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Abstract

The paper tackles the problem of feature points matching between pair of images of the same scene. This is a key prob-
lem in computer vision. The method we discuss here is a version of the SVD-matching proposed by Scott and Longuet-
Higgins and later modified by Pilu, that we elaborate in order to cope with large scale variations. To this end we add to the
feature detection phase a keypoint descriptor that is robust to large scale and view-point changes. Furthermore, we include
this descriptor in the equations of the proximity matrix that is central to the SVD-matching. At the same time we remove
from the proximity matrix all the information about the point locations in the image, that is the source of mismatches when
the amount of scene variation increases. The main contribution of this work is in showing that this compact and easy algo-
rithm can be used for severe scene variations. We present experimental evidence of the improved performance with respect
to the previous versions of the algorithm.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Finding correspondences between feature points
is one of the keystones of computer vision, with
application to a variety of problems. For this reason
it has been tackled since the old days of computer
vision research [44,31]. Automatic feature matching
is often an initialisation procedure for more com-
plex tasks, such as fundamental matrix estimation,
image mosaicing, object recognition, and three-di-
mensional point clouds registration.
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In this paper we consider the case when the epi-
polar geometry is not known, and then the corre-
sponding point can be anywhere in the image.
Also, we are interested in dealing with the corre-
spondence problem as the baseline grows.

Classical approaches to point matching with
unknown geometry assume a short baseline, and
they are usually based on correlation (see, for
instance, [8]). It is well known that correlation-
based approaches suffer from view-point changes
and do not take into account the global structure
of the image. On this respect an elegant approach,
falling in the family of spectral based methods, is
due to Scott and Longuet-Higgins [36].

Spectral graph theory [5] aims to characterise
the global structural properties of graphs using
.
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the eigenvalues and eigenvectors of an affinity
matrix. Recently, it has been applied to a variety
of computer vision and pattern matching prob-
lems, including point and shapes matching, and
image segmentation [43,37,4,35,45]. The point
matching method by Scott and Longuet-Higgins
is based on computing a proximity matrix that
depends on the distance between points belonging
to the two images. The method performs well on
synthetic images, but it is sensitive to the noise
that affects points detection and localisation in
real images. More recently, Pilu [29] suggested a
modification of the method through a correspon-
dence matrix encoding both proximity and simi-
larity information. The similarity is computed as
the normalised correlation between the points
neighbourhoods. Experimental evidence shows
that the method performs very well on stereo
pairs, but performance drops as the baseline
grows.

We claim that the reason for this behaviour is
due to the feature descriptor adopted, more than
to a limit of the algorithm. In this paper we propose
a variant of the SVD-matching that uses scale
invariant keypoints to tackle both scale changes
and view-point changes.

Scale invariant features (often referred to as
SIFT) were first proposed in [23] and attracted the
attention of the computer vision community for
their tolerance to scale, rotation, and view-point
variations. A comparative study of many local
image descriptors [26] shows the superiority of SIFT
with respect to other feature descriptors for the case
of several local transformations.

In our method we first locate keypoints with an
affine invariant Harris corner detector [27], and we
compute a SIFT description. We then build a corre-
spondence matrix which is based on the distance
between SIFT descriptors, discarding proximity
information entirely. We present an extensive exper-
imental analysis, judging the performances of our
approach with respect to the original SVD-match-
ing [29], a matching based on the Euclidean distance
between SIFT [23], and to a previous version of this
work that was using both SIFT similarity and prox-
imity information [7].

The experimental results show that including
SIFT point descriptors in the SVD-matching
improves the performance with respect to the past
versions of this algorithm. In particular it returns
good results for scale changes, and large view-point
variations. The current version still does not cope
with wide-baselines. These conclusions are support-
ed by an extensive experimental evaluation on dif-
ferent typologies of image data.

The paper is organised as follows. Section 2 gives
and overview of the state of the art on image match-
ing, also with a reference to other spectral-based
methods. In Section 3 we recall the SVD-matching
algorithm, while in Section 4 we describe the modi-
fied SVD-matching. Section 5 is left to the experi-
mental analysis and to the comparative evaluation.
A final discussion, in Section 6, ends the paper.

