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An advantage of stereovision-based motion analysis is that the depth information is available, thus motion can be estimated
more precisely in 2.5D stereo coordinate system (SCS) constructed by the depth and the image coordinates. In this paper, stereo
global motion in SCS, which is induced by 3D camera motion in real-world coordinate system (WCS), is parameterized by a five-
parameter global motion model (GMM). Based on such model, global motion can be estimated and identified directly in SCS
without knowing the physical parameters about camera motion and camera setup in WCS. The reconstructed global motion field
accords with the spatial structure of the scene much better. Experiments on both synthetic data and real-world images illustrate its
promising performance.
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1. INTRODUCTION

The advantage of stereovision-based motion analysis is that
the depth/disparity information can be computed. Consid-
ering the depth information together with the image coordi-
nates, motion can be analyzed more precisely in a 2.5D space
rather than the traditional 2D image plane. This paper, by
expressing the 2.5D space as stereo coordinate system (SCS),
addresses the problem of global motion modeling in SCS.

Global motion model (GMM) is commonly used to de-
scribe the effect of camera motion (global motion) acting on
video image. By GMM, global motion can be distinguished
from image motion induced by moving objects (local mo-
tion), thus moving objects can be extracted from the image.

In the literature, single-camera-based GMM approaches
[1–3], which analyze the camera motion based on 2D image-
space shifts [1], cannot describe the global motion accurately
when the depth of field is great. By using stereovision, global
motion can be estimated more precisely from 2.5D stereo-
motion analysis using the depth and image coordinates. The
reconstructed global motion field will accord with the spa-
tial structure of the scene much better, which makes moving
object’s detection much easier.

In this paper, a five-parameter stereo GMM is proposed
to parameterize global motion in SCS based on the analy-
sis of 3D camera motion. Different from the previous works
aiming to recover the physical parameters of camera motion
in real-world coordinate system (WCS) [4–8], the presented

model pays more attention to the fast distinguishing of global
motion and local motion directly from stereo data. Thus in-
stead of estimating the real camera motion in WCS, global
motion is estimated and identified directly in SCS with-
out knowing the physical camera parameters. The proposed
model is provided as a tool for stereo-motion analysis where
disparity can be fast calculated. It is very useful for many
stereovision-based real-time applications, such as surveil-
lance, robot vision, especially of our research on stereovision-
based adaptive cruise control (ACC) systems [9].

2. STEREO GLOBAL MOTION MODEL

A typical stereovision system consists of two coplanar cam-
eras with the same intrinsic parameters [9]. By projecting a
point in WCS (x, y, z) to the stereo left/right ICSs (u, v), the
following equation is held:

ul,r =
f
(

x ± b/2
)

z
vl,r =

f y

z
, (1)

where f is camera focal and b is baseline distance between
the cameras. Then, disparity ∆ can be achieved by

∆ = ul − ur =
f b

z
. (2)
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Only considering the left ICS, the relationship between WCS
and SCS (u, v,∆) can be described by
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Note that in stereovision, the intrinsic parameters f and b al-
ways remain unchanged. Global motion with respect to WCS
can be generally referred, as a composition of rotations about
x-, y-, z-axes followed by translations along them [10]. To
express the stereo GMM in SCS, this paper analyzed the ro-
tation and translation separately based on the relationship
between WCS and SCS.

In WCS, “rotation about x-axis” with angle α can be de-
scribed by
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Mapping to SCS based on (3), there is

u′ =
u

cosα− sinα · (v/ f )
,

v′ =
cosα · v + f sinα

cosα− sinα · (v/ f )
,

∆
′
=

∆

cosα− sinα · (v/ f )
.

(5)

In order to deduce a simple expression, we assume that the
rotation angle α is small. Since v/ f is generally smaller than
1, when α is small, we approximate that

cosα ≈ 1,
v sinα

f
≈ 0. (6)

Then (5) can be simplified as

u′ ≈ u, v′ ≈ v + f sinα, ∆
′
≈ ∆, (7)

which results in a ∆-independent global displacement of v.
Note that such simplification is also permitted by the variety
of depths that are being reconstructed.

Similarly, “rotation about y-axis” with angle β is de-
scribed by

u′ =
cosβ · u− f sinβ

cosβ + sinβ ·
(
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)

/ f

β→0
≈ u− f sinβ,
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(8)

which results in a ∆-independent global displacement of u.

“Rotation about z-axis” with angle γ can be described by

u′ =

(
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2

)

cos γ + v sin γ +
∆

2
,

v′ = −

(
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2

)

sin γ + v cos γ, ∆
′
= ∆.

(9)

Because “rotation about z-axis” occurs less frequently than
the other motions [2], it will not be considered by the model
presented in this paper.

Translations within WCS and their mappings in SCS can
be described by
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,

(10)

which demonstrate that translation along x/y-axis will bring
a ∆-dependent displacement to u/v, respectively, yet transla-
tion along z-axis will change the scale of u, v, and ∆ simulta-
neously.

