Multigrid Acceleration of the Horn-Schunck Algorithm for the Optical Flow Problem

El Mostafa Kalmoun
kalmoun@cs.fau. de

Ulrich Ruede
ruede@cs.fau.de

Overview

- Introduction and Related Works
- Optical Flow Constraints
- Regularization
- Horn Schunck Algorithm
- Multigrid Scheme
- A Simple Illustration
- Variational Multigrid
- Experimental Results

Introduction and Related Works

Introduction and Related Works

Introduction and Related Works

The optical flow at the pixel (x, y) is the 2D-velocity vector $(u, v)=\left(\frac{d x}{d t}, \frac{d y}{d t}\right)$

Introduction and Related Works

The optical flow at the pixel (x, y) is the 2D-velocity vector $(u, v)=\left(\frac{d x}{d t}, \frac{d y}{d t}\right)$

- An approximation of the 2D-motion

Introduction and Related Works

The optical flow at the pixel (x, y) is the 2D-velocity vector $(u, v)=\left(\frac{d x}{d t}, \frac{d y}{d t}\right)$

- An approximation of the 2D-motion
- Optical Flow \neq Motion

Introduction and Related Works

\bowtie Term originates with James Gibson in 1979
\bowtie Quadratic smoothness \leftrightarrow Horn-Schunck (1981)
\bowtie Registration technique with local constraints \leftrightarrow Lucas-Kanade (1981)
\bowtie Oriented smoothness \leftrightarrow Nagel-Enkelmann (1983-86)
\bowtie Multigrid relaxation \leftrightarrow Terzopolous (1986)
\bowtie Performance evaluation of popular algorithms \leftrightarrow Barron-Fleet-Beauchemin (1994)
\bowtie General anisotropic smoothness \leftrightarrow Weickert (1996)
\bowtie Optimal control framework \leftrightarrow Borzi-Ito-Kunisch (2002)

Optical Flow Constraints

- $I(x, y, t)$: The image intensity of the pixel (x, y) at time t .
- I_{x}, I_{y}, I_{t} : Spatial and temporal derivatives of I.

Optical Flow Constraints

- $I(x, y, t)$: The image intensity of the pixel (x, y) at time t .
- I_{x}, I_{y}, I_{t} : Spatial and temporal derivatives of I.

Assumption : Objects keep the same intensity over time

Optical Flow Constraints

- $I(x, y, t)$: The image intensity of the pixel (x, y) at time t .
- I_{x}, I_{y}, I_{t} : Spatial and temporal derivatives of I.

Assumption : Objects keep the same intensity over time

$$
\begin{gathered}
\Downarrow \\
I(x, y, t)=I(x+d x, y+d y, t+d t)
\end{gathered}
$$

Optical Flow Constraints

- $I(x, y, t)$: The image intensity of the pixel (x, y) at time t .
- I_{x}, I_{y}, I_{t} : Spatial and temporal derivatives of I.

Assumption : Objects keep the same intensity over time
\square

$$
I(x, y, t)=I(x+d x, y+d y, t+d t)
$$

Taylor Expansion \Longrightarrow

$$
I_{x} u+I_{y} v+I_{t}=0
$$

The optical flow constraint equation (OFCE)

Optical Flow Constraints

An equivalent form of the (OFCE) :

$$
\vec{\nabla} I \cdot \vec{w}=-I_{t} \Rightarrow \vec{D} I .(\vec{w}, 1)=0
$$

where

$$
\vec{\nabla} I=\left(I_{x}, I_{y}\right), \quad \overrightarrow{D I}=\left(I_{x}, I_{y}, I_{t}\right)
$$

and

$$
\vec{w}=(u, v)
$$

Optical Flow Constraints

An equivalent form of the (OFCE) :

$$
\vec{\nabla} I \cdot \vec{w}=-I_{t} \Rightarrow \vec{D} I \cdot(\vec{w}, 1)=0
$$

where

$$
\vec{\nabla} I=\left(I_{x}, I_{y}\right), \quad \vec{D} I=\left(I_{x}, I_{y}, I_{t}\right)
$$

and

$$
\vec{w}=(u, v)
$$

Optical Flow Constraints

An equivalent form of the (OFCE) :

