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Abstract

In this paper, a novel model-based pose estimation system is developed. In

this system, correspondences between four points on a rigid solid object and four

points in an image are used to estimate the new position and orientation of that

rigid object under full perspective projection. Synthetic and real data have been

used to verify our method.
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1 Introduction

Model-based pose estimation in computer vision is an important research problem ap-

plicable to many areas such as robot navigation, motion tracking and single camera

calibration. Many methods have been proposed and discussed in (Huang and Ne-

travali, 1994). For example, Fischler and Bolles (Fischler and Bolles, 1981) proposed
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a method by using three non-collinear points. However, they revealed that all the

Perspective Three-Point(P3P) problems can have as many as four possible solutions

(excluding the reflection). Formation of these multiple solutions was later explained

by Wolfe, Mathis, Sklair and Magee (Wolfe et al., 1991). On the other hand, Hut-

tenlocher and Ullman (Huttenlocker and Ullman, 1988) proved that 3 non-collinear

model points are enough to align a model, however, it is under weak perspective pro-

jection. Our algorithm is also similar to that in (Lowe, 1987) and (McReynolds and

Lowe, 1996) but we use the length of the vectors from the focus point of the cam-

era to the features as the variables in the Gauss-Newton method. However, geometric

transformations (rotation and translation) are used instead in Lowe’s algorithm. The

number of unknowns in our algorithm is 4 instead of 6 in Lowe’s algorithm, which is

an advantage and makes our system more efficient.

Although, there are some direct and linear methods for pose estimation such as

(Faugeras, 1993) and (Quan and Lan, 1998). However, Faugeras’s work can only

be used for the problem with 6 or more point correspondences and the model points

must not be coplanar. Also, the rigidity of the object after pose estimation may not be

ensured (an example is shown in Figure 1) in Quan’s work.

In this paper, we are going to propose an efficient and accurate algorithm to the

P4P problem under the full perspective viewing model. Fischler and Bolles (Fischler

and Bolles, 1981) revealed that an unique solution cannot be assured for the P4P prob-

lems (unless the 4 points are coplanar in 3D space). However, it is obvious that the

possibility for the occurrence of multiple solutions in the P4P problem is much smaller

than that in the P3P problem. Therefore, using a 4-point model is much more reliable

than using a 3-point model. Also, our system has been examined by using both syn-

thetic data and real data taken by a calibrated camera (M. Magee et al., 1990) with

good results.
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2 Algorithm

The object being tracked and its projection on the image plane at time t are shown

in Figure 2. In the figure, fAn;tg is the set of the 3D model points on the object

being tracked, fan;tg is the set of the corresponding 2D projected image points. Also

L = fln;tg is the set of the distances between model points fAn;tg and the optical

center p of a calibrated camera with focal length f , while n is the index of the model

points which can be any value of 1; 2; 3 or 4.

���!
PAn;t = ln;t

�!un;t (1)

where

�!un;t =

������!
P (an;t; f)���������!P (an;t; f)

���
(2)

In which
������!
P (an;t; f) is a vector from P to the 3D point (an;t; f) on the image plane,

and an;t(= (xn;t; yn;t)) is the 2D coordinates of the n� th image point at time t.

In our algorithm,
n�������!Ai;tAj;t

���
o

i;j=1;2;3;4:

are measured manually before tracking be-

gins. At t = 0, fan;0g are picked up manually. Subsequently, the inputs fan;1g ,

fan;2g ; ::: are obtained by correlation between windows (size=5x5) extracted from

two consecutive images. And the outputs of our algorithm are the new positions of the

3D model points fAn;tg which will be obtained using the Gauss-Newton method.

At any time t, apply the constraints to preserve the distances between model points,

hence the following error functions are obtained:

ek(i; j; t) =
�
(lk

i;t
)
2
+ (lk

j;t
)
2 � 2lk

i;t
lk
j;t
(
�!ui;t � �!uj;t)

	
�
�������!Ai;tAj;t

���
2

(3)

where i,j=1,2,3 or 4 with i < j.

