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Introduction and Related Works

./ Term originates with James Gibson in 1979

./ Quadratic smoothness ↔ Horn–Schunck (1981)

./ Registration technique with local constraints ↔ Lucas–Kanade
(1981)

./ Oriented smoothness ↔ Nagel–Enkelmann (1983–86)

./ Multigrid relaxation ↔ Terzopolous (1986)

./ Performance evaluation of popular algorithms ↔
Barron–Fleet–Beauchemin (1994)

./ General anisotropic smoothness ↔ Weickert (1996)

./ Optimal control framework ↔ Borzi–Ito–Kunisch (2002)
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Optical Flow Constraints

• I(x,y, t) : The image intensity of the pixel (x,y) at time t.

• Ix, Iy, It : Spatial and temporal derivatives of I .
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Optical Flow Constraints

• I(x,y, t) : The image intensity of the pixel (x,y) at time t.

• Ix, Iy, It : Spatial and temporal derivatives of I .

Assumption : Objects keep the same intensity over time

⇓

I(x,y, t) = I(x+dx,y+dy, t +dt)

Taylor Expansion =⇒

Ixu+ Iyv+ It = 0

The optical flow constraint equation (OFCE)
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Optical Flow Constraints

An equivalent form of the (OFCE) :

~∇I .~w =−It ⇒ ~DI .(~w,1) = 0

where

~∇I = (Ix, Iy) , ~DI = (Ix, Iy, It)

and
~w = (u,v)
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Optical Flow Constraints

An equivalent form of the (OFCE) :

~∇I .~w =−It ⇒ ~DI .(~w,1) = 0

where

~∇I = (Ix, Iy) , ~DI = (Ix, Iy, It)

and
~w = (u,v)

v

u

~∇I

−It/| ~∇I|

OFC line

~w1

~w2

We can only calculate the normal component of the velocity ~w and
not the tangent flow −→ The aperture problem.
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Regularization

The (OFCE) is replaced by

min
(u,v)

∫
x

∫
y
E(u,v)dxdy (P)
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Regularization

The (OFCE) is replaced by

min
(u,v)

∫
x

∫
y
E(u,v)dxdy (P)

where

E = Ed +αEr ,

Ed(u,v) = (Ixu+ Iyv+ It)
2 (the data term)

Er is the regularization term

and

α is a positive scalar for adjustment

between Ed and Er

The method for solving (P) will depend on the choice of Er.
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Horn-Schunck Algorithm

A standard choice of Er is the isotropic stabilizer :

Er(u,v) = |∇u|2+ |∇v|2
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Horn-Schunck Algorithm

A standard choice of Er is the isotropic stabilizer :
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From calculus of variations, we get

α∆u− Ix(Ixu+ Iyv+ It) = 0

α∆v− Iy(Ixu+ Iyv+ It) = 0
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Horn-Schunck Algorithm

A standard choice of Er is the isotropic stabilizer :

Er(u,v) = |∇u|2+ |∇v|2
From calculus of variations, we get

α∆u− Ix(Ixu+ Iyv+ It) = 0

α∆v− Iy(Ixu+ Iyv+ It) = 0

We discretize the Laplacien ∆ by the standard 5 point stencil 1
1 −4 1

1


and use ∆w = w̄−w where w̄ is the average of the neighbors.
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Horn-Schunck Algorithm

Spatial and Temporal Image Derivatives Masks
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Coupled Gauss-Seidel relaxation
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(
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−1 −1

)
Mt = 1

4

(
1 1
1 1

)
Ix = Mx∗ (I1+ I2) Iy = My∗ (I1+ I2) It = Mt ∗ (I2− I1)