2. Related work

The state of the art on algorithms for image
matching is vast. It is common practise to distin-
guish between feature-based methods and direct
methods. The former rely on first acquiring image
meaningful features and then matching them, pro-
ducing sparse matches. Direct methods try to find
matches over all image positions. The results are
dense disparity maps, less reliable in flat areas.
Direct methods usually assume a small view-point
change, and they are often applied to stereo and
motion estimation. In this paper we focus on fea-
ture-based methods: this section reviews the main
contributions to this topic, mainly on dealing with
viewpoint and scale changes. The section ends with
a brief overview of spectral methods applied to
matching.

2.1. Local interest points

Early works on matching images with salient fea-
tures were based on using small amounts of local
information to describe meaningful keypoints, such
as corners [28,17]. Harris [16] showed that corners
were efficient for tracking and estimating structure
from motion. Applications to these fields were
extended later by Shi and Tomasi [38]. In early
works corners were simply represented using corre-
lation windows centred around the keypoint. When
matching these keypoints the underlying assump-
tion is that no relevant changes occurred in illumi-
nation and scale.

Instead, every object in an image assumes a dif-
ferent meaning if observed at different scales, or
under different illumination conditions. Another
source of changes in appearance is view-point vari-
ation. These issues have been extensively studied in
the last decades. For what concerns scale invariance
many contributions appeared in the past [6,20,39],
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in particular it is worth mentioning the scale-space

approach [20]. Scale-space is an effective framework
to handle objects at different scales: an image is rep-
resented at different resolution levels, and the
description obtained is not a simple random sup-
pression of details, but it is a well-defined process
that guarantees linearity and scale-space invariance.
Detecting local features in a scale-space representa-
tion allows us to estimate the keypoint scale as well
as its position. A great part of local keypoints that
have been recently proposed follow this approach.
A foremost aspect of the scale-space approach is
that there are methods [19] that automatically
choose the appropriate resolution level, discarding
useless information. Thus, scale invariant features
can be obtained by applying, for instance, a Harris
detector at different scales, and then estimating the
most meaningful scale for each keypoint. Alterna-
tively, features can be localised directly on a scale-
space structure, searching local maxima both on
space and scale. The latter approach has been fol-
lowed by Lowe in designing his Difference of Gaus-
sians (DoG) feature detector [23].

Among the many recent works populating the lit-
erature on keypoint detection, it is worth mention-
ing the scale and affine invariant interesting points

recently proposed by Mikolajczyk and Schmid
[27], as they appear to be among the most promising
keypoint detectors to date. The detection algorithm
can be sketched as follows: first Harris corners are
detected at multiple scales, then points at which a
local measure of variation is maximal over scale
are selected. This provides a set of distinctive points
at the appropriate scale. Finally, an iterative algo-
rithm modifies location, scale, and neighbourhood
of each point and converges to affine invariant
points.

In many application domains it has been
shown that an efficient keypoint localisation
should be associated to a feature description less
sensitive to view-point changes than grey levels
[46,11], and possibly embed invariance to rotation,
scale, or illumination changes. One of the pioneer-
ing works in this direction is due to Schmid and
Mohr [32]. They showed that local feature match-
ing could be applied effectively to image recogni-
tion if a more robust feature description was
used: they located the keypoints with a Harris
detector, and then used a rotationally invariant
descriptor of the local image region centred at
the keypoint. From the same research group we
get a comparative study on the effectiveness of
the various invariant feature descriptors proposed
so far [33]. Here it is shown that SIFT (scale

invariant feature transform) [22] lead to excellent
performances compared to other existing
approaches. SIFT description is computed as fol-
lows: once a keypoint is located and its scale
has been estimated, one or more orientations are
assigned to it based on local image gradient direc-
tion around the keypoint. Then, image gradient
magnitude and orientation are sampled around
the keypoint, using the scale of the keypoint to
select the level of Gaussian blur. The gradient ori-
entations obtained are rotated with respect to the
keypoint orientation previously computed. Finally,
the area around the keypoint is divided in sub-re-
gions, each of which is associated an orientations
histogram weighted with the magnitude. This
approach has been suggested to the author by a
model of biological vision [9].

