/low contrast to noise

C.Studholme U.C.S.F. 46

Feature Based Registration
–Image Data Geometries

•2D-2D, 2D-3D, 3D-3D

•Transformation Type
•Rigid/Affine/Non-Rigid

•Correspondence Criteria/Measure
•Feature Based Methods

•Voxel Based/Dense Field Methods

•Optimization Method : 
•Maximizing/minimizing Measure wrt T()

y=T(x)

PET(x)

MRI(y)

1. Define Suitable Image Similarity Measure
2. Optimise Similarity wrt Transform T()

C.Studholme U.C.S.F. 47

Pixel/Voxel Based Registration

• History: Template Matching
– Detecting an object or feature based on pixel/voxel values

• Avoid the need to automatically extract corresponding 
landmarks or surfaces

• Similarity Measures for Image Registration can 
Assume:
– linear intensity mapping
– non-parametric 1-to-1 intensity mapping
– non-parametric many-to-1 intensity mapping

• Simplest: Image Intensity Difference    

C.Studholme U.C.S.F. 48

Iterative Refinement of Transformation 
Parameters: small displacements

Consider 1D case:
for no noise, assume
w(x) is some exact translation of f(x)

f(x)

w(x)

w(x)= f(x+t)
and image ‘mis match’ or error for given displacement t can simply be
Local Difference in intensity:
e(t)=f(x+t)-w(x) 

t

Locationx

Image
intensity

w(x) f(x)

[Lucas and Kanade, An Iterative Image Registration Technique with an Application to Stereo Vision
Proc Image Understanding Workshop, P121-130, 1981]
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Iterative Refinement of Transformation 
Parameters: small displacements AT A POINT

f(x)

w(x)
t

x

Image
intensity

At one point x, for small t
f’(x)� (f(x+t)-f(x))/t

= (w(x)-f(x))/t
Which, taking from above, is

So, translation t to align image f with w at point x is then

t � [w(x)-f(x)]/f’(x)

f(x)

w(x) t

[Lucas and Kanade, An Iterative Image Registration Technique with an Application to Stereo Vision
Proc Image Understanding Workshop, P121-130, 1981]

f(x+t)

C.Studholme U.C.S.F. 50

Iterative Refinement of Transformation 
Parameters: small displacements OVER ALL x

t(x) � [w(x)-f(x)]/f’(x)

t � xt(x) /nx

so average over x is

But: Because of Local Approximations
First estimate of t does not get you to the optimal solution:
Just gets you nearer to it.

Need multiple steps: Iterative Registration:

if t0=0 then  tn+1=tn+ xt(x) /nx

f(x)

w(x)

t

x

Image
intensity

nx
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Iterative Refinement of Transformation 
Parameters: small displacements OVER ALL x

t(x) � [w(x)-f(x)]/f’(x)

t � xt(x) /nx

so average over x is

Weighted average:
Use contributions where linear approximation to f’(x) is better.
i.e. weight to points where |f’’(x)| closer to zero.
Possible weight k(x) for where (w’(x)-f’(x))/t at point x is:

k(x)=1/|w’(x)-f’(x)|          Giving  t= xk(x)t(x)

xk(x)

so if t0=0 then  tn+1=tn+ xk(x)t(x)

xk(x)

f(x)

w(x)

t

x

Image
intensity

nx
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Minimizing Sum of Squared Intensity Difference
If we use an alternative form for
the intensity ‘mis match’ or error:
The squared intensity difference

E(t)= 
�

x [f(x+t)-w(x)]2

To find optimal transformationt set:
0= �E�t     so:

0=� �
x [f(x+t)-w(x)]2= � �

x[f(x)+t f’(x)-w(x)]2�t                                 �t
= 
�

x 2f’(x) (f(x)+t f’(x)-w(x))

Giving:

t �� x f’(x) (w(x)-f(x)) so if t0=0 then  tn+1=tn+ 
�

x f’(x) (w(x)-f(x))�
x f’(x) 2

�
x f’(x) 2

[Lucas and Kanade, Proc Image Understanding Workshop, P121-130, 1981]

f(x)

w(x)

t

x

Image
intensity

nx
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Extension to N dimensional Images
The squared intensity difference can be extended to the case where
location x and translation t are vectors of N dimensions:

E(t)= 
�

x€R[f(x+ t)-w(x)]2

As for 1D, we can then use a linear approximation for small t so that

f(x+ t)=f(x)+ t � f(x)�x
We can then set
0= �E�t so:

0=� �x∈∈R [f(x)+t � f(x) -w(x)]2 =
�

x∈∈R 2 �f(x) [f(x)+t � f(x)-w(x)]�t                         �x                               �x �x
and then

t=[
�

x∈∈R [�f(x)/�x]T[w(x)-f(x)] ][
�

x∈∈R (�f(x)/�x)T (�f(x)/�x) ]-1

[Lucas and Kanade, Proc Image Understanding Workshop, P121-130, 1981] C.Studholme U.C.S.F. 54

Other forms of Linear Spatial Transformations

w(x)=f(xA+ t)