$$
\vec{\nabla} I \cdot \vec{w}=-I_{t} \Rightarrow \vec{D} I .(\vec{w}, 1)=0
$$

where

$$
\vec{\nabla} I=\left(I_{x}, I_{y}\right), \quad \vec{D} I=\left(I_{x}, I_{y}, I_{t}\right)
$$

and

$$
\vec{w}=(u, v)
$$

Optical Flow Constraints

An equivalent form of the (OFCE) :

$$
\vec{\nabla} I \cdot \vec{w}=-I_{t} \Rightarrow \vec{D} I .(\vec{w}, 1)=0
$$

where

$$
\vec{\nabla} I=\left(I_{x}, I_{y}\right), \quad \vec{D} I=\left(I_{x}, I_{y}, I_{t}\right)
$$

and

$$
\vec{w}=(u, v)
$$

Optical Flow Constraints

An equivalent form of the (OFCE) :

$$
\vec{\nabla} I \cdot \vec{w}=-I_{t} \Rightarrow \vec{D} I \cdot(\vec{w}, 1)=0
$$

where

$$
\vec{\nabla} I=\left(I_{x}, I_{y}\right), \quad \vec{D} I=\left(I_{x}, I_{y}, I_{t}\right)
$$

and

$$
\vec{w}=(u, v)
$$

Optical Flow Constraints

An equivalent form of the (OFCE) :

$$
\vec{\nabla} I . \vec{w}=-I_{t} \Rightarrow \vec{D} I \cdot(\vec{w}, 1)=0
$$

where

$$
\vec{\nabla} I=\left(I_{x}, I_{y}\right), \quad \vec{D} I=\left(I_{x}, I_{y}, I_{t}\right)
$$

and

$$
\vec{w}=(u, v)
$$

Optical Flow Constraints

An equivalent form of the (OFCE) :

$$
\vec{\nabla} I . \vec{w}=-I_{t} \Rightarrow \vec{D} I \cdot(\vec{w}, 1)=0
$$

where

$$
\vec{\nabla} I=\left(I_{x}, I_{y}\right), \quad \vec{D} I=\left(I_{x}, I_{y}, I_{t}\right)
$$

and

$$
\vec{w}=(u, v)
$$

Optical Flow Constraints

An equivalent form of the (OFCE) :

$$
\vec{\nabla} I \cdot \vec{w}=-I_{t} \Rightarrow \vec{D} I \cdot(\vec{w}, 1)=0
$$

where

$$
\vec{\nabla} I=\left(I_{x}, I_{y}\right), \quad \vec{D} I=\left(I_{x}, I_{y}, I_{t}\right)
$$

and

$$
\vec{w}=(u, v)
$$

We can only calculate the normal component of the velocity \vec{w} and not the tangent flow

Optical Flow Constraints

An equivalent form of the (OFCE) :

$$
\vec{\nabla} I \cdot \vec{w}=-I_{t} \Rightarrow \vec{D} I \cdot(\vec{w}, 1)=0
$$

where

$$
\vec{\nabla} I=\left(I_{x}, I_{y}\right), \quad \overrightarrow{D I}=\left(I_{x}, I_{y}, I_{t}\right)
$$

and

$$
\vec{w}=(u, v)
$$

We can only calculate the normal component of the velocity \vec{w} and not the tangent flow \longrightarrow The aperture problem.

Regularization

The (OFCE) is replaced by

$$
\begin{equation*}
\min _{(u, v)} \int_{x} \int_{y} E(u, v) \mathrm{d} x \mathrm{~d} y \tag{P}
\end{equation*}
$$

Regularization

The (OFCE) is replaced by

$$
\begin{equation*}
\min _{(u, v)} \int_{x} \int_{y} E(u, v) \mathrm{d} x \mathrm{~d} y \tag{P}
\end{equation*}
$$

where

$$
\begin{aligned}
& E=E_{d}+\alpha E_{r} \\
& E_{d}(u, v)=\left(I_{x} u+I_{y} v+I_{t}\right)^{2} \text { (the data term) }
\end{aligned}
$$

E_{r} is the regularization term

Regularization

The (OFCE) is replaced by

$$
\begin{equation*}
\min _{(u, v)} \int_{x} \int_{y} E(u, v) \mathrm{d} x \mathrm{~d} y \tag{P}
\end{equation*}
$$

where

$$
E=E_{d}+\alpha E_{r}
$$

$$
E_{d}(u, v)=\left(I_{x} u+I_{y} v+I_{t}\right)^{2} \text { (the data term) }
$$

