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Abstract

In this paper, a new algorithm is proposed to derive the 3D structure of a human face from a group of face images under different
poses. Based on the corresponding 2D feature points of the respective images, their respective poses and the depths of the feature points
can be estimated based on measurements using the similarity transform. To accurately estimate the pose of and the 3D information about
a human face, the genetic algorithm (GA) is applied. Our algorithm does not require any prior knowledge of camera calibration, and has
no limitation on the possible poses or the scale of the face images. It also provides a means to evaluate the accuracy of the constructed 3D
face model based on the similarity transform of the 2D feature point sets. Our approach can also be extended to face recognition to
alleviate the effect of pose variations. Experimental results show that our proposed algorithm can construct a 3D face structure reliably

and efficiently.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Many face recognition methods have been developed
over the past few decades. Most of those based on frontal
views without expression and under controlled lighting can
achieve a reasonably high performance level (Chellappa
et al., 1995; He et al., 2005). However, face recognition
techniques based on 2D images are strongly affected by
variations in pose, which is the primary source of difficul-
ties with face recognition. The performance of face recog-
nition algorithms suffers dramatically when a Ilarge
variation in pose is present in a query image, especially
when the training data have few non-frontal images. A sen-
sible way to improve the recognition performance for face
images under arbitrary poses is to use multiple training
images under different poses. However, face images under
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different poses may not be available in some applications,
and the use of multiple faces will greatly increase both
the size of a database and the computation required for
matching. 3D deformable models (Lee and Ranganath,
2003; Ansari and Abdel-Mottaleb, 2005; Jiang et al.,
2005) have therefore been applied for pose-invariant face
recognition. 3D face models have also been adopted in face
tracking and facial animation (Ahlberg and Forchheimer,
2003). However, for these applications, an accurate 3D face
structure may not be necessary to achieve a good perfor-
mance level.

Face modeling can be achieved by extracting the motion
and shape information about a 3D face model from the
face viewed at different times or from using multiple cam-
eras at different angles (Jerian and Jain, 1991; Tomasi
and Kanade, 1992; Huang and Netravali, 1994). In partic-
ular, the problem of extracting the shape and motion
parameters of a moving 3D object from a 2D image
sequence is known as the structure from motion problem
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(SfM). In SfM, the 3D information about a collection of
discrete structures, such as lines, curves and points, is
recovered from a 2D collection of such lines, curves and
points. 2D images are formed by projections from the 3D
world. SfM recovers the original 3D information by invert-
ing the effect of the projection process. Two well-known
projection models are the perspective model and the ortho-
graphic model. Perspective projection is a realistic model of
the imaging process, whereas orthographic projection
yields easy-to-solve models that are applicable in some sim-
ple cases. Orthographic projection is used primarily
because it gives rise to mathematically tractable equations.
It is a reasonable approximation for objects that subtend a
small field of view and whose distance does not change
dramatically.

Much research has been conducted on determining the
motion and structure of moving rigid objects under ortho-
graphic projection. Ullman (1979) proved that four point
correspondences over three views yield a unique solution
to motion and structure. It is impossible to determine the
motion and structure uniquely from two orthographic
views no matter how many point correspondences one
may have. Huang and Lee (1989) and Hu and Ahuja
(1991) presented a linear algorithm to obtain the 3D
motion and structure parameters. Shapiro et al. (1995) con-
sidered the affine epipolar line properties and solved the
affine epipolar line equation, and then determined all the
unknown camera motion parameters. Tomasi and Kanade
(1992) and Morita and Kanade (1997) developed a factor-
ization method to recover shape and motion under an
orthographic projection model. They used the singular
value decomposition technique to factorize the measure-
ment matrix into two matrices, which represent the object
shape and the camera motion, respectively. Xirouhakis
and Delopoulos (2000) extracted the motion and shape
parameters of a rigid 3D object by computing the rotation
matrices via the eigenvalues and eigenvectors of appropri-
ate defined 2 x 2 matrices, where the eigenvalues are the
expression of four motion vectors in two successive
transitions.

In our proposed algorithm, three or more face images of
the same subject are used to construct a 3D face model.
One of them is a frontal view, while the other images are
under arbitrary poses. To recover the 3D face structure,
the 2D frontal-view face image is adapted to the CAN-
DIDE model. Then, the pose and the feature-point depths
of the CANDIDE model are adjusted to fit the poses of the
respective 2D non-frontal-view face images in such a way
that the feature-point distance between the projected 3D
model and the 2D face images under different poses is min-
imized under the similarity transform (Werman and Wein-
shall, 1995). However, searching for the best pose to
provide the best alignment is so computationally intensive
that an exhaustive search is impossible. Thus, the genetic
algorithm (GA) is employed to search the optimal poses
and depths of the feature points of the face model, which
are computed iteratively so as to fit the face images accu-

rately and efficiently. In addition, our method does not
need any camera calibration. However, it requires that all
the face images be of the same facial expression, and
assumes that the heads are under rigid motion.