Mapping from One space to the other can be described by a 
Linear 3x3 transformation matrix A and a translation vector t
So, we assume at the correct transformation:

E(A,t)= 
�

x∈∈R [f(xA+t)-w(x)]2

and intensity error is

f(x(A+
�

A)+(t+
�

t))� f(xA+ t) + (x
�

A+
�

t) � f(x)�xTo minimize this, one approach is to use a 
linear approximation to changes in transformation

[Lucas and Kanade, Proc Image Understanding Workshop, P121-130, 1981]
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Alternative Image Similarity Measures
for Image Alignment

C.Studholme U.C.S.F. 56

Global Intensity Variations

• Many Medical Images have ‘uncalibrated’ intensities 
– Gain or illumination changes

• Common Issue: linear intensity scaling and offset f’=w.k+b

template intensity

ta
rg

et
 im

ag
e

in
te

ns
ity

template intensity

ta
rg

et
 im

ag
e

in
te

ns
ity

Target Image Template Image

• Absolute difference will not tend to zero at correct match:
– OR Worse: minimum does not correspond to correct match
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Sum of Squared Difference and Correlation

[Pratt, 1974], [Pratt Digital Image Processing 1978]
[Rosenfeld,Kak, Digital Picture Processing 1976] C.Studholme U.C.S.F. 58

Correlation

template intensity

ta
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et
 im

ag
e
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ity

template intensity

ta
rg

et
 im

ag
e
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ity

Target image Template Image

template intensity

ta
rg

et
 im

ag
e

in
te

ns
ity

• Correlation is measuring the residual errors between the data and a 
best fit of a line to that data

• Allows relationship to have different slope and offset
• So: Robust to global linear changes in Brightness/Contrast

Overall brightness
increase in target

Overall brightness
decrease in target

Overall contrast
increase in target

C.Studholme U.C.S.F. 59

Normalised Correlation: Boundary overlap

• Can Normalize Measure by Number of overlapping pixels:        

C.Studholme U.C.S.F. 60

?

?

Normalised Correlation: Sensitivity to variance



16

C.Studholme U.C.S.F. 61

Variance?

template intensity

T
ar
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template intensity

T
ar
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m
ag

e
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• Problem: Match may still be biased by variance in Target/Template

C.Studholme U.C.S.F. 62

Correlation Coefficient

• Normalise Correlation by the summed 
residuals around mean in template and target overlap:

template intensity

T
ar

ge
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ag

e
in
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ity
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What about non-linear intensity 
mappings?

template intensity

T
ar

ge
t i
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template intensity
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Non-Linear Intensity Mapping

template intensity
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Multi Modality Similarity Measures

Matching Images with Different Tissue 
Contrast Properties

C.Studholme U.C.S.F. 66

• But Intensity mapping is not usually smooth or easily parameterized
(e.g. discrete because of different tissue classes)

• Assume only 1-to-1 mapping of intensities between template and target:

template intensity w

T
ar

ge
t i

m
ag

e
in

te
ns

ity
 f

template intensity w

T
ar

ge
t i

m
ag

e
in

te
ns

ity
 f Register

Non-parametric 1-to-1 mapping

Target f

Template w

Target f

Template w

Register

C.Studholme U.C.S.F. 67

SPECT-MRI 
registration:
Patient 
orientated 
differently 
with respect 
to scanner 
coordinates:

1.Head rest 
design
2.Gantry angle 
limitations
3. No easy to 
find 3D 
landmarks

C.Studholme U.C.S.F. 68

SPECT-MRI 
registration
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The Effects of Misregistration
in Intensity Feature Space

Registered Translated by 2mm Translated by 5mm Translated by 8mm

C.Studholme U.C.S.F. 70

• Used for MRI-PET/SPECT registration
– MRI scan scalp edited-> Only consider intra-cranial tissues
– Grey-white-CSF values in cranial region differ

• Non-monotonic mapping
• Approx 1-to-1

Partitioned Image Uniformity
[Woods et al JCAT 93]

MRI intensity w

P
E

T
/S

P
E

C
T

  i
nt

en
si

ty
 f

AIR/CSF

Grey Matter

White Matter

T1 Weighted MRI

HMPAO SPECT image
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Partitioned Image Uniformity
[Woods et al JCAT 93]

template intensity w

T
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ag
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 f

b=1 b=2 b=3 b=4

C.Studholme U.C.S.F. 72

Functional/
Structural 
Fusion:

MRI-SPECT
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Correlation Ratio
[A. Roche et al MICCAI 98]

template intensity w

T
ar

ge
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m
ag

e
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 f

b=1 b=2 b=3 b=4

•Need to avoid picking region with small variance:

Correlation Ratio:
C.Studholme U.C.S.F. 74

MR-CT Registration in the 
Skull Base

• CT (and MR) image volume often targeted with 
limited axial extent.

• Automated segmentation or identification of 
features is difficult.

• Axial resolution limited.

Need to make best use of all shared 
features in the images.

