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Abstract: Although there are well established object detection methods based on static images, their 13 
application to video data on a frame by frame basis faces two shortcomings: (i) lack of computational 14 
efficiency due to redundancy across image frames or by not using temporal and spatial correlation 15 
of features across image frames, and (ii) lack of robustness to real-world conditions such as motion 16 
blur and occlusion. Since the introduction of the challenge ImageNet Large Scale Visual Recognition 17 
Challenge (ILSVRC) in 2015, a growing number of methods have appeared in the literature on video 18 
object detection, many of which have utilized deep learning models. The aim of this paper is to 19 
provide a review of these papers on video object detection. An overview of the existing datasets for 20 
video object detection together with commonly used evaluation metrics is first presented. Video 21 
object detection methods are then categorized and a description of each of them is stated. Two 22 
comparison tables are provided to see their differences in terms of both accuracy and computational 23 
efficiency. Finally, some future trends in video object detection to address the challenges involved 24 
are noted. 25 

Keywords: video object detection; review of video object detection; deep learning-based video 26 
object detection 27 

 28 

1. Introduction 29 

Video object detection involves detecting objects using video data as compared to conventional 30 
object detection using static images. Two applications that have played a major role in the growth of 31 
video object detection are autonomous driving [1, 2] and video surveillance [3, 4]. In 2015, video 32 
object detection became a new task of the ImageNet Large Scale Visual Recognition Challenge 33 
(ILSVRC2015) [5]. With the help of ILSVRC2015, studies in video object detection have further 34 
increased.  35 

Earlier attempts in video object detection involved performing object detection on each image 36 
frame. In general, object detection approaches can be grouped into two major categories: (1) one-stage 37 
detectors and (2) two-stage detectors. One-stage detectors (e.g., [6-12]) are often more 38 
computationally efficient than two-stage detectors (e.g., [13-21]). However, two-stage detectors are 39 
shown to produce higher accuracies compared to one-stage detectors.  40 

However, using object detection on each image frame does not take into consideration the 41 
following attributes in video data: (1) Since there exist both spatial and temporal correlations between 42 
image frames, there are feature extraction redundancies between adjacent frames. Detecting features 43 
in each frame leads to computational inefficiency. (2) In a long video stream, some frames may have 44 
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poor quality due to motion blur, video defocus, occlusion, and pose changes [22]. Detecting objects 45 
from poor quality frames leads to low accuracies. Video object detection approaches attempt to 46 
address the above challenges. Some approaches make use of the spatial-temporal information to 47 
improve accuracy, such as fusing features on different levels, e.g. [22-25]. Some other approaches 48 
focus on reducing information redundancy and improving detection efficiency, e.g. [26-28]. 49 

Initially, video object detection approaches relied on handcrafted features, e.g. [29-42]. With the 50 
rapid development of deep learning and convolutional neural networks, deep learning models have 51 
shown to be more effective than conventional approaches for various tasks in computer vision [43-52 
50], speech processing [51-55], and multi-modality signal processing [56-61]. A number of deep 53 
learning-based video object detection approaches were developed after the ILSVRC2015 challenge. 54 
These approaches can be divided into flow based [22, 27, 28, 62-64], LSTM based [65-68], attention 55 
based [25, 69-72], tracking based [26, 73-77] and other methods [36, 78-85]. A review of these 56 
approaches is provided in this paper.  57 

Section 2 covers the existing datasets and evaluation metrics for video object detection. Then, in 58 
Section 3, the existing video object detection approaches are described. The accuracy and processing 59 
time of these approaches are compared in Section 4. Section 5 mentions the future trends or needs 60 
related to video object detection. Finally, the conclusion is stated in Section 6. 61 

2. Datasets and Evaluation Metrics  62 

2.1. Datasets 63 

The most commonly used dataset is the ImageNet VID dataset [5], which is a prevalent 64 
benchmark for video object detection. The dataset is split into a training set and a validation set, 65 
containing 3862 video snippets and 555 video snippets, respectively. The video streams are annotated 66 
on each frame at the frame rate of 25 or 30 fps. In addition, this dataset contains 30 object categories, 67 
which are a subset of the categories in the ImageNet DET dataset [86].  68 