E_{r} is the regularization term
and
α is a positive scalar for adjustment between E_{d} and E_{r}

Regularization

The (OFCE) is replaced by

$$
\begin{equation*}
\min _{(u, v)} \int_{x} \int_{y} E(u, v) \mathrm{d} x \mathrm{~d} y \tag{P}
\end{equation*}
$$

where

$$
E=E_{d}+\alpha E_{r}
$$

$$
E_{d}(u, v)=\left(I_{x} u+I_{y} v+I_{t}\right)^{2} \text { (the data term) }
$$

E_{r} is the regularization term
and
α is a positive scalar for adjustment between E_{d} and E_{r}

The method for solving (\mathbf{P}) will depend on the choice of E_{r}.

Horn-Schunck Algorithm

A standard choice of E_{r} is the isotropic stabilizer :

$$
E_{r}(u, v)=|\nabla u|^{2}+|\nabla v|^{2}
$$

Horn-Schunck Algorithm

A standard choice of E_{r} is the isotropic stabilizer :

$$
E_{r}(u, v)=|\nabla u|^{2}+|\nabla v|^{2}
$$

From calculus of variations, we get

$$
\begin{aligned}
& \alpha \Delta u-I_{x}\left(I_{x} u+I_{y} v+I_{t}\right)=0 \\
& \alpha \Delta v-I_{y}\left(I_{x} u+I_{y} v+I_{t}\right)=0
\end{aligned}
$$

Horn-Schunck Algorithm

A standard choice of E_{r} is the isotropic stabilizer :

$$
E_{r}(u, v)=|\nabla u|^{2}+|\nabla v|^{2}
$$

From calculus of variations, we get

$$
\begin{aligned}
& \alpha \Delta u-I_{x}\left(I_{x} u+I_{y} v+I_{t}\right)=0 \\
& \alpha \Delta v-I_{y}\left(I_{x} u+I_{y} v+I_{t}\right)=0
\end{aligned}
$$

We discretize the Laplacien Δ by the standard 5 point stencil

$$
\left(\begin{array}{rrr}
& 1 & \\
1 & -4 & 1 \\
& 1 &
\end{array}\right)
$$

and use $\Delta w=\bar{w}-w$ where \bar{w} is the average of the neighbors.

Horn-Schunck Algorithm

Spatial and Temporal Image Derivatives Masks

Horn-Schunck Algorithm

Spatial and Temporal Image Derivatives Masks

$$
M_{x}=\frac{1}{4}\left(\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right) \quad M_{y}=\frac{1}{4}\left(\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right) \quad M_{t}=\frac{1}{4}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Horn-Schunck Algorithm

Spatial and Temporal Image Derivatives Masks

$$
\begin{array}{ccc}
M_{x}=\frac{1}{4}\left(\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right) & M_{y}=\frac{1}{4}\left(\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right) & M_{t}=\frac{1}{4}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
I_{x}=M_{x} *\left(I_{1}+I_{2}\right) & I_{y}=M_{y} *\left(I_{1}+I_{2}\right) & I_{t}=M_{t} *\left(I_{2}-I_{1}\right)
\end{array}
$$

Coupled Gauss-Seidel relaxation

Horn-Schunck Algorithm

Spatial and Temporal Image Derivatives Masks

$$
\begin{array}{ccc}
M_{x}=\frac{1}{4}\left(\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right) & M_{y}=\frac{1}{4}\left(\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right) & M_{t}=\frac{1}{4}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
I_{x}=M_{x} *\left(I_{1}+I_{2}\right) & I_{y}=M_{y} *\left(I_{1}+I_{2}\right) & I_{t}=M_{t} *\left(I_{2}-I_{1}\right)
\end{array}
$$

Coupled Gauss-Seidel relaxation

$$
\begin{aligned}
& u^{k+1}=\bar{u}^{k}-I_{x} \frac{I_{x} \bar{u}^{k}+I_{y} \bar{y}^{k}+I_{t}}{\alpha+I_{x}^{2}+I_{y}^{2}} \\
& v^{k+1}=\bar{v}^{k}-I_{y} \frac{I_{x} \bar{u}^{k}+I_{y} \bar{v}^{k}+I_{t}}{\alpha+I_{x}^{2}+I_{y}^{2}}
\end{aligned}
$$