The similarity transform is also used to measure the
accuracy of the constructed 3D face model. After con-
structing a face model, it can be compared to those training
2D face images used in the construction by means of the
similarity transform. The Levenberg-Marquardt method
is used to optimize the alignment of the face model to the
respective face images. If the structure of the constructed
face model is similar to that of the face image, the distance
will be small. In summary, our algorithm can construct the
3D face model and estimate the poses of the respective face
images, and in the meantime can provide a measurement of
the accuracy of the model. The next section will give the
details of our algorithm.

2. Construction of the 3D face model

Our algorithm can construct the 3D face structure of a
person based on a set of face images which are under differ-
ent viewing angles and have a fairly neutral expression. The
3D face structure is represented by the (x,y,z) coordinates
of the important facial feature points. In our algorithm,
each face is considered a rigid object, and the poses and
sizes of the face images are unknown. Hence, besides the
3D coordinates of the feature points, our algorithm can
also estimate the poses and scales of the respective face
images.

2.1. The 3D face model

To construct the 3D face model, at least three images
under different poses and with a neutral expression are
required. Our 3D face model is represented by n = 15 fea-
ture points, as illustrated in Fig. 1a. These can be located
automatically or manually. Ullman (1979) proved that four
point correspondences over three views can yield a unique
solution to motion and structure. Thus, three or more face
images under different viewing angles are required to con-
struct the 3D face model. The first image in our experi-

Fig. 1. (a) A frontal-view image with 15 landmark points, and (b) two
more face images with different poses.
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ments is a frontal-view image, and the poses of the other
images are estimated with reference to the frontal-view
image. Fig. 1b shows two other images of the same person
under different poses.

In our proposed method, the CANDIDE model (Ahl-
berg, 2001) is employed. The CANDIDE model is used
for initialization only in our iterative process because the
3D face structure is unknown in the first iteration. The def-
initions of the three axes are shown in Fig. 2. Based on the
position of the important feature points, the CANDIDE
model is first adapted to the frontal-view face image, as
shown in Fig. 3a. Then, the CANDIDE model is rotated
to the same poses as the non-frontal-view face images,
and the depths of the feature points of the model are
adjusted so that the feature points obtained by projecting
the 3D model onto the 2D space can fit the corresponding
feature points of the images accurately. Fig. 3b illustrates
the adaptation of the 3D CANDIDE model to two other
face images.

2.2. Our algorithm

Our algorithm can recover the structure and poses of a
face based on a number of 2D images by projecting its
3D model on to the 2D plane, i.e. a 2D to 3D problem.
We assume that one frontal-view face image and N
(N = 2) non-frontal-view face images are available. The
poses and scales of the non-frontal-view images with
respect to the frontal-view face image are all unknown.
We also assume that the n feature points in the respective
face images have all been located accurately. The 3D to

2D projection is performed wusing the following
transformation:
pi:siRi2x3C+Ti fori:l,...,N, (1)

where N is the number of non-frontal-view face images, s,
T;=[ts,1»]" and R; denote the scaling factor, the transla-
tion matrix and the rotation matrix between the frontal-
view image and the ith non-frontal-view face image, respec-
tively. R; can be specified as three successive rotations
around the x-, y-, and z-axes, by angles ¢, ¥; and 0,
respectively, and can be written as the product of these
three rotations as follows:

A"

Fig. 2. The CANDIDE model in frontal view and profile view.

a b

Fig. 3. (a) Face images with an adapted face model, and (b) face images
under different poses adapted by the rotated face model.
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0 cost; sinb | = |ry Fy T |- (2)
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R> .3 contains the first two rows of the 3 x 3 rotation ma-
trix R;. Let n be the number of feature points in a face im-
age. The matrix C(=[X¢, Y¢, Zc]") is a 3 x n matrix, which
represents the 3D coordinates in the adapted face model.
Xc, Yo and Z are three n x 1 matrices, which are the
x-, y- and z-coordinates, respectively, of the feature points
in the adapted face model. X and Y are measured from
the image being adapted, while Z is initially set at the de-
fault values of the CANDIDE model with a particular
scale according to the size of the face image. p;isa 2 xn
matrix which represents the 2D coordinates of the feature
points in the ith non-frontal-view face images. Also, the
first row and the second row of p; represent the x- and y-
coordinates, respectively.