In the ImageNet VID dataset, the number of objects in each frame is small compared with the 69 
datasets used for static image object detection such as COCO [87]. Though the ImageNet VID dataset 70 
is widely used, it has limitations in fully reflecting the effect of various video object detection methods. 71 
In [88], a large-scale dataset named YouTube-BoundingBoxes (YT-BB) was provided which is human-72 
annotated at one frame per second on video snippets from YouTube with high accuracy classification 73 
labels and tight bounding boxes. YT-BB contains approximately 380,000 video segments with 5.6 74 
million bounding boxes of 23 object categories which is a subset of the COCO label set. However, the 75 
dataset contains only 23 object categories and the image quality is relatively low due to its collection 76 
by hand-held mobile phones. 77 

In 2018, a dataset named EPIC KITCHENS was provided in [89], which consists of 32 different 78 
kitchens in 4 cities with 11,500,000 frames containing 454,158 bounding boxes spanning 290 classes. 79 
However, its kitchen scenario poses limitation for performing generic video object detection. Also, 80 
there exist the following other datasets that reflect specific applications: the DAVIS dataset [90] for 81 
object segmentation, CDnet2014 [91] for moving object detection, VOT [92] and MOT [93] for object 82 
tracking. In addition, some works based on semi-supervised or unsupervised methods have been 83 
considered in [94-97]. 84 

For video object detection with classification labels and tight bounding boxes annotation, 85 
currently there exists no public domain dataset offering dense annotations for various complex scenes. 86 
To enable the advancement of video object detection, more effort is thus needed to establish 87 
comprehensive datasets. 88 

2.2. Evaluation Metrics 89 

The metric mean Average Precision (mAP) is extensively used in conventional object detection, 90 
which provides a performance evaluation in terms of regression and classification accuracies [9-15, 91 
17]. For video object detection, mAP is also directly used as an evaluation metric in [22, 25, 28, 67, 69]. 92 
Based on the object speed, it is labeled as mAP (slow), mAP (medium), and mAP (fast) [22]. This is 93 
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done using the average score of IoU (Intersection over Union) of a current frame and 10 frames ahead 94 
and past as follows: slow (score > 0.9), medium (score ∈ [0.7, 0.9]), and fast (score < 0.7). 95 

In [98], it was pointed out that performance cannot be sufficiently evaluated using only Average 96 
Precision (AP) since the temporal nature of video snippets do not get captured by it. In the same 97 
paper, a new metric named Average Delay (AD) was introduced based on the number of frames 98 
taken to detect an object starting from the frame it first appears. A subset of the ImageNet VID dataset, 99 
named ImageNet VIDT, was considered to verify the effectiveness of AD. It was reported that most 100 
methods having higher ADs still had good APs, indicating that AP was not sufficient to reflect the 101 
temporal characteristics of video object detectors.  102 

3. Video Object Detection Methods 103 

For video object detection, in order to make full use of the video characteristics, different 104 
methods are considered to capture the temporal-spatial relationship. Some papers have considered 105 
the traditional methods [29-42]. These papers heavily rely on the manual design leading to the 106 
shortcomings of low accuracy and lack of robustness to noise sources. More recently, deep learning 107 
solutions have attempted to overcome these shortcomings. As shown in Figure 1, based on the 108 
utilization of the temporal information and the aggregation of features extracted from video snippets, 109 
video object detectors can be divided into flow based [22, 27, 28, 62-64], LSTM based [65-68], attention 110 
based [25, 69-72], tracking based [26, 73-77] and other methods [36, 78-85]. These methods are 111 
described in more detail below. 112 

 113 

Figure 1. Categories of video object detection methods. 114 

3.1. Flow Based 115 

Flow based methods use optical flow in two ways. In order to save computation, in the first way 116 
as discussed in [28] (DFF), optical flow is used to propagate features from key frames to non-key 117 
frames. In the second way, as discussed in [22] (FGFA), optical flow is used to make use of the 118 
temporal-spatial information between adjacent frames to enhance the features of each frame. In the 119 
second way, higher detection accuracies but lower speeds are reported. As a result, attempts were 120 
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made to combine both of these ways in [63] (Impression Network) and [64] (THP). To obtain the 121 
difference between adjacent frames and utilize the temporal-spatial information at the pixel level, an 122 
optical flow algorithm was proposed in [29]. In [99], the optical flow estimation was achieved by 123 
using the deep learning model of FlowNet.  124 