Multigrid Scheme

Multigrid Components

Multigrid Scheme

Multigrid Components

\bowtie Vertex-centered grid and standard coarsening

Multigrid Scheme

Multigrid Components

\bowtie Vertex-centered grid and standard coarsening
\bowtie Coupled lexicographic point Gauss-Seidel smoother

Multigrid Scheme

Multigrid Components

\bowtie Vertex-centered grid and standard coarsening
\bowtie Coupled lexicographic point Gauss-Seidel smoother
\bowtie Full weighting and bilinear interpolation

Multigrid Scheme

Multigrid Components

\bowtie Vertex-centered grid and standard coarsening
\bowtie Coupled lexicographic point Gauss-Seidel smoother
\bowtie Full weighting and bilinear interpolation
\bowtie Discretization coarse grid approximation (DCA approach)

A Simple Illustration

- Intensity value :

$$
I(x, y, t)=x+y+t
$$

A Simple Illustration

- Intensity value :

$$
I(x, y, t)=x+y+t
$$

A Simple Illustration

- Intensity value :

$$
I(x, y, t)=x+y+t
$$

- Corresponding system of PDE's :

$$
\begin{aligned}
& \alpha \Delta u=u+v+1 \\
& \alpha \Delta v=u+v+1
\end{aligned}
$$

A Simple Illustration

- Intensity value :

$$
I(x, y, t)=x+y+t
$$

- Corresponding system of PDE's :

$$
\begin{aligned}
& \alpha \Delta u=u+v+1 \\
& \alpha \Delta v=u+v+1
\end{aligned}
$$

A Simple Illustration

- Intensity value :

$$
I(x, y, t)=x+y+t
$$

- Corresponding system of PDE's :

$$
\begin{aligned}
& \alpha \Delta u=u+v+1 \\
& \alpha \Delta v=u+v+1
\end{aligned}
$$

Variational Multigrid

Write the system of the two PDE's as

$$
L\binom{u}{v}=\binom{f}{g}
$$

Variational Multigrid

Write the system of the two PDE's as

$$
L\binom{u}{v}=\binom{f}{g}
$$

where

$$
\begin{aligned}
f=-I_{x} I_{t} & , \quad g=-I_{y} I_{t} \\
L=L_{d}+L_{r} \quad, \quad L_{r}= & \left(\begin{array}{cc}
-\alpha \Delta & 0 \\
0 & -\alpha \Delta
\end{array}\right)
\end{aligned}
$$

and L_{d} is a 2×2 block diagonal matrix with entries $\left(\begin{array}{cc}I_{x}^{2} & I_{x} I_{y} \\ I_{x} I_{y} & I_{y}^{2}\end{array}\right)$

Variational Multigrid

Write the system of the two PDE's as

$$
L\binom{u}{v}=\binom{f}{g}
$$

where

$$
\begin{aligned}
f=-I_{x} I_{t} & , \quad g=-I_{y} I_{t} \\
L=L_{d}+L_{r} \quad, \quad L_{r}= & \left(\begin{array}{cc}
-\alpha \Delta & 0 \\
0 & -\alpha \Delta
\end{array}\right)
\end{aligned}
$$

and L_{d} is a 2×2 block diagonal matrix with entries $\left(\begin{array}{cc}I_{x}^{2} & I_{x} I_{y} \\ I_{x} I_{y} & I_{y}^{2}\end{array}\right)$
L_{d} (positive semi-definite)

Variational Multigrid

Write the system of the two PDE's as

$$
L\binom{u}{v}=\binom{f}{g}
$$

where

$$
\begin{aligned}
f=-I_{x} I_{t} & , \quad g=-I_{y} I_{t} \\
L=L_{d}+L_{r} \quad, \quad L_{r}= & \left(\begin{array}{cc}
-\alpha \Delta & 0 \\
0 & -\alpha \Delta
\end{array}\right)
\end{aligned}
$$

and L_{d} is a 2×2 block diagonal matrix with entries $\left(\begin{array}{cc}I_{x}^{2} & I_{x} I_{y} \\ I_{x} I_{y} & I_{y}^{2}\end{array}\right)$
L_{d} (positive semi-definite) $+L_{r}$ (positive definite)

Variational Multigrid

Write the system of the two PDE's as

$$
L\binom{u}{v}=\binom{f}{g}
$$

where

$$
\begin{aligned}
f=-I_{x} I_{t} & , \quad g=-I_{y} I_{t} \\
L=L_{d}+L_{r} \quad, \quad L_{r} & =\left(\begin{array}{cc}
-\alpha \Delta & 0 \\
0 & -\alpha \Delta
\end{array}\right)
\end{aligned}
$$

and L_{d} is a 2×2 block diagonal matrix with entries $\left(\begin{array}{cc}I_{x}^{2} & I_{x} I_{y} \\ I_{x} I_{y} & I_{y}^{2}\end{array}\right)$
L_{d} (positive semi-definite) $+L_{r}$ (positive definite) $=L$ (positive definite).