If the pose of the face model and the depths of the fea-
ture points fit the ith non-frontal-view face images, the fol-
lowing equation will be a minimum:

1 N
DI’ = N > i = siR, . C = Ti|]*. (3)
i=1

Before taking the norm of the difference between the
face model and the images, we must remove the differences
caused by irrelevant effects, such as the arbitrary image size
under scaled orthography or the arbitrary location due to
the translation and rotation of the face in the image. To
remove the irrelevant effects, image alignment is per-
formed. The alignment transformation, which is a series
of transformations — including translation, scaling, and
rotation — is applied to one image to obtain an optimal
alignment to another image.

All the point sets to be compared are translated to their
respective centroids so that the centroids become the origin
of the coordinate system, and their first moments are
zero. Let M (=[Xpy, Yar, ZM]T) be a 3 x n matrix which
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represents the centered model point set. Similarly, suppose
that ¢; denotes a 2 x n matrix which represents the centered
point sets of the ith image. In other words, ¢, and M are the
centered point sets of p; and C, respectively, and (3)
becomes

1 N
D? = N > g, — siRi, M. (4)
i=1

To accomplish the optimal alignment, we employ the ge-
netic algorithm (GA) to search for the optimal solution,
i.e. the optimal poses of the non-frontal-view images. GA
is used because it can search for the optimal solution even
in a large searching space. This approach can provide an
accurate solution, although the computational time is a lit-
tle bit longer. However, for many applications, such as face
recognition, this 3D face reconstruction can be performed
offline.

2.2.1. The chromosome

In the GA, the relative poses of the face model, adapted
to the respective non-frontal-view face images, are ran-
domly generated and evenly distributed to form the initial
population. The fitness value of each candidate in a popu-
lation is measured based on (4). When the population
evolves, the number of candidates with the correct poses
will gradually dominate. The iterative process will be
stopped either when the fitness value of the population
does not change significantly over a number of iterations
or when a certain number of iterations have been done.
Finally, the parameters of the best candidate in the popu-
lation are used to represent the best poses of the face model
adapted to the non-frontal-view face images.

The chromosome designed for the GA should be able to
represent the solution effectively, and its length should be
as short as possible. Fig. 4 illustrates the chromosome
structure used in our algorithm for having N non-frontal-
view face images, where ¢;, i; and 0, are the angles rotated
about the z-, y- and x-axes, respectively, for adapting the
face model to the ith face images. In our approach, the
number of elements in the chromosome is therefore 3N.

When the number of face images used to construct the
face model increases, the chromosome size will also
increase. Then, increasing the population size and the max-
imum iteration numbers is also required because the chro-
mosomes will form a much larger solution space.

2.2.2. The optimal depths of the feature points

To minimize the fitness function in the GA, the informa-
tion provided from the chromosomes is insufficient because
the depths of the feature points are unknown. The follow-

Chromosome: pose parameters

6, 741 o | 6| vz 1)) Oy | wn | v

Fig. 4. Structure of a chromosome with N non-frontal-view face images.

ing equation shows the feature-point distance between the
ith face image and the projected feature points of the face
model:

2
M",

D3’ =||q, — s;R i=1,...,N. (5)

i2x3

To compute the distance, ¢,,; and 6, are substituted into
(2) to calculate R;, and then R,>.3 is obtained and substi-
tuted into (5). Since the depths of the features points are
the default values of the CANDIDE model in the first iter-
ation, the initial structure of the face model is an approxi-
mation only. Therefore, the z-coordinates in M are
calculated by applying partial differentiation to (5) with re-
spect to the z-coordinates. From (5), we can calculate N
different z-coordinates for M. There are N different combi-
nations between the frontal-view image and each of the N
non-frontal-view images. Let Z,; be the n x 1 matrix
which represents the z-coordinates in M constructed based
on the frontal-view image and the ith non-frontal-view im-
age. We also denote rl; = |ri, 7y, |, #2i= |1y Ty,
13 =|ry, Fi | 1=y 7] and My, (=[Xar Yadl").
Then, by applying partial differentiation to (5) with respect
to Zyy, we have
Z/TWA :rl,--q,-—{—s,-m,-33 r2;-M,,
! s;-rl; - VI,.T ’

i=1,...,N. (6)
Then, (6) is substituted into (5) and partial differentiation
with respect goMs,- is applied to (5). anqzteMai =r3;
M, +ry, -0 and by = rd; - My, + 1y, 251 which

rl;rl; . rI,-»rl:r
are both 1 x n matrices. Then, we have

! ["" | LH ™

T
ai'a?+b['bi

i

where tr[] denotes the trace, which is the sum of the diag-
onal elements in a matrix.

