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Abstract

This paper describes a strategy to feature point correspondence and motion recovery in vehicle navigation. A trans-
formation of the image plane is proposed that keeps the motion of the vehicle on a plane parallel to the transformed
image plane. This permits to de"ne linear tracking "lters to estimate the real-world positions of the features, and allows
us to select the matches that accomplish the rigidity of the scene by a Hough transform. Candidate correspondences are
selected by similarity, taking into account the smoothness of motion. Further processing brings out the "nal matching.
The methods have been tested in a real application. ( 1999 Pattern Recognition Society. Published by Elsevier Science
Ltd. All rights reserved.
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1. Introduction

The general problem of motion analysis from image
sequences can be stated as to "nding the 3]3 rotation
matrix, r

3D
, and the 3D translation vector, t

3D
, that the

camera co-ordinate system has to undergo in two con-
secutive images in order to match the projection of the
scene viewed in both images. This is an ill-de"ned prob-
lem which can lead to several solutions for r

3D
and t

3D
,

and, due to the speed-scale ambiguity, only the direction
of the translation can be recovered. The computation of
these parameters is based on a former computation of the
projected motion, that is, the motion of the projected
scene on the image plane. The problem of "nding
the projected motion is approached by either the com-
putation of the optical #ow, basically using intensity
di!erences in two consecutive images [1,2], or by the
computation of feature correspondences [3}7]. This
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latter method seems more reliable for real-time, real-
world applications since, once the features have been
selected, the amount of data to process is signi"cantly
reduced.

In real-world applications some constraints are usu-
ally applied to the general problem [8,9], for example: the
motion is known, then a 3D map of the scene can be
recovered [10,11]; or there exist some landmarks in the
scene whose real-world positions can be used as a refer-
ence [12}14]; or some of the motion parameters are
"xed, a rotation angle or a component of the translation
vector [15].

The latest situation is usually the case in autonomous
vehicle navigation. A simple and quite common con"g-
uration of the camera is shown in Fig. 1. The camera is
mounted on the vehicle and its height from the ground, v,
and tilt angle, u, are "xed. In some cases the camera
could be mounted vertically, but this cannot be done
generally since the mobile robot can occlude part of the
"eld of view. The roll angle is set to zero as the vehicle is
assumed not to roll. It is also assumed that the features
lie on the ground plane. Such a con"guration can be
found in some works about road-following [9,15], indoor
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Fig. 1. Camera mounted on a vehicle.

navigation [10] or outdoor scenarios [11]. Feature
tracking is a usual approach to motion estimation, al-
though the nature of the extracted features depends on
the type of scenes we are dealing with. Feature point
tracking is quite a common approach, where the points
are usually extracted from the grey-level images by some
corner detector. This is the con"guration that will be
followed in the present work: an approach to the feature
correspondence and motion recovery within this frame-
work will be presented, together with a real-world ap-
plication.

Once features have been extracted, a correspondence
in consecutive images is needed to provide an estimation
of the ego-motion of the vehicle. From the feature corre-
spondence the motion parameters can be recovered by
minimisation [16,17]. Then, from the motion parameters
the present positions of the features can be estimated by
updating the tracking "lters assigned to each feature with
the new observations. Kalman "lters are commonly used
for this task. Nevertheless, "nding the correct feature
correspondence is the key to satisfactory performance of
the method. This is known as the data association prob-
lem [18,19], and consists of assigning each feature to the
correct tracking "lter.

Several works that address feature correspondence can
be found in the literature. Some of them assume indepen-
dently moving features, and "nd the correspondence by
assuming smooth trajectories, applying convenient con-
straints [3,4], while they consider no attribute or charac-
teristics of the features which could be used to perform an
initial matching by similarity. Other works [5}7] pre-
serve the a$ne structure of the feature set by assuming
a rigid object or scene, but they assume that exactly the
same number of features is available in the two images,
and cannot cope with misdetected features.

In our approach, we take advantage of the special
con"guration of the camera and motion undergone in
autonomous navigation, that is, the vehicle moves on the
ground plane. Another constraint which applies is the
rigidity of the scene. We assume that no other moving
objects appear in the "eld of view, and we will take
advantage of the global rigidity to reject outliers after an
initial matching based on similarity between features. In

this problem the motion is 2D, but is has 3D compo-
nents when expressed in the camera coordinate system.
Some of the computations inherent to the proposed ap-
proach require less e!ort if the image plane is parallel
to the plane of motion, but these planes are not parallel
in general. Therefore, we propose to remove the perspect-
ive e!ect by de"ning the virtual image plane, as the
image plane which would have been used if the camera
was exactly in a vertical position. The features are
extracted from the original images and transferred to
the virtual image plane, so one does not have to transfer
whole grey-level images but just the selected features,
saving computing time. The transformation is "xed
and its parameters come from the camera calibration
data.

A similar re-projection scheme, the inverse pers-
pective mapping has been used to compute optical #ow
[20], or to "nd regions belonging to the ground plane
in stereo images [21]. But the inverse perspective
mapping re-projects a whole image while in our ap-
proach just a few number of feature positions are re-
projected.

Some tasks can be simpli"ed when working on the
virtual image plane, like the rejection of outliers since,
due to the rigidity of the scene, all of the correspondences
have to be arisen from a rotation and a translation of this
plane. Also, since the motion of the vehicle is parallel to
the virtual image plane, it can be expressed as a 2D
motion. Working in 2D simpli"es the problem and saves
computational e!orts in some stages of the method. An-
other important advantage of using the virtual image
plane is that the Kalman "lters that estimate the position
of each feature remain linear because the depth of the
features in the virtual camera coordinate system does not
change with motion on the ground plane.

