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Abstract 
 

In this paper we propose a technique for 3-D motion 
estimation of the left ventricle from image sequence of a 
beating human heart. Accurate motion estimation of 
cardiac wall has been shown to be very important in 
studying coronary diseases. The proposed technique 
requires initial 3-D segmentation of left ventricle area 
obtained for each time frame during cardiac cycle. 
Characteristic points at its surface are detected, and 
matched in two consecutive frames by matching shape 
properties. Optical flow is computed from the sequence of 
images using gradient-based Horn-Schunck method, 
additionally constrained with motion estimates for 
characteristic surface points.  

Our work demonstrates application of Horn-Schunck 
optical flow algorithm for 3-D cardiac motion estimation, 
and proposes to improve the accuracy of estimation by 
introducing constraints obtained by shape-based 
matching method. 

1. Introduction 

This paper presents a method for estimation of 3-D left 
ventricle (LV) motion from the sequence of images of a 
beating human heart. The movement of the left ventricle 
can be represented as a very complex system of rotations 
and translations of points at its surface. Accurate 
estimation of the spatio-temporal trajectory for each point 
at cardiac wall gives valuable information for study of 
coronary diseases using finite-element modeling for 
finding regions with irregular behavior or increased 
strains in heart tissue [1]. 

Techniques that deal with this problem could be 
categorized into invasive and non-invasive. Invasive 
techniques track markers physically implanted on the 
surface of the ventricle wall [2]. Movement of the markers 
is tracked in sequence of cardiac images and estimation of 
LV motion is possible. Such techniques are not 
appropriate for wide application because of the need for 
surgical intervention Non-invasive techniques overcome 

this problem. There are three different main groups of 
approaches. The first group of approaches uses magnetic 
resonance tagging technique where magnetization of the 
tissue is altered such that grid of intersecting planes is 
produced [3][4]. Points of intersection are easily tracked 
as heart tissue moves, but motion of other points is not 
estimated. The second group of approaches analyzes 
shape of previously segmented cardiac wall, extracting 
motion information from the changes in the shape [5][6]. 
Such approaches are usually limited to several 
characteristic points extracted from the LV boundary. In 
the third group of approaches are optical flow techniques 
[7], which detect changes in brightness intensity of every 
pixel in an image, followed by estimation of movement 
from detected data. The optical flow approach shows 
some very good results in estimation of simple movements 
but for complex motion observed in cardiac images the 
algorithm need to be improved with additional constraints. 
Other approach uses optical flow results as input for 
further motion analysis [8]. In this paper we propose an 
optical flow algorithm enhanced by initial motion 
information obtained by shape-based matching method. 

For initial segmentation of LV area we use a 2-D 
region growing technique applied to all image slices in 
one temporal frame, and for all temporal 3-D frames in 
one cardiac cycle [9]. Next, we find characteristic 
boundary points by investigating curvature distribution 
along extracted 3-D surface. Characteristic points found 
for two consecutive frames are matched using shape 
properties and motion estimation for those points is 
estimated. These estimates are used as point constraints in 
3-D point-constrained optical flow algorithm that yields 
smooth and dense optical flow field of 3-D left ventricle 
motion. 

The rest of the paper is organized as follows. 
Developed methods are described in the next section. In 
the following sections experimental results are presented 
and discussed. The conclusions are presented in the final 
section. 

 
 



2. Methods 

Initial segmentation of LV area is performed by means 
of contour-modified region growing algorithm proposed 
by Dai et al [10]. This method starts from a seed � a pixel 
belonging to target object, and iteratively expands set of 
pixels classified as members of the same region. After 
each iteration step, a contour is found, consisting of pixels 
adjacent to the region of interest. The similarity is tested 
by comparing the value of the boundary pixel with the 
mean value of the pixels already classified as part of the 
region. If the calculated difference is bellow certain 
threshold, the pixel is classified into the region, otherwise 
it is labeled as a boundary pixel. The process is repeated 
until no pixel is added to the region in single iteration. At 
the end of the process both region and its boundary are 
clearly detected. This technique is performed at original 2-
D images of beating human heart. Contours extracted 
from the images representing different slices of the same 
temporal frame are combined to form 3-D contour of LV 
for further processing. 

Shape-based matching is next step of the algorithm. 
We use it for finding exact displacement vectors for 
selected characteristic points at the LV surface. We 
propose to compare different shapes by comparing 
curvature at examined point.  