From (6), there are N different z-coordinates for the face
model. To find the optimal depths of the feature points in
the face model, the z-coordinates in M are calculated by
applying partial differentiation to (4) rather than (5), with
respect to Zy;:

77 :Z;’:l(s,«-rl,-‘qi—ksiz-rm-V2,~-Mxy) (8)

. Soist vl oI} 7
where the respective s; are calculated using (7). Then this
set of new z-coordinates replaces the original one. The
proof of (6)—(8) has been included in Appendix 1.

To calculate the fitness of a chromosome, we first substi-
tute its values, i.e. ¢;, ; and 0, to (2) in order to calculate
R;. Then, the corresponding scaling factor s; is computed
using (6) and (7), and the depths of the feature points in
the adapted face model are calculated using (8). Finally,
its fitness can be calculated by substituting all of the above
parameters into (4), which consider its fitness to all the face
images.
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Parent 1

01, Y1, | @1 01, Y1, | @I,

Parent 2

02, Y2, | 02, 62, Y2, | @2,

—

Offspring 1

02, Y2, | @1, | 6l Y1, | 2,

Offspring 2

01, Y1, | ®2; | 62 Y2, o1,

Fig. 5. An example of the crossover operation.

2.2.3. The genetic operators

Having defined the chromosome and the fitness function,
the genetic operators — selection, crossover, and mutation
(Goldberg, 1989) — which are performed to search the opti-
mal poses of the face images and the optimal depths of the
face model are described in this section. In our algorithm,
the rank selection method is used to select two chromo-
somes to perform crossover and/or mutation. After select-
ing two chromosomes, two crossover points are selected
randomly. The values between these two crossover points
in the two chromosomes are exchanged to form a pair of
new offspring. Fig. 5 illustrates the crossover operation.

Mutation is intended to prevent all the solutions in a
population falling into a local minimum by exploiting
new candidates randomly. In our algorithm, the number
of elements in a chromosome being mutated depends on
the number of face images. The N elements in each chro-
mosome are randomly selected and replaced by N ran-
domly generated numbers, where N is the number of
non-frontal-view face images.

3. The similarity measure

After constructing the face model of a person, it can be
adapted to any face image. If the face model is constructed
from a particular subject, the feature-point distance
between this face model and a face image of this particular
subject should be smaller than that of another subject.
Unlike other face model construction algorithms (Su
et al., 2002; Ansari and Abdel-Mottaleb, 2005) our algo-
rithm can evaluate the accuracy of the constructed 3D face
model. The accuracy of the 3D face model can be deter-
mined by measuring the feature-point distance between
the face model and the respective face images. This is espe-
cially useful since we do not usually have the exact data of
the 3D face structure. This distance can also be applied to
human face recognition.

To compute the feature-point distance between the 3D
face model and a 2D face image, the Levenberg—Marqu-
ardt method (Levenberg, 1944; Marquardt, 1963) is used
to optimize the following equation:

!
D’ = min —||ju — sR,.sM||’, 9)
s,Rax3 N
where u is the 2 x n matrix representing the (x,y) coordi-
nates of the feature points in a test face image, and R,.3
and s are the rotation matrix and scaling factor, respec-

tively, that can minimize the above equation. R,, ; contains
the first two rows of the 3 x 3 rotation matrix R, which can
be specified as the three successive rotations around the x-,
y-, and z-axes, by an angle of ¢,  and 0, respectively. This
matrix can be written as the product of these three rotations
by using (2). Having constructed the 3D face model of a face
subject, the depths of the feature points are known. Hence,
when a 2D face image is compared to the 3D face model for
face recognition, a simpler optimization method, the Leven-
berg—Marquardt method instead of the GA, can be used to
estimate the pose and scale of the query image.

For face recognition, the query or test face image can be
compared to different face models using (9). The face
model that results in the minimum feature-point distances
should have the best representation of the query face
image. However, not all the n feature points in the query
face images are visible, because the query image may have
an arbitrary pose. As a result, some modifications have to
be made to (9). First, the columns of M corresponding to
the invisible feature points are removed. Then, 7 is replaced
by the number of visible feature points in the face image.
Experiments in the next section will show the validate use
of the 3D face model for face recognition.