Other local keypoint descriptors can be found in
the recent literature: Baumberg [2] propose a match-
ing technique based on the Harris corner detector
and a description based on the Fourier–Mellin
transform to achieve invariance to rotation. Harris
corners are also used in [1], where rotation invari-
ance is obtained by a hierarchal sampling that starts
from the direction of the gradient. Matas et al. [25]
introduce the concept of maximally stable extremal
region to be used for robust matching. These
region’s are connected components of pixels which
are brighter or darker than pixels on the region’s
contour, they are invariant to affine and perspective
transform, and to monotonic transformation of
image intensities.

2.2. Matching with large or wide-baslines

It is well known that a major source of appear-
ance variation is view-point change. This variation
becomes more challenging to model as the distance
between observation points (i.e., the baseline)
grows. This section reviews some methods consider-
ing this issue.

Early applications to local image matching were
stereo and short-range motion tracking. Zhang
et al. showed that it was possible to match Harris
corners over a large image range, with an outlier
removal technique based on a robust computation
of the fundamental matrix and the elimination of
the feature pairs that did not agree with the solution
obtained [47]. Later on, the invariant features
described above were extensively studied as they
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guaranteed some degree of flexibility with respect to
view-point change. Recently, many works on
extending local features to be invariant to affine
transformations have been proposed, including a
variant of SIFT [3].

Tuytelaars and Van Gool [42] deal with wide-
baseline matching extracting image region’s around
corners, where edges provide orientation and skew
information. They also address scale variation by
computing the extrema of a 2D affine invariant
function; as a descriptor they use generalised colour
moments. The actual matching is done using the
Mahalanobis distance. In a more recent work [10]
they establish wide-baseline correspondences
among unordered multiple images, by first comput-
ing pairwise matches, and then integrating them
into feature tracks each representing a local patch
of the scene. They exploit the interplay between
the tracks to extend matching to multiple views. A
method based on automatic determination of local
neighbourhood shapes is presented in [12], but it
only works for image areas where stationary texture
occurs.

An alternative approach for determining feature
correspondences relies on prior knowledge on the
observed scene, for instance in knowing the epipolar
geometry of two or more views [34]. Georgis et al.
[13] assume that projections of four corresponding
non coplanar points at arbitrary positions are
known. Pritchett and Zissermann [30] use local
homographies determined by parallelogram struc-
tures or from motion pyramids. Lourakis et al [21]
present a method based on the assumption that
the viewed scene contains two planar surfaces and
exploits the geometric constraints derived by this
assumption. The spatial relation between the fea-
tures in each images, together with appearance, is
used in [40].

Recently a simple ordering constraint that can
reduce the computational complexity for wide-bas-
line matching, for the only case of approximately
parallel epipolar lines, has been proposed in [24].

2.3. Spectral analysis for point matching

Spectral graph analysis aims at characterising the
global properties of a graph using the eigenvalues
and the eigenvectors of the graph adjacency matrix
[5]. Recently this subject has found a number of
applications to classical computer vision problems,
including point matching, segmentation, line group-
ing, shape matching [43,37,4,35,45]. In this section
we review some works on point matching with spec-
tral analysis.

Most of these contributions are based on the so
called proximity or affinity matrix, that is a continu-
ous representation of the adjacency matrix: instead
than being set to 0 or 1, the matrix elements are
weights that reflect the strength of a pair relation
(in terms of proximity or sometimes similarity).
Usually the proximity matrix is defined as:

Gij ¼ e�r2
ij=2r2 ð1Þ

with r a free parameter, and rij is a distance between
points xi and xj computed with an appropriate
affinity.