Variational Multigrid

Variational Minimization Form

$$
L w=F \quad \Longleftrightarrow \quad w=\arg \min _{\Omega} a(z)
$$

Variational Multigrid

Variational Minimization Form

$$
\begin{aligned}
L w=F \quad \Longleftrightarrow \quad w & =\arg \min _{\Omega} a(z) \\
a(z) & =\frac{1}{2}(L z, z)-(F, z)
\end{aligned}
$$

Variational Multigrid

Variational Minimization Form

$$
\begin{aligned}
L w=F \quad \Longleftrightarrow \quad w & =\arg \min _{\Omega} a(z) \\
a(z) & =\frac{1}{2}(L z, z)-(F, z)
\end{aligned}
$$

Galerkin Approach

Let $I_{H}^{h}: \Omega^{H} \mapsto \Omega^{h}$ be a full rank linear mapping.

Variational Multigrid

Variational Minimization Form

$$
\begin{aligned}
L w=F \quad \Longleftrightarrow \quad w & =\arg \min _{\Omega} a(z) \\
a(z) & =\frac{1}{2}(L z, z)-(F, z)
\end{aligned}
$$

Galerkin Approach

Let $I_{H}^{h}: \Omega^{H} \mapsto \Omega^{h}$ be a full rank linear mapping.
An optimal coarse grid correction $I_{H}^{h} w_{H}$ of w_{h} is characterized by

$$
\left(\left(I_{H}^{h}\right)^{T} L_{h} I_{H}^{h}\right) w_{H}=\left(I_{H}^{h}\right)^{T}\left(F-L_{h} w_{h}\right)
$$

Variational Multigrid

The CGO is chosen then as follows

$$
L_{H}=I_{h}^{H} L_{h} l_{H}^{h} \quad \text { and } \quad I_{h}^{H}=\left(I_{H}^{h}\right)^{T}
$$

Variational Multigrid

The CGO is chosen then as follows

$$
L_{H}=I_{h}^{H} L_{h} l_{H}^{h} \quad \text { and } \quad I_{h}^{H}=\left(I_{H}^{h}\right)^{T}
$$

For our system, we get

$$
\begin{aligned}
L_{H} & =\left(\begin{array}{ll}
R & 0 \\
0 & R
\end{array}\right)\left(\begin{array}{ll}
L_{h}^{1} & L_{h}^{2} \\
L_{h}^{2} & L_{h}^{3}
\end{array}\right)\left(\begin{array}{ll}
P & 0 \\
0 & P
\end{array}\right) \\
& =\left(\begin{array}{ll}
R L_{h}^{1} P & R L_{h}^{2} P \\
R L_{h}^{2} P & R L_{h}^{3} P
\end{array}\right)
\end{aligned}
$$

Variational Multigrid

- Multigrid Components

Variational Multigrid

- Multigrid Components
\triangleright Vertex-centered grid and standard coarsening
\triangleright Coupled lexicographic point Gauss-Seidel smoother
\triangleright Full weighting and bilinear interpolation

Variational Multigrid

- Multigrid Components
\triangleright Vertex-centered grid and standard coarsening
\triangleright Coupled lexicographic point Gauss-Seidel smoother
\triangleright Full weighting and bilinear interpolation
\triangleright Galerkin coarse grid approximation (GCA approach)

Variational Multigrid

- Multigrid Components
\triangleright Vertex-centered grid and standard coarsening
\triangleright Coupled lexicographic point Gauss-Seidel smoother
\triangleright Full weighting and bilinear interpolation
\triangleright Galerkin coarse grid approximation (GCA approach)
- The General Scheme

Variational Multigrid

- Multigrid Components
\triangleright Vertex-centered grid and standard coarsening
\triangleright Coupled lexicographic point Gauss-Seidel smoother
\triangleright Full weighting and bilinear interpolation
\triangleright Galerkin coarse grid approximation (GCA approach)
- The General Scheme

```
READ
FRAMES
```


