
ROBOTIC VISION COMMAND RECOGNITION SYSTEM

(RCS)

REPORT 2

Group 6
Michael Cohen

Rebekkah Zimmermann

May 11, 2006

Abstract

The Robotic Vision Command Recognition System (RCS) controls the motion of a robot with
finger gestures. The commander simply moves his or her index finer toward the camera to direct
the robot to move forward or away from the camera to direct the robot to move back. Two
Logitech Fusion Cameras, positioned adjacent to each other, stream left and right video feeds of
the commander. Intel Corporations OpenCV toolkit allows for C++ coding and therefore fast
real-time performance. The theoretical backbone of the RCS is Calibrated Stereo Reconstruction,
a process in which 3D information is calculated from two 2D images of an object. In addition,
Principle Component analysis (PCA) is utilized to recognize the commander’s index finger.

1

1 Goals

1.1 OpenCV Setup

In order to optimize speed and efficiency of all algorithms, Intel’s OpenCV must be the RCS image
processing platform. OpenCV, a collection of useful C++ classes and functions, processes images
significantly faster than Matlab. Unfortunately, OpenCV takes many hours to setup and has a steeper
learning curve than Matlab. Becoming familiar with OpenCV programming style is the first essential
step of developing any real-time image processing system.

1.2 Two-Camera Vision System

Configuring OpenCV for two USB cameras streaming video simultaneously in a state-machine loop
provides two images available for processing in each frame. The left and right video sampling must
be synchronized automatically by DirectX filters, and the stereocallback() function must provide the
programmer with pointers to the two frames.

When two cameras are adjacent to each other, but separated by some large distance, the disparity
results in scene dissimilarities between the stereo images. In other words, the left camera will not view
some objects that the right camera views, and vice versa. To solve this problem, the left camera must
be inverted, thereby minimizing the disparity. The Logitech Fusion camera driver can automatically
invert the video about the horizontal and/or vertical axes.

1.3 Finger Recognition

Recognizing the tip and base of the commander’s index finger is necessary to reconstruct a 3D vector
pointing in the direction of the finger. Detected features in the left frame and the right frame that are
both recognized as fingers can be set as a point correspondence.

1.4 Automatic Point Correspondence

Tracking features from the left frame and finding the corresponding feature in the right frame is
a difficult, but necessary task in order to reconstruct a 3D model of a given scene. The point
correspondence algorithm described below is robust, accurate, and fully automated.

1.5 Calibration

Calibration is also a necessary task in order to reconstruct a 3D model of a given scene using stereo
reconstruction. Calibration results in the position and orientation of the cameras with respect to the
world coordinate frame. The calibration algorithm described below utilizes edge detection to minimize
error associated with selecting pixel locations with a mouse.

1.6 Stereo Reconstruction

Using the intrinsic and extrinsic camera parameters from calibration, and the point correspondences,
stereo reconstruction generates 3D coordinates from two 2D images. Once a stereo reconstruction
algorithm works well for a simple scene, then the algorithm will be used to reconstruct a portion of a
human hand.

2

1.7 System Integration

The Commander’s finger-tip will move in the direction that the robot should move. Stereo reconstruction
of the index region of the Commander’s hand will provide a vector pointing in the direction of the
index finger. The resulting vector will be interpreted to move the robot in a given direction.

1.8 Robot and Command Center

A simple lego robot is needed with a wide suspension to reduce error associated with independent
motors driving each wheel. A command center, containing both mounted cameras, a black background,
and space for the commanders, must be constructed.

2 Algorithms

2.1 Good Features To Track

2.1.1 Theory

The OpenCV function cvGoodFeaturesToTrack(), named after the fundamental computer vision paper,
detects features using either Harris Corner detection or Eigenvalue analysis. [1] The algorithms utilized
by this function include cvHarris(), cvCornerMinEigenVal, and others.

There are several ways to find features. The first is through a spatial intensity profile. By searching
for a high standard deviation in the spatial intensity profile one can distinguish features based on
texturedness and cornerness. Secondly, the features can be better selected by also calculating the
presence of zero crossings of the Laplacian of the image’s intensity and by finding the locations of the
images corners. The downside to these algorithms is that feature tracking accuracy can be diminished
if the image has a depth discontinuity or if the boundary of a reflection highlight is found on a glossy
surface. If a feature that was previously a good feature becomes occluded, or dissimilarity is noted,
then the feature is removed from the list of features and is either just neglected or is replaced by
another feature.

In order to track a feature, two models of image motion are required. Given two sequential image
frames I and J, then J(Ax+d) = I(x),where d is the displacement matrix, and A = I + D, where I =
identity matrix, and D is the affine deformation matrix.

The translational model of image motion tracks the feature across the two images when inner-frame
changes are small. In the case of pure translation, the deformation matrix D = 0 such that J(x+d) =
I(x). Then the task of feature tracking is reduced to finding the displacement matrix d.

If inner-frame changes are not small, the affine model of image motion should be used to reduce.
The affine model distinguishes the similarities and dissimilarities between features in a current image
frame and the next frame for a large number of cumulative changes.

Good features can be found using eigenvalue analysis. Two small eigenvalues mean a constant intensity
profile within the window, one large and one small eigenvalue mean an unidirectional texture pattern,
and two large eigenvalues mean a reliable pattern to track has been found. Each one of these features
is tracked by placing a window around the feature in the first image and then scanning for it in the
next image. Once the eigenvalues change indicating the intensity profile is bad, the feature is then
dropped.

3

2.1.2 Application

This project utilizes cvGoodFeaturesToTrack() to find features in the left and right camera frames, and
to detect edges for calibration. The following function definition shows how cvGoodFeaturesToTrack()
is customized for different applications:

void cvGoodFeaturesToTrack(const IplImage* image, IplImage* eig image, IplImage* temp image,
CvPoint2D32f* corners, int* corner count, double quality level, double min distance, const IplImage*
mask=NULL, int block size=3, int use harris=0, double k=0.04)

Where

• image is the source single-channel (grayscale) image of type IplImage.

• eig image is a temporary image used by cvCornerMinEigenVal().

• temp image is a temporary image used by cvCornerMinEigenVal().

• corners is an output parameter: a list of corners detected in image.

• corner count is an output parameter: the number of detected corners.

• quality level specifies the minimal accepted quality of image corners.

• min distance specifies the minimum possible distance between corners.

• mask is NULL by default and unimportant in this particular application.

• block size is used by cvCornerMinEigenVal or cvCornerHarris.

• use harris selects cvCornerHarris(), if nonzero, to be used instead of cvCornerMinEigenVal().

• k is a parameter of used by cvCornerHarris, and is used only if use harris 6= 0.

To find point correspondences between the left and right camera frames, the cvGoodFeaturesToTrack()
is set to detect edges using cvCornerMinEigenVal(). Thus, specular highlights, depth discontinuities,
and other bad features will not be selected, providing better features that can be tracked over many
frames. During camera calibration, however, the calibration cube provides very distinct edges and
cvCornerHarris() yields better results.

To summarize, cvGoodFeaturesToTrack() utilizes either cvCornerMinEigenVal() or cvCornerHarris()
to detect edges. If cvCornerMinEigenVal() is used, fewer features will be returned because the
Eigenvalue analysis adds an additional criterion for feature selection. When using cvCornerHarris(),
any major intensity change will return a feature.

2.2 Principle Component Analysis (PCA)

2.2.1 Theory

Principle Component Analysis can be divided into an initial stage, where training images of an object
of interest are processed, and a real-time stage, where new images are matched with training images.
[3] The initial stage is comprised of the following steps:

1. Acquire initial training set of images.

2. Calculate the k most important eigenvectors of the training set. These eigenvectors become the
basis vectors defining the training image space.

4

3. Project each training image onto the basis vectors to determine the training coefficients. Each
image can be represented by the basis vectors and a set of training coefficients.

Once the training coefficients and basis vectors are known, for each new image:

1. Project the image onto the basis vectors to determine the test coefficients.

2. Determine the euclidean distance between the test coefficients and the training coefficients of
each training image. The closest distance corresponds to the recognized object.

In order to calculate the basis vectors corresponding to the set of MNxN training images {T1...TM},
each image in the set can be reshaped into a column vector, stacking each row on top of the next. This
new set of M N2x1 column vectors {τ1...τM} can be thought of has points in M2 dimensional space.
The mean training image is defined as

Ψi =
1

M

M
∑

i=0

τi (1)

Then each training image differs from its mean by Φi = τi − Ψi. The covariance matrix relating the
set {Φ1...ΦM} is defined

C =
1

M

M
∑

i=0

ΦiΦ
T
i (2)

= AAT

where A = {Φ1...ΦM}. Rather than finding the eigenvectors of the N2xN2 covariance matrix C =
AAT , the eigenvectors and eigenvalues of the MxM matrix L = AT A can be calculated with minimal
computational complexity, assuming that M < N . The eigenvectors are sorted based on corresponding
eigenvalue. Thus, the first several eigenvectors contain the most important information.

2.2.2 Application

The training images must be obtained using Matlab, then reshaped into column vectors. A image
grabbing tool is written to capture an image of the commander, then select the center-point of a 30x30
feature window. The program then automatically crops this region of the captured image for use as
a training image. For example, the original image may be of the mid-section of the commander’s
body, including the arm and hand. A point on the tip of the index finger would be selected, thereby
generating a 30x30 image centered around the finger tip. This process is repeated taking pictures of
the finger tip from different angles.

The resulting set of M column vectors {τ1...τM} undergoes eigenvector analysis, as described in 2.2.1.
Matt’s Matlab Tutorial provides code to construct the set {τ1...τM} and perform the eigenvector
analysis. The resulting eigenvector and training coefficients are ported into the RCS project.

2.3 Sum of Squared Differences (SSD)

2.3.1 Theory

SSD analysis is used to minimize the error between two functions (or images). Given a left image
IL(x1, y1) and a right image IR(x2, y2), two rectangular regions are defined by RL = [x1a...x1b, y1a...y1b]
and RR = [x2a...x2b, y2a...y2b]. Then the error between the image intensities within the regions RL

and RR is defined as (IL(RL) − IR(RR). Then the SSD can be defined as [2]

∑

[IL(RL) − IR(RR)]
2

(3)

5

2.3.2 Application

Stereo color images IL and IR are converted to grayscale (single-channel) images GL and GR. cvGoodFeaturesToTrack()
returns a list of corners in each grayscale image. For each corner in GL:

• A rectangular window is created around the given corner.

• GR is searched for any corners that could be matches.

• For each potential match, a rectangular window is created and SSD analysis is performed on the
two windows according to (3), returning a result.

• The minimum result corresponds to the best match.

This process is repeated until all corners in GL have a match in GR.

This algorithm is an improvement upon the previous SSD algorithm, in which corner detection was
performed on GL and a large region of GR was searched for each corner. The benefit of performing
corner detection on both frames is that only several corners in GR must be searched, rather than a
several-thousand-pixel region.