Scott and Longuet-Higgins [36] give one of the
most interesting and elegant contributions to this
topic, that we will describe in Section 3. One of
the first applications of spectral analysis to point
matching is due to Umeyama [43]. The author pre-
sents an SVD method for finding permutations
between the adjacency matrixes of two graphs. If
the graphs have the same size and structure of
the edges the method is able to find correspondenc-
es between the nodes of the graph. Shapiro and
Brady [37] propose a method that models the con-
tent of each image by means of an intra-image
point proximity matrix, and then evaluates the
similarity between images by comparing the
matrixes. The proximity matrixes are built using
a Gaussian weighting function, as in Eq. (1). For
each proximity matrix, a modal matrix (a matrix
the columns of which are eigenvectors of the origi-
nal matrix) is built. Each row of the modal matrix
represents one point of the corresponding image.
The authors find the correspondences by compar-
ing the rows of the two modal matrixes, using a
binary decision function based on the Euclidean
distance. Carcassoni and Hancock [4] propose a
variant of this approach that changes the original
method in three different ways. First, the evalua-
tion of proximity matrixes are based on other
weighting functions, including a sigmoidal and an
Euclidean weighting function; second, the use of
robust methods for comparing the modal matrixes;
third, an embedding of the correspondence process
within a graph matching EM algorithm. Experi-
ments reported in the paper show that the latter
contribution is useful to overcome structural
errors, including the deletion or insertion of points.
The authors also show that the Gaussian weighting
function performs worst than the other weighting
functions evaluated.
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3. SVD-matching

In this section we summarise the algorithms pro-
posed in [36] and [29] upon which we base our
matching technique. Scott and Longuet-Higgins
Fig. 2. Matches determined for stereo pairs of a desk. (a) A reasonable
between the wall and the corner of the screen. (b) The second image is a
determined. (c) Scale variation, wrong matches on the edge of the tabl

Fig. 3. Matches determined for a large baseline stereo

Fig. 1. Examples of features extracted. The ellipse around the
[36], getting some inspiration from structural chem-
istry, were among the first to use spectral methods
for image matching. They show that, in spite of
the well-known combinatorics complexity of finding
feature correspondences, a reasonably good solution
level of scene variation. We could notice only one wrong match
synthetic rotation of the first one. No wrong matches have been

e.

pairs. Only 2–3 wrong matches are determined.

feature points represents the support area of the feature.
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can be achieved through the singular value decom-
position of the proximity matrix of Eq. (1) followed
by a simple manipulation of the eigenvalues. As
pointed out in [29] their algorithm is rooted into
the solution of the subspace rotation problem
known as orthogonal Procrustes problem (see [14]
for details).

Let A and B be two images, containing m and n

features respectively (Ai, i = 1,. . .,m, and
Bj,j = 1,. . .,n). The goal is to determine two subsets
of the two sets of points that can be put in a one to
one correspondence. In the original algorithm pro-
posed by Longuet-Higgins, the main assumption
was that the two images were taken from close
Fig. 4. Sample from the sequences used for the experiments presented in
Second row: 1st, 3rd and 5th frame of the Graf sequence. Third and four
frame of the stereo sequence.
points of view, so that the corresponding points
had similar image coordinates.

The algorithm consists of three steps:

1. Build a proximity matrix G, where each element
is computed according to Eq. (1). Let
rij = kAi � Bjk be the Euclidean distance between
the two points, when considering them in the
same reference plane. The parameter r controls
the degree of interactions between features,
where a small r enforces local correspondences,
while a bigger r allows for more distant interac-
tions. The elements of G range from 0 to 1, with
higher values for closer points.
this paper. First row: 1st, 3rd and 5th frame of the Boat sequence.
th rows: left and right views, respectively, of the 1st, 16th and 30th



Fig. 6. Comparison with other weighting functions: results for
the 30-frames stereo sequence. The baseline is fixed for all the
stereo pairs, and the correspondences are computed for each
stereo frame of the sequence. Top: total number of matches
detected. Middle: number of correct matches. Bottom: accuracy
of the method.
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2. Compute the Singular Value Decomposition for
G: G = VDU>.

3. Compute a new correspondence matrix P by con-
verting diagonal matrix D to a diagonal matrix E
where each element Dii is replaced with a 1:
P = VEU>.