Variational Multigrid

- Multigrid Components
\triangleright Vertex-centered grid and standard coarsening
\triangleright Coupled lexicographic point Gauss-Seidel smoother
\triangleright Full weighting and bilinear interpolation
\triangleright Galerkin coarse grid approximation (GCA approach)
- The General Scheme

Variational Multigrid

- Multigrid Components
\triangleright Vertex-centered grid and standard coarsening
\triangleright Coupled lexicographic point Gauss-Seidel smoother
\triangleright Full weighting and bilinear interpolation
\triangleright Galerkin coarse grid approximation (GCA approach)
- The General Scheme

Variational Multigrid

- Multigrid Components
\triangleright Vertex-centered grid and standard coarsening
\triangleright Coupled lexicographic point Gauss-Seidel smoother
\triangleright Full weighting and bilinear interpolation
\triangleright Galerkin coarse grid approximation (GCA approach)
- The General Scheme

Variational Multigrid

- Multigrid Components
\triangleright Vertex-centered grid and standard coarsening
\triangleright Coupled lexicographic point Gauss-Seidel smoother
\triangleright Full weighting and bilinear interpolation
\triangleright Galerkin coarse grid approximation (GCA approach)
- The General Scheme

Variational Multigrid

- Multigrid Components
\triangleright Vertex-centered grid and standard coarsening
\triangleright Coupled lexicographic point Gauss-Seidel smoother
\triangleright Full weighting and bilinear interpolation
\triangleright Galerkin coarse grid approximation (GCA approach)
- The General Scheme

Experimental Results

Experimental Results

A rotating sphere (128×128)

Experimental Results

A rotating sphere (128×128)

the flow field

Experimental Results

the flow field after scaling

Experimental Results

Experimental Results

The marble sequence (512×512)

the flow field

Experimental Results

the flow field after scaling

Experimental Results

The Hamburg taxi sequence (256x190)

Experimental Results

the flow field

Experimental Results

Experimental Results

$\alpha=5$								and	$u_{0}=v_{0}=0$	on P4 2.4GHz		
	Sphere		Marble		Taxi							
	ρ	CPU	ρ	CPU	ρ	CPU						
Horn-Schunck	0.98	3.9	0.98	106	0.98	20.8						
VMG V(2,1)	0.15	1.1	0.43	23.8	0.45	4.3						

Experimental Results

$\alpha=5$								and	$u_{0}=v_{0}=0$	on P4 2.4GHz		
	Sphere		Marble		Taxi							
	ρ	CPU	ρ	CPU	ρ	CPU						
Horn-Schunck	0.98	3.9	0.98	106	0.98	20.8						
VMG V(2,1)	0.15	1.1	0.43	23.8	0.45	4.3						

+ Robust (but not yet optimal convergence)

Experimental Results

$\alpha=5$								and	$u_{0}=v_{0}=0$	on P4 2.4GHz		
	Sphere		Marble		Taxi							
	ρ	CPU	ρ	CPU	ρ	CPU						
Horn-Schunck	0.98	3.9	0.98	106	0.98	20.8						
VMG V(2,1)	0.15	1.1	0.43	23.8	0.45	4.3						

+ Robust (but not yet optimal convergence)
* need matrix dependent transfer grid operators

Experimental Results

$\alpha=5$								and	$u_{0}=v_{0}=0$	on			P4 2.4GHz
	Sphere	Marble		Taxi									
	ρ	CPU	ρ	CPU	ρ	CPU							
Horn-Schunck	0.98	3.9	0.98	106	0.98	20.8							
VMG V(2,1)	0.15	1.1	0.43	23.8	0.45	4.3							

+ Robust (but not yet optimal convergence)
* need matrix dependent transfer grid operators
- Galerkin leads to high memory costs \Rightarrow search for better representation of the CGOs

Future work

- Application in medicine imaging
- Consider other regularization (e.g. by Nagel, Weickert ...)

Future work

- Application in medicine imaging
- Consider other regularization (e.g. by Nagel, Weickert ...)

PLEASE WAKE UP!

Future work

- Application in medicine imaging
- Consider other regularization (e.g. by Nagel, Weickert ...)

PLEASE WAKE UP!

THANKS FOR YOUR ATTENTION