2.4 Camera Calibration

2.4.1 Theory

Given a 3D point in the world coordinate frame [Xw Y w Zw]
T

and a 3D point in the camera coordinate

frame [Xc Y c Zc]
T
, the transformation between coordinate systems can be defined as [2]

Xc = R11 ∗ Xw + R12 ∗ Y w + R13 ∗ Zw + Tx

Y c = R21 ∗ Xw + R22 ∗ Y w + R23 ∗ Zw + Ty

Zc = R31 ∗ Xw + R32 ∗ Y w + R33 ∗ Zw + Tz (4)

where R is the rotation matrix of the camera with respect to the world coordinate system and T is the
translation vector of the camera with respect to the world coordinate system. The 2D pixel coordinates
are defined as (x,y), where x and y can be found from Xc and Y c. A vector v is created such that

v = [R21 R22 R23 Ty αR11 αR12 αR13 αTx]
T
, where α = fx/fy, and fx and fy are intrinsic camera

parameters. Using v and a new matrix A the equation

Av = 0 (5)

can be solved, where

A =











x1 ∗ Xw
1

x1 ∗ Y w
1

x1 ∗ Zw
1

x1 −y1 ∗ Xw
1

−y1 ∗ Y w
1

−y1 ∗ Zw
1

−y1

x2 ∗ Xw
2

x2 ∗ Y w
2

x2 ∗ Zw
2

x2 −y2 ∗ Xw
2

−y2 ∗ Y w
2

−y2 ∗ Zw
2

−y2

...
...

...
...

...
...

...
...

xN ∗ Xw
N xN ∗ Y w

N xN ∗ Zw
N xN −yN ∗ Xw

N −yN ∗ Y w
N −yN ∗ Zw

N −yN











The matrix A is composed by matching pixel points (xk,yk) with world points [Xw Y w Zw]
T
.

Singular value decomposition (SVD) can be used to solve for the intrinsic and extrinsic camera
parameters. The camera parameters of interest are R, T, Ox, Oy, fx, and fy.

6

2.4.2 Application

Camera calibration is used to determine the initial position and orientation of the left camera with
respect to the world coordinate system. The results of calibration will be necessary in order to perform
stereo reconstruction.

Normally, the user has to select each pixel point by hand and pre-program the corresponding world
points. A feature has been added so that cvGoodFeaturesToTrack() selects corners on the calibration
cube and each corner can be selected with the mouse. As each corner is selected, the image is updated
with a green circle around that particular corner. This eliminates the error associated with selecting
exact pixel locations by hand, and expedites the calibration process.

2.5 Stereo Reconstruction

2.5.1 Theory

Stereo reconstruction by triangulation requires the intrinsic and extrinsic camera parameters found
during calibration. (4) Let pl and pr be pixel points in the left and right image planes pil and pir, where
πl and πr are parallel to each other and face the scene. Let Ol and Or be the centers of projection for
the left and right cameras, respectively. Given two scalar coefficients a and b, then l = apl is defined as
a ray extending from Ol through pl and into the scene. Similarly, given lRr, the orthonormal rotation
matrix, then r = T + blRrpr is the ray extending fromOrr through pr, with respect to the left camera
frame. [2] The 3D point corresponding the feature defined by pl and pr is the point P defined by the
intersection of the rays r and l. The rays l and r, however, do not necessarily intersect, so a vector w
is defined such that w is orthogonal to both l and r. Then the point P is the midpoint of the segment
parallel to w that joins l and r. The equation

apl − bRT pr + (cplx
lRrpr) = T (6)

must be solved for a0, b0, andc0, which define P, the 3D reconstructed point.

2.5.2 Application

The left and right cameras are separated by a known translation, and known rotation (identity matrix).
Hence, once the extrinsic matrix of the left camera with respect to world is known, the right extrinsic
matrix with respect to world is known as well. Once the left camera is calibrated, the extrinsic matrices
for the left and right cameras are used for stereo reconstruction.

3 Mechanical Design

3.1 Lego Robot

A simple robot was constructed utilizing the Lego Mindstorm kit. The robot features a wide suspension,
treds, and two motors. These three features allow the robot to travel in a straight line with minimal
drift.

3.2 Vision Command Center

The Vision Command Center essentially consists of the stereo cameras mounted on a stationary
platform. Wire is used to mount the cameras so that the position and orientation is adjustable.
A box is surrounding the cameras to filter some of the ambient light from the fluorescent lights that
often illuminate the room. The commander will issue commands from the Command Center, and the
robot will move independently. See 5.4 for an image of the Command Center.

7

Figure 1: The Lego Robot.

4 Code Implementation

4.1 Principle Components Analysis

4.1.1 Convert an IplImage to an integer matrix

For a given test image region of an IplImage, the function ipl2intPCA() converts this region to an
integer matrix for computational simplicity.

void ipl2intPCA(IplImage* window, int x1, int y1, int x2, int y2, int matrix[PCA SIZE][PCA SIZE])

This function traverses through the IplImage window within the region defined by a box with lower
left and upper right corners [x1, y1], [x2, y2], respectively. Each element in window is casted from char
to int and stored in the integer matrix.

4.1.2 Eliminate Repeat Points

Before reconstructing a given pixel correspondence, it is necessary to ensure that there are no other
points within close vicinity. Ideally, there should only be one detected feature in each 5x5 pixel region,
but often multiple features are detected in a given region. The function isRepeatPoint() eliminates
any such repeat points.

bool isRepeatPoint(CvPoint edges[MAX FEATURES], CvPoint point)

This function is based upon a similar function in (4.5.2). The code simply searches each feature
in edges[] and computes the distance from point. If more than one feature is within a threshold
distance of point, then there are repeat point(s). Thus, the function returns false and point will not
be used.

4.1.3 Initialize basis vectors and training coefficient matrix from file

The basis vectors and training coefficients are the only two components needed to perform PCA.
The function fillBasisVecs() initializes both the basisVecs[][] and trainingCoef[][] matrices, utilizing the
fstream.h library for file input.

8

void fillBasisVecs(void)

The self-explanatory code iterates through the files, reading each float number and storing it sequentially.

4.1.4 Find fingers in left and right frames

Given any feature in the left image and feature in the right image, a point correspondence can be
established if both features are finger tips. PCA is used to check every possible combination of left
and right image features. If a given pair of features is sufficiently close to the finger tip training image,
then isFingerPCA returns the number of training image that is the best match.

int isFingerPCA(IplImage* gray1, IplImage* gray2, int lindex, int rindex)

The arguments gray1 and gray2 are pointers to the left and right grayscale frames. The two indices
lindex and rindex correspond to a detected feature in the left frame and a detected feature in the
right frame, respectively. The function ipl2intPCA() is used to create two 30x30 test images centered
around lindex and rindex. These test images are converted into column vectors and are projected on
the basis vectors (which are calculated prior to runtime). The resulting test coefficients are compared
to the training coefficients to find the minimum distance. If smallest distance corresponds to the best
match.

4.2 Stereo Reconstruction Code

PCA initially determines the corresponding point pair that is a finger tip. This point is then reconstructed
to determine the 3D location of the finger tip. Using this information, a vector in the direction of the
finger tip can be created and interpreted to move the robot in a given direction.

void stereoReconstruction(double Ox, double Oy, double fx, double fy, CvMat* l ExtMat w, int tipMatch)

This function takes the calibration parameters Ox, Oy, fx, fy, and l ExtMat w. The parameter
tipMatch is the index of the corresponding point determined using PCA to be the finger tip. This
function uses the CvMat matrix format because there are many useful functions such as cvInvert()
and cvMulTranspose() that allow for optimized linear algebra computations. Using the calibration
parameters, stereoReconstruction() converts the left and right pixel points into the 2D camera coordinate
system. The vector q[] is generated, as explained in (2.5.1), and the matrices A and b are generated
to find the solution to the equation (). The resulting wP[] solution is the 3D coordinates of the finger
tip.

4.3 Stereo Callback Function

The two Logitech Fusion cameras capture left and right image frames, process these frames, and move
onto the next frame. This function is responsible for processing each set of frames. The processing
includes edge detection to find all possible features in both images, PCA analysis to find which features
are finger tips, and stereo reconstruction to find the 3D position of the finger tip.

void stereocallback(IplImage* image1, IplImage* image2)

The constructor of class CorrespondingPts uses the cvcamSetProperty() function to synchronize and
stream both left and right camera frames and pass pointers to the two frames to the stereocallback()
function. Thus, image1 and image2 are pointers to the left and right color image frames. cvGoodFeaturesToTrack()
requires grayscale (single-channel) images, so image1 and image2 are converted to gray1 and gray2 using

9

the cvCvtColor() function. Then the corners of gray1 and gray2 are detected using cvGoodFeaturesToTrack().
After removing any corners near the borders using the removeBorders() function, the outer-most for-
loop selects the first corner of the left frame. A vertical search region is defined around each corner
in the left image. Any corners within this search region in the right image undergo PCA analysis to
determine if the corner is a finger tip. If both the left corner and the right corner are finger tips,
then a match is found. The match is then checked by isRepeatPoint() to determine if there are any
other matches within close proximity. (see 4.1.2) The variable FingerIndex is set by the isFingerPCA()
function and corresponds to the best matching training image. (see 4.1.4) Depending on whether the
feature is a finger tip, a thumb tip, or some point on the palm, the match will be displayed on the image
using a certain color using cvCircle(). The match is then reconstructed using stereoReconstruction()
and the direction[] vector is created to point in the direction of the finger tip, with respect to some
point on the z-axis of the camera coordinate frame.

4.4 Sum of Squared Differences Code

4.4.1 Converting an IplImage to an integer Matrix

void ipl2int(IplImage* window, int x1,int y1, int x2, int y2, int matrix[2 * PCA SIZE + 1][2 *
PCA SIZE + 1])

The IplImage is converted to an integer matrix in the function ipl2int(), which takes 6 parameters.
The first is an IplImage pointer to a grayscale image (either left or right). The second through fifth
parameters define the region of interest of the IplImage and the sixth is an empty integer matrix.
The IplImage is converted to an integer to allow for the data to be squared and subtracted. IplImage
data is stored as characters, which prevents numeric computation directly. The conversion is done by
casting the character value in IplImage-¿imageData to an integer and storing it in the integer matrix.

4.4.2 Subtraction of the Region of Interest

void intMatrixSubtract(int matrix1[2 * PCA SIZE + 1][2 * PCA SIZE + 1], int matrix2[2 * PCA SIZE
+ 1][2 * PCA SIZE + 1], int matrixDiff[2 * PCA SIZE + 1][2 * PCA SIZE + 1])

The function takes in three parameter: the two matrices to be subtracted, and a matrix to store
the difference. The maximum height and width are calculated to define the far side of the region of
interest. Using these parameters a nested for loop is implemented which traverses the features of the
right image, comparing them to the region of interest in the left image. Within these loops is where
the subtraction takes place. This function is used by ssd2().

4.4.3 Squaring the Integer Matrix

void matrixSquare(int matrix[2 * PCA SIZE + 1][2 * PCA SIZE + 1])

Squaring the matrix is done in the function matrixSquare(), which takes one parameter, the integer
matrix. The integer matrix is squared and then stored in the same matrix, so the original data is lost.
This function is used by ssd2().

4.4.4 Summing the Integer Matrix

int matrixSum(int matrix[2 * PCA SIZE + 1][2 * PCA SIZE + 1])

The integer matrix is summed using the function matrixSum(). This function takes one parameter,
the integer matrix from matrixSquare(). The function uses a nested for loop to sum every element in
the matrix. This number is then returned to the calling function.

10

4.4.5 Sum of Squared Differences (SSD)

long int ssd2(int matrix1[2 * PCA SIZE + 1][2 * PCA SIZE + 1], int matrix2[2 * PCA SIZE + 1][2
* PCA SIZE + 1])

The two integer matrices passed to ssd2() correspond to feature windows in the left and right images,
respectively. The function utilizes intMatrixSubtract(), matrixSquare(), and matrixSum() to perform
the SSD calculation as presented in 2.3.1.