Therefore, there are totally six error functions in the form of equation (3) with

different combinations of i and j. However, it is not enough to reconstruct the model
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by these six constraints only. For example, Figure 1 shows there are two sets of model

points that can also satisfy the same set of the six constraints. In order to preserve the

rigidity of the object (the shape of the model) so that the model can be reconstructed

uniquely, another error function is also required.

gk (t) =

��
lk
2;t

�!u2;t � lk
3;t

�!u3;t
�
�
�
lk
4;t

�!u4;t � lk
3;t

�!u3;t
��
�
�
lk
1;t

�!u1;t � lk
3;t

�!u3;t
�

�
�
����!
A3;tA2;t �

����!
A3;tA4;t

�
�
����!
A3;tA1;t (4)

Assuming E is the vector of all ek(i; j; t) and gk (t) after the k � th iteration, that

is E = [ek(1; 2; t); ek(1; 3; t); ek(1; 4; t); ek(2; 3; t); ek(2; 4; t); ek(3; 4; t); gk (t)]T . J is

the Jacobian matrix, Jmn =
@Em
@ln

;where m = 1; 2; :: or 7; and n = 1; 2; 3 or 4. Then by

the Gauss-Newton method, we have the following update rules to minimize the error

function:

Lk+1
= Lk � h (5)

where Lk is the vector of predicted lengths fln;tgn=1;2;3;4; at iteration k,

Jh = E (6)

and

h =

�
J
T
J
�
�1

J
T
E (7)

By applying equations (5) to (7) iteratively with a reasonable initial guess until L is

stable , 3D coordinates of all the object points fAn;tg can also be obtained by Equation

(1).
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3 Experimental result

Both synthetic and real data are used to examine our algorithm. Those experiments are

done on an SGI-INDY computer using MATLAB 4.2c.

3.1 Experiment using Synthetic Data

In the experiment using synthetic data, both Lowe’s algorithm and our proposed algo-

rithm iterate until one of the following criteria is met:-

1. Each element in the error vector is less than 10
�3 units.

2. The number of iterations exceeds an upper bound of 300.

In the experiment, 30 different synthetic 3D objects are generated randomly for

testing. Each object contains 4 feature points that are distributed in a cube of 20 �

20 � 20 units with the center at [0; 0; 120]. A sequence of 20 images is taken for each

object and the motions of the rigid objects are randomly generated. Also, except for

the first image of a sequence, the iterative algorithms chooses the result of the previous

image as the initial guess. There are totally 600 images for each test. In order to

simulate the image taken by a digital camera, the projection of the points is digitized

by rounding off to integer pixel coordinates.

Except for the first image, the system chooses the result of the previous image as

the initial guess for both iterative algorithms. It is reasonable because the translation

and rotation between two consecutive frames in a realistic movie should be small.

Also, there are upper bounds to govern the variations of the rotation and the translation.

The experimental result is shown in Table (1)-(6).

By comparing the result shown in Table (2) with that in Table (4), it is shown that

our algorithm has a better performance than Lowe’s algorithm since the mean value
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algorithm min. iter. max. iter. Mean (iter.) Time (s)

Lowe’s 3 11 3.700 32

Our 2 10 3.252 13
***Note:- the term ’iter.’ indicates the number of iterations for the systems to converge to a

stable answer. Also, ’s’ stands for ’second’.

Table 1: Result for synthetic data:- bound of rotational angle = 9
o and bound of trans-

lation in each axis = 10 units

algorithm min. iter. max. iter. Mean (iter.) Time (s)

Lowe’s 3 22 4.383 36

Our 2 42 3.220 13

Table 2: Result for synthetic data:- bound of rotational angle = 18
o and bound of

translation in each axis = 10 units

of the iteration required in our algorithm is much less than that in Lowe’s algorithm.

The reason for this phenomenon is that, the distance between the model points and the

center of perspective projection remains unchanged between two consecutive images

or frames if the motion between them is pure rotation. This effect can also be found

by comparing the result shown in Table (1) and Table (3).

Also, by Table (2), (4) and (6), it is shown that our algorithm declines as the bound

of the translation (in each axis) increases. Relatively, the importance of the rotational

motion becomes smaller. In the extreme case, the result in Table (5) shows that the

performance of our algorithm is much worse than Lowe’s algorithm (in terms of the

mean values of the iterations) when the motion is pure translational.

As a result, we can conclude that the performance of our algorithm is better in

the cases that the transformation of the object is dominated by the rotational motion.