Based on the above analysis, camera’s rotation about x-,
y-axes and translation along x-, y-, z-axes are parameterized
into such a stereo GMM as

u′ =
u + RY + TX∆

1 + TZ∆
,

v′ =
v + RX + TY∆

1 + TZ∆
, ∆

′
=

∆

1 + TZ∆
,

(11)

where (RX ,RY ,TX ,TY ,TZ) are introduced to describe the
rotations and translations by letting RX = f sinα, RY =

− f sinβ, TX = tx/b, TY = ty/b, TZ = tz/ f b.

3. PARAMETER ESTIMATION

Corresponding pixel pairs (measured by corner matching or
block matching) between successive frames are used to esti-
mate the five parameters. Assuming there are N pairs, each
pair consists of a pixel k = 1, . . . ,N with SCS coordinate
(uk, vk,∆k) in the first frame, and its counterpoint (u′k, v′k,∆′k)
in the next frame. The five parameters (RX ,RY ,TX ,TY ,TZ)
are estimated by a least-square method following two steps.

Step 1. Estimating TZ . Based on the third subformula of
(11), TZ is first estimated by minimizing the following least-
square criterion:

TZ = arg min
TZ
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]2
.

(12)
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Figure 1: Synthetic data involving global motion and local motion. (a) and (b) are the succesive frames where the image intensity denotes
disparity. (c) gives the 2D motion field between (a) and (b). (d) is the camera motion compensated image of (a) based on the estimated
parameters (RX ,RY ,TX ,TY ,TZ) = (6.76,−6.83, 31.17,−28.62, 0.248103). (e) shows the difference between (d) and the actual image (b).

Differentiating (12) with respect to TZ and setting the deriva-
tive to zero, TZ is achieved by

TZ =

{
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Three sums are needed in (13), which can be computed by
summing ∆ of all the N pixel pairs. In addition, in order
to avoid the influence of local motion, the above estimat-
ing procedure is performed iteratively, which is similar to the
method in [2]. In each iteration, every pixel pair is evalu-
ated based on the computed TZ by comparing the original
∆′ with the computed ∆′ using (11). If the difference exceeds
a predefined threshold, corresponding pixel pair will be re-
ferred to as local motion pairs and will be discarded. (In our
experiments, the threshold is an experiential value which is
selected as 0.1.) Then the remaining pairs are used to reesti-
mate TZ . Using such method, the influence of pixel pairs that
do not follow global motion will be removed gradually and
the convergence of TZ will occur after a very few iterations.
(Generally, the convergence will occur with 4 iterations.)

Step 2. Estimating (TX ,TY ,RX ,RY ). Based on TZ , we intro-
duced an auxiliary variable Zk = 1 + ∆kTz. Then similar to

the solving of TZ , the following criteria are minimized:
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and (TX ,TY ,RX ,RY ) are achieved by
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(15)

where the subscript k is omitted for simplification. Note that
the estimation of (TX ,TY ,RX ,RY ) also follows an iterative
scheme, aiming to eliminate the influence of local motion.

4. SIMULATION RESULTS

The proposed GMM has been tested on both synthetic
data, in which we know the camera motion parameters and
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corresponding pixel pairs exactly, and a variety of real-world
images with unknown camera motion parameters. For the
real-world images, we use corner pairs, which is a good fea-
ture to be tracked in image sequences [11], to estimate the
global motion parameters.

4.1. Simulation

Figure 1 shows the synthetic data where image intensity de-
notes disparity. Between Figures 1(a) and 1(b), the cam-
era ( f = 200, b = 100) undergoes a rotation (α,β) =

(0.01π, 0.01π) and a translation (tx, ty , tz) = (3000,−3000,
5000), while the closest cube undergoes an isolated mo-
tion. Figure 1(c) illustrates their correspondence relationship
in format of 2D motion vectors, where the local motion
is marked by gray vectors. Based on the physical parame-
ters of camera motion, the reference GMM parameters are
(RX ,RY ,TX ,TY ,TZ) = (6.28,−6.28, 30,−30, 0.250000). Us-
ing the two-step iterative estimator, the estimated parame-
ters come to be (6.76,−6.83, 31.17,−28.62, 0.228103). In or-
der to measure the accuracy of the model and the param-
eters, Figure 1(d) shows the predicted image of Figure 1(a)
after camera motion compensation based on the estimated
parameters. A 2D global motion field is also constructed by
recomputing the 2D motion vectors using such parameters.
The predicted image is compared with the actual image (see
Figure 1(b)), and their difference is shown in Figure 1(e).