4.4.6 Remove Corners near Borders of Image

void removeBorders(CvPoint points1[MAX FEATURES], CvPoint points2[MAX FEATURES], CvSize
size)

The two CvPoint arrays are the corners detected in the left and right camera frames, and the CvSize
argument is the size of the frames. The function removes any corners in points1 or points2 that is
within 1.5*PCA SIZE of the image borders, where PCA SIZE is the dimension of the square window
created around each corner for SSD analysis.

4.5 Calibration Code

4.5.1 Mouse Callback Function

void mouse callback (int event, int x, int y, int flags, void* param)

The constructor of class CorrespondingPts uses the cvcamSetProperty() function to return the (x,y)
pixel coordinates of the point on the image clicked by the mouse to the mouse callback() function.
However, the y coordinate must be inverted because the coordinate system of the mouse callback()
function and of the image are not the same. Each point selected is stored in a static global array.
Every time mouse callback() is called, the variable ptsGrabbed is incremented to keep track of how
many calibration points have been selected.

4.5.2 Eliminate Repeated Points

void eliminatePoints(CvPoint edges[NUM CALIBRATION PTS])

The edge detector often finds several copies of a given edge, and the copies must be eliminated.
For each edge, this function checks to see if there is another edge within 10 pixels in the x and y
directions, and eliminates any points meeting this criterion.

4.5.3 Refresh the Screen with new Calibration Points

void refresh(IplImage* frame, CvPoint edges[NUM CALIBRATION PTS])

As the user selects calibration points on the image, the points selected are highlighted with a green
circle. Every edge in the image is marked with a blue circle, so green circles show the contrast between
those edges selected to be calibration points and those edges that are not used. The function destroys
the previous window, creates a new window, and displays the list of selected calibration points.

4.5.4 Find Nearest Point to the Point given by Mouse Callback

void findNearestPoint(int Xp, int Yp, CvPoint edges[NUM CALIBRATION PTS], int &index)

Given a pixel point from the mouse callback() function, the closest edge must be found and the

11

point replaced with the edge coordinates. Thus, when the user clicks on a pixel point in the image,
the nearest edge (found with edge detection) is stored.

4.5.5 Calibrate the Camera

void calibrate(IplImage* imgl, double &Ox, double &Oy, double &fx, double &fy, double &Tz, double
&Tx, double &Ty, double &zDistance,double pcRotw[3][3], double pwRotc[3][3])

A set of 3D points on the calibration cube, with respect to the world coordinate frame, are initialized.
These 3D points correspond to a pattern of pixel points (edges) that will be selected by the user.
Next matrix A is filled, according to equation 5 described in 2.4.1, using the cvmSet() function.
cvSVD() is used to find the matrix v, as defined in 2.4.1. Matrix v is decomposed into its 8 elements

[R21 R22 R23 Ty αR11 αR12 αR13 αTx]
T

and the camera parameters are extracted.

4.5.6 Calibration Class Constructor

The constructor uses cvCaptureFromCAM() to capture a single frame from the camera. The function
cvSetMouseCallback() defines which callback function should be called for each mouse click. The
function cvGoodFeaturesToTrack detects edges in the image and eliminatePoints() destroys any repeated
points. Then the main loop iterates until ptsGrabbed = NUM POINTS GRABBED, upon which the
function calibrate() is called.

4.6 OpenCV Borrowed Code

Many of the function calls mentioned above come from the OpenCV libraries. These libraries include
highgui.lib, cv.lib, cvcam.lib, and cxcore.lib. The usage of each function is explained throughout the
report as each function is mentioned.

5 RESULTS

5.1 Point Correspondence

The accuracy of SSD for point correspondence, as described in 2.3.1, is inconsistent at best. Small
lighting changes effect the pixel intensities inconsistently over certain regions of the image. SSD
analysis relies directly on the pixel intensities surrounding the features, rather than on the features
themselves.

PCA presents a far more accurate method of determining point correspondence for the RCS. Rather
than comparing pixel intensities with a region surrounding a given feature, PCA compares the most
important pixel intensities of a region surrounding a given feature to a training image, as described in
2.2.1. PCA has replaced SSD analysis in the point correspondence code, but the old SSD code remains
in the report because of its prior importance to the RCS project. The two figures below demonstrate
that when using PCA for point correspondence, only one match is found and it is a correct match
(finger-tip). When using SSD for point correspondence, however, many matches are found, some of
them being incorrect.

Matches are less consistent using SSD because there are more corners appearing in the left frame
than in the right frame. The corners detected in the left frame are only printed if there is a matching
corner in the right frame, so there must be several false-positive corners detected. If a corner in the
left frame is matched to only one corner in the right frame, and the right frame corner has already
been printed, it may be printed again. This bug is easily resolved using PCA.

12

Secondly, the program seems to use more memory as the program continues to run. Several optimizations
have been made, such as declaring large variables as static globals, but with little success. After 5
minutes of operation, the program consistently crashes due to insufficient memory. The solution may
be to declare all variables, even counters and small local variables as static globals.

Figure 2: This figure illustrates the difference between SSD-based point correspondence and PCA-
based point correspondence. The left image shows SSD finding incorrect matches, and the right image
shows PCA finding only one correct match on the finger-tip.

5.2 Calibration

Utilizing edge detection to select the corners of the calibration cube practically eliminated error
associated with mouse-selection of calibration points. The user is able to click any pixel location
near a given edge and the program will store the exact pixel location of that edge. Thus, one of the
largest sources of error associated with camera calibration has been eliminated. Figure shows the
calibration image.

As the camera moves away from the calibration cube, two problems arise. First, fewer and fewer
calibration points can be recognized by the corner detector. When selecting a set pattern of calibration
points, many corners may be missing, which introduces tremendous error. To solve this problem,
the distance between the camera and cube must be limited to some known value. At the maximum
distance, a pattern of calibration points (and their corresponding world points) can be selected. As the
camera moves closer to the calibration cube, these points will remain. The second problem background
features may become more apparent, as the camera moves further from the calibration cube, and could
be selected as corners instead of calibration points. One solution to this problem is to use a large black
background to prevent other features from being selected. The results of camera calibration using are
shown in below.

cXw
cYw

cZw

-0.732759 -0.0109125 0.680401
0.106035 -0.9915530 0.074695
-0.673925 -0.1268960 -0.727820
cTxw

cTyw
cTzw

0.432352 1.38777 -10.447

Table 1: Calibration Results

13

Figure 3: Automatic edge detection selects the corners of the calibration cube. Any circled edge can
be selected as a calibration point.

Figure 4: This figure shows the difference between the calibrated and actual distance between the
camera and cube. The trial is repeated at different distances, and the results show that the further
the distance, the greater the error.

5.3 Stereo Reconstruction

The reconstructed 3D finger-tip points were accurate enough to determine relative position of the
commander’s finger. Although the stereo algorithm, as described in 4.2, is theoretically correct, error
was inevitably introduced.

The first potential source of error is the point correspondence code, being driven by PCA. In order
to eliminate this source of error, the number of features detected by cvGoodFeaturesToTrack() was
reduced to one. Thus, only one feature was found in the left and right frames. The black background
behind the commander made the protruding index finger an excellent feature to track. If the left and
right features are not both finger-tips, then PCA will elliminate both features, and they will not be
reconstructed. Thus, point correspondence is not a source of error.

Calibration generally returned accurate results, but often the y-component of the translation vectors
were incorrect. Small inaccuracies in calibration often create larger errors in stereo. Further, stereo
seemed to be less accurate in the W Y direction, but fairly accurate in the W X and W Z directions.

Accuracy in the W X and W Z directions, allowed for change-in-depth to be inferred from frame to
frame. Thus, as the commander moves his or her index finger closer to or further from the cameras, a
change in reconstructed depth translates to a change in robot position.

14

Figure 5: This figure illustrates the reconstructed 3D world points over several thousand frames as the
commander moves her finger. As the finger moves further away fromt the cameras, the reconstructed
depth grows, and as the finger moves closer to the cameras, the reconstructed depth approaches zero.

5.4 Robot and Command Center

The two cameras are removed from the Logitech rubber mounts, and remounted on custom wire
holders. The cameras will remain stationary and facing the Commander, while the robot responds to
the commands nearby. The advantage to stationary cameras is that the Commander can remain in
one position, and the robot does not have to find the user to recognize commands. This allows for
easier alignment of the cameras, and will reduce error in the stereo reconstruction algorithm.

Figure 6: The Command Center including the robot, cameras and calibration cube.

6 OpenCV Setup Instructions

Processing video data from two cameras simultaneously can be accomplished most efficiently by
utilizing the cvcam project, included with OpenCV. The cvcam stereocallback() function allows automated
synchronization between the stereo video streams. Further, utilizing a callback function allows more
efficient real-time video streaming than the cvCaptureFromCAM() function. The following steps should
be taken to setup (in Visual C++ 6.0) the cvcam project to stream and process video data from two
cameras simultaneously:

1. Download and install OpenCV

2. Download and install DirectX 9.0 SDK Update - (Summer 2003) found at msdn.microsoft.com

3. Setup Visual C++ 6.0

15

(a) create an empty Win32 Console Application.

(b) Create a main.cpp file that will contain your main() function code.

(c) Include the header files cv.h cvcam.h and highgui.h for OpenCV.

4. Setup Project Settings

(a) Go to Project/Setting/General to ’Use MFC in a Shared DLL’.

(b) Go to Project/Setting/All Configuration/C/C++/Preprocessor/Additional Include Directories
and add OpencvInstallFolder/cv/include, OpencvInstallFolder/cxcore/include, and OpencvInstallFolder/otherlibs/highgui.

(c) Go to Project/Setting/Link/Input/Additional library path and add OpencvInstallFolder/lib.

(d) Go to Project/Setting/Link/Input/Object/library modules and add cv.lib highgui.lib cxcore.lib

(e) Go to Project/Setting/Link/General/Object/library modules and add cv.lib highgui.lib
cxcore.lib.

5. Setup .dll files for Video Stream Windows

(a) Copy all .dll files from OpencvInstallFolder/bin to VC++ProjectFolder/Debug
Note: this is necessary to ensure the video output windows have all necessary library files

(b) If the CVd.dll and HighGUId.dll not found, do a search for these two files and copy both
of them to VC++ProjectFolder/Debug

6. Insert the cvcam project into your workspace. If you run into a stream.h or streams.h error after
compilation, move on to step 7, otherwise skip to step 9.

7. Build the directshow baseclasses to get strmbase.lib and strmbasd.lib.

(a) Open DirectXSDKInstallFolder/samples/Multimedia/DirectShow/BaseClasses/baseclasses.dsw.

(b) Go to Build/Batch Build, check both debug and release, and say Rebuild All.

(c) The libraries can be found at
DirectXSDKInstallFolder/samples/Multimedia/DirectShow/BaseClasses/Debug
DirectXSDKInstallFolder/samples/Multimedia/DirectShow/BaseClasses/Release

8. Setup Visual C++ 6.0 once you have built the directshow baseclasses.

(a) Copy strmbase.lib and strmbasd.lib to DirectXSDKInstallFolder/lib.

(b) In Visual C++ 6.0, go to Tools/Options/Directories/Include files and add the following
lines to the Include Search path:
DirectXSDKInstallFolder/include and
DirectXSDKInstallFolder/samples/Multimedia/DirectShow/BaseClasses

(c) In Visual C++ 6.0, goto Tools/Options/Directories/Library files and add the paths DirectXSDKInstallFolder/lib
to the libraries search path. Note: in parts b and c, move the added DirectX paths to the
top of the lists.