The rest of the paper is organised as follows: Section 2
presents the problem this work is focused on. Section 3
presents the approach to feature correspondence. Sec-
tion 4 explains the design of the tracking "lters assigned
to the features. Section 5 presents results with real image
sequences in the context of an autonomous navigation
application. Finally, some conclusions are drawn in Sec-
tion 6.

2. Problem statement

The visual information registered from a camera on an
autonomous vehicle can be mainly used, among others,
to provide information of the frame-to-frame motion to
the vehicle control system. From this information the
absolute trajectory and position of the vehicle can be
worked out. Since the vehicle moves over the ground, its
motion is two-dimensional, the motion parameters con-
sist of a 2]2 rotation matrix, r

2D
, and a 2D translation

vector, t
2D

.
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Fig. 2. Camera and world coordinates.

Fig. 3. Virtual vertical camera.

The relation between the camera and the world co-
ordinate systems can be seen in Fig. 2. At time instant
0 ("rst frame) axis x

w
is aligned with axis x

c
, in further

frames this alignment will no longer exist (in general),
given that the vehicle rotates and translates over the
ground. With this camera con"guration the vehicle
motion is expressed as a 3D motion in the camera coordi-
nate system. To avoid this, and constrain the camera
motion to be 2D, we introduce the virtual vertical camera
(Fig. 3). Its coordinate system is de"ned by applying
a rotation of angle u to the real camera coordinate
system around axis x

c
,

The advantage of using the virtual camera is that, since
the (x

vc
, y

vc
) plane is parallel to the ground plane, the

vehicle motion will remain 2D when expressed in its
coordinate system. There is no translation along the
z
vc

direction, which will be convenient when "nding the
feature correspondences and when tracking the features
through an image sequence. This will also make the
Kalman "lters de"ned to estimate the feature positions to
remain linear.

The approach here presented takes advantage of sev-
eral assumptions, and can be summarised as follows:

f Ground plane motion: Common in vehicle navigation.
The features are transferred to the so called virtual
image plane, which is parallel to the plane of motion.

f Similarity between features: An initial matching is
made based on similarity measurements of the features
in consecutive images.

f Smoothness of motion: The previous motion para-
meters are used to de"ne search regions for candidate
matches.

f Rigidity of the scene: The global rigidity is used to
reject outliers through a Hough transform-like tech-
nique.

f Poor feature extraction: The tracking "lter assigned to
a feature is still updated if no new observation is found
for it, and it is taken into account in the next frame.
The method copes with misdetected features.

f Planar feature set: The features are assumed to lie on
the same plane.

The transformation from the real image plane to the
virtual image plane is done by applying a "xed rotation
followed by a projection. The focal length, f, and the tilt
angle, u, are known and part of the calibration data. Let
(x

c
, y

c
, z

c
)T, where z

c
" f, be the camera co-ordinates of

a point in the image plane. Let (x@
vc
, y@

vc
, z@

vc
)T be the

coordinates of the same point expressed in the virtual
camera coordinate system, and let (x

vc
, y

vc
, z

vc
)T be the

coordinates of the corresponding projection of the same
point on the virtual image plane. These coordinates can
be found as follows:

A
x@

vc
y@

vc
z@
vc
B"A

1 0 0
0 cosu !sinu
0 sinu cosuBA

x
c

y
c
f B ;

A
x
vc

y
vc

z
vc
B" f

z@
vc A

x@
vc

y@
vc

z@
vc
B ; A

x
vc

y
vc

z
vc
B"A

f
x
c

y
c

sinu#f cosu

f
y
c

cosu!f sinu

y
c

sinu#f cosu

f B . (1)

Assuming a previously calibrated camera, the calibration
data should include the camera height, v, the tilt angle, u,
the focal length, f, and the real size of the image plane,
expressed for example as introduced by Tsai [22]: num-
ber of sensors and distance between adjacent sensors in
both directions of the image plane. No radial distortion
is assumed. As mentioned, the calibration procedure is
explained in detail in [22], but brie#y consists of
placing a set of coplanar test points whose 3D positions
and projections are known (for simplicity the points
can be placed on the ground plane), and "nding the
intrinsic and extrinsic calibration parameters by solving
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an over-determined linear system of equations by minim-
isation.

Since the motion in undergone in the ground plane
(parallel to the virtual image plane), the motion of the
projected features in the virtual image plane can be
obtained from the frame-to-frame motion. Let r

k,k~1
(2]2

rotation matrix) and t
k,k~1

(2D translation vector) ex-
press the frame-to-frame motion, then the motion of the
projected features can be expressed as

A
xproj
vc

yproj
vc
B
k

"r
k,k~1A

xproj
vc

yproj
vc
B
k~1

#

f

z
vc

t
k,k~1

, (2)

and vice versa,

A
xproj
vc

yproj
vc
B
k~1

"r~1
k,k~1CA

xproj
vc

yproj
vc
B
k

!

f

z
vc

t
k,k~1D (3)

where the superscript proj indicates coordinates of the
projected features, and z

vc
is the real depth of the feature,

whose value is known from the calibration and equal to
the camera height, since the features lie on the ground.

The frame-to-frame motion, as de"ned above, is op-
posed to the motion of the camera and so to the motion
of the vehicle, that is, if the camera goes forward the
projected features move backwards on the image plane.
The absolute motion of the vehicle can be computed
recursively from the frame-to-frame motion. Let R

k
(2]2

rotation matrix) and T
k

(2D translation vector) be the
absolute motion of the vehicle in world coordinates, then:

R
k
"R

k~1
r~1
k,k~1

; R
0
"I,

T
k
"T

k~1
!R

k
t
k,k~1

; T
0
"0.

(4)

The problem is to "nd r
k,k~1

and t
k,k~1

through a se-
quence of images. This implies to select the features and
to track them estimating their real-world positions.