Curvature at any point on a surface is defined by two 
parameters, mean curvature H and Gaussian curvature K 
[11]. They are defined by the following equations: 
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where f is a function defining the surface. In our 
experiments we simply set f to zero at the boundary, to -1 

for pixels belonging to the object, and to +1 for pixels 
outside the segmented area. Discretized versions of the 
partial derivatives in above equations are necessary for 
our implementation. Discrete partial derivatives are 
calculated using Sobel gradient operator. 

The result of these operations is 3-D field of curvature 
vectors containing two features K and H. The algorithm 
continues by examining boundary pixels and finding if 
curvature values at the pixel location are local minimum 
or maximum in a small neighborhood area. The examined 
neighborhood is gradually expanded and same operation 
is repeated. Those pixels whose curvature values are 
detected as local extreme in the largest neighborhood area 
are selected as the most characteristic points at the surface 
of LV area. We can assign to each boundary pixel the 
value R equal to size of area in which its curvature value 
is found as local maximum or minimum. 

In next step characteristic points in two consecutive 
time frames are matched such that for each point in the 
first frame algorithm finds a pair in following frame. In 
this process we find the best correlation between curvature 
values in a small 3-D window surrounding each of two 
points from two consecutive frames. The window is 3x3x3 
pixels in size, and weighted, giving more weight to central 
point. When the pair of points with the best correlation is 
selected the displacement vector is calculated as distance 
between two paired points. It is assumed that maximal 
possible displacement is less than 3 pixels, thus 
characteristic points lying outside that perimeter are 
excluded from the matching process.  

The estimated displacement vectors are introduced as 
constraints to point-constrained optical flow algorithm. 
Optical flow algorithms attempt to estimate the field of 
vectors representing spatial movements of every image 
point over time. We use a modified Horn-Schunck 
algorithm [12]. The algorithm calculates spatial and 
temporal derivatives for every position in the image and 
uses those for estimation of the optical flow vector field. 
A temporal sequence of 3-D frames is described by 
brightness function I(x,y,z,t) where I is the image intensity 
at time t and at location (x,y,z). The assumption on 
brightness constancy is made that the total derivative of 
brightness function is zero.  

0=
∂
∂+

∂
∂+

∂
∂+

∂
∂

t
I

dt
dz

z
I

dt
dy

y
I

dt
dx

x
I

   

Horn and Schunck added additional smoothness 
constraint because brightness constancy equation is 
insufficient to compute all components of optical flow. 
Minimization of the weighted sum of smoothness term 
and brightness constraint term is performed: 
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where u, v and w are components of optical flow in x , y 
and z directions, respectively. X-Y plane is parallel to 
plane of 2-D image slices, and Z axis is ortogonal to that 
plane. Ix, Iy, Iz, and It are partial derivatives of I with 
respect to x, y, z, and t (time) respectively, and λ is 
weighting parameter. Minimization and discretization of 
this term results in three equations for each image point 
where vector values u, v and w are optical flow variables 
to be determined. The resulting system of differential 
equations is solved using iterative Gauss-Seidel relaxation 
method.  

On the basis of this algorithm the point-constrained 
optical flow technique is developed [13]. The technique 
uses displacement vectors previously estimated for several 
characteristic points at the object boundary, and it sets 
corresponding optical flow vectors to estimated values in 
order to influence computation of optical flow estimates in 
neighboring region. The introduced constraint values 
propagate to neighboring locations because the relaxation 
method uses information from neighboring points for 
calculation of new values in next iteration step. Influence 
of such constraints can be further enhanced by 
introduction of additional neighborhood constraints in the 
small area around every constrained point. Neighborhood 
constraints are derived from the original set of constraints. 
Influence of each original constraint is inversely 
proportional to the squared distance to the new constraint 
location and is given by the following expression:  
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where set F is original set of constraints, j is index of the 
constraint, and i is index of new constraint. d(i,j) is a 
distance measure between corresponding constraints 
locations, and uif is initial value of new constraint. 