For video object detection, it is challenging to apply the state-of-the-art object detection 125 
approaches for still images directly to each image frame in video data for the reasons stated earlier. 126 
Therefore, based on FlowNet, the DFF method was proposed in [28] to address these shortcomings: 127 
(i) computation time of feature map extraction for each frame in video, (ii) similarity of features 128 
obtained on two adjacent frames, (iii) propagation of feature maps from one frame to another. In [28], 129 
a convolutional neural sub-network, ResNet-101, was employed to extract the feature map on sparse 130 
key frames. Features on non-key frames were obtained by warping the feature map on key frames 131 
with the flow field generated by FlowNet [99] instead of getting extracted by ResNet-101. The 132 
framework is shown in Figure 2. This method accelerates the object detection on non-key frames. On 133 
the ImageNet VID dataset [5], DFF achieved an accuracy of 73.1% mAP with 20 fps while the baseline 134 
accuracy on a single frame was 73.9% with 4 fps. This method significantly advanced the practical 135 
aspect of video object detection. 136 

 137 

Figure 2. DFF framework [28]. 138 

In [22], a flow guided feature aggregation (FGFA) method was proposed to improve the 139 
detection accuracy due to motion blur, rare poses, video defocus, etc. Feature maps were extracted 140 
on each frame in video using ResNet-101 [100]. In order to enhance the feature maps of a current 141 
frame, the feature maps of its nearby frames were warped to the current frame according to the 142 
motion information obtained by the optical flow network. The warped feature maps and extracted 143 
feature maps on the current frame were then inputted into a small sub-network to obtain a new 144 
embedding feature which was used for a similarity measure based on the cosine similarity metric 145 
[101] to compute the weights. Next, the features were aggregated according to the weights. Finally, 146 
the aggregated feature maps were inputted into a shallow detection specific sub-network to obtain 147 
the final detection outcome on the current frame. The framework of FGFA is shown in Figure 3. Based 148 
on the ImageNet VID dataset, FGFA achieved an accuracy of 76.3% mAP with 1.36 fps, which was 149 
higher than DFF. 150 
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Figure 3. FGFA framework [22]. 152 

Although the feature fusion method of FGFA improved the detection accuracy, it considerably 153 
increased the computation time. On the other hand, feature propagation methods showed improved 154 
computational efficiency but at the expense of reduced detection accuracy. In 2017, a so-called 155 
Impression Network [63] was developed to improve the performance in terms of both accuracy and 156 
computational speed simultaneously. Inspired by the idea that humans do not forget the previous 157 
frames when a new frame is observed, sparse key-frame features were aggregated with other key 158 
frames to improve the detection accuracy. Feature maps of non-key frames were also obtained by a 159 
feature propagation method similar to that in [28] with the assistant of a flow field. As a result, feature 160 
propagation to obtain the features of the non-key frames improved the inference computation speed. 161 
The feature aggregation method on the key frames used a small fully convolutional network to obtain 162 
the weight maps on each localization, which was different from the method in [22]. Impression 163 
Network achieved 75.5% mAP accuracy at 20 fps on the ImageNet VID dataset. 164 

Besides Impression Network, in [64] another combination method (THP) was introduced. 165 
Noting that all of the above methods utilized fixed interval key frames, this method introduced a 166 
temporally-adaptive key frame scheduling to further improve the trade-off between speed and 167 
accuracy. Fixed interval key frames pose difficulty to control the quality of key frames. With 168 
temporally-adaptive key frame scheduling, the fixed interval key frames were adjusted in a dynamic 169 
manner according to the proportion of points with poor optical flow quality. If it was greater than a 170 
prescribed threshold T, it would indicate that a current frame had changed too much compared with 171 
the previous key frame. The current frame was then chosen as the new key frame and the feature 172 
maps were obtained from it. 173 