3. Feature correspondence

The kind of features to use depends mostly on the
application, but a common characteristic is that they
have to remain as much stable as possible through the
sequence. So, line segments have been widely used mainly
in indoor navigation [23,24], where doors, corridors,
walls, and other man-made objects are quite common in
the scenes. Corners computed from raw, grey-level im-
ages have also been widely used, either in indoor or
outdoor applications [3,25,26], and some works can be
found that try to unify both kind of features in a motion
estimation framework [27,28]. Other useful features are
segmented regions [29], dominant points in contours
[30,31], or curves [32].

Due to the special characteristics of the application to
which this work is mainly addressed, we have used points
as features to be tracked (line segments can be discarded

due to the nature of the outdoor scenes we deal with). So
for the rest of the work we assume that a set of feature
points is available for every image. The method to "nd
the correspondence and motion recovery is independent
of the way the feature points were extracted, the only
requirement is that they are stable and that some
measurements of the characteristics of the points can be
provided.

A kind of feature is stable if the detected features do
not often appear and disappear from image to image.
Stability is closely related to the robustness of the
method to extract the features. A quanti"cation of the
stability is desirable in order to check if a feature detec-
tion method is robust enough. In the following we pro-
pose a measurement for the stability of features:

Let n
k

be the number of features detected in image k.
Let det

k,k~1
be the number of features that also appeared

in image k!1 and were detected. Let notdet
k ,k~1

be the
number of features that also appeared at image k!1, but
were not detected. Let notview

k,k~1
be the number of

features in image k that did not appear in image k!1
(due to the motion of the camera). Clearly n

k
"

det
k,k~1

#notdet
k,k~1

#notview
k,k~1

. A possible de"ni-
tion of a "gure of merit is

sta
k
"100

det
k,k~1

n
k
!notview

k,k~1

(in %). (5)

One drawback is that it is di$cult, or almost impracti-
cable, to automatically count the number of features
belonging to each class. Instead, the features have to be
matched manually.

Finding the correspondence between two sets of fea-
tures in a pair of consecutive images is a key problem in
feature-based motion estimation, and has been the focus
of attention since the very "rst approach to motion
recovery. One of the classic works was reported by Scott
and Longuet-Higgins [4], another recently reported ap-
proach is the work by Salari and Sethi [33]. Our ap-
proach is di!erent from these works in which it combines
the assumptions of rigidity of the scene, smoothness of
motion and similarity between features, taking advant-
age of the special con"guration of the camera used in
vehicle navigation to de"ne the virtual image plane. We
propose a tracking strategy based on three main stages:
computation of candidate matches by smoothness of
motion and similarity; rejection of outliers by the rigidity
of the scene; and "nal matching and motion recovery,
including the estimation of the feature positions from all
of the previous observations. Working in the virtual
image plane has the advantage of simplifying the prob-
lem since, once the feature points have been transferred
to it, the problem becomes the one of "nding the corre-
spondence between two 2D point patterns undergoing
a 2D motion, although these patterns may contain mis-
detected and newly appearing feature points.
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The correspondence has to be solved as a "rst step to
feature tracking, by which we mean to assign a new
observation to a tracker (tracking "lter) that estimates
the real position of the feature based on previous obser-
vations; and also it has to be solved previously to estima-
ting the camera motion from the set of correspondences.
Each feature has a tracking "lter (Kalman "lter) assigned
to it, that estimates its most likely position from all of the
previous observations. The data to be estimated are the
projections of the features on the virtual image plane,
(xproj

vc
, yproj

vc
). The features observed in image k

~1
have

already an associated tracker. The structure and design
of the tracker is the same for all features, details on this
will be given later. Features appearing in image k have
not been associated to a tracker yet, but they will be after
the correspondence is found, then the new observation
will be used to update the corresponding tracker. Fea-
tures in image k for which no correspondence is found are
assumed to be new, and a new tracker is initiated for
them.

The correspondence is found from features in frame
k to all of the estimated positions of the features that have
been observed before, we will call these present tracks.
Since features are assigned to present tracks, a feature
that is not detected during some frames will be assigned
to its corresponding track when detected again. When
a feature is not detected a change of coordinates is made
to its estimated position in order to update it on the
virtual plane. The tracks are "ltered before the corre-
spondence is started to reject those that lie outside the
present "eld of view, these are not taken into account in
the present correspondence, which is done between
tracks and features detected in the present frame.

The correspondence problem can be stated as follows:
Let n

k
be the number of detected features in image k, and

let n
k~1

be the estimated positions from the trackers at
time k!1 that survive the "ltering (tracks in image k!1).
Solving the correspondence consists of "nding a back-
ward mapping, W

,
: i3[1,2, n

k
]Pj3[0, 1,2, n

k~1
],

and a forward mapping H
,
: j3[1,2, n

k~1
]Pi3

[0, 1,2, n
k
] following some criteria, and so that:

f W
,
(i) is the corresponding track in image k!1 to

feature i in image k.
f W

,
(i)"0 means feature i has no correspondent in

image k!1 (new appearing feature).
f H

,
( j) is the corresponding feature in image k to track

j in image k!1.
f H

,
( j)"0 means feature j has no correspondent in

image k (it has disappeared from the "eld of view, or it
has not been detected).

The criteria we follow to "nd the mapping is to satisfy the
following constraints:

f Similarity between features: Some properties can be
computed for each feature that characterise them. Fea-

tures in two consecutive images with close values of
these characteristics are more likely to be correspon-
dent. Since features in image k are to be matched to
tracks in image k!1, the characteristics of the last
observation are stored for each track, and used to
provide a measurement of similarity.

f Smoothness of motion: The expected motion is related
to the previous motion estimation. We just look for
corresponding features in an area near to the expected
positions of the present ones.

f Rigidity of the scene: We assume that only the camera
moves, so all the correspondences have to arise from
the same motion.