4. Experimental results

A subset of the FERET database (Phillips et al., 2000) is
selected for our experiments. This is a standard database
for face recognition evaluation, which contains images in
various poses. To construct different face models, 60 fron-
tal face images, corresponding to 60 distinct subjects, were
selected in our experiment: 13 of the subjects have 4 non-
frontal-view face images, 12 have 3 non-frontal-view face
images, and the remaining 35 have 2 non-frontal-view face
images only. All the 15 feature points are visible in the
selected non-frontal-view face images. However, in the face
recognition experiment, face images with larger pose varia-
tions can be selected because not all the 15 feature points
are required for the matching of a test image and the face
model. In addition, the 15 feature points were selected
manually in our experiments so that potential errors in
the detection of the facial feature points can be eliminated.

4.1. 3D face model construction

In this experiment, different numbers of face images of
the same subject under different poses may be used to
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Table 2
Indices of the face models for (a) Example 1 and (b) Example 2

Table 1
The parameters of the GA under different numbers of face images
Number of face Population Maximum Maximum
images size iterations runtime

per model (s)
3 800 200 1.8
4 1200 300 2.6
5 1500 400 4.0

construct a face model. For example, suppose that one
frontal face image and four images under different poses
are available. Then, six different face models can be con-
structed when two of the different non-frontal-view face
images and one frontal-view face image are considered in
the construction. Similarly, there are four different models
when three of the non-frontal-view images are used and
only one when all the four non-frontal-view images are
considered. Therefore, 11 different face models can be con-
structed. To construct the face models, the best poses of the
face models were aligned using the GA. The respective
ranges of the elements in the chromosomes, i.e. ¢;, ; and
0;, were set between —50° and 50°; this allows all 15 feature
points to be visible after 2D projection.

Table 1 shows the population size and the maximum
number of iterations for face model construction using dif-
ferent numbers of images under different poses. The maxi-
mum runtime required to generate a face model is about
1.8 s using 3 face images under different poses. This run-
time is measured with a Pentium IV computer system with

Face model indices

(a) Example 1

Model 1 Images 1, 2, 3
Model 2 Images 1, 2, 4
Model 3 Images 1,2, 5
Model 4 Images 1, 3, 4
Model 5 Images 1, 3, 5
Model 6 Images 1, 4, 5
Model 7 Images 1, 2, 3, 4
Model 8 Images 1, 2, 3, 5
Model 9 Images 1,2, 4, 5
Model 10 Images 1, 3,4, 5
Model 11 Images 1, 2, 3,4, 5
(b) Example 2

Model 1 Images 1, 2, 3
Model 2 Images 1, 2, 4
Model 3 Images 1, 3, 4
Model 4 Images 1, 2, 3, 4

2.3 GHz and 512 MB RAM. The crossover rate and the
mutation rate were set at 80% and 20%, respectively.
Figs. 6 and 7 show the face images of two different sub-
jects that were used to construct their face models. The left-
most image is the reference image, i.e. the frontal-view
image, while the other images are under different poses.
In Fig. 6, five images are available, so at most 11 different
face models can be constructed; while in Fig. 7, four images
are available, so at most 4 different face models can be con-
structed. To illustrate the estimation of the poses using

Fig. 6. Example 1 — five face images under different poses used to construct the face model.

1

Fig. 7. Example 2 — four face images under different poses used to construct the face model.
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different combinations of the front-view image and non-
frontal-view images from Example 1 and Example 2, Table
2 tabulates the corresponding indices of the face models
determined based on the different combinations of the face
images.

Tables 3 and 4 tabulate the best poses of the adapted
face models to the respective non-frontal-view face images
from Example 1 and Example 2, respectively. The entries in
these tables show the angles of the non-frontal-view face
images about the x-, y- and z-axes. It can be observed that
the estimated poses of the different models for the same
face image are consistent. Fig. 8 shows the variance of
the poses for 13 distinct subjects. The face images rotated
around the y-axis result in the largest variance as the faces
are mainly rotated around this axis.

Tables 5 and 6 tabulate the structure of the face models
from Example 1 and Example 2, respectively, which are
constructed using all the available face images. Each of
the columns in these tables shows the (x,y,z) coordinates
of each corresponding feature point, which have been
defined as shown in Fig. 3a. Figs. 9 and 10 show the means
and the standard deviations of the depths of the feature
points from different face models in Example 1 and Exam-
ple 2, respectively. The number of pixels is used to repre-
sent the depths of the face models because the models are
derived from face images, which use pixels as the unit.

From Figs. 9 and 10, we see that feature point 7 has the
largest z-coordinate value, as this point represents the nose
tip, which is the outermost part in a face. In addition, fea-

Table 3
The best estimated poses of the non-frontal-view images from Example 1

ture points 8 and 9 have larger z-coordinate values than the
other feature points because these two points represent the
lips, which protrude more than all other feature points
except the nose tip. Feature points 1-6 have very similar
z-coordinate values to feature points 10-15, as the structure
of a face is usually quite symmetrical. These show that the
structure of the constructed face models conforms to
the structure of the human faces. Figs. 11 and 12 show
the models adapted to the non-frontal-view face images
in Example 1 and Example 2 after the optimal poses of
the face images and their 3D face models have been
determined.