9. Insert cv, cxcore, highgui, and any other projects needed into your workspace.

(a) See online OpenCV documentation to learn about different functions in each project:
http://www.itu.dk/stud/projects f2004/handtracking/OpenCV/docs/

(b) Any other OpenCV projects (other than cv, cxcore, highgui, and cvcam) that you insert
must be included in the Project Settings (see Step 4).

10. Setup Project Dependencies in Visual C++ 6.0

(a) Go to Project/Dependencies, select your console project from menu.

(b) Check all OpenCV projects that you have inserted (cv, cxcore, highgui, etc)

11. Edit main.cpp to setup cameras and a stereocallback function as shown in Appendix

16

References

[1] Jianbo Shi and Carlo Tomasi. Good Features to Track. IEEE Conference on Computer Vision and
Pattern Recognition, Seattle, WA, 1994.

[2] Emanuele Trucco and Alessandro Verri. Introductory Techniques for 3-D Computer Vision. Prentice
Hall, Upper Saddle River, NJ, 1998.

[3] Matthew Turk and Alex Pentland. Eigenfaces for Recognition. Journal of Cognitive Neuroscience,
Boston, MA, 1991.

17

7 Implications of Robotics and Computer Vision in Society

Although investments and interest in robotics and computer vision had declined in the
past, current trends seem to suggest that future investments in robotics and computer
vision will increase and robotics will become more widespread as technology continues
to evolve and improve. In the past, interest in robotics had fallen away due to a
number of institutional, economic, and technological barriers, including lack of national
funding, lack of communication between researchers and developers, and lack of reliable
hardware and software. As time has passed, these barriers are slowly being overcome as
computers became faster, more reliable, cheaper, and able to process large amounts of
data in very little time (The Future and Intelligent Machines: Charting the Path, 1997).

Robots have fascinated mankind for thousands of years, all throughout history. The
first written mention of intelligent machines comes from Homer’s Iliad, where the god of
fire and metalwork, Hephaestus, builds twenty tripod robots to do his bidding. About
eight hundred years later, Hero of Alexandria created mechanical animals that ran
on air, water, or steam. In the sixteenth century, clockwork machines were refined by
craftsmen in Western Europe and from this, were refined further to be used to create the
animated dolls found today in both Europe and Japan (Graefe, 2003). The first robots,
as we know them today, were introduced in 1961 in the United States of America and
were used in industrial manufacturing. Robots today are considered to have some kind
of computational intelligence and, as technology gets more powerful, the possibilities
become endless. To be considered a robot, a machine must be able to do two things:
obtain and process information from its surroundings and react or do something physical
in or to its surroundings. Since 1961, robotics has spread into fields other than industry,
including the military, medicine, space exploration, service, entertainment, and home
use (Graefe, 2003). Today, the most widespread type of robot is the industrial robot.
More than one million industrial robots are used in factories around the world. Although
not as artistic as personal or service robots, industrial robots play an important role in
creating goods for our everyday needs. Industrial robots aid in the production of goods,
even though they are not the most intelligent type of machine available (Wilson, 1994).
Industrial robots generally have no intelligence and very little sensory abilities. This
means that, in order for them to function, they must work in very strict conditions with
an expert supervising them, and must stop at emergency, whether or not it directly
involves them. Most industrial robots are designed to fulfill a specific task and only
under certain conditions (Graefe, 2003). Due to the dip in industrial robotic growth,
the robotic industry is looking to recreate industrial robots. Recent trends in industrial
technology are to make things compact, synergetic, intelligent, and environmentally
friendly. The United States alone has over forty thousand robots working in factories
all across the country, which is a number far behind that of other countries, such as
Japan and Europe whose industrial robots number in the hundred thousands (Ejiri,
2001). If the U.S. invested more in industrial robots, by simply doubling the number
of robots available to work, it could double productivity, leading to possibly delivering
one trillion more dollars into the U.S.’s economy (Thro, 1993). Although these robots
are the most commonplace, robotics has expanded into other areas of life as well. These

18

areas include the workplace, the military, medicine, space exploration, entertainment,
and even the home. Recently, robotics has been expanding past the common industrial
robots used to produce goods in factories to personal robots that can be found in the
home doing mundane tasks and helping the elderly, service robots geared at helping
or replacing workers in the workplace, and to medical robots which assist doctors and
nurses in hospitals. Robotics is expected to expand further in both service and home
use, as service and personal robots become more refined and become higher in demand.
As of now, robots created to serve as servants or butlers only exist as prototypes in
laboratories, but may one day become as common as the home personal computer
(Graefe, 2003). Service robots are very popular in Japan, which invests largely in
research and development in robotics, closely followed by the United States and the
European Union. Robotics may also one day become popular in aiding with the elderly
both in their homes and in nursing homes, performing tasks such as monitoring an
elderly person’s vital statistics or simply keeping the elderly company. Many hospitals
already use robots to deliver equipment, carry charts, to aid in surgeries, and to dispense
medicines (Kanellos, 2004). Research has also begun in using robots in maintenance
work, both on Earth to survey architecture and in space, for repairs on the Hubble
telescope and other satellites.

Robots found in the home are commonly called ”personal robots.” These robots are
still evolving, but were mainly created to serve and help people in their homes. There
are two types of personal robots: the type that is meant to comfort and entertain
people and the type that is made to do chores around the house. The first type of
robot deals generally with emotions and does not do anything useful in the household.
This type of robot is the kind that would be designed as a robotic pet or companion.
An example of this type of robot is Sony’s AIBO which resembles and acts like a robotic
dog. The original AIBO sold for two thousand five hundred dollars, and was sold out
within twenty minutes of being released. Within weeks, orders for one hundred thirty-
five thousand AIBO dogs were placed in the U.S., Europe, and Japan. Robotic pets
are simpler to implement than robotic servants, because deficiencies in its functioning
and specifications would be permissible to its owner, since most people do not expect
their cute robotic pet to be able to complete many tasks. Also, aiding the pet could
actually make its owner appreciate it more through interacting with it. On the other
hand, the second type of robot, the personal robotic servant or assistant, needs to
function perfectly every time to please its owner. This kind of personal robot is the
type that will eventually evolve into a robotic butler or maid. The humanoid versions
of these robots are still being developed in laboratories, due to the fact that any of the
mistakes they make will probably not be tolerated well by their owners and robots are
not yet equipped to apologize or show any type of regretful emotion in response to these
mistakes (Graefe, 2003). Many smaller, less intelligent robots can be found in the home
executing daily household tasks such as vacuuming (Asami, 1994). The most popular
type of household robot is known as Roomba, a small robotic vacuum. A Roomba
sells for about two hundred dollars each and is designed to vacuum the house. In the
first two years it was marketed, Roomba’s sales were reported to be over five hundred

19

thousand, leading to it successor, the Discovery. Demand for robots such as Roomba
increases every year, since over twenty-five percent of households claim that they are
too busy to do everyday chores such as cleaning and vacuuming. Demands such as
these will also one day fuel the market for robotic butlers or maids, as well as other
automatic robotics systems such as cars that drive themselves (Ichbiah, 2005). Many
companies are putting in time and research into developing personal robots, including
Fujitsu, NEC, Omron, Sanyo, Sony, and Honda (Graefe, 2003).

Robots are also actively used in the entertainment industry, as well as for entertainment.
The Japanese public has endeared the world to robots through use of movies and
television shows, due to their love of robots, while in American culture, movies such
as Robots!, AI, I, Robot, Bicentennial Man, and the Terminator leave mixed feelings
about robots. In the movie making industry, robots are being used in conjunction
with computer graphics to create life like interpretations of movie characters, such as
the shark in Jaws, the dinosaurs in Jurassic Park, and even the ape in King Kong
to entertain audiences. These robots are known as animatronics. Robots have also
become popular as toys, which can be seen through toys such as Furbies and LEGO
Mindstorms. Robotic pets are another form of entertainment, which were mentioned
previously (Ichbiah, 2005).

Another avenue for robotics in the home to take is assisting the elderly and chronically
ill. As the number of elderly people increases each year, the nurses to aid them and
the young people to keep them company will become harder and harder to find. To
combat this, ”smart” houses and robotic assistants can be used to keep the elderly
company and to assist them with their everyday needs, allowing them to possibly live
independently (The Future and Intelligent Machines: Charting the Path, 1997). In
the past few years, robots similar to those that would be working with the elderly and
chronically ill have been used in hospitals, museums, and stores to help keep buildings
clean, deliver needed objects, educate, and entertain patrons. These robots may one day
function as a cognitive prosthesis to help the elderly remember tasks, such as when to
take medicine dosages. These robots will also be capable of safeguarding the patient,
so they can alert someone if the patient needs help. Service robots that assist the
elderly will also be capable of collecting data on the patient’s daily activities, allowing
the doctor to remotely speak with the patient, and social interaction with the patient.
Some designs are currently available, but they require a lot of work on the user’s part
to run the robot (Roy).

The next recent trend in robotics is the robot termed ”service robot,” which is popular in
Japan. Service robots interact with or replace people in the workplace. Generally, these
robots replace workers in dangerous situations, such as those with high temperatures,
vacuums, underwater activity, or radioactivity. These robots also aid in firefighting,
police and military operations, architecture inspections and maintenance, publicity
(Asami, 1994), and collecting and disposing of hazardous wastes in hospitals. Robots
have been used to explore many hazardous landscapes, such as the underwater explorations

20

of the Titanic, the close quarters of the Egyptian pyramids, and the foreign surfaces
of other planets (Ichbiah, 2005). In amusement parks, service robots act as robotic
characters that interact with park visitors to entertain them. Service robots can also
be used in the military, to assist soldiers and run reconnaissance missions to lessen
fatalities (The Future and Intelligent Machines: Charting the Path, 1997). Another
example of robots in the military is the unmanned aircraft, which is currently being
developed to save pilots from the danger of flying. Over four hundred billion dollars
goes into robotics military research each year, researching how to make equipment for
soldiers refined, smart, and light weight (Ichbiah, 2005). Another big sector in robotics
is space exploration. Robotics and computer vision have been used to develop planetary
rovers and probes, which roam a selected planet’s surface in conjunction with humans on
Earth. A popular example of these rovers are the Mars rovers, Spirit and Opportunity,
which went up into space in early 2004 and continue to roam Mars’ surface despite
many problems (Ichbiah, 2005). Another controversial topic in robotics is using robots
to repair the Hubble Space Telescope. Although initially thought to be a given due
to the failures of the past space shuttle launches, research has shown that a robotic
mission to save Hubble might not be enough to save it. The robot that would be
repairing Hubble would need to be very autonomous due to communication lag and
would have to have very sensitive arms that would be able to change fragile parts in
confined conditions. Also, repair by the robot would be much slower than if a human
astronaut were to repair it. Costs of this project are in the billions, which may inhibit
using robotics to repair Hubble (Ashley, 2004). Similar to space exploration, robotics
has also been used

The United States is largely regarded as the world’s most productive and technologically
advanced society. Naturally, the U.S. wants to be part of the leading edge in research
and development in the field of robotics. Since the creation of the Robotic and Intelligent
Machines Cooperative Council (RIMCC), industrial robot sales almost tripled between
1991 and 1997, which was attributed to both drops in overall price and increases in
machine capability (The Future and Intelligent Machines: Charting the Path, 1997).
U.S. investment continued to increase through 1999 but then dropped in 2000. Since
2001, U.S. investment in robotics research and development is on the rise once again,
although slower due to much research and development funds going into homeland
security.