A scheme of the proposed tracking strategy is shown in
Fig. 4. The method can be divided into three main stages.
Finding an initial matching by similarity between fea-
tures. Making a selection by the global rigidity of the
scene, and computing the rest of the matches. The motion
parameters are found by minimisation, and the position
of the features are estimated by updating the Kalman
"lters assigned to them with the new observations.
A more detailed explanation of the tracking strategy is
given in the following sub-sections.

3.1. Similarity between features

A general procedure to give a measure of similarity
between features consists of computing a vector of char-
acteristics for every feature, (c

1i
, c

2i
,2, c

Ni
)T. The mean-

ing of these values is highly dependent on the method
used to detect them (details on the characteristics that
have been used in our application will be given in the
results section). Then a distance between features can be
de"ned as

d2
ij
"

N
+
l/1

w2
l
(c

li
!c

lj
)2 , (6)

where d
ij

is the distance between feature i in image k and
feature j in image k!1, and w

l
is the weight associated to

characteristic l (l"1,2, N).
Features are compared in terms of this distance, and

a similarity matrix is built up. We call one-way matches
to the entries that are a minimum either in their row or
column, and two-way matches to the ones that are a min-
imum in both row and column. The latter will be used
to further select the correct matches through a Hough
transform-like technique, taking advantage of the rigidity
of the scene.

3.2. Smoothness of motion

The previous estimated frame-to-frame motion
(r
k~1,k~2

, t
k~1,k~2

) is used to search for correspondences.
Given a feature i in image k, the search area is located by
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Fig. 4. Scheme of the method to solve the correspondence problem and perform a feature tracking.

back-projecting its coordinates on image k!1 (3), but an
estimation of the depth, z

vc
, is needed in Eq. (3), so we

make the assumption that the depth is equal to the
camera height, that is, the features lie on the ground. This
is a reasonable approach for most autonomous navi-
gation applications, where the camera is pointed to the
ground; the same idea was used by Liu et al. [34] to
recover the ego-motion from line and point correspond-
ences on the ground plane. Finally the search area is set
as an ellipse of centres a and b, whose main axis is
oriented along the motion epipolar line. The coordinates
of point a are set by back-projecting the coordinates of
the feature point using a decreased value of z

vc
, and the

coordinates of b are set by back-projecting with an in-
creased value of z

vc
(30% of increasing/decreasing has

been used in our application).

The distance used can be considered a modi"ed Euclid-
ean distance since points inside a "xed distance threshold
do not lie inside a circle, but inside an ellipse oriented in
the direction of the epipolar line, found by using the
previous value of the motion parameters. By this approach
we favour the searching for correspondences in the direc-
tion of motion, which is mainly forwards although can
have some rotational or transversal component. Neverthe-
less the type of distance used should not be crucial to the
performance of the overall method, otherwise it would
mean the method is not robust enough.

3.3. Rigidity of the scene

The rigidity of the scene constrains the correspond-
ences to arise from the same motion of the camera. This
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Fig. 5. Motion parameters space, planes of constant t and
points representing candidate correspondences.

means that, ideally, the values of r
k,k~1

and t
k,k~1

in Eqs.
(2) and (3) have to be the same for all features. Once some
candidate correspondences have been found by selecting
similar features in the search areas, a Hough transform-
like technique is applied to further select those ones
having very close values of r

k,k~1
and t

k,k~1
. For each

correspondence, Eq. (2) can be separated into two equa-
tions with three unknowns: the rotation angle and the
two components of the translation vector

r
k,k~1

"A
cost !sint
sint costB ; t

k,k~1
"A

t
x
t
y
B . (7)

Fixing one unknown the other two can be found, so we
"x and give values to the rotation angle and compute the
translation. Doing this with all the correspondences we
obtain a set of points in the 3D space formed by (t, t

x
, t

y
),

arranged in planes of constant t (Fig. 5). Applying a clus-
tering to this set, and assuming that the erroneous corre-
spondences will have random directions while the correct
ones will represent nearly the same motion, we select the
biggest cluster (supported by a bigger number of points)
as a "rst estimate of (r

k,k~1
, t

k,k~1
). The points supporting

it represent the set of good correspondences. A similar
technique was used by Sanchiz et al. [29] to "nd corre-
spondences of blobs.

The range of values to give to t is centred on the last
estimated value of the rotation angle, and it can be
widened more or less to allow bigger variations in the
rotation. t varies in steps from a lower to an upper
bound, the number of steps has to be set to a value that
provides quite a "ne estimate but not too much to reject
correspondences that visually seem to come from the
same motion of the camera (for example, we have used
a range of 63 and 20 steps).

3.4. Procedure to xnd the correspondences

Following the criteria explained above leads to obtain-
ing an initial set of correspondences of present features to

existing tracks, and a "rst guess for the frame-to-frame
motion. After selecting the good correspondences a bet-
ter value of the motion parameters can be obtained by
minimisation. The remaining matches can be computed
by back-projecting the still non-matched features with
the recovered motion and "nding the most similar track
in image k!1. The input to the process are the estimated
feature positions and the motion parameters at frame
k!1. The method provides the updated estimations of
the feature positions and the new estimation of the
motion parameters at frame k#1. An scheme of the
approach is shown in Fig. 4. Its description is as follows:

Step 1. Compute initial (or candidate) matches
Build a distance matrix, dm. Each entry, dm[i, j], repres-
ents the distance (or dissimilarity) between feature i in
image k and track j in image k!1:

For each feature i in image k
For each track j in image k[1

If track j is inside the search region of feature i,
make dm[i, j ]\d

ij
else make dm[i, j]\in[nity

EndFor
EndFor

Find candidate correspondences as those pairs (i, j) in
which position dm[i, j] is at the same time minimum in
its row and its in column, this means that track j is the
most similar to feature i, and feature i is the most similar
to track j.