4.2. Evaluation of the accuracy of the face models

To evaluate the accuracy of the constructed 3D face
models, the similarity transform described in Section 3
was used. With the various face models generated using
Example 1 and Example 2, the smallest distances between
a number of face images and the respective face models
are measured, as shown in Figs. 13 and 14. Some of the test
images are of the same person as was used for the face
model, while the others are of other subjects. The similarity
distances between the face images and the face models of
the same subject are small when compared to those
between the face images and the face models of different
subjects. In addition, the similarity distances between the
face images and the face models of the same subject are
similar irrespective of the images used to construct the face

Poses of image 2 Poses of image 3

Poses of image 4 Poses of image 5

Tilt Pan Roll Tilt Pan Roll Tilt Pan Roll Tilt Pan Roll
(X degs) (Y degs) (Zdegs) (X degs) (Ydegs) (Zdegs) (Xdegs) (Ydegs) (Zdegs) (Xdegs) (Ydegs) (Zdegs)
Model 1 0 —16 1 1 —10 5
Model 2 0 -22 3 2 11 8
Model 3 0 —24 3 2 24 5
Model 4 1 —14 8 0 16 8
Model 5 1 —15 7 1 31 9
Model 6 2 13 8 2 25 6
Model 7 0 -22 3 1 —14 8 2 11 9
Model 8 0 —24 3 2 —-16 10 2 25 6
Model 9 0 -23 4 2 11 7 2 24 6
Model 10 3 —14 8 3 9 4 3 24 5
Model 11 0 -23 3 2 —13 8 2 13 8 2 25 6
Table 4
The best estimated poses of the non-frontal-view images from Example 2
Poses of image 2 Poses of image 3 Poses of image 4
Tilt Pan Roll (Z degs)  Tilt (X degs) Pan (Y degs) Roll (Z degs) Tilt (X degs) Pan (Y degs) Roll(Z degs)
(X degs) (Y degs)
Model I -1 -20 =5 -1 —15 -6
Model 2 —1 —18 -5 -1 16 —4
Model 3 -1 —14 —6 -1 15 —4
Model 4 -1 —19 —4 -1 —15 -5 -1 15 —4
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Variance of the poses of each subject
6
@ tilt (X degs)
5 B pan (Y degs)|
O roll (Z degs)
©w 4
o
(1]
i
8 o
c
8
S 27
1 4
o [ & 1 i B L
1 2 3 4 5 6 7 8 9 10 1 12 13
Subjects
Fig. 8. Variance of the poses for 13 distinct subjects.
Table 5
The structure of the face model constructed from five images in Example 1
Example 1 Indices of the feature points (pixels)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
X 98 125 111 112 112 121 140 137 137 190 163 163 177 174 157
y 164 165 227 159 168 202 197 223 230 171 170 229 164 175 203
z 0 7 14 6 10 21 45 29 33 3 4 15 6 6 24
Table 6
The structure of the face model constructed from four images in Example 2
Example 2 Indices of the feature points (pixels)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
X 98 124 120 111 113 126 145 144 144 186 162 168 175 174 162
y 180 178 249 174 184 223 212 241 259 176 177 248 171 181 223
z 0 3 2 9 5 12 31 24 25 7 8 8 8 9 21
50 Mean and Standard Deviation of the Depths of the Feature Points from Different Face Models 43 Face rec()gnili()n uSiI’lg the 3D face m()dels
« _
?‘2 45 @ Mean |
Sy || After the face models for each subject have been con-
Standard deviati . .
£ g5 B structed, the feature-point distance can also be used for
g 20 face recognition. In this experiment, each face model was
g o5 constructed using 3 different face images under different
3 poses (one of which is frontal-view). Each distinct subject
<= 20 . .
2 .5 is represented by a corresponding 3D face model, so 180
kS] I face images were used to construct 60 distinct face models.
% 10 To perform face recognition, other face images which
g° have not been used to construct the face models are used
123 4 5 6 7 8 9 10 11 12 13 14 as testing face images, and are compared to the different

Indices of the feature points

Fig. 9. The mean and standard deviation of the depths of the feature
points from different face models in Example 1.

models. Therefore, this method can also be used as a face
recognition algorithm, which can alleviate the effect of per-
spective variations.

face models using the similarity transform. The face images
used to construct the face models are the training images
for PCA and LDA, while other face images are used as
testing images. If the similarity distance between a face
model and a testing face image is a minimum, this
face image will then be classified as the subject of the face
model. Therefore, for each testing face image, its similarity
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Mean and Standard Deviation of the Depths of the Feature Points from Different Face Models
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Fig. 10. The mean and standard deviation of the depths of the feature
points from different face models in Example 2.

distances to all the face models are computed, and the faces
are listed in ascending order according to these distances.
As described in Section 3, not all the feature points are
needed to calculate the feature-point distance. Conse-
quently, face images with large pose variations can be rec-
ognized, even though not all the feature points are visible in
these face images.