Our modified optical flow algorithm combines values 
of constraints uif with vector estimates obtained by the 
computation of optical flow ui after each step of iterative 
process, for each pixel location i. Weight factor α is used 
to balance influence of those constraints. 

ifiiii uuu αα +−= )1('  

Similar equations are used to calculate other 
components of the vector field v and w. Weighting factor 
αi at location i is function of distance di between that 
location and the location of the closest original constraint. 
It is also proportional to the sum of R-values of two 
matched points that represent the initial estimate for the 
constraint:  
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where dmax is size of neighborhood region in pixels, and 
Rmax is maximum value of R. The above equation has 
value α = 1 at the location of original constraints with 
highest R-values, allowing no modification of the vector 
value. It gradually decreases with distance, and α = 0 for 
the pixels lying outside the neighborhood constraint 
region.  

3. Experimental results 

We have applied our technique to a set of magnetic 
resonance images acquired by means of ECG-gated 
magnetic resonance imaging using gradient echo cine 
technique. The resulting 3-D image set consists of sixteen 
2-D image slices per temporal frame, and sixteen temporal 
3-D frames per cardiac cycle. In this work we reduced the 
size of each image to 70x70 pixels, centered on area 
representing left ventricle. 

Results of a segmentation of LV area are displayed in 
Figure 1. We displayed middle slices from several frames 
representing systolic contraction of heart tissue. 

 

 
Figure 1. Segmented LV area for slices 4 to 6 (top to 
bottom), and time frames 3 to 5 (left to right) 

Parameters of region growing segmentation, such as 
seed point and threshold were adjusted manually. 
Segmented boundaries were input data for shape based 
matching algorithm. Algorithm produced point 
constraints, which were introduced to optical flow 
algorithm. Resulting optical flow field for the images 
displayed in the first column in Figure 1 are presented in 



Figure 2. In the first column vector projections to X-Y 
plane are displayed. The second column shows 
displacement in the third dimension. Vector component w 
of the same vectors is displayed using different gray 
levels. Lighter areas represent positive values of w, or 
vectors pointing down, while darker areas represent 
negative values, pointing in opposite direction.  

Figure 2 shows that there are vector values that are 
significantly different than their neighbors, and therefore 
should be considered as noise. Such values could be 
additionally filtered to reduce error of estimated field. 
 

 
Figure 2. Estimated optical flow vectors for slices 4 to 6, 
for the third time frame. The first column shows 
projections to X-Y plane. The gray values in the second 
column represent the third component of the vector.  

 

4. Discussion 

Experimental results presented in the previous section 
are initial results obtained by proposed technique. The 
results demonstrate application of point constrained 
optical flow algorithm to estimation of motion in a set of 

MR images. Motion present in cardiac data is very 
complex, and application of standard optical flow 
techniques is not sufficient for estimation of accurate 
movement of left ventricle boundary. There are a lot of 
noise sources in MR cardiac data. Left ventricle area is 
not the only region where motion is present, other heart 
tissue and adjacent muscles moves as well. Further, blood 
flow and its turbulence are also registered at some images, 
which increases problem of accurate LV region 
segmentation during the initial steps of the technique. In 
this work we presented results for slices of the MR data 
where most of this problems are not present. The optical 
resolution of experimental data used in this work is 
another limiting factor. LV region is found in small area 
of approximately 30x30 pixels. Any observed deformation 
is therefore very small, and errors are consequently 
relatively large. This problem occurs especially in shape-
matching algorithm, which can easily give significantly 
different estimates for two only slightly different 
segmented boundaries.  

The optical flow algorithm is based on calculation of 
brightness gradient resulting with errors in estimation 
because of high frequencies present in brightness function 
describing the set of the cardiac images. Previously 
mentioned limitations lead the standard optical flow 
method to poor results in LV motion estimation. 
Estimated optical flow vector field in the region of interest 
is not smooth � orientation and magnitude of neighboring 
vectors is often very different. This is obviously in 
contradiction with physiology of the heart movement.  

The proposed method deals with observed problems by 
applying point-constrained algorithm. Point-constrained 
algorithm additionally constrain optical flow algorithm 
with set of optical flow vectors extracted from shape of 
tracked object. The method heavily relies on accurate 
segmentation of LV area. In our work we assumed that 
contour-modified region growing method gives correct 
segmentation of LV area. Experiments proved that such 
assumption is not correct for all images in data set, and 
showed that segmentation algorithm needs to be 
improved. However, segmentation results were sufficient 
for evaluation of our point-constrained technique.  