Step 2. Select the matches arising from the same motion
of the camera

To select an initial set of consistent matches we propose
a Hough transform-like technique which consists of giv-
ing values to the rotation angle and computing the corre-
sponding translation for every pair of candidate matched
features, thus obtaining a set of points in the 3D para-
meter space. After a clustering in this set, the points that
support the biggest cluster provide the coherent matches.
As it generally happens with Hough transform tech-
niques, this method provides robustness while permits to
aboard a 3D problem assuming just one independent
unknown:

For each candidate correspondence (i, j)
Give values to t as explained above, and
compute (t

x
, t

y
) from Eq. (2)

EndFor
Apply a clustering to the set of points (t, tx,, ty)
Find the biggest cluster, (t0, tx,0, ty,0)
Find a Urst guess for the motion parameters,
(r0;k,k!1, t0;k,k!1).

The matches that originated the points that support the
biggest cluster are marked as coherent matches, the others
are discarded. The clustering method used here is the
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sequential clustering with two thresholds introduced by
Trahanias [35].

Step 3. Compute the motion parameters by minimisation
The coherent matches are used to prepare two sets of 3D
points in world co-ordinates, points in the present frame
and points in the previous frame. The projected co-
ordinates (xproj

vc
, yproj

vc
) of all the features are known, and

the depths z
vc

are set to the camera height. The positions
in virtual camera coordinates of a feature are

(x
vc
, y

vc
, z

vc
)T"Axproj

vc

z
vc
f
, yproj

vc

z
vc
f
, z

vcB
T

(8)

The minimisation procedure used is the one presented by
Umeyama [16], this method has the advantage that it
always "nds a true rotation matrix. If we use the 3D
positions of the points in the minimisation, a 3]3 rota-
tion matrix and a 3D translation vector will be obtained
as the motion parameters. But, as every pair of corre-
sponding points have the same z

vc
coordinate, the motion

will be in the plane (x
vc
, y

vc
), that is, the z

vc
coordinate of

the translation is zero and the rotation is around the
z
vc

axis. So we can work only with the (x
vc
, y

vc
) coordi-

nates of the points and reduce the problem to a 2D one,
"nding a 2]2 rotation matrix, r

1;k,k~1
, and a 2D transla-

tion vector, t
1;k,k~1

. This simpli"cation is possible be-
cause the feature point correspondence is found in the
virtual image plane.

Step 4. Apply a further xltering to the present matches
The matches that represent a big variation from the
motion parameters (r

1;k,k~1
, t

1;k,k~1
) are rejected. Once

the motion is known, the new observed depth of a feature
can be found by triangulation. From Eq. (2),

A
xproj
vc

yproj
vc
B
k

!r
1;k,k~1A

xproj
vc

yproj
vc
B
k~1

"

f

z
vc

t
1;k,k~1

. (9)

Taking the module, which means to make the module of
the translation due to this match the same as the module
of the translation found by minimisation, and solving for
z
vc

(z
vc
"z

vc (0"4)
),

z
vc (0"4)

"f
Dt
1;k,k~1

D

KA
xproj
vc

yproj
vc
B
k

!r
1;k,k~1A

xproj
vc

yproj
vc
B
k~1
K
. (10)

Once z
vc (0"4)

is computed, we can solve for
t
k,k~1

(t
k,k~1

"t
k,k~1(0"4)

):

t
k,k~1(0"4)

"

z
vc (0"4)

f CA
xproj
vc

yproj
vc
B
k

!r
1;k,k~1A

xproj
vc

yproj
vc
B
k~1
D . (11)

The "ltering rejects the matches that produce a big vari-
ation in the depth, and those that represent a translation,
assuming the same rotation, that di!ers from t

1;k,k~1
in

an angle bigger than a certain upper bound (in our

application we have rejected variations in depth bigger
than 30%, and variations of more than 53 in the direction
of translation).

Step 5. Find the xnal matching
The remaining matches are found by computing
z
vc (0"4)

and t
k,k~1(0"4)

for all the possible correspondences
of the still non-matched features. We compute the sim-
ilarity distance for those ones whose z

vc (0"4)
and

t
k,k~1(0"4)

values are inside the limits, and successively
pick up the most similar pairs:

Repeat
For each still non-matched feature i in image k

For each still non-matched feature j in
image k!1

Find zvc(obs) and tk,k!1(obs) for match (i, j) by
triangulation
If the change in zvc is less than 30% and the
angle between tk,k!1(obs)

and tk;k,k!1 is less than 5 degrees, make
dm[i, j]\dij else make dm[i, j ]\inUnity

EndFor
EndFor
Pick up the minimum in dm, (position dm[i, j ])
If dm[i, j]STinUnity add this match to the set of
coherent matches

Until dm[i, j]\inUnity

Step 6. Find the xnal value for the motion parameters
A new (and de"nitive) value for the frame-to-frame
motion (r

k,k~1
, t

k,k~1
) is found by minimisation using all

of the matches. Umeyama's method is used again, as
explained above.

4. Tracking features

Using the features transferred to the virtual image
plane makes the tracking problem simpler. As this plane
is parallel to the plane of motion, the z

vc
coordinate of

the feature points remains unchanged in the virtual
camera coordinate system while the vehicle moves, so
the perspective projection of the features onto the virtual
image plane represents just a constant scaling. This
allows us to de"ne linear Kalman "lters to estimate the
positions of the feature points. The 2D frame-to-frame
motion undergone by the features is modelled as a linear
discrete dynamic system to which a Kalman "ltering is
applied.