Although the United States has put much funding into robotics, the leading country in
robotics is currently Japan. Their main focus is in the implementation of service robots
and the components needed to implement them. These components include mobility,
manipulation, sensing and artificial intelligence. Japan’s program was implemented in
1993, with the national project called the ”Research and Development of Micromachines.”
Currently, there are no statistics on the number of Japan’s service robots, but based on
statistics of its industrial robot deliveries, Japan’s robot population increases every year,
when billions of robots are purchased (Asami, 1994). Most industrial robots are found
in the automotive and electronics industries, where assembly robots are ideal for the

21

repetitive motion and multiple shifts (Wilson, 1994). Service robots will also become
more popular as shortages in the simple and aging specializing labor markets decrease,
and as human workers are replaced by robots in hazardous working environments.
Unfortunately, service robots are held back by insufficient equipment and high cost.
These problems will hopefully be alleviated in the future, as technology progresses.
In addition to the applications listed above, service robots can also be found in civil
engineering and in medical care.

Therefore, as we have seen, robotics can be found and used in many aspects of life.
Whether the robots are the personal robots found in homes or service robots who
replace and aid workers in the workplace, robots have many useful applications which
can save humans time and effort and can even safeguard them from hazardous jobs.
As technology becomes cheaper and robots become more available, useful robots, such
as Roomba, and entertainments robots, such as Sony’s AIBO, will become more in
demand. This fact is supported by the hundreds of thousands of buyers these two
robots have attracted since they became available to the general public. Robotics and
computer vision have many applications, allowing them to expand further in space
exploration, medicine, industry, home use, entertainment, and in the workplace. For
these very reasons, robotics seems to have a bright future, expanding in the areas of
life it already affects and even possibly moving onto new fields.

Investment in robotics research and development grows every year and is lead by Japan,
who is closely followed by the United States and European Union. These investments
may one day lead to a better, safer world thanks to robots. In conclusion, for the
reasons and facts presented above, robotics and computer vision applications are alive
and thriving, despite the disinterest and declines in funding in the past. Current trends
point to increases in robot use and funding, as technology continues to evolve and
improve, making robots more accessible to the general public.

22

8 Code

8.1 CorrespondingPts.cpp

#include <iostream>

#include <fstream>

using namespace std;

#include "CorrespondingPts.h"

#include "Calibration.h"

/*-------------------------------- Variables --------------------------------*/

//PCA Variables

static CvPoint leftPoint;

static CvPoint rightPoint;

static int leftTestImage[PCA_SIZE][PCA_SIZE];

static int rightTestImage[PCA_SIZE][PCA_SIZE];

static float leftColVec[PCA_SIZE * PCA_SIZE], leftCoef[PCA_SIZE * PCA_SIZE];

static float rightColVec[PCA_SIZE * PCA_SIZE], rightCoef[PCA_SIZE * PCA_SIZE];

static float basisVecs[NUM_BASIS_VECS][PCA_SIZE * PCA_SIZE];

static double leftDist[NUM_IMAGES], rightDist[NUM_IMAGES];

static double minDist;

static double trainCoef[NUM_BASIS_VECS][NUM_IMAGES];

static int matches = 0, minIndex = 0, FingerIndex = 0, tipCount = 0;

static float tipVec[3], baseVec[3], direction[3];

static int tipMatch[MAX_FEATURES];

static int lastPoint = 5000;

//Good Features to Track Variables

static CvPoint image1_points[MAX_FEATURES], image2_points[MAX_FEATURES];

static CvPoint leftFingerPoints[MAX_FEATURES], rightFingerPoints[MAX_FEATURES];

static CvPoint2D32f image1_features[MAX_FEATURES],

image2_features[MAX_FEATURES];

//Stereo Variables

static double leftPixelPoint[2][NUM_FINGER_PTS];

static double rightPixelPoint[2][NUM_FINGER_PTS];

static double leftCameraPoint[3][NUM_FINGER_PTS];

static double rightCameraPoint[3][NUM_FINGER_PTS];

static double Ox, Oy, fx, fy, Tz, Tx, Ty;

static double leftTransVec[3];

static double rightTransVec[3];

static double l_ExtMat_r[4][4];

static double q[3];

static double qNormalized[3];

static CvMat* affineMotion;

static CvMat* worldPoint;

static CvPoint3D32f wP[NUM_FINGER_PTS];

static CvMat* lExtMatw;

23

/*----------------------------- PCA Functions -----------------------------*/

//read basis vector info from file and fill basisVecs[][]

void fillBasisVecs(void)

{

int i, j;

ifstream readFile1, readFile2;

readFile1.open("basisvecs.txt");

for(i = 0; i < PCA_SIZE * PCA_SIZE; i++)

{

for(j = 0; j < NUM_BASIS_VECS; j++)

{

readFile1 >> basisVecs[j][i];

}

}

readFile1.close();

readFile2.open("trainingcoef.txt");

for(i = 0; i < NUM_BASIS_VECS; i++)

{

for(j = 0; j < NUM_BASIS_VECS; j++)

{

readFile2 >> trainCoef[j][i];

}

}

readFile2.close();

}

//converts an IplImage to an int matrix

void ipl2intPCA(IplImage* window, int x1, int y1, int x2, int y2,

int matrix[PCA_SIZE][PCA_SIZE])

{

int iindex = 0;

int jindex = 0;

int i = 0;

int j = 0;

for(iindex = y1; iindex < y2; iindex++)

{

for(jindex = (x1 + (window->widthStep) * iindex);

jindex < (x2 + (window->widthStep) * iindex); jindex++)

{

matrix[i][j] = (int)(window->imageData[jindex]);

j++;

24

}

i++;

j = 0;

}

}

//set any point within WINDOW_SIZE of the image border to NULL (-1)

void removeBorders(CvPoint points1[MAX_FEATURES],

CvPoint points2[MAX_FEATURES], CvSize size)

{

for(int i = 0; i < MAX_FEATURES; i++)

{

if(points1[i].x < (BORDERSCALE * WINDOW_SIZE) ||

points1[i].x > size.width - (BORDERSCALE * WINDOW_SIZE) ||

points1[i].y < (BORDERSCALE * WINDOW_SIZE) ||

points1[i].y > size.height - (BORDERSCALE * WINDOW_SIZE))

{

points1[i].x = -1;

points1[i].y = -1;

}

if(points2[i].x < (BORDERSCALE * WINDOW_SIZE) ||

points2[i].x > size.width - (BORDERSCALE * WINDOW_SIZE) ||

points2[i].y < (BORDERSCALE * WINDOW_SIZE) ||

points2[i].y > size.height - (BORDERSCALE * WINDOW_SIZE))

{

points2[i].x = -1;

points2[i].y = -1;

}

}

}

//eliminate repeated points

bool isRepeatPoint(CvPoint edges[MAX_FEATURES], CvPoint point)

{

int i = 0, numRepeats = 0;

bool repeat = false;

for(i = 0; i < MAX_FEATURES; i++)

{

if(abs(edges[i].x - point.x) < 10 && abs(edges[i].y - point.y) < 10)

numRepeats++;

}

if(numRepeats > 1)

repeat = true;

return repeat;

}

25

//check to see if left feature and right feature (match) are both a

finger using PCA

int isFingerPCA(IplImage* gray1, IplImage* gray2, int lindex, int rindex)

{

int i = 0, j = 0, k = 0;

leftPoint = image1_points[lindex];

rightPoint = image2_points[rindex];

//create test images

ipl2intPCA(gray1, leftPoint.x - ((PCA_SIZE / 2) - 1),

leftPoint.y - ((PCA_SIZE / 2) - 1), leftPoint.x + (PCA_SIZE / 2),

leftPoint.y + (PCA_SIZE / 2), leftTestImage);

ipl2intPCA(gray2, rightPoint.x - ((PCA_SIZE / 2) - 1),

rightPoint.y - ((PCA_SIZE / 2) - 1), rightPoint.x + (PCA_SIZE / 2),

rightPoint.y + (PCA_SIZE / 2), rightTestImage);

//reshape test images into column vectors

for(i = 0; i < PCA_SIZE; i++)

{

for(j = 0; j < PCA_SIZE; j++)

{

leftColVec[k] = (float)leftTestImage[i][j];

rightColVec[k] = (float)rightTestImage[i][j];

k++;

}

}

//take dot product with basis vectors to get test coef

for(k = 0; k < NUM_BASIS_VECS; k++) //for each basis vector

{

leftCoef[k] = 0.0;

rightCoef[k] = 0.0;

for(i = 0; i < PCA_SIZE * PCA_SIZE; i++)

{

leftCoef[k] += leftColVec[i] * basisVecs[k][i];

rightCoef[k] += rightColVec[i] * basisVecs[k][i];

}

}

//calculate distance between test coef and training coef

minDist = PCA_THRESH;

minIndex = -1;

for(i = 0; i < NUM_IMAGES; i++)

{

leftDist[i] = 0.0;

rightDist[i] = 0.0;

for(k = 0; k < NUM_BASIS_VECS; k++)

{

26

leftDist[i] += pow(leftCoef[k] - trainCoef[i][k], 2);

rightDist[i] += pow(rightCoef[k] - trainCoef[i][k], 2);

}

leftDist[i] = pow(leftDist[i], 0.5);

rightDist[i] = pow(rightDist[i], 0.5);

if(leftDist[i] < minDist && rightDist[i] < minDist)

{

minDist = (leftDist[i] + rightDist[i]) / 2.0;

minIndex = i;

}

}

return minIndex;

}

/*---------------------------- Stereo Functions----------------------------*/

//stereo initializations

void stereoInit()

{

int i = 0;

//stereo variable initialization

for(i = 0; i < 3; i++)

{

leftTransVec[i] = 0;

rightTransVec[i] = 0;

qNormalized[i] = 0;

q[i] = 0;

}

rightTransVec[0] = 1.2; //measured by hand w.r.t. left camera frame

for(i = 0; i < 4; i++)

{

for(int j = 0; j < 4; j++)

{

l_ExtMat_r[i][j] = 0;

if(i == j)

{

l_ExtMat_r[i][j] = 1;

}

}

}

for(i = 0; i < NUM_FINGER_PTS; i++)

27

{

leftPixelPoint[0][i] = -1000;

leftPixelPoint[1][i] = -1000;

rightPixelPoint[0][i] = -1000;

rightPixelPoint[1][i] = -1000;

leftCameraPoint[0][i] = -1000;

leftCameraPoint[1][i] = -1000;

leftCameraPoint[2][i] = 1;

rightCameraPoint[0][i] = -1000;

rightCameraPoint[1][i] = -1000;

rightCameraPoint[2][i] = 1;

wP[i].x = -1000;

wP[i].y = -1000;

wP[i].z = -1000;

}

}

//stereo reconstruction

void stereoReconstruction(double Ox, double Oy, double fx, double fy,

CvMat* l_ExtMat_w)

{

int i = 0;

double sx = 1 / fx;

double sy = 1 / fy;

//setup blank matrix of size 2N by 12

CvMat* A;

A = cvCreateMat(3, 3, CV_32F);

CvMat* b;

b = cvCreateMat(3, 1, CV_32F);

CvMat* lP;

lP = cvCreateMat(3, 1, CV_32F);

CvMat* w_ExtMat_l;

w_ExtMat_l = cvCreateMat(3, 3, CV_32F);

CvMat* temp;

temp = cvCreateMat(3, 3, CV_32F);