The algorithm is based on the two principles of
proximity and exclusion, that is, corresponding
points must be close, and each point can have one
corresponding point at most. The idea is to obtain
from the similarity matrix G a matrix L such that
the entry ij is 1 if i and j are corresponding points,
0 otherwise. The matrix P computed by the algo-
rithm is orthogonal (in the sense that the rows are
mutually orthogonal), as all the singular values are
1, and it is the orthogonal matrix closest to the
proximity G. Because of the orthogonality, if the
parameter r is chosen properly, P enhances good
pairings, as its entries have properties close to those
of the ideal matrix L. Following this idea the algo-
rithms establishes a correspondence between the
points i and j if the entry Pij is the largest element
in row i and the largest element in row j.

In the case of real images, point localisation is
affected by noise and keypoint detection is unsta-
ble—keypoints may be detected or not depending
on the viewing angle. The algorithm presented in
[36] was working well on synthetic data, but perfor-
mance started to fall down when moving to real
images. Pilu [29] argues that this behaviour could
be taken care of by evaluating local image similari-
ties. He adapts the proximity matrix in order to take
into account image intensity as well as geometric
properties. The modified matrix appears as follows:

Gij ¼
Cij þ 1

2
e�r2

ij=2r2 ð2Þ

where the term Cij is the normalised correlation be-
tween image patches centred in the feature points.

In [29] experimental evidence is given that the
proposed algorithm performs well on short baseline
stereo pairs. In fact the performance falls when the
Fig. 5. The different weighting functions used. Left: Gauss
baseline increases. It is our target to show that the
reason for this behaviour is in the feature descriptor
chosen and is not an intrinsic limit of the algorithm.
ian. Middle: Double-exponential. Right: Lorentzian.



422 E. Delponte et al. / Graphical Models 68 (2006) 415–431
4. SVD-matching using SIFT

In this section we discuss the use of the SIFT
descriptor in the SVD-matching algorithm. As men-
tioned in the previous section SVD-matching pre-
sented in [29] does not perform well when the
baseline starts to increase. The reason for this
behaviour is in the feature descriptor adopted. The
original algorithm uses the grey level values in a
neighbourhood of the keypoint. As pointed out in
Section 2 this description is too sensitive to changes
in the view-point, and more robust descriptor have
been introduced so far.

A comparative study of the performance of var-
ious feature descriptors [26] showed that the SIFT
descriptor is more robust than others with respect
to rotation, scale changes, view-point change, and
local affine transformations. The quality of the
results decrease in the case of changes in the illumi-
nation. In the same work, cross-correlation
between the image grey levels returned unstable
performance, depending on the kind of transfor-
mation considered. The considerations above sug-
gested the use of a SIFT descriptor, instead of
grey levels. The descriptor is associated to scale
and affine invariant interest points [27], briefly
sketched in Section 2. Some examples of such key-
points are shown in Fig. 1.
Fig. 7. Comparison of different weighting functions: results for the 30-f
right (bottom) 27th frames. Left; S-SVD Right: L-SVD. The results fo
In a previous version of this work [7] we left the
matrix G in Eq. (2) unchanged in its form, but Cij

was the cross-correlation between SIFT descriptors.
This straightforward modification improves the per-
formance of the SVD-matching, and also gives bet-
ter results, in terms of number of points correctly
matched, with respect to the SIFT distance used
for the experiments reported in [26]. However the
matrix terms are still strongly dependent on the dis-
tance on the image plane between feature points,
causing a large number of mismatches when the dis-
tance between points increases. For this reason we
decided to switch back to the original form of the
G matrix, with

Gij ¼ e�r2
ij=2r2 ð3Þ

where rij is now the distance between the feature
descriptors in the SIFT space.

In order to reduce the number of mismatches
even further we also added a constraint on the entry
Pij for determining the correspondence between
points i and j. Let aij1

and aij2
being, respectively,

the largest and second largest elements in row i,
and bi1j and bi2j the largest and second largest ele-
ments in column j. We say that i and j are corre-
sponding points if

1. j1=j and i1=i
rames stereo sequence. Correct matches between the left (top) and
r D-SVD are in Fig. 12.