Coupled Gauss-Seidel relaxation

uk+1 = ūk− Ix
Ixūk + Iyv̄k + It

α+ I2
x + I2

y

vk+1 = v̄k− Iy
Ixūk + Iyv̄k + It

α+ I2
x + I2

y
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Multigrid Scheme

Multigrid Components

Slide 10 of 23



Multigrid Scheme

Multigrid Components

./ Vertex-centered grid and standard coarsening

Slide 10 of 23



Multigrid Scheme

Multigrid Components

./ Vertex-centered grid and standard coarsening

./ Coupled lexicographic point Gauss-Seidel smoother

Slide 10 of 23



Multigrid Scheme

Multigrid Components

./ Vertex-centered grid and standard coarsening

./ Coupled lexicographic point Gauss-Seidel smoother

./ Full weighting and bilinear interpolation

Slide 10 of 23



Multigrid Scheme

Multigrid Components

./ Vertex-centered grid and standard coarsening

./ Coupled lexicographic point Gauss-Seidel smoother

./ Full weighting and bilinear interpolation

./ Discretization coarse grid approximation (DCA approach)
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A Simple Illustration

• Intensity value :

I(x,y, t) = x+y+ t
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A Simple Illustration

• Intensity value :

I(x,y, t) = x+y+ t

• Corresponding system of PDE’s :

α∆u = u+v+1

α∆v = u+v+1

α = 1 and u0 6= v0

Method Convergence rate

Horn-Schunck 0.998
V(1,0) 0.370
V(1,1) 0.183
V(2,1) 0.116
V(3,3) 0.056
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Variational Multigrid

Write the system of the two PDE’s as

L

(
u
v

)
=

(
f
g

)
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Variational Multigrid

Write the system of the two PDE’s as

L

(
u
v

)
=

(
f
g

)
where

f =−IxIt , g =−IyIt

L = Ld +Lr , Lr =
(
−α∆ 0

0 −α∆

)

and Ld is a 2x2 block diagonal matrix with entries
(

I2
x IxIy

IxIy I2
y

)

Ld (positive semi-definite) + Lr (positive definite) = L (positive definite).
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Variational Multigrid

Variational Minimization Form

Lw = F ⇐⇒ w = argmin
Ω

a(z)
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Variational Multigrid

Variational Minimization Form

Lw = F ⇐⇒ w = argmin
Ω

a(z)

a(z) = 1
2(Lz,z)− (F,z)

Galerkin Approach

Let Ih
H : ΩH 7→Ωh be a full rank linear mapping.

An optimal coarse grid correction Ih
HwH of wh is characterized by

((Ih
H)TLhI

h
H)wH = (Ih

H)T (F−Lhwh)
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Variational Multigrid

The CGO is chosen then as follows

LH = IH
h LhI

h
H and IHh = (Ih

H)T
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Variational Multigrid

The CGO is chosen then as follows

LH = IH
h LhI

h
H and IHh = (Ih

H)T

For our system, we get

LH =
(

R 0
0 R

)(
L1

h L2
h

L2
h L3

h

)(
P 0
0 P

)

=
(

RL1
hP RL2

hP
RL2

hP RL3
hP

)
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Experimental Results

the flow field after scaling
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Experimental Results

The Hamburg taxi sequence (256x190)
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Experimental Results

the flow field after scaling
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Experimental Results

α = 5 and u0 = v0 = 0 on P4 2.4GHz
Sphere Marble Taxi

ρ CPU ρ CPU ρ CPU
Horn-Schunck 0.98 3.9 0.98 106 0.98 20.8
VMG V(2,1) 0.15 1.1 0.43 23.8 0.45 4.3
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α = 5 and u0 = v0 = 0 on P4 2.4GHz
Sphere Marble Taxi

ρ CPU ρ CPU ρ CPU
Horn-Schunck 0.98 3.9 0.98 106 0.98 20.8
VMG V(2,1) 0.15 1.1 0.43 23.8 0.45 4.3

+ Robust (but not yet optimal convergence)

* need matrix dependent transfer grid operators

– Galerkin leads to high memory costs
⇒ search for better representation of the CGOs
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Future work

• Application in medicine imaging

• Consider other regularization (e.g. by Nagel, Weickert ...)
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