CvMat* temp2;

temp2 = cvCreateMat(3, 3, CV_32F);

rightTransVec[0] = 1.2; //measured by hand w.r.t. left camera frame

rightTransVec[1] = 0;

rightTransVec[2] = 0;

//find right w.r.t left parameters

l_ExtMat_r[0][3] = rightTransVec[0];

l_ExtMat_r[1][3] = rightTransVec[1];

l_ExtMat_r[2][3] = rightTransVec[2];

for(i = 0; i < matches; i++)

{

if(leftPixelPoint[0][i] > -1000 && rightPixelPoint[0][i] > -1000)

28

{

leftCameraPoint[0][i] = leftPixelPoint[0][i] - Ox * (-1 * sx);

leftCameraPoint[1][i] = leftPixelPoint[1][i] - Oy * (-1 * sy);

rightCameraPoint[0][i] = rightPixelPoint[0][i] - Ox * (-1 * sx);

rightCameraPoint[1][i] = rightPixelPoint[1][i] - Oy * (-1 * sy);

}

}

for(i = 0; i < matches; i++)

{

if(leftCameraPoint[0][i] > -1000 && rightCameraPoint[0][i] > -1000)

{

q[0] = leftCameraPoint[1][i] * rightCameraPoint[2][i] -

leftCameraPoint[2][i] * rightCameraPoint[1][i];

q[1] = -1 * (leftCameraPoint[0][i] * rightCameraPoint[2][i] -

leftCameraPoint[2][i] * rightCameraPoint[0][i]);

q[2] = leftCameraPoint[0][i] * rightCameraPoint[1][i] -

leftCameraPoint[1][i] * rightCameraPoint[0][i];

qNormalized[0] = q[0] / pow((pow(q[0], 2) + pow(q[1], 2) +

pow(q[2], 2)), 0.5);

qNormalized[1] = q[1] / pow((pow(q[0], 2) + pow(q[1], 2) +

pow(q[2], 2)), 0.5);

qNormalized[2] = q[2] / pow((pow(q[0], 2) + pow(q[1], 2) +

pow(q[2], 2)), 0.5);

//A = [pl_c(:,i), - (lRr*pr_c(:,i)), q];

cvmSet(A, 0, 0, (double)leftCameraPoint[0][i]);

cvmSet(A, 1, 0, (double)leftCameraPoint[1][i]);

cvmSet(A, 2, 0, (double)leftCameraPoint[2][i]);

//R is assumed to be identity

cvmSet(A, 0, 1, (double)(-1 * rightCameraPoint[0][i]));

cvmSet(A, 1, 1, (double)(-1 * rightCameraPoint[1][i]));

cvmSet(A, 2, 1, (double)(-1 * rightCameraPoint[2][i]));

cvmSet(A, 0, 2, (double)qNormalized[0]);

cvmSet(A, 1, 2, (double)qNormalized[1]);

cvmSet(A, 2, 2, (double)qNormalized[2]);

cvmSet(b, 0, 0, (double)l_ExtMat_r[0][3]);

cvmSet(b, 1, 0, (double)l_ExtMat_r[1][3]);

cvmSet(b, 2, 0, (double)l_ExtMat_r[2][3]);

cvMulTransposed(A, temp, 1); //find solution to the system

cvInvert(temp, temp, CV_LU);

cvTranspose(A, temp2);

cvGEMM(temp2, temp, 1, NULL, 1, temp, 0);

cvGEMM(temp, b, 1, NULL, 1, affineMotion, 0);

cvmSet(lP, 0, 0, (cvmGet(affineMotion, 0, 0) * leftCameraPoint[0][i] +

(cvmGet(affineMotion, 2, 0) / 2) * cvmGet(A, 0, 2)));

cvmSet(lP, 1, 0, (cvmGet(affineMotion, 0, 0) * leftCameraPoint[1][i] +

29

(cvmGet(affineMotion, 2, 0) / 2) * cvmGet(A, 1, 2)));

cvmSet(lP, 2, 0, (cvmGet(affineMotion, 0, 0) * leftCameraPoint[2][i] +

(cvmGet(affineMotion, 2, 0) / 2) * cvmGet(A, 2, 2)));

cvInvert(l_ExtMat_w, w_ExtMat_l, CV_LU);

cvGEMM(w_ExtMat_l, lP, 1, NULL, 1, worldPoint, 0);

wP[i].x = cvmGet(worldPoint, 0, 0);

wP[i].y = cvmGet(worldPoint, 1, 0);

wP[i].z = cvmGet(worldPoint, 2, 0);

}

}

cvReleaseMat(&A);

cvReleaseMat(&b);

cvReleaseMat(&temp);

cvReleaseMat(&temp2);

cvReleaseMat(&w_ExtMat_l);

}

/*-------------------------- Callback Functions --------------------------*/

//stereo callback function

void stereocallback(IplImage* image1, IplImage* image2)

{

int i, j, N1 = MAX_FEATURES, N2 = MAX_FEATURES, yMax, yMin, xMax;

stereoInit(); //initilaize stereo matrices

IplImage* im1 = image1;

IplImage* im2 = image2;

CvSize imgsize;

imgsize.width = im1->width;

imgsize.height = im1->height;

IplImage* eigImg = cvCreateImage(imgsize, IPL_DEPTH_32F, 1);

IplImage* tempImg = cvCreateImage(imgsize, IPL_DEPTH_32F, 1);

//change images to grayscale

IplImage* gray1 = cvCreateImage(imgsize, 8, 1);

IplImage* gray2 = cvCreateImage(imgsize, 8, 1);

cvCvtColor(im1, gray1, CV_BGR2GRAY);

cvCvtColor(im2, gray2, CV_BGR2GRAY);

image1 = gray1;

image2 = gray2;

assert(gray1);

30

assert(gray2);

for(i = 0; i < MAX_FEATURES; i++)

{

image1_points[i].x = -1;

image1_points[i].y = -1;

image2_points[i].x = -1;

image2_points[i].y = -1;

image1_features[i].x = -1;

image1_features[i].y = -1;

image2_features[i].x = -1;

image2_features[i].y = -1;

leftFingerPoints[i].x = -1;

leftFingerPoints[i].y = -1;

rightFingerPoints[i].x = -1;

rightFingerPoints[i].y = -1;

tipMatch[i] = -300;

}

cvGoodFeaturesToTrack(gray1, eigImg, tempImg, image1_features,

&N1, 0.01, 0.01, NULL, 3, 0, 0.04);

cvGoodFeaturesToTrack(gray2, eigImg, tempImg, image2_features,

&N2, 0.01, 0.01, NULL, 3, 0, 0.04);

for(i = 0; i < MAX_FEATURES; i++)

{

//copies all image1 features to dPoints

image1_points[i] = cvPointFrom32f(image1_features[i]);

//copies all image2 features to dPoints

image2_points[i] = cvPointFrom32f(image2_features[i]);

}

//filter out points near borders of image (set to -1)

removeBorders(image1_points, image2_points, imgsize);

//use SSD and PCA functions to find corresponding points

CvScalar indexColor = CV_RGB(255, 0, 0);

CvScalar elseColor = CV_RGB(0, 255, 0);

matches = 0;

tipCount = 0;

for(i = 0; i < MAX_FEATURES; i++)

{

if(image1_points[i].x != -1 && image1_points[i].y != -1)

{

for(j = 0; j < MAX_FEATURES; j++)

{

//region defined by y-[yMin,yMax] and x-[0,xMax]

yMax = image1_points[i].y + YSEARCH_SIZE;

yMin = yMax - 2 * YSEARCH_SIZE;

xMax = image1_points[i].x + 20;

31

if(image2_points[j].y < yMax && image2_points[j].y > yMin &&

image2_points[j].x != -1)

{

FingerIndex = isFingerPCA(gray1, gray2, i, j);

if(FingerIndex == 1 || FingerIndex == 2 ||

FingerIndex == 3 || FingerIndex == 4 ||

FingerIndex == 5 || FingerIndex == 6 ||

FingerIndex == 7 || FingerIndex == 8)

{

if(!isRepeatPoint(leftFingerPoints, image1_points[i]) &&

!isRepeatPoint(rightFingerPoints, image2_points[j]))

{

cvCircle(im1, image1_points[i], 3, indexColor, 1);

cvCircle(im2, image2_points[j], 3, indexColor, 1);

leftPixelPoint[0][matches] = image1_points[i].x;

leftPixelPoint[1][matches] = image1_points[i].y;

rightPixelPoint[0][matches] = image2_points[j].x;

rightPixelPoint[1][matches] = image2_points[j].y;

leftFingerPoints[matches] = image1_points[i];

rightFingerPoints[matches] = image2_points[j];

tipMatch[tipCount] = matches;

tipCount++;

matches++;

}

}

else

{

if(!isRepeatPoint(leftFingerPoints, image1_points[i]) &&

!isRepeatPoint(rightFingerPoints, image2_points[j]))

{

cvCircle(im1, image1_points[i], 3, elseColor, 1);

cvCircle(im2, image2_points[j], 3, elseColor, 1);

leftPixelPoint[0][matches] = image1_points[i].x;

leftPixelPoint[1][matches] = image1_points[i].y;

rightPixelPoint[0][matches] = image2_points[j].x;

rightPixelPoint[1][matches] = image2_points[j].y;

leftFingerPoints[matches] = image1_points[i];

rightFingerPoints[matches] = image2_points[j];

}

}

}

}

}

}

32

if(tipCount != -1)

{

stereoReconstruction(163.047, 117.303, 257.962, 224.782, lExtMatw);

if(wP[0].x > -MATCH_THRESH && wP[0].x < MATCH_THRESH)

{

tipVec[0] = wP[0].x;

tipVec[2] = wP[0].z;

baseVec[0] = wP[0].x + 17; //24*cos(45) ~= 17

baseVec[2] = wP[0].z + 17;

direction[0] = tipVec[0] - baseVec[0];

direction[2] = tipVec[2] - baseVec[2];

direction[0] /= pow(pow(direction[0],2)+pow(direction[2],2),0.5);

direction[2] /= pow(pow(direction[0],2)+pow(direction[2],2),0.5);

cout<<direction[0]<<" "<<" "<<direction[2];

cout<<endl;

cout<<wP[0].x<<" "<<wP[0].y<<" "<<wP[0].z;

cout<<endl;

if(lastPoint < 50 && wP[0].x > 50)

{

system("nqc -Susb -d reverse2.nqc -run");

}

else if(lastPoint > 50 && wP[0].x < 50)

{

system("nqc -Susb -d forward2.nqc -run");

}

lastPoint = wP[0].x;

}

}

}

/*----------------- Constructor and Destructor Functions ------------------*/

//constructor

CorrespondingPts::CorrespondingPts(void)

{

int ncams = cvcamGetCamerasCount();

if(ncams < 2)

{

std::cout << "2 Cameras are needed.";

33

exit(0);

}

cvNamedWindow("window1", CV_WINDOW_AUTOSIZE);

cvNamedWindow("window2", CV_WINDOW_AUTOSIZE);

HWND wnd1 = (HWND)cvGetWindowHandle("window1");

HWND wnd2 = (HWND)cvGetWindowHandle("window2");

cvcamSetProperty(0, CVCAM_PROP_ENABLE, CVCAMTRUE);

cvcamSetProperty(0, CVCAM_PROP_RENDER, CVCAMTRUE);