A tracking "lter is initiated for every new feature ap-
pearing in the scene. Its function is to estimate the posi-
tion of the feature in virtual camera coordinates from the
observations of its projections, and from the estimated
value of the motion parameters (r

k,k~1
, t

k,k~1
). More

precisely, the data to estimate are the coordinates of
the projection of a feature on the virtual image
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plane, (xproj
vc

, yproj
vc

). Fixing the depth to the camera height
(z

vc
"v) the real-world position can be computed from

Eq. (9).
The Kalman "lter is used as a tracker, it estimates the

best value of a state vector from a set of Gaussian noisy
measurements in dynamic linear systems. In fact, the
frame-to-frame motion can be expressed as a linear sys-
tem if we use the coordinate axes of the virtual camera.
The "lter is updated recursively from each new observa-
tion. A deep discussion on Kalman "lter theory can be
found in [18,36], and applications of the Kalman "lter to
depth estimation in [37,38].

Let x
k

be an n-dimensional state vector. From state
x
k~1

, the system evolves to state x
k

by applying the
system model equation (12), where U

k
is the transition

matrix and C
k
u
k

is the input, but the new state is com-
bined with noise, modelled as a Gaussian random n-
dimensional vector v

k
, with 0 mean and covariance

matrix R
1
. Let y

k
be an m-dimensional measurement

vector. From state x
k
, a measurement is obtained by

applying matrix C
k
(13), but the observation is corrupted

again with noise, Gaussian random vector e
k
, with

0 mean and covariance matrix R
2
. From observation

y
k
and the previous estimation x

k~1Dk~1
, a prediction of

the state vector at instant k is made, x
kDk~1

. Then, this
prediction is updated with the Kalman gain matrix K

k
to

"nd the best prediction at instant k, x
kDk

. The covariance
matrix of the state vector, P

kDk
, is predicted in the same

way. The initial conditions are x
0D0

"E[x
0
] and P

0
"

cov[x
0
]. The random variables v

k
and e

k
are supposed to

be uncorrelated, E[v
k
eT
k
]"0

System model: x
k
"U

k~1
x
k~1

#C
k~1

u
k~1

# v
k
;

v
k
3N(0,R

1
). (12)

Measurement model: y
k
"C

k
x
k
#e

k
; e

k
3N(0,R

2
).

(13)

Initial state: E[x
0
]"x

0D0
; cov[x

0
]"P

0
.

Prediction at time instant k!1:

x
kDk~1

"U
k~1

x
k~1Dk~1

#C
k
u
k
. (14)

P
kDk~1

"U
k~1

P
k~1Dk~1

UT
k~1

#R
1
. (15)

Prediction at time instant k:

K
k
"P

kDk~1
CT

k
[C

k
P
kDk~1

CT
k
#R

2
]~1, (16)

x
kDk
"x

kDk~1
#K

k
[y

k
!C

k
x
kDk~1

], (17)

P
kDk
"[I!K

k
C

k
]P

kDk~1
. (18)

4.1. Kalman xlter design

The state vector is de"ned as

x
k
"A

xproj
vc

yproj
vc
B
k

. (19)

The transition matrix is used to express the rotation

U
k
"A

cost !sint
sint cost B

k

, or similarly U
k
"r

k,k~1
.

(20)

The input part in Eq. (12) is used to model the transla-
tion

C
k
"I, u

k
"A

f
t
x

z
vc

f
t
y

z
vc
B
k

. (21)

So, the transition from state k-1 to state k is

A
xproj
vc

yproj
vc
B
k

"A
cost !sint
sint cost B

k~1
A
xproj
vc

yproj
vc
B
k~1

#A
f

t
x

z
vc

f
t
y

z
vc
B
k~1

. (22)

The measurements from the visual information are the
coordinates of the projected features, (xproj

vc
, yproj

vc
), so

the measurement matrix is the 2]2 identity matrix,
C

k
"I.
Given a set of matches, W, H, where for feature i in

image k, the corresponding track in image k!1 is
j"W(i), and similarly i"H( j), the Kalman "lter asso-
ciated to track j is updated with the data observed for
feature i. New Kalman "lters are initiated for newly
observed features, those for which W(i)"0. The Kalman
"lters for which no new observation is found, H( j)"0,
just su!er a change of coordinates (2), so their uncertain-
ty (covariance matrix of the state vector, P

kDk
) is not

reduced in this frame. By this approach the system copes
with misdetected features, that is, these features are still
taken into account in the following frames by keeping
record of their last estimated positions, but referred to the
camera co-ordinate system at the present frame. If the
feature is detected in a forthcoming frame, it will be
assigned to the correct tracking "lter.

The covariance matrices, P
0
, R

1
and R

2
, are initiated

as

P
0
"R

1
"R

2
"A

p2
x

0
0 p2

y
B . (23)

where p
x

and p
y

are set to a certain fraction of the real
size of the "eld of view. These matrices represent the
uncertainty in the initial state x

0
(P

0
), the uncertainty in

the state update Eq. (12) (R
1
), and in the measurement

Eq. (13) (R
2
). The covariance matrix of the state vector,

P
kDk

, has been used in other approaches to de"ne search
regions when looking for candidate matches by means of
de"ning a distance (the search region is the one that falls
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inside a certain distance threshold). The Mahalanobis
distance has been often used [18,19]. We do not use this
statistical knowledge in our approach, instead the search
regions are computed from the previous motion by
allowing a certain variance range in the depth (see pre-
vious sections). This can be considered a practical ap-
proach which saves computations. Nevertheless, if the
overall method is robust enough, its performance should
not depend on the type of distance used to de"ne the
search regions when looking for candidate matches.