Accuracy analysis

To analyze the accuracy of the stereo GMM quantitatively, we
defined a mean-squared estimation error (MSEE) as follows:

MSEE =
1

N

N
∑

k=1
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)2
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+
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∗
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′

k

)2
]

,

(16)

where N is the number of the corresponding pairs,
(u∗k , v∗k ,∆∗k ) is the actual SCS coordinate after camera mo-
tion, and (u′k, v′k,∆′k) is the estimated SCS coordinate. Based
on the synthetic data in Figure 1, Figure 1 shows the cal-
culated MSEE versus physical parameters of camera rota-
tion (α,β). It can be seen that when the rotation angles are
small, the MSEE is small (MSEE ≤ 5 corresponding to re-
gions surrounded by thick boundaries in Figure 2(b)) and
the stereo GMM can work well. Comparing the two kinds of
rotations, MSEE is more sensitive to rotation angle α about
the x-axis. This comes from the fact that many points with
large v/ f (v/ f ≈ 1) are existing at the bottom of the image
(as shown in Figure 1(a), where the image size is 400 × 400,
and f = 200), thus the approximation of v sinα/ f ≈ 0
in formula (6) becomes false when α increases. For trans-
lations, the presented GMM can cope with large transla-
tions along x-, y-, and z-axes. We have tested the GMM by
−10000 ≤ tX , tY , tZ ≤ 10000, and the MSEE remains within
10−6.
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Figure 2: MSEE versus rotation angle about x-, y-axis (α,β): (a) 3D
map; (b) contour map.

4.2. Real-world images

Experiment 1

The testing image is taken from flower garden sequence,
which involves an apparent camera motion of translation
along x-axis. Corresponding disparity image is taken from
[12] as shown in Figure 3(b). Note that disparity ∆ can
be computed by various methods with different resolu-
tions, it is normalized into 0 ≤ ∆ ≤ 1 before estimating
(TX ,TY ,TZ ,RX ,RY ). Figure 3(a) shows the detected corners
and their 2D motion vectors pointing to the counterpoints
in the next frame. Based on such corner pairs, the iterative
scheme computes the parameters as Tx = −12.434820, Ty =

1.723545, Tz = 0.004598, Rx = −0.117074, Ry = −0.099431,
where the most apparent global motion is parameterized by
Tx. Figure 3(b) shows the reconstructed 2D global motion
field by recomputing the 2D UV motion vectors of the pixels
using the above parameters. Comparing with such field, cor-
ners which match with the field are marked by white color in
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(a) (b) (c) (d)

Figure 3: Experimental results on flower garden sequence: (a) original image with the detected corners and their motion vectors; (b) disparity
image and reconstructed global motion field using the estimated parameters (Tx = −12.434820, Ty = 1.723545, Tz = 0.004598, Rx =

−0.117074, Ry = −0.099431); (c) camera motion compensated image; (d) difference image between the compensated image and the original
image.

(a) (b) (c) (d)

Figure 4: Experimental results on a traffic scene: (a) original image with the detected corners and their motion vectors; (b) disparity image
and reconstructed global motion field using the estimated parameters (RX ,RY ,TX ,TY ,TZ) = (0.05, 0.03, 0.05, 0.71,−0.067826); (c) camera
motion compensated image; (d) difference image between the compensated image and the original image.

Figure 3(a), those which do not match are marked by black
color. To our experience, corners which do not follow the
global motion are either belonging to the moving objects or
the overlapped regions. Figure 3(c) shows the predicted im-
age of Figure 3(a) by camera motion compensation. To re-
duce edge distortions, bilinear interpolation has been applied
for image compensation by using the image intensities of
the four nearest neighboring pixels. The difference image be-
tween Figure 3(c) and the actual image Figure 3(a) is shown
in Figure 3(d).

Experiment 2

The stereo GMM is also applied to our own stereo sequence
of traffic scene (Figure 4), which is obtained by a binocu-
lar system [9] mounted on a moving vehicle. Disparity im-
age corresponding to Figure 4(a) is shown in Figure 4(b). For
estimating the global motion parameters, Figure 4(a) shows
the detected corners and their 2D motion vectors pointing to
the counterpoints in the previous frame. Based on such cor-
ner pairs, the two step estimator computes the parameters
as (RX ,RY ,TX ,TY ,TZ) = (0.05, 0.03, 0.05, 0.71,−0.067826).
Then the reconstructed 2D global motion field is given
in Figure 4(b). Comparing with such field, corners which
match with the field are marked by white color in Figure 4(a),
those that do not match are marked by black color. From
Figure 4(a), it can be seen that corners belonging to the
major moving objects are successfully detected, while those

belonging to the slightly moving objects are confused with
the background noise. Figure 4(c) shows the predicted im-
age of Figure 4(a) by camera motion compensation. To re-
duce edge distortions, bilinear interpolation has been applied
for image compensation by using the image intensities of
the four nearest neighboring pixels. The difference image be-
tween Figure 4(c) and the actual image Figure 4(a) is shown
in Figure 4(d).

5. CONCLUSION

Experimental results demonstrate that the proposed stereo
GMM works well for stereovision-based camera motion
analysis and the motion parameters can be efficiently esti-
mated by the two-step iterative estimator. Based on the pre-
sented model, global motion can be estimated more pre-
cisely according with the spatial structure of the scene, which
makes further motion analysis, such as real moving object’s
detection, much easier. In addition, the computational sim-
plicity of the presented method also makes it suitable for real-
time applications such as ACC systems.
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