In this experiment, 72 testing face images of 28 different
subjects were selected. All these subjects have their own
face models stored in the face model database. These
images are divided into two sets. The first set includes those
face images under large pose variations in which the abso-
lute angle rotated around the y-axis is larger than 50°. The
second set contains those face images under small pose
variations in which the absolute angle rotated around the

y-axis is smaller than 50°. There are 45 testing face images
in the first set, and the remaining face images are in the
other set.

Fig. 15 shows the recognition rates when the correct face
models of the testing images are in the top k of the list
according to the similarity distances, where k=1,...,10.
Our method is also compared to two other face recognition
techniques: PCA and LDA. These two methods can
achieve better performances when the top 3 in the list are
considered. Nevertheless, the recognition rate of our
method is about 80%, whereas PCA and LDA have a sim-
ilar recognition rate of about 60% when the top 10 on the
list are considered. Figs. 16 and 17 show the face recogni-
tion rates of the testing images under small and large pose
variations, respectively. Fig. 16 shows that PCA and LDA
outperform our algorithm up to the first nine most similar
faces. The reason for this is that the images are those face
images under small pose variations. Our algorithm has a
similar recognition performance when the top 10 on the list
are considered. Fig. 17 shows that the recognition rates
using PCA and LDA are lower than with our algorithm.
These results show that our algorithm outperforms PCA
and LDA when the testing face images have large pose
variations. This face recognition algorithm is based on
the facial-feature points only, which is not sufficient to
achieve a high recognition rate. However, for a large face
database, our algorithm can be used to select a subset of
face images from the database for further analysis. The
problem due to pose variation can be alleviated, and the
computational processing time required for comparing
the feature points is much lower than with other advanced
face recognition techniques.

Fig. 11. Adaptation of face model to the non-frontal-view face images of Example 1.

Fig. 12. Adaptation of face model to the non-frontal-view face images of Example 2.
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Similarity distances between face models and different face images
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Fig. 13. The similarity distances between a number of test images and each of the face models generated from Example 1. Test images 1-4 are the same

subject as the face model, while the others are different subjects to the face model.

Similarity distances between face models and different face images
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Fig. 14. The similarity distance between a number of images and each of the face models generated from Example 2. Test images 1-3 are the same subject

as the face model, while the others are different subjects to the face model.
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Fig. 15. The face recognition rates of different face recognition techniques
using all testing images.

Face recognition using the testing images under samll pose variations
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Fig. 16. The face recognition rates of different face recognition techniques
using the testing images under large pose variations.

Face recognition using the testing images under large pose variations
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Fig. 17. The face recognition rates of different face recognition techniques
using the testing images under small pose variations.

5. Conclusion

In this paper, a 3D face reconstruction method is pro-
posed to estimate the depth information about a human
face based on face images under different poses. Our
method does not require any camera calibration. In order
to estimate the poses and the depths of the face model effi-
ciently, the genetic algorithm is applied to minimize the
similarity distance between the adapted face model and
the faces under different poses.

Since the 3D information about human faces is not
available in most applications, a measurement to assess
the accuracy of the constructed face model has been pro-
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posed, which is based on the similarity transform and the
Levenberg-Marquardt method to find the optimal solu-
tion. With our proposed algorithm, both the poses of the
face images and their 3D structure can be determined. In
addition, experiments have shown that the estimation of
the poses is consistent, and that the estimated 3D face mod-
els can be used for face recognition.
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Appendix 1. Proof of the similarity transform

Assume that there are n points in two different point
sets, and (M,,,M, ,M.,) are the 3D coordinates of the ith
feature point in the adapted face model in which all the fea-
ture points have been centered. Similarly, (q,,, g, ) are the
2D coordinates of the ith feature point in the non-fron-
tal-view face image in which the feature points have also
been centered. Then, the similarity distance of the ith fea-
ture point between the face model and the non-frontal-view
face image is

D’ = ||Qx,- - S(}"“MX,. +roM,, + r13MZi)||2 + ”qy,-
—S(rZIMx,‘ +r22MJ’i —|—I’23MZ‘.)||2. (All)