According to the results reported in [64], the mAP accuracy was 78.6% with a runtime of 13.0 174 
and 8.6 fps on the GPUs Titan X and K40, respectively. With a different T, the mAP slightly decreased 175 
to 77.8% at faster speeds (22.9 and 15.2 fps on Titan X and K40, respectively). Compared with the 176 
winning entry [102] of the ImageNet VID challenge 2017, which was based on feature propagation 177 
[28] and aggregation [22], an mAP of 76.8% at 15.4 fps was achieved on Titan X, and a better 178 
performance in terms of both the detection accuracy and speed was obtained in [64]. 179 

3.2. LSTM Based 180 

In order to make full use of the temporal-spatial information, convolutional long short term 181 
memory (LSTM [103]) was employed to process sequential data in [104] and select important 182 
information for a long duration. The methods reported in [65] and [66] are offline LSTM based 183 
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solutions which utilize all the frames in video. While the method in [67] is an online solution, it only 184 
uses the current and previous frames.  185 

In [66], a light model was proposed, which was designed to work on mobile phones and 186 
embedded devices. This method integrated SSD [9] (an efficient object detector network) with the 187 
convolutional LSTM by applying image-based object detector to video object detection via a 188 
convolutional LSTM. The convolutional LSTM was a modified version of the traditional LSTM 189 
encoding the temporal and spatial information.  190 

Considering a video snippet as video frames V = {I0, I1, I2, … It}, the model is viewed as a function 191 
𝐹(𝐼𝑡 , 𝑺𝒕−𝟏) = (𝐷𝑡 , 𝑺𝒕), where 𝐷𝑡  denotes the detection outcome of the video object detector and 𝑺𝒕 192 
represents a vector of feature maps up to the video frame t. Each feature map of 𝑺𝒕−𝟏 is the state 193 
input to the LSTM and 𝑺𝒕  is the state output. The state unit 𝑺𝒕  of LSTM contains the temporal 194 
information. LSTM can combine the state unit with input features, adaptively adding the temporal 195 
information to the input features, and updating the state unit at the same time. In [66], it was stated 196 
that such a convolutional LSTM layer could be added to any layer of the original object detector to 197 
refine the input features of the next layer. An LSTM layer could be placed immediately after any 198 
feature map. Placing the LSTM earlier would lead to larger input volumes and much higher 199 
computational cost. In [66], the convolutional LSTM was placed only after the Conv13 layer which 200 
was proved to be most effective through experimental analysis. This method was evaluated on the 201 
ImageNet VID 2015 dataset [5] and achieved a good performance in terms of the model size and 202 
computational efficiency (15 fps on a mobile CPU) with accuracy comparable to those more 203 
computationally demanding single frame models. 204 

In 2019, the method in [66] was improved in [65] in terms of inference speed. Specifically, as 205 
shown in Figure 4, due to the high temporal redundancy in video, the model proposed in [65] 206 
contained two feature extractors: a small feature extractor and a large feature extractor. The large 207 
feature extractor with low speed was responsible for extracting the features with high accuracy while 208 
the small feature extractor with fast speed was responsible for extracting the features with poor 209 
accuracy. The two feature extractors were used alternately. The feature maps were aggregated using 210 
a memory mechanism with the modified convolutional LSTM layer. Then, a SSD-style [9] detector 211 
was applied to the refined features to obtain the final regression and classification outcome. 212 

 213 

Figure 4. Small and large feature extractors in [65]. 214 
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For the methods mentioned above, image object detectors together with a temporal context 215 
information enhancement were employed to detect objects in video. However, for online video object 216 
detection, succeeding frames cannot be utilized. In other words, non-causal video object detectors are 217 
not feasible for online applications. Noting that most video object detectors are non-causal, a causal 218 
recurrent method was proposed in [67] for online detection without using succeeding frames. In this 219 
case, the challenges in terms of occlusion and motion blur remain which require the use of temporal 220 
information. For online video object detection, only the current frame and the previous frame are 221 
used. Based on the optical flow method [99], the short-term temporal information was utilized by 222 
warping the feature maps from the previous frame. However, sometimes image distortion or 223 
occlusion would last for several video frames. By using only the short-term temporal information, it 224 
was difficult to deal with these situations. The long-term temporal context information was also 225 
exploited via the convolutional LSTM, in which the feature maps of the distant preceding frame 226 
obtained from the memory function were propagated to acquire more information. Then, the feature 227 
maps extracted on the current frame as well as the warped feature maps and the output of the LSTM 228 
were concatenated to obtain the aggregated feature maps. Finally, the aggregated feature maps were 229 
inputted into a detection sub-network to obtain the detection outcome on the current frame. By 230 
utilizing both the short and long-term information, this method achieved an accuracy of 75.5% mAP 231 
at a high speed on the ImageNet VID dataset, indicating a competitive performance for online 232 
detection. 233 