C.Studholme U.C.S.F. 75

MR and CT

Manual Registration Estimate 
(Using Corresponding Anatomical Landmarks)

C.Studholme U.C.S.F. 76

Correlation Coefficient

c

h(m,c)

m

Assumes Linear Relationship between MR and CT intensity.

Improved by using only modified soft tissue or bone 
intensities from CT. (Van den Elsen, 1994).
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Many-to-1 Intensity Mapping ?

Where one image type can detect sub classes 
of tissue, while the other sees one.
(e.g. T1 weighted MRI vs CT)

template intensity w

T
ar

ge
t i

m
ag

e
in

te
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ity
 f

Target f

Template w

One/few soft tissue 
intensities

Multiple soft tissue 
intensities

C.Studholme U.C.S.F. 78

Changes in 2D Histogram with Alignment

M
R

CT

C.Studholme U.C.S.F. 79

How to Characterize Alignment?
-> ‘Histogram Sharpness’

template intensity w
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template intensity w

T
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ww

f f

?
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Information and Entropy
[Collignon, CVRMED 95]

p(w,f)p(w,f)

If guessing what pair of values (w,f) a pixel will have...

Small number of 
high-probability pairs

Larger number of 
lower-probability pairs

Less Uncertainty More Uncertainty

Overall: Image Pair Provides 
Less Information... 

‘Less Complex’

Overall: Image Pair Provides 
More Information.. 

‘More Complex’

mis-registeredregistered

w

f f
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Information and Entropy
[Collignon, CVRMED 95]

p(w,f)
p(w,f)

w w

ff

H(W,F) is Minimized

are

mis-registeredregistered

C.Studholme U.C.S.F. 82

Mutual Information
[Viola and Wells: ICCV 95, Collignon et al: IPMI 95]

• Joint entropy, like correlation and correlation ratio, 
is influenced by the image structure in the image overlap
– The changing transformation modifies the 

information provided by the images

• Instead: form a measure of the relative information in the Target 
image with respect to Template using Mutual information:
– difference between marginal and joint entropies

I(F,W)=H(F)+H(W)-H(F,W)
to be Maximized

where

H(F)=  ∫ f –p(f) log (p(f))

H(W)=   ∫ w –p(w) log (p(w))

H(F,W)=  ∫ f ∫ w –p(f,w) log (p(w,w))

C.Studholme U.C.S.F. 83

MRI-CT for skull base surgery planning

C.Studholme U.C.S.F. 84
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– MI behavior varies

– MI Behavior Depends of Field of View:
• can have clear maximum away from alignment

Information Measures and Overlap

p(w,f)
w w

ff

larger
peaks

smaller
peaks

MI big!
more info
in target

explained by
template

C.Studholme U.C.S.F. 87

Normalised Mutual Information
[Studholme et al, 1998]

• When mutual information is used to evaluate the alignment of two
finite images: overlap still has an confound:
– Both Marginal entropies, H(F) and H(W) vary

• Alignment can be driven by choosing overlap that has large H(F) and 
H(W).
– e.g. overlap with equal area of background and foreground intensities

• Rather than look for difference in joint and marginal entropies,
use their ratio (like correlation coefficient):

Y(F,W)=H(F)+H(W)
H(F,W)                         to be Maximized

But.... Does not solve all problems!
C.Studholme U.C.S.F. 88

MI
NMI
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MRI-CT Registration

C.Studholme U.C.S.F. 90

MRI-CT Registration

C.Studholme U.C.S.F. 91

3D Rigid MR-CT Registration 
in the Skull Base

C.Studholme U.C.S.F. 92

Image Fusion for Skull Base Surgery Planning
Hawkes et al, 1993

CT: Bone
MR Gadolinium: Tumor
MRA: Blood Vessels
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Registered
MR+PET

C.Studholme U.C.S.F. 94

Subtraction SPECT Imaging
in Epilepsy

Inter-Ictal Ictal Change in Uptake

C.Studholme U.C.S.F. 95

• High Contrast F.D.G. 
Uptake in Regions of 
Interest.

• Some Soft Tissue 
Detail.

• F- Tracer Added to 
Highlight Bone 
Structure.

C.Studholme U.C.S.F. 96

Shared Features in MR and PET Images 
of the Pelvis

• Bone Features 
• PET: F- Uptake.
• MR: Marrow White.

• Soft Tissue
• Some Boundaries in PET: Very Low Contrast.
• Deformed by Different Bed Shapes.
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Its still only overlaps of intensities…
The biggest overlaps drive the registration

C.Studholme U.C.S.F. 99

Summary
• A range of medical alignment measures have been               

developed in the last 15yrs

• These vary in the assumptions they make about the relationship 
between intensities in the two images being matched

• Many other criteria not covered!

• Many ways of modifying the criteria:
– Evaluation at multi resolution/scale
– Edge/boundary/geometric feature extraction: modify contrast
– Spatial windowing and encoding can localize the criteria

• Best criteria will depend on the type of data you have:
– How different the information provided and what contrast is shared
– How much they overlap

C.Studholme U.C.S.F. 100
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