Fig. 8. Comparison of different weighting functions: results for
the Boat sequence. The images are zoomed and rotated respect to
the first frame. Matches are computed between the first frame and
each other frame of the sequence. Top: total number of matches
detected. Middle number of correct matches. Bottom: accuracy of
the method.
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2. 0:6aij1
P aij2

and 0:6bij1
P bij2

In plain words it still needs to be the largest element
in row i and column j, but also the largest by far.

5. Experimental results

In this section we report some experiments
carried out on different image pairs and sequenc-
es. First we show some of the matches returned
by our algorithm on few image pairs. Then we
attempt a more quantitative analysis of the per-
formance of our algorithm on short image
sequences.

5.1. Experiments on image pairs

The first lot of experiments that we show refers to
results on image pairs of two different scenes
returned by the algorithm proposed in this paper.

In Figs. 2(a) and (b) we show all the matches
determined on two pairs of images of a desk scene.
The first one presents a reasonable level of scene
variation, whereas the latter is a synthetic rotation
of the first image. We spotted only a wrong match
in Fig. 2(a). The last image pair is relative to a stu-
dio scene with scale variation. The result is shown in
Fig. 2(c). Our visual inspection of the results deter-
mined only few wrong matches between points on
the border of the table.

In Fig. 3 we show the matches determined on a
large baseline stereo pair. A visual inspection could
spot no more than three wrong matches.

5.2. Comparative experiments

We performed different comparative experi-
ments. The first group of experiments focuses on
proximity matrixes built in the descriptor space as
for the one given in (3), that uses a Gaussian weight-
ing function. Following [4] we test against the
Gaussian the performance of two other weighting
functions, drawn from the literature on robust
statistics.

The second group of experiments tests the per-
formance of the algorithm using the proximity
matrix proposed in (3) against two other matrixes
proposed in previous works [29,7], and a SIFT-
based point matcher, based on the Euclidean dis-
tance between SIFTs, proposed by Lowe in [23],
and used in [26] for measuring the SIFT
performance.
For evaluating the performance of the three
point matching methods used for this work we com-
puted: (a) the total number of matches detected; (b)
the number of correct matches; (c) the accuracy,
defined as the ratio between number of correct
matches and the total number of matches detected.

The data used are of different nature. We consid-
ered a stereo image sequence taken with a stereo sys-
tem with relatively large baseline, and in particular
we focused our experiments on input sequences for
an immersive video-conferencing system [18]. Then
we used short sequences with large variations with



Fig. 9. Comparison of different weighting functions: results for Boat sequence. Correct matches between the left (top) and right (bottom)
last. Left; S-SVD Right: L-SVD. The results for D-SVD are in Fig. 14.
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respect to the first frame: the kind of variations con-
sidered are viewpoint changes and zoom plus rota-
tion.1 Some of these last sequences were used in
[26]. The experiments performed on the video
sequences compare the first frame of the sequence
with all the others. Sample frames from the
sequence used are shown in Fig. 4.

The method used for determining the correct
matches depends on what geometric information
on the camera geometry is available. For sets of
data consisting of fixed camera sequences or
sequences of planar scenes for which the homogra-
phies between the different views were available,
we say that a pair of corresponding points (p,p 0) is
a correct match if

kp0 � Hpk < 5

where H is the homography between the two imag-
es. For the stereo-sequence with a fixed baseline the
correspondence were computed between images of
each stereo frame. In this case, because the scene
is not planar, we compute the fundamental matrix
F from the calibrated camera matrixes, and a pair
of corresponding points (p p 0) is a correct match if

ðdðp0; FpÞ þ dðp; F tp0ÞÞ=2 < 5
1 Sequences available from http://www.robots.ox.ac.uk/~vgg/
research/affine/index.html
where d(p 0,Fp) is the distance between point p 0 and
the epipolar line corresponding to point p [41].

For all the experiments we set the parameter r to
1000.

5.2.1. Comparison of different weighting functions

The weighting function models the probability of
the similarity between the feature points. In previ-
ous works it was used the Gaussian weighting func-
tion. The reason for trying functions different from
the Gaussian is that the distance between feature
descriptors of corresponding points increases with
the baseline. In this case a function with more prom-
inent tails than the Gaussian can give the chance to
detect some more matches. This, as we will see, at
the price of a sometimes lower accuracy.