3.3. Attention Related 234 

For video object detection, it is known that exploiting the temporal context relationship is quite  235 
important. This relationship needs to be established based on a long-duration video, which requires 236 
a large amount of memory and computational resources. In order to decrease the computational 237 
resources, an attention mechanism was introduced for feature maps alignment. This mechanism was 238 
first proposed for machine translation in [105, 106] and then applied to video object detection in [25, 239 
69-72]. 240 

Some methods only take the global or local temporal information into consideration. Specifically, 241 
the method RDN in [70] only makes use of the local temporal information. The methods SELSA in 242 
[72], OGEMN in [69] only utilize the global temporal information. While the other methods of PSLA 243 
in [71], MEGA in [25] use both the global and local temporal information.  244 

Relation Distillation Networks (RDN) presented in [70] propagate and aggregate the feature 245 
maps based on object relationships in video. In RDN, ResNet-101 [100] and ResNeXt-101-64×4d [107] 246 
are utilized as the backbone to extract feature maps and object proposals are generated with the help 247 
of a Region Proposal Network (RPN) [15]. The feature maps of each proposal on the reference frame 248 
are augmented on the basis of supportive proposals. A prominent innovation in this work is to distill 249 
the relation with multi-stage reasoning consisting of a basic and an advanced stage. In the basic stage, 250 
the supportive proposals consisting of Top K proposals of a current frame and its adjacent frames are 251 
used to measure the relation feature of each reference proposal obtained on the current frame to 252 
generate refined reference proposals. In the advanced stage, supportive proposals with high objective 253 
scores are selected to generate advanced supportive proposals. Features of selected supportive 254 
proposals are aggregated with the relation against all supportive proposals. Then, such aggregated 255 
features are employed to strengthen reference proposals obtained from the basic stage. Finally, the 256 
aggregated features of reference proposals obtained from the advanced stage are used to generate 257 
the final classification and bounding box regression. In addition, the detection box linking is used in 258 
a post-processing stage to refine the detection outcome. Evaluated on the ImageNet VID dataset, 259 
RDN achieved a detection accuracy of 81.8% and 83.2% mAP, respectively, with ResNet-101 and 260 
ResNeXt-101 for feature extraction. With linking and rescoring operations, it achieved an accuracy of 261 
83.8% and 84.7% mAP, respectively. 262 

A module (SELSA) was introduced in [72] to exploit the relation between the proposals in the 263 
entire sequence level, then related feature maps were fused for classification and regression. More 264 
specifically, the features of the proposals were extracted on different frames and then a clustering 265 
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module and a transformation module were applied. The similarities of the proposals were computed 266 
across frames and the features were aggregated according to the similarities. Consequently, more 267 
robust features were generated for the final detection. 268 

In [69], OGEMN was presented which used an object guided external memory to store the pixel 269 
and instance level features for further global aggregation. In order to improve the storage-efficiency 270 
aspect, only the features within the bounding boxes were stored for further feature aggregation. 271 