Therefore, our algorithm is suitable for the environment where the motion of the rigid
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algorithm min. iter. max. iter. Mean (iter.) Time (s)

Lowe’s 3 6 3.780 31

Our 1 9 1.8167 11

Table 3: Result for synthetic data:- bound of rotational angle = 9
o and bound of trans-

lation in each axis = 0 unit

algorithm min. iter. max. iter. Mean (iter.) Time (s)

Lowe’s 3 51 4.518 37

Our 1 11 1.747 11

Table 4: Result for synthetic data:- bound of rotational angle = 18
o and bound of

translation in each axis = 0 unit

algorithm min. iter. max. iter. Mean (iter.) Time (s)

Lowe’s 2 7 2.075 19

Our 3 84 4.025 15

Table 5: Result for synthetic data:- bound of rotational angle = 0
o and bound of trans-

lation in each axis = 40 units

algorithm min. iter. max. iter. Mean (iter.) Time (s)

Lowe’s 3 13 4.310 35

Our 3 120 4.172 15

Table 6: Result for synthetic data:- bound of rotational angle = 18
o and bound of

translation in each axis = 40 units
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object is dominated by rotation.

On the other hand, the computation time for our algorithm is much less than that

for Lowe’s algorithm. It is because the number of the parameters (or unknown to be

found) in Lowe’s algorithm is 6 which is more than that required by our algorithm.

Since, both these two algorithms use the Gauss-Newton method (Athinson, 1989),

in which expensive calculations about the multiplication and inversion of matrices

(especially for the Jacobian matrix) are extensively used. Therefore, the smaller the

size of the matrices (i.e. the error vector and especially for the Jacobian matrix), the

shorter the computation time. As a result, the computational time for our proposed

algorithm is much shorter.

3.1.1 Experiment using Real Data

In the experiment using real data, images of an input device is taken by a calibrated

camera (M. Magee et al., 1990). This device is made of a black card and eight LEDs

as shown in Figure 3. The four LEDs at the outermost layer (i.e. the LEDs marked

by the circles in Figure 3) are used as the four model points. A short movie is created

by capturing the random motion of this device. Then the correspondences between the

four model points (LEDs) and the image points in each frame of the movie are found

by using the cross-correlation technique. This movie contains 113 frames. By using

our algorithm, about 28 frames can be handled in each second. In this experiment, the

limit for the stopping criterion is set to be 10
�3cm.

Actually, the object shown in Figure 3 is used to illustrate that our proposed algo-

rithm is applicable to the case when all the four model points are lying on the same

plane. For the case when the model points are not coplanar (i.e. not all the points lying

on the same plane), the object in Figure 4 is used.

A box is shown in Figure 4, in which the four corners marked by circles are used
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as the model points. A sequence of images of the box is captured. By applying our

algorithm, the pose of this object is estimated. Figure 5 and 6 indicate two samples

of the video sequence. In these two figures, the black lines are used to indicate the

estimated projection of the result of the pose estimation of this object. By using these

two figures, we show that the accuracy of our algorithm is also good when the four

model points are not on the same plane. Also, the speed of the computation is about

28 frames in one second.

From this experiment, it is shown that our algorithm is very fast and can be appli-

cable to both cases when either all the model points are coplanar or not.

4 Conclusion and Discussion

In this paper, a novel iterative solution for the pose estimation problem using 4 model

points is introduced. Actually, this algorithm may be extended to handle PnP problems

with n > 4. However, the number of error functions may increase rapidly with the

increase in the number of points used (the total number of Equation (3) should be nC2

and number of Equation (4) should be nC4). Also, for the case of 6 or more points and

not all the model points are lying on the same plane, linear and direct methods can be

used (Faugeras, 1993). We are currently working on such an efficient algorithm for the

P4P problem.

On the other hand, a visual tracking system is developed and examined by both

synthetic and real data. The result suggests that this technique can be used to develop

a 6D (including translation and rotation parameters) vision based mouse.
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Figure 1: Two models with the same sides (AB=A’B’, BC=B’C’ and etc...), but with

different orientations (i.e. different shapes). In case (i), A is above the plane formed

by BCD, while in case (ii), it is under that plane.
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f  (focal length)

(center of
perspective)

�
�

x

y

z

a1,ta2,t

a3,ta4,t
P

A1,t

A2,t

A3,t

A
4,t

length  = l 4,t

An,t : n-th object point
 an,t : n-th image point

Image plane An object

Figure 2: A model with 4 model points and their corresponding image points at time t
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Figure 3: The input device. The four LEDs inside circles are used as 4 model points
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Figure 4: The second input device. The four corners inside circles are used as 4 model

points
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Figure 5: The sample of the result of the 1st image from the image sequence.
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Figure 6: The sample of the result of the 2nd image from the image sequence.
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