In this section we considered a small sample of
different weighting functions borrowed from the lit-
erature on robust statics, in particular from the lit-
erature on M-estimators [15]. The comparative
evaluation on the performance of different matching
methods, whose description is given in 4, are based
on the following different weighting functions:

• S-SVD: a Gaussian weighting function as it has
been used all along the paper;

• D-SVD:a double-exponential weighting function

Gij ¼ eð�jrij=krjÞ ð4Þ

http://www.robots.ox.ac.uk/~vgg/research/affine/index.html
http://www.robots.ox.ac.uk/~vgg/research/affine/index.html
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• L-SVD: a Lorentzian weighting function, defined
as

Gij ¼
1

1þ 1
2

r2
ij

r2

ð5Þ

The different weighting functions are shown in
Fig. 5.

In Figs. 6 and 7 we show the results for the video-
conferencing stereo sequence. We see that in terms
of number of matches and correct matches the dou-
ble-exponential function returns the best results,
Fig. 10. Comparison of different weighting functions: results for
the Graf sequence. The images present a change in the view-point
respect to the first frame. Top: total number of matches detected.
Middle: number of correct matches. Bottom: accuracy of the
method.
while the Gaussian and the Lorentzian have similar
performance. These last two report an average accu-
racy of 0.6. The accuracy returned by the double-ex-
ponential is lower, but on average above 0.5, that
means that at most 50% of the matches detected
are wrong matches, and this is the largest amount
of wrong matches that standard robust statistics
tools can tolerate.

The results for the Boat sequence are shown in
Figs. 8 and 9. Even in this case the D-SVD returns
the highest number of correct matches, and, except
for the last frame, the accuracy reported is above
Fig. 11. Comparison with other algorithms: results for the 30-
frames stereo sequence. The baseline is fixed for all the stereo
pairs, and the correspondences are computed for each stereo
frame of the sequence. Top: total number of matches detected.
Middle: number of correct matches. Bottom: accuracy of the
method.
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0.7. The other two functions reported an accuracy
always well above 0.5.

For the Graf sequence the results are similar to
what seen in the previous section (see Fig. 10).
The double-exponential still returns the largest
number of correct matches, but again the perfor-
mance drops for the last two frames of the
sequence when the change in the point of view
is too large.

We can conclude this evaluation of the weighting
functions saying that the double-exponential
Fig. 12. Comparison with other algorithms: results for the 30-frames s
(bottom) 27th frames. (a) D-SVD. (b) C-SVD. (c) P-SVD. (d) S-DIST
performs slightly better than the other two functions
considered, but it does not seem that the use of any
of these function dramatically changes the perfor-
mance of the algorithm.

The double-exponential weighting function will
be used in the following analysis.

5.2.2. Comparison with other matching algorithms

The comparative evaluation on the performance
of different matching methods considers the follow-
ing techniques:
tereo sequence. Correct matches between the left (top) and right
.



Fig. 13. Comparison with other algorithms: results for the Boat

sequence. The images are zoomed and rotated respect to the first
frame. Matches computed between the first frame and each other
frame in the sequence. Top: total number of matches detected.
Middle: number of correct matches. Bottom: accuracy of the
method.
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• D-SVD: point matches are established following
the SVD-matching algorithm of Section 3 with
the proximity matrix G given in (4);

• C-SVD: point matches are established following
the algorithm discussed in [7]

Cij ¼
X

t

ðSi
t �meanðSiÞÞðSj

t �meanðSjÞÞ
stdvðSiÞstdvðSjÞ

where Si and Sj are the SIFT descriptors;
• P-SVD: point matches are determined as for

C-SVD but with

cij ¼
X

t

ðI i
t �meanðI iÞÞðIj

t �meanðIjÞÞ
stdvðI iÞstdvðIjÞ

where Ii and Ij are the two grey-levels neighbour;
• S-DIST: point matches are established following

the method proposed in [23], that is two features i

and j matches if

dij ¼ minðDiÞ < 0:6 minðDi � fdijgÞ
and

dji ¼ minðDjÞ < 0:6 minðDj � fdjigÞ
where Di = {dih = kSi � Shk}.