5. Experimental results

In our application, the context is an autonomous ve-
hicle that navigates in an outdoor crop "eld. The scenes
we deal with consist of a perspective view of a piece of
"eld where only natural objects, plants, appear. The
purpose of the application is to spray on the plants or
weeds automatically. To accomplish this, the images are
segmented to divide the scene into three classes, regions
of class &&soil'', regions of class &&plant'', and regions of
class &&weed''. The vehicle is equipped with a bar of
nozzles to perform the spraying. The same images are
used to identify the plants and to compute the motion
parameters, which are then used to place the images on
a map of the "eld, built up while the vehicle moves.
Exploring the map along the nozzle bar allows us to open
those nozzles that are over a plant or weed. The motion
estimation is intended to be passed to the vehicle control
system, thus closing the loop and trying to accomplish
autonomous row following (real-time autonomous row
following was reported by Sanchiz et al. [39], here the
visual motion was obtained from a real-time Hough
Transform-based row "nder reported by Marchant and
Brivot [40]).

The images are segmented with the method presented
by Brivot and Marchant [41]. To detect features we use
the contours of the regions of class &&plant'', and "nd
dominant points in them. By using just plants, and not
weeds, we can assume that all the feature points lie in
a common plane. The plants (di!erent type of vegetables
like cabbages or cauli#owers) have a certain height
(around 30 cm), while the weeds are at ground level.
A contour following algorithm was applied to code the
boundaries, although in a real-time implementation the
contours can be found and chain-coded at frame rate
(10 Hz) from a hardware chain encoder [42] (module that
segments and "nds the contour chain-code of the result-
ing blobs). The dominant points in the contours were
found by applying the neural network-based algorithm
for dominant point detection reported by Sanchiz et al.
[30,31]. Brie#y, the algorithm consist of training a neural
network to provide a measurement of the relevance of
a contour point, the net is applied to all the contour
points thus giving a cyclic discrete signal, which is thre-

sholded. The dominant points are computed as the cen-
troids of the segments that overpass the threshold. The
advantage of using a neural network-based algorithm is
its possibility to speed up the process.

The tracking method explained in this paper has been
tested with several image sequences (30 images each)
obtained from a camera mounted on a manually driven
vehicle undergoing zigzag motion. Fig. 6 shows some
sample images from a sequence, the segmentation, the
extracted contours, and the dominant points.

The stability of the dominant points was measured
with the approach presented in Section 2. This sequence
resulted in a stability of about 85%, so we may say that
the dominant point detection algorithm behaves satisfac-
torily enough. The reason for the stability not to be better
is mainly due to segmentation errors, that signi"cantly
change the contours of the objets in areas that were
assigned to a di!erent class in the previous image (a piece
of plant that now appears as weed for example). The
dominant point detection algorithm "nds di!erent points
in these areas.

For our features, two translation and rotation-inde-
pendent characteristics that can be used for similarity
measurements are the convexity and the orientation of
the contour in a small area around a dominant point.
Assuming both characteristics have the same importance,
we "x N"2, w

1
"1, and w

2
"1 in Eq. (6). Fig. 7 shows

the angles of convexity a and orientation b at a dominant
point p. Two points are found on either side of the
contour, p

a
and p

b
, so that the distance between p and p

a
,

and between p and p
b

is as close as possible to a given
value. The angle of convexity is the angle between seg-
ments pp

a
and pp

b
, and ranges from 0` to 1803 for convex

areas and from 0~ to !1803 concave ones. The angle of
orientation is the angle between the bisecting line and the
horizontal axis. The threshold distance for segments pp

a
and pp

b
has been "xed to 10% of the contour length.

Fig. 8 shows the matching process step by step. For
this sequence the calibration was: camera height
v"1200 mm, tilt angle was u"663, focal length
f"40 mm; the vehicle speed was about 1.25 m/s and the
frame rate was 200 ms. Two consecutive images with the
contours and the dominant points outlined can be seen in
Fig. 8a and b. Fig. 8c shows the features of both images
transferred to the virtual image plane, together with the
result of the initial matching. Fig. 8d shows the selected
correspondences after applying the Hough transform.
Fig. 8e shows the "nal correspondences and Fig. 8f the
correspondences on the original image. The rate of suc-
cessful correspondences was over 95% through a se-
quence of 30 images, this rate was determined by man-
ually identifying the correct matches, the incorrect, and
the missed ones in every image of the sequence.

From the frame-to-frame motion (r
k,k~1

, t
k,k~1

) the
absolute position and orientation of the vehicle (R

k
, T

k
)

are found from Eq. (4). In order to measure the accuracy
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Fig. 6. First row: consecutive grey-level images. Second row: segmented in plants (white), weeds (grey) and soil (black). Third row:
dominant points detected by a neural network-based algorithm.

Fig. 7. Convexity, a, and orientation, b, at a dominant point.

of the motion estimation, R
k

and T
k

were used to place
every image over the ground plane, thus building a map
of the "eld including the whole area travelled by the
vehicle. Since the images overlap in a certain extent,
a majority voting scheme was used to determine the
classi"cation of the pixels, counting the times that a pixel
is assigned a certain class (&&plant'', &&weed'' or &&soil''). The
crop is aligned in rows, in order to check the accuracy of
the method every plant was manually assigned to a cer-
tain row, and straight lines were "tted to the centres of
the blobs of class &&plant''. The root-mean-square error of
the "t, the parallelism and the distance between neigh-
bouring lines are measurements that indicate the accu-
racy of the map, and so of the estimated motion. Fig. 9
shows the "nal matching for the "rst images of the
sequence, and a map built in a 256]512 image at a scale
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Fig. 8. (a), (b) Two consecutive images; (c) initial matching on the virtual image plane; (d) selected matches after applying the Hough
Transform; (e) "nal correspondences; (f ) correspondences over the original image.
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Fig. 9. Left: "nal matching in four consecutive images. Right: map built from the motion recovered from the feature point correspond-
ences, with lines "tted to the centres of the plants in the rows. The last "eld of view and position of the nozzle bar are outlined.

of 15 mm per pixel, with the last "eld of view and position
of the nozzle bar outlined. The rms error of the "tted lines
was 32.7, 27.2 and 8.6 mm, respectively, the angle be-
tween neighbouring lines was 0.42 and 0.543, and the
distance, measured at the centre of the map, was 413.2
and 408.3 mm (400 mm is the approximate real-world
distance between rows in the crop). It has also to be noted
that the lines were "tted to the centres of the blobs of
class &&plant'', which are not exactly over the lines that
pass through the centre of the crop rows, nevertheless the
results are quite satisfactory.