//cvcamGetProperty(0, CVCAM_CAMERAPROPS, NULL);

cvcamSetProperty(0, CVCAM_STEREO_CALLBACK, stereocallback);

cvcamSetProperty(0, CVCAM_PROP_WINDOW, &wnd1);

cvcamSetProperty(1, CVCAM_PROP_ENABLE, CVCAMTRUE);

cvcamSetProperty(1, CVCAM_PROP_RENDER, CVCAMTRUE);

//cvcamGetProperty(1, CVCAM_CAMERAPROPS, NULL);

cvcamSetProperty(1, CVCAM_STEREO_CALLBACK, stereocallback);

cvcamSetProperty(1, CVCAM_PROP_WINDOW, &wnd2);

cvcamInit();

cvMoveWindow("window1", 80, 450);

cvMoveWindow("window2", 430, 450); //510, 176);

affineMotion = cvCreateMat(3, 1, CV_32F);

worldPoint = cvCreateMat(3, 1, CV_32F);

cvmSet(affineMotion, 0, 0, 0);

cvmSet(affineMotion, 1, 0, 0);

cvmSet(affineMotion, 2, 0, 0);

cvmSet(worldPoint, 0, 0, 0);

cvmSet(worldPoint, 1, 0, 0);

cvmSet(worldPoint, 2, 0, 0);

lExtMatw = cvCreateMat(3, 3, CV_32F);

cvmSet(lExtMatw, 0, 0, 0.736662);//temp2.cRotw[0][0]);

cvmSet(lExtMatw, 0, 1, -0.0154981);//temp2.cRotw[0][1]);

cvmSet(lExtMatw, 0, 2, -0.676261);//temp2.cRotw[0][2]);

cvmSet(lExtMatw, 1, 0, -0.0115726);//temp2.cRotw[1][0]);

cvmSet(lExtMatw, 1, 1, 0.999877);//temp2.cRotw[1][1]);

cvmSet(lExtMatw, 1, 2, -0.0122758);//temp2.cRotw[1][2]);

cvmSet(lExtMatw, 2, 0, -0.676162);//temp2.cRotw[2][0]);

cvmSet(lExtMatw, 2, 1, -0.00243494);//temp2.cRotw[2][2]);

cvmSet(lExtMatw, 2, 2, -0.73656);//temp2.cRotw[2][2]);

//fill basisVecs[7][PCA_SIZE*PCA_SIZE] from file

fillBasisVecs();

}

//destructor

34

CorrespondingPts::~CorrespondingPts(void)

{

int key = 0;

while(key != 27)

{

if(key == ’p’)

PauseStream();

else if(key == ’r’)

ResumeStream();

key = cvWaitKey(100);

}

system("nqc -Susb -d stop.nqc -run");

EndStream();

}

/*---------------- Camera Stream Control Functions ----------------*/

//start camera stream

void CorrespondingPts::StartStream(void)

{

cvcamStart();

}

//pause camera stream

void CorrespondingPts::PauseStream(void)

{

cvcamPause();

}

//resume camera stream

void CorrespondingPts::ResumeStream(void)

{

cvcamResume();

}

//end camera stream

void CorrespondingPts::EndStream(void)

{

cvcamStop();

35

cvcamExit();

}

8.2 CorrespondingPts.h

#ifndef _CORRESPONDING_PTS_H_

#define _CORRESPONDING_PTS_H_

#define BORDERSCALE 3.0

#define YSEARCH_SIZE 30

#define NUM_FINGER_PTS 10

#define MAX_FEATURES 1

#define WINDOW_SIZE 8

#define PCA_SIZE 30

#define NUM_IMAGES 8

#define NUM_BASIS_VECS 7

#define MATCH_THRESH 400

#define PCA_THRESH 1750

#include "cvcam.h"

#include "cv.h"

#include "highgui.h"

#include "windows.h"

class CorrespondingPts

{

public:

CorrespondingPts(void);

~CorrespondingPts(void);

void StartStream(void);

void PauseStream(void);

void ResumeStream(void);

void EndStream(void);

};

#endif

8.3 Calibration.cpp

#include<iostream>

using namespace std;

#include "cvcam.h"

#include "cv.h"

#include "highgui.h"

#include "windows.h"

#include "Calibration.h"

#include "CorrespondingPts.h"

36

/*------------------------- Variables ----------------------------------*/

static int ptsGrabbed;

static bool click = FALSE;

static int Xp[NUM_CALIBRATION_PTS];

static int Yp[NUM_CALIBRATION_PTS];

CvScalar clickColor = CV_RGB(0, 255, 0); //color of circle edge markers

CvScalar circleColor = CV_RGB(0, 0, 255); //color of circle edge markers

CvCapture* capture;

/*--------------------- Callback Functions -----------------------------*/

//mouse callback function for camera calibration

void mouse_callback (int event, int x, int y, int flags, void* param)

{

if (event == CV_EVENT_LBUTTONDOWN)

{

Xp[ptsGrabbed] = x;

Yp[ptsGrabbed] = 240 - y; //must invert y-coord 240

ptsGrabbed++;

click = TRUE;

}

}

/*----------------------------- Calibration Functions --------------------*/

//eliminate repeated points

bool isRepeatPointCalibration(CvPoint edges[NUM_CALIBRATION_PTS], CvPoint point)

{

int i = 0, numRepeats = 0;

bool repeat = false;

for(i = 0; i < NUM_CALIBRATION_PTS; i++)

{

if(abs(edges[i].x - point.x) < 5 && abs(edges[i].y - point.y) < 5)

numRepeats++;

}

if(numRepeats > 1)

repeat = true;

return repeat;

37

}

//refreshes screen

void refresh(IplImage* frame, CvPoint edges[NUM_CALIBRATION_PTS])

{

int i = 0;

CvPoint newPoint;

cvDestroyWindow("window");

cvNamedWindow("window", 0);

- Show quoted text -

cvResizeWindow("window", 640, 480);

capture = cvCaptureFromCAM(CV_CAP_ANY);

cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME_WIDTH, 640);

cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME_HEIGHT, 480);

cvSetMouseCallback("window", mouse_callback);

for(i = 0; i < NUM_CALIBRATION_PTS; i++)

{

if(edges[i].x != -1)

{

cvCircle(frame, edges[i], 4, circleColor, 1);

}

}

for(i = 0; i < ptsGrabbed + 1; i++)

{

newPoint.x = Xp[i];

newPoint.y = Yp[i];

cvCircle(frame, newPoint, 5, clickColor, 1);

}

//show image with circles and text

cvShowImage("window", frame);

}

//find points found by edge detection nearest to point clicked

void findNearestPoint(int Xp, int Yp, CvPoint

edges[NUM_CALIBRATION_PTS], int &index)

{

index = 0;

int dx, dy, d, i;

int dmatch = 1000;

for(i = 0; i < NUM_CALIBRATION_PTS; i++)

{

38

dx = abs(edges[i].x - Xp);

dy = abs(edges[i].y - Yp);

d = sqrt(dx * dx + dy * dy);

if(d < dmatch)

{

dmatch = d;

index = i;

}

}

}

//calibrate the cameras

void calibrate(IplImage* imgl, double &Ox, double &Oy, double &fx, double &fy,

double &Tz, double &Tx, double &Ty, double &zDistance,

double pcRotw[3][3], double pwRotc[3][3])

{

int i = 0;

int j = 0;

int flags = 0;

double Dunit = 0;

double Dinch = 0;

double sigma = 1; //sigma value from the book, can be + or - 1

double r[3][3];

//setup blank matrix of size 2N by 12

CvMat* A;

A = cvCreateMat(2 * NUM_CALIBRATION_PTS, 12, CV_32F);

//setup SVD matrices

CvMat* W;

W = cvCreateMat(2 * NUM_CALIBRATION_PTS, 12, CV_32F);

CvMat* V;

V = cvCreateMat(12, 12, CV_32F);

double q[12];

//x coords of the N points

int X[NUM_POINTS_GRABBED] = {1, 1, 1, 1, 2, 3, 4, 0, 0, 0, 0, 0, 0, 0};

//y coords of the N points

int Y[NUM_POINTS_GRABBED] = {1, 2, 3, 4, 4, 4, 4, 1, 2, 3, 4, 4, 4, 4};

//z coords of the N points

int Z[NUM_POINTS_GRABBED] = {0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 3, 4};

//setting up the matrix A

for(i = 0; i < NUM_POINTS_GRABBED; i++)

{

cvmSet(A, 2 * i + 1, 0, (double)0);

cvmSet(A, 2 * i + 1, 1, (double)0);

cvmSet(A, 2 * i + 1, 2, (double)0);

39

cvmSet(A, 2 * i + 1, 3, (double)0);

cvmSet(A, 2 * i + 1, 4, (double)X[i]);

cvmSet(A, 2 * i + 1, 5, (double)Y[i]);

cvmSet(A, 2 * i + 1, 6, (double)Z[i]);

cvmSet(A, 2 * i + 1, 7, (double)1);

cvmSet(A, 2 * i + 1, 8, (double)(-Yp[i] * X[i]));

cvmSet(A, 2 * i + 1, 9, (double)(-Yp[i] * Y[i]));

cvmSet(A, 2 * i + 1, 10, (double)(-Yp[i] * Z[i]));

cvmSet(A, 2 * i + 1, 11, (double)-Yp[i]);

cvmSet(A, 2 * i, 0, (double)X[i]);

cvmSet(A, 2 * i, 1, (double)Y[i]);

cvmSet(A, 2 * i, 2, (double)Z[i]);

cvmSet(A, 2 * i, 3, (double)1);

cvmSet(A, 2 * i, 4, (double)0);

cvmSet(A, 2 * i, 5, (double)0);

cvmSet(A, 2 * i, 6, (double)0);

cvmSet(A, 2 * i, 7, (double)0);

cvmSet(A, 2 * i, 8, (double)(-Xp[i] * X[i]));

cvmSet(A, 2 * i, 9, (double)(-Xp[i] * Y[i]));

cvmSet(A, 2 * i, 10, (double)(-Xp[i] * Z[i]));

cvmSet(A, 2 * i, 11, (double)-Xp[i]);

}

//solve with SVD

cvSVD(A, W, NULL, V, CV_SVD_MODIFY_A);

//releases unused matrices, A and W

cvReleaseMat(&A);

cvReleaseMat(&W);

for(i = 0; i < 12; i++)

{

q[i] = cvmGet(V, i, 11); //12 by 1 solution vector m11,m12,...,m33,m34

}

//release V

cvReleaseMat(&V);

//setup blank matrix of size 3 by 4

double M[3][4];

for(i = 0; i < 4; i++)

{

M[0][i] = q[i]; //m11 m12 m13 m14

M[1][i] = q[i + 4]; //m21 m22 m23 m24

M[2][i] = q[i + 8]; //m31 m32 m33 m34

}

// scale factor

40

double scale = pow((pow(M[2][0], 2) + pow(M[2][1], 2) +

pow(M[2][2], 2)), 0.5);

for(i = 0; i < 3; i++)

{

for(j = 0; j < 4; j++)

{

M[i][j] = M[i][j] / scale; //dividing M by the scale factor

}

}

//distance D in world "units"

Dunit = abs(M[2][3]);

//distance D in inchs - each world "unit" is 1.25 inches

Dinch = abs(1.25 * Dunit);

zDistance = Dinch;

//the following are equations from the book to recover the extrinsic parameters

double q1[3] = {M[0][0], M[0][1], M[0][2]};

double q2[3] = {M[1][0], M[1][1], M[1][2]};

double q3[3] = {M[2][0], M[2][1], M[2][2]};

double q4[3] = {M[0][3], M[1][3], M[2][3]};

double q1total = 0, q2total = 0;

for(i = 0; i < 3; i++)