In Figs. 11 and 12 we show the results for the vid-
eo-conferencing stereo sequence. The S-SVD
returns the largest number of matches and of correct
matches (an average of 50 and 40, respectively, for
each stereo frame) with respect to the other three:
the C-SVD presents an average of 30 and 20 per ste-
reo frame, while the values returned by the other
two methods are much lower.

S-DIST returns the highest accuracy (almost
always 1), but a very small number of matches.
The accuracy obtained with D-SVD and C-SVD is
slightly lower (ranging from 0.7 to 0.5) but it is high
enough to use standard robust statistics tools for
identifying and discarding wrong matches. As for
P-SVD we notice that accuracy drops down to 0.4
that is too low for trating outliers with robust
statistics.

The results shown in Figs. 13 and 14 are relative
to a six frames sequence where the fixed camera
zooms and rotates around the optical centre. In this
case D-SVD is still giving the larger amount of
correct matches. The number of matches goes down
sensibly, because of the large zoom effect between
the first and the last frame, so that the points
detected at a finer scale in the first frame cannot
be matched. The C-SVD still has acceptable
performance while the other two methods perform
poorly on this sequence. In particular P-SVD can
only find matches between the first two frames. This
is because this method uses correlation between
image patches, that are very sensitive to rotation
and scale changes.

The performance of the algorithms starts to go
down with severe changes in the view-point, as
shown in Figs. 15 and 16. In fact for the last 2
frames the amount of matches and the accuracy
obtained are too low. The results returned by the
S-DIST algorithm, that has been designed for
the SIFT descriptor, are even worse, implying that



Fig. 14. Comparison with other algorithms: results for the Boat sequence. Correct matches between the left (top) and right (bottom) last
frames. (a) D-SVD. (b) C-SVD. (c) P-SVD. (d) S-DIST.
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the descriptor cannot cope with too large viewpoint
changes. Similar results have been reported in [26]
for several descriptors.

In conclusion we can state that the use of
the SIFT descriptors in combination with a
SVD-matching algorithm improves the perfor-
mance with respect to older versions of the
algorithm, as already shown in [7]. Moreover
the experiments reported in this paper show
that replacing the distance between feature
points with the distance between point descrip-
tors in the weighting function used to build
the proximity matrix gives better results when
large changes in the scene occur. This is partic-
ularly noticeable in the case of severe zoom/ro-
tation changes. However the performance are
still not satisfactory for the case of too large
viewpoint change.



Fig. 15. Comparison with other algorithms: results for the Graf

sequence. The images present a change in the view-point respect
to the first frame. Top: total number of matches detected. Middle:
number of correct matches. Bottom: accuracy of the method.

Fig. 16. Comparison with other algorithms: results for the Graf

sequence. Correct matches between the left (top) and right
(bottom) last frames. (a) D-SVD. (b) C-SVD. P-SVD. and S-
DIST did not return any correct match.
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6. Conclusions

This paper presented a method for determining
the correspondences between sparse feature points
in images of the same scene based on the SVD-
matching paradigm, that has been used by different
authors in the past, and on a state-of-the-art key-
point descriptor, namely SIFT.

We showed that including SIFT point descriptors
in the SVD-matching improves the performance
with respect to the past versions of this algorithm.
In particular it returned good results for scale
changes, severe zoom and image plane rotations,
and large view-point variations. The current version
still does not cope with wide-baslines. These
conclusions are supported by an extensive experi-
mental evaluation, on different typologies of image
data.

As for many spectral methods, the SVD-match-
ing algorithm is based on the choice of an appropri-
ate weighting function for building a proximity
matrix. The previous SVD-matching algorithms
were using a Gaussian function. We compared its
performance against other functions borrowed from
the robust statistics literature: the Lorentzian and
the double-exponential function. The results
obtained suggest that the choice of this latter
function can somewhat improve the quality of the
results, but it does not appear to be a crucial
issue.
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