Fig. 10 shows another example from a di!erent
sequence. In this test the vehicle speed was 0.25 m/s
and the frame rate 140 ms. The calibration was
v"1770 mm, u"903 (vertical camera), f"28 mm,
and the map is drawn at 6 mm per pixel. In fact, in
this sequence, the experimental vehicle was not used, and
the camera was mounted through a bar to a tractor
which moved along one side of the "eld. The distance
travelled after 30 images is quite short, so this is not
a good example to check the straightness of the rows of
the map.
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Fig. 10. Left: "nal matching in four consecutive images. Right: map built from the motion recovered from the feature point
correspondences.

6. Conclusions

A feature point-based strategy to solve the correspond-
ence problem and the tracking of features has been pre-
sented. The method is intended for autonomous navi-
gation applications, where a general constraint is that the
motion is undergone on the ground plane. The special
con"guration of the camera in this kind of applications is
used to de"ne the virtual image plane, parallel to the
plane of motion. This simpli"es the problem by reducing
it to "nding the correspondence between two 2D point
patterns. It also permits a simple rejection of outliers by

a Hough transform-like technique, and allows us to
de"ne linear Kalman "lters to estimate the feature
positions. A tracking strategy has been presented to solve
the correspondence problem, track the features through
a sequence, and recover the motion parameters. The
strategy is based on the assumptions of smoothness of
motion, similarity between features, and rigidity of the
scene.

The system provides an ego-motion estimation at the
present frame and the estimation of the feature posi-
tions in the real world. The tracking strategy, which
copes with misdetected features, can be divided into three
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main stages:

f A set of candidate matches is found by computing
similarities between feature points in a search region,
computed from the previous motion parameters for
each new feature observation.

f The rigidity of the scene is used through a Hough
transform-like technique to select the set of consistent
matches, thus performing a rejection of outliers.

f The motion parameters are found by minimisation,
and a "nal matching is computed. The tracking "lters,
Kalman "lters de"ned to estimate the feature posi-
tions, are updated with the new observations.

The method has been applied to a real-world vehicle
navigation application, consisting of an autonomous
agricultural vehicle navigating in a crop. Dominant
points in contours have been used as feature points.
Measurements of similarity have been de"ned for them.
The recovered motion has been used to build up terrain
maps, which are used for the "nal objective of the
application. Since the real value of the motion under-
gone by the vehicle in the tests is unknown, the recovered
maps are compared to the real-world expectations by
de"ning some application-oriented measurements, thus
obtaining a qualitative idea of the accuracy of the
recovered motion. The results obtained so far have
been quite satisfactory for the objectives of the applica-
tion.

7. Summary

This paper presents a strategy to "nd the corr-
espondence of feature points in the context of vehicle
planar navigation. From the point correspondences, the
ego-motion is recovered, and a map of the area travelled
by the vehicle is drawn up. Results of the methods
in a real application, consisting of an autonomous agri-
cultural vehicle navigating in a crop "eld, are also pre-
sented.

After a feature extraction, the feature points are
tracked through an image sequence, "nding the corre-
spondence from frame to frame. The tracking strategy is
based on the assumptions of similarity between features,
smoothness of motion, and rigidity of the scene. The
feature points are transferred to the de"ned virtual image
plane, parallel to the plane of motion, to simplify the
problem. Working in this plane allows us to select
the candidate matches that accomplish the rigidity of
the scene by a Hough transform technique, and also to
de"ne linear tracking "lters (Kalman "lters) to estimate
the feature real-world positions. The method can cope
with poor feature extraction, that is, if a feature point is
miss-detected in some frames, it is still assigned to the
correct tracking "lter when detected again.

Very brie#y, the tracking strategy can be divided into
three main stages:

f First, candidate matches are computed by similarity.
The most similar feature point in the previous frame,
which lies inside a search region, is selected as a candi-
date match. A search region is de"ned for each new
observation taking into account the previous motion
parameters.

f The matches that accomplish the rigidity of the scene
are selected through a Hough transform-like tech-
nique, these are the consistent matches. The method
consists of, for each candidate match, drawing points
in the motion parameter space (three parameters) and
applying a clustering to this set of points. The biggest
cluster provides a "rst guess for the motion para-
meters, while the matches that support it are con-
sidered the consistent matches.

f Finally, the complete matching is found. The motion
parameters are computed by minimisation from all of
the correspondences, and the new feature observations
are assigned to the corresponding Kalman "lters,
which are updated. A new Kalman "lter is de"ned for
every feature appearing for the "rst time in the scene,
to estimate their positions from the forthcoming obser-
vations of these feature points.

In our application, after a segmentation of the image,
feature points are computed as dominant points in con-
tours by a neural network-based approach. Some charac-
teristics of these feature points are de"ned to perform
similarity measurements. Finally, the accuracy of the
results is discussed. Since the exact motion undergone by
the vehicle is unknown, a qualitative idea of the accuracy
is obtained by comparing the map, drawn from the
recovered motion, to the real-world expectations.
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