Shape matching algorithm based on finding best 
curvature correlates shows good and consistent estimates 
of displacement vectors that are physically acceptable, 
although medical expert opinion is necessary for 
evaluation of results. The experiments show that the 
optical flow field obtained with point-constrained 
algorithm, is smooth and more acceptable for modeling of 
LV boundary deformation than the field obtained without 
additional point constraints. 

5. Conclusion 



In this paper, we present a optical flow method for 
motion estimation of the LV of the heart from the image 
sequence. This method attempts to deal with the problems 
observed in application of standard optical flow 
technique, which does not provide accurate displacement 
estimates. An accurate segmentation of boundary and 
estimation of its deformation is used to improve motion 
estimation. Once segmentation of LV is performed, and its 
boundary is extracted, boundaries in consecutive frames 
are matched, and a set of displacement vectors is derived. 
Vectors are introduced to optical flow algorithm as point 
constraints to enhance final computation of optical flow 
field. 

The experimental results demonstrate that our 
technique produces plausible results, but also pointed to 
problems to deal with in our future work. Improvement of 
initial segmentation algorithm is needed, which 
consequently enhance extraction of characteristic points 
and calculation of their displacements between two 
consecutive frames.  

Compared to optical flow field obtained without 
additional constraints our results are smoother, and 
vectors orientation generally follows visually observed 
deformations of the LV boundary.  

Acknowledgement 

The authors would like to thank Dr. James Duncan 
from Yale University for providing 3-D cardiac MR 
image data for this study. 

References 

[1] Huyghe, �Porous medium finite element model of beating 
left ventricle�, American Journal on Physiology 262, 1992, 
pp.H1256-1267. 
[2] P. Shi, G. Robinson, and J. Duncan, �Myocardial motion 
and function assessment using 4D images�, Proceedings of the 
IEEE conference on Visualization in Biomedical Computing, 
Rochester MN, 1994. 
[3] L. Axel, R. Goncalves, and D. Bloomgarden, �Regional 
heart wall motion: Two-dimensional analysis and functional 
imaging with mr imaging�, Radiology 183, 1992,  pp. 745-750. 
[4] E. Zerhouni, D. Parish, W. Rogers, A. Yang, and E. Shapiro, 
�Human heart: Tagging with mr imaging - a method for 
noninvasive assessment of myocardial motion�, Radiology 169, 
1988, pp. 59-63. 
[5] J.C. McEachen II, and J. Duncan, �Shape-based tracking of 
left ventricular wall motion�, IEEE Transactions on Medical 
Imaging 16, 1997, pp.270-283. 
[6] P. Clarysse, D. Friboulet, and I.E. Magnin, �Tracking 
geometrical descriptors on 3-d deformable surfaces - 
Application to the left-ventricular surface of the heart�, IEEE 
Transactions on Medical Imaging 16,1997, pp. 392-404. 
[7] S. Song, and R. Leahy. �Computation of 3D velocity fields 
from 3D cine CT images�, IEEE Transactions on Medical 
Imaging 10, 1991, pp. 295-306. 

[8] Mikic I, Krucinski S, and J.D. Thomas, �Segmentation and 
tracking in echocardiographic sequences: active contours guided 
by optical flow estimates�, IEEE Transanctions on Medical  
Imaging 17, 1998, pp.274-84. 
[9] K.S.Fu ed., Digital Pattern Recognition, Springer-Verlag, 
Berlin-Heidelberg-New York, 1980. 
[10] X.L. Dai, W.E. Snyder, G.L. Bilbro, R. Williams, and R. 
Cowan. �Left-ventricle boundary detection from nuclear 
medicine images”, Journal of Digital Imaging 11, 1998, pp. 10-
20. 
[11] S. Osher, and J.A. Sethian, �Fronts propagating with 
curvature dependant speed: Algorithms based on Hamilton-
Jacobi Formulations�, Journal of Computational Physics, 79, 
1988, pp.12-49. 
[12] B. Horn, and B. Schunck, �Determining optical flow�, 
Artificial Intelligence, 17, 1981, pp. 185-203. 
[13] S. Lončarić, and T. Macan, �Point constrained optical flow 
for LV motion detection�, SPIE Proceedings of  Medical 
Imaging 2000 – Physiology and Function from Multi-
dimensional Images, Ed. A. V. Clough, C.-T. Chen,Vol. 3978, 
SPIE, 2000. 
 
 