(g, — rizm)(ruMy, + rioM,, + rizn) + (qy, — roam)(raM,, + M, + rysn)

Let VI:[I"B 1”23],1"2:[1"31 }”32],1’3:[1"11 }’12] and
rd =[ry rxn]|, and Xy, Yy and Z,, are the three n x 1
matrices, which represent the x-, y- and z-coordinates of
the centered feature points in the adapted face model. Let
M., =X, Ya]", and ¢ be the 2 x n matrix, which repre-
sents the centered image point set. Then, rewrite (Al.4)
into matrix form as follows:

rl-q+s-ryr2-M,,

zZ, Al.6
M s-rl-rl’ ( )
Substituting (A1.5) into (Al.1), we have
D = |lq, — rism — s(ruM, + rioM,, + risn) |
+ llg,, — rsm — s(raMy, +roM,, + raan)|* (A1.7)

and then differentiating (A1.1) with respect to s

oD?
o lq,, — rism — s(ruM,, +rixM,, 4 rizn)|(ruM,,
+ oM, +ri3n) + [qy,- — ryym — s(ra My, + roM,,
+ ro3n)|(raMy, + roM, + rsn)
= 0’
1.e.

5§ = Al
(ruMy, +rioM,, + rin) + (raM,, +rpM,, + rsn) ( )
By applying partial differentiation to (A1.1) with respect to
M,
oD?
=g, — s(ruM,, +rioM, +rizM. )|(—sr3)
oM.,
-+ [qyi — S(I’QIMX‘. —+ r22My, —+ 7'23MZI.)](—SI"23) ie. = 0,
r3qy, gy, — s(raMy + oMy )y — s(raMy + raM,, ) (A12)
B s(ris +133) . .
Since We can also write s in matrix form, let
ruri + rars +rary;s =0,
11713 + For7a3 + 131733 (AL3) =13 Mo+, iy 12 ]T‘/Ixy and
Tiok13 + Fors + ks = 0. ’ rl;-rl;
3 . iy " 2,‘ . Mx
(A1.2) can be rewritten as follows: bi=rd; M, +r,, - 7 33,,1’? T v
JYRALE +rnq, +sr(raMy, +raM,,) Al4 o
@ s(r2y +r2y) : (AL4)  which are 1 x n matrices, then
For simplicity’s sake, we rewrite (A1.4) as follows: r [q . {air]
"lb Al19
M, =" yn, (A1.5) U S (AL9)
s a; - a;r =+ bi . b;r
where m — 135 23y, and 7 — r33(r31Mx,-+r32My,v)_

2 2 72
s(riytrs) EREET!

where tr[] of a matrix is the sum of its diagonal elements.
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Appendix 2. The Levenberg—Marquardt method

The Levenberg—Marquardt (LM) method searches
the parameters x, which will minimize (9), where x =
0 ¢ ¢ s]" Let

_qxl —s(ruM,, + rioM,, + rizM;,) ]

g, —s(ruM,, +roM, +rizM.)

x) = A2.1
S ) q,, —s(raMy, +roM, +rsM.) ( )
L9, — s(raMy, + 1M, +ri3M.,) |
and (9) can be rewritten as follows:
1
Fx)=—f (x) "/ (). (A22)
We will compute x such that
x* = argmin{F(x)}, (A2.3)

i.e. to minimize (A2.2).

To find the solution of (A2.3), Levenberg and Marqu-
ardt suggested using a damped Gauss—Newton method.
Assume J is the Jacobian of f{x), which is a matrix contain-
ing the first partial derivatives of f{x), i.e.

(), = L (x).

ax j
Then, solve

(JT + u) by = —-J'f, (A2.4)

where J = J(x) and f=f(x), u is the damping parameter
and hy,, is a descent direction.

The steps in the Levenberg-Marquardt method are
shown as follows:

1. Initialize the damping parameter u related to the size of
the elements Ay =J(xo) J(xo). For example, let
—10-2 . max.d 40
U = 107" - max;{a;"}.
2. Solve (A2.4) to find hy,,.

Xpew = X + hlm-

4. Substitute (A2.5) back to (A2.4).
5. During iteration, the size of p is controlled by the gain
ratio
F(x) — F(x+ hp)
¢ = lhT ( h o JT :
2 %Im tu Im f)
6. The stopping criteria indicate that, at a global mini-

mizer, F(x*) = g(x*) =0, so ||[J'f]| < &. Another rele-
vant stopping criterion is that the change in x is small,

(A2.5)

(A2.6)

i.e. ||Xnew — X|| < &(]|x|| + &2). In our algorithm, ¢ and
&, are both set at 1072,
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