{

Ox += q1[i] * q3[i];

Oy += q2[i] * q3[i];

q1total += q1[i] * q1[i];

q2total += q2[i] * q2[i];

}

fx = pow((q1total - pow(Ox, 2)), 0.5);

fy = pow((q2total - pow(Oy, 2)), 0.5);

r[0][0] = sigma * (Ox * M[2][0] - M[0][0]) / fx;

r[0][1] = sigma * (Ox * M[2][1] - M[0][1]) / fx;

r[0][2] = sigma * (Ox * M[2][2] - M[0][2]) / fx;

r[1][0] = sigma * (Oy * M[2][0] - M[1][0]) / fy;

r[1][1] = sigma * (Oy * M[2][1] - M[1][1]) / fy;

r[1][2] = sigma * (Oy * M[2][2] - M[1][2]) / fy;

r[2][0] = sigma * M[2][0];

r[2][1] = sigma * M[2][1];

r[2][2] = sigma * M[2][2];

//xaxis of world w.r.t. the camera

double xaxis[3] = {r[0][0], r[1][0], r[2][0]};

//yaxis of world w.r.t. the camera

41

double yaxis[3] = {r[0][1], r[1][1], r[2][1]};

//zaxis of world w.r.t. the camera

double zaxis[3] = {r[0][2], r[1][2], r[2][2]};

//z translation of world w.r.t. the camera

Tz = sigma * M[2][3];

//x translation of world w.r.t. the camera

Tx = sigma * (Ox * Tz - M[0][3]) / fx;

//y translation of world w.r.t. the camera

Ty = sigma * (Oy * Tz - M[1][3]) / fy;

//rotation matrix of world w.r.t. the camera

pcRotw[0][0] = xaxis[0];

pcRotw[0][1] = yaxis[0];

pcRotw[0][2] = zaxis[0];

pcRotw[1][0] = xaxis[1];

pcRotw[1][1] = yaxis[1];

pcRotw[1][2] = zaxis[1];

pcRotw[2][0] = xaxis[2];

pcRotw[2][1] = yaxis[2];

pcRotw[2][2] = zaxis[2];

//rotation matrix of camera w.r.t. the world

pwRotc[0][0] = xaxis[0];

pwRotc[0][1] = xaxis[1];

pwRotc[0][2] = xaxis[2];

pwRotc[1][0] = yaxis[0];

pwRotc[1][1] = yaxis[1];

pwRotc[1][2] = yaxis[2];

pwRotc[2][0] = zaxis[0];

pwRotc[2][1] = zaxis[1];

pwRotc[2][2] = zaxis[2];

//output results

cout << "Rotation matrix of the world with respect to the camera:" << endl;

cout << pcRotw[0][0] << " " << pcRotw[0][1] << " " << pcRotw[0][2] << endl;

cout << pcRotw[1][0] << " " << pcRotw[1][1] << " " << pcRotw[1][2] << endl;

cout << pcRotw[2][0] << " " << pcRotw[2][1] << " " << pcRotw[2][2] << endl;

cout << "Rotation matrix of the camera with respect to the world:" << endl;

cout << pwRotc[0][0] << " " << pwRotc[0][1] << " " << pwRotc[0][2] << endl;

cout << pwRotc[1][0] << " " << pwRotc[1][1] << " " << pwRotc[1][2] << endl;

cout << pwRotc[2][0] << " " << pwRotc[2][1] << " " << pwRotc[2][2] << endl;

cout << "x translation: " << Tx << endl;

cout << "y translation: " << Ty << endl;

cout << "z translation: " << Tz << endl;

cout << "Camera distance from object: " << Dinch << endl;

cin >> i;

}

/*---------------- Constructor and Destructor Functions ----------------*/

42

//constructor grabs a frame and gets 14 points from mouse

Calibration::Calibration(void)

{

int key = 0, i, index, NUM_PTS = NUM_CALIBRATION_PTS;

//initialize ptsGrabbed counter

ptsGrabbed = 0;

Ox = 0;

Oy = 0;

fx = 0;

fy = 0;

Tx = 0;

Ty = 0;

Tz = 0;

zDistance = 0;

//grab a frame using cvCaputureFromCAM()

cvNamedWindow("window", 0);

cvResizeWindow("window", 640, 480);

capture = cvCaptureFromCAM(CV_CAP_ANY);

//cvcamGetProperty(0, CVCAM_CAMERAPROPS, NULL);

cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME_WIDTH, 640);

cvSetCaptureProperty(capture, CV_CAP_PROP_FRAME_HEIGHT, 480);

cvSetMouseCallback("window", mouse_callback);

frame = cvQueryFrame(capture);

cvSaveImage("calibrationFrame.jpg", frame);

//size of frame

CvSize imgsize;

imgsize.width = frame->width;

imgsize.height = frame->height;

//change image to grayscale

IplImage* gray = cvCreateImage(imgsize, 8, 1);

cvCvtColor(frame, gray, CV_BGR2GRAY);

assert(gray);

//initialize edge detection variables

IplImage* eigImg = cvCreateImage(imgsize, IPL_DEPTH_32F, 1);

IplImage* tempImg = cvCreateImage(imgsize, IPL_DEPTH_32F, 1);

CvPoint2D32f calibration_edges[NUM_CALIBRATION_PTS];

CvPoint edges[NUM_CALIBRATION_PTS];

for(i = 0; i < NUM_CALIBRATION_PTS; i++)

{

calibration_edges[i].x = -1;

calibration_edges[i].y = -1;

edges[i].x = -1;

43

edges[i].y = -1;

}

cvGoodFeaturesToTrack(gray, eigImg, tempImg, calibration_edges, &NUM_PTS,

0.01, 0.01, NULL, 3, 1, 0.1);

for(i = 0; i < NUM_CALIBRATION_PTS; i++)

{

edges[i] = cvPointFrom32f(calibration_edges[i]);

}

for(i=0; i<NUM_CALIBRATION_PTS; i++)

{

if(edges[i].x != -1 && isRepeatPointCalibration(edges, edges[i]) == false)

{

cvCircle(frame, edges[i], 4, circleColor, 1);

}

else

{

edges[i].x = -1;

edges[i].y = -1;

}

}

//show image with circles and text

cvShowImage("window", frame);

while(key != 27)

{

key = cvWaitKey(100);

if(click == TRUE)

{

findNearestPoint(Xp[ptsGrabbed - 1], Yp[ptsGrabbed - 1], edges, index);

Xp[ptsGrabbed - 1] = edges[index].x;

Yp[ptsGrabbed - 1] = edges[index].y;

refresh(frame, edges);

click = FALSE;

}

if(ptsGrabbed == NUM_POINTS_GRABBED)

{

calibrate(frame, Ox, Oy, fx, fy, Tz, Tx, Ty, zDistance, cRotw, wRotc);

key = 27;

}

}

}

44

//destructor

Calibration::~Calibration(void)

{

cvReleaseCapture(&capture);

cvDestroyWindow("window");

}

8.4 Calibration.h

#ifndef _CALIBRATION_H_

#define _CALIBRATION_H_

#define NUM_CALIBRATION_PTS 80

#define NUM_POINTS_GRABBED 14

#define YMAX 430//240

class Calibration

{

public:

Calibration(void);

~Calibration(void);

IplImage* frame;

double Ox, Oy, fx, fy, Tz, Tx, Ty, zDistance;

double cRotw[3][3], wRotc[3][3];

};

#endif

8.5 Picture.cpp

#include<iostream>

using namespace std;

#include "cvcam.h"

#include "cv.h"

#include "highgui.h"

#include "windows.h"

#include "Calibration.h"

#include "CorrespondingPts.h"

#include "Picture.h"

/*------------------------------- Variables ---------------------------------*/

static bool click = FALSE;

static int Xp;

45

static int Yp;

CvCapture* capturePic;

/*------------------------ Picture Functions-------------------------------*/

//crops image

void cropImage(IplImage* srcframe, IplImage* dstframe)

{

int isrc = 0, jsrc = 0, idst = 0, jdst = 0;

int iindexsrc = 0, jindexsrc = 0, iindexdst = 0, jindexdst = 0;

CvPoint centerpt;

centerpt.x = Xp;

centerpt.y = Yp;

iindexsrc = centerpt.y - ((PCA_SIZE / 2) - 1);

for(iindexdst = 0; iindexdst < PCA_SIZE; iindexdst++)

{

jindexsrc = centerpt.x - ((PCA_SIZE / 2) - 1) +

srcframe->widthStep * iindexsrc;

for(jindexdst = ((dstframe->widthStep) * iindexdst);

jindexdst < (PCA_SIZE + (dstframe->widthStep) * iindexdst); jindexdst++)

{

dstframe->imageData[jindexdst] = srcframe->imageData[jindexsrc];

jindexsrc++;

}

iindexsrc++;

}

}

//refreshes screen

void refresh(IplImage* frame)

{

cvDestroyWindow("window");

cvNamedWindow("window", 0);

cvResizeWindow("window", PCA_SIZE, PCA_SIZE);

cvShowImage("window", frame);

}

/*-------------------------- Callback Functions---------------------------*/

//mouse callback function for picture taking

46

void mouse_callback_pic(int event, int x, int y, int flags, void* param)

{

if (event == CV_EVENT_LBUTTONDOWN)

{

Xp = x;

Yp = 240 - y; //must invert y-coord 240

click = TRUE;

}

}

/*------------------- Constructor and Destructor Functions--------------------*/

//constructor grabs a frame

Picture::Picture(void)

{

int key = 0;

CvSize imgsizesrc;

imgsizesrc.width = 320;

imgsizesrc.height = 240;

CvSize imgsizedst;

imgsizedst.width = PCA_SIZE;

imgsizedst.height = PCA_SIZE;

//displacement image (in pixels)

IplImage* finalframe = cvCreateImage(imgsizedst, 8,1);

cvSetZero(finalframe); //sets all elements in dx to zero

//grab a frame using cvCaputureFromCAM()

cvNamedWindow("window", 0);

capturePic = cvCaptureFromCAM(CV_CAP_ANY);

//cvcamGetProperty(0, CVCAM_CAMERAPROPS, NULL);

cvSetCaptureProperty(capturePic, CV_CAP_PROP_FRAME_WIDTH, CV_WINDOW_AUTOSIZE);

cvSetCaptureProperty(capturePic, CV_CAP_PROP_FRAME_HEIGHT, CV_WINDOW_AUTOSIZE);

cvSetMouseCallback("window", mouse_callback_pic);

frame = cvQueryFrame(capturePic);

//change image to grayscale

IplImage* gray = cvCreateImage(imgsizesrc, 8, 1);

cvCvtColor(frame, gray, CV_BGR2GRAY);

assert(gray);

cvShowImage("window", frame);

while(key != 27 && click == FALSE)

47

{

key = cvWaitKey(100);

}

cropImage(gray, finalframe);

cvFlip(finalframe, finalframe, 0);

cvSaveImage("trainingImage.jpg", finalframe);

cvDestroyWindow("window");

cvNamedWindow("window", 0);

cvResizeWindow("window", PCA_SIZE, PCA_SIZE);

cvShowImage("window", finalframe);

}

//destructor

Picture::~Picture(void)

{

cvReleaseCapture(&capturePic);

cvDestroyWindow("window");

}

8.6 Picture.h

#ifndef _PICTURE_H_

#define _PICTURE_H_

class Picture

{

public:

Picture(void);

~Picture(void);

IplImage* frame;

};

#endif

48