In [25], MEGA was introduced utilizing the global and local information inspired by how 272 
humans go about object detection in video using both global semantic information and local 273 
localization information. For situations when it was difficult to determine what the object was in the 274 
current frame, the global information was utilized to recognize a fuzzy object according to a clear 275 
object with a high similarity in another frame. When it was difficult to find out where the object was 276 
in a frame, the local localization information was used by taking the difference between adjacent 277 
frames if it was moving. More specifically, RPN was used to generate candidate proposals from those 278 
local frames (adjacent frames of current frames) and global frames. Then, a relation module was set 279 
up to aggregate the features of candidate proposals on global frames into that of local frames. This 280 
was named the global aggregation stage. With this method, the global information was integrated 281 
into the local frames. Then, features of the current frame were further augmented by the relation 282 
modules in the local aggregation stage. In order to expand the aggregation scale, an efficient module 283 
(Long Range Memory (LRM)) was designed where all the features computed in the middle were 284 
saved and utilized in a following detection. Evaluated on the ImageNet VID dataset, MEGA with 285 
ResNet-101 as backbone achieved an accuracy of 82.9% mAP. Compared with the competitor RDN, 286 
MEGA produced 1.1% improvement. Replacing ResNet-101 with ResNeXt-101 or with a stronger 287 
backbone to extract features, MEGA obtained an accuracy of 84.1% mAP. With the help of post-288 
processing, it achieved 1.6% and 1.3% improvement with ResNet-101 and ResNeXt-101, respectively. 289 

The method Progressive Sparse Local Attention (PSLA) was proposed in [71] to make use of the 290 
long term temporal information for enhancement on each feature cell in an attention manner. PSLA  291 
establishes correspondence by propagating features in a local region with gradually sparser stride 292 
according to the spatial information across frames. Recursive Feature Updating (RFU) and Dense 293 
Feature Transforming (DenseFT) were also proposed based on PSLA to model the temporal 294 
relationship and enhance the features in a framework shown in Figure 5. More specifically, features 295 
were propagated in an attention manner. First, the correspondence between each feature cell in an 296 
embedding feature map of a current frame and its surrounding cells was established with a 297 
progressive sparser stride from the center to the outside of another embedding feature map of a 298 
support frame. Second, correspondence weights were used to compute the aligned feature maps. The 299 
feature maps were aggregated with the aligned features. In addition, similar to other video object 300 
detectors, the features of key frames were propagated to non-key frames. A light weight network was 301 
then applied to extract low-level features on non-key frames and fuse with the features propagated 302 
from key frames (DenseFT). Feature propagation was also employed between key frames, and key 303 
frame features were updated recursively by an update network (RFU). Hence, features were enriched 304 
by the temporal information with DenseFT and RFU, which were further used for detection. Based 305 
on the experimentations done in [71], an accuracy of 81.4% mAP was achieved on the ImageNet VID 306 
dataset.  307 
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Figure 5. PSLA framework [71]. 309 

3.4. Tracking Based 310 

Inspired by the fact that tracking is an efficient way to utilize the temporal information, several 311 
methods [73, 74, 76] have been developed to detect objects on fixed interval frames and track them in 312 
frames in between. The improved methods in [26] and [75] detect interval frames adaptively and 313 
track the other frames. 314 

A framework named CDT was presented in [74] combining detection and tracking for video 315 
object detection. This framework consisted of an object detector, a forward tracker and a backward 316 
tracker. Initially, objects were detected by the image object detector. Then, each detected object was 317 
tracked by the forward tracker, and undetected objects were stored by the backward tracker. In the 318 
entire process, the object detector and the tracker cooperated with each other to deal with the 319 
appearance and disappearance of objects. 320 

Another framework named CaTDet having high computational efficiency was presented in [73]. 321 
This framework is shown in Figure 6, which includes a tracker and a detector. CaTDet uses a tracker 322 
to predict the position of objects with high confidence in a next frame. The processing steps of CaTDet 323 
are: (i) Every frame is inputted to a proposal network to output potential proposals in the frame. (ii) 324 
Object position in a next frame is predicted with a high confidence using the tracker. (iii) In order to 325 
obtain the calibrated object information, the outputs of the tracker and the proposal network are 326 
combined and inputted to a refinement network. 327 

 328 

Figure 6. CaTDet framework [73]. 329 

More specifically, based on the observation that objects detected in one video frame would most 330 
likely appear in a next frame, a tracker was used to predict the positions on the next frame with the 331 
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historical information. In case new objects appeared in a current frame, a computationally efficient 332 
proposal network similar to RPN was utilized to detect proposals. In addition, to address situations 333 
such as motion blur and occlusion, the temporal information was used by a tracker to predict future 334 
positions. The results obtained by combining the tracker and the proposal network was then refined 335 
by a refinement network. Only the regions of interest were refined by the refinement network to save 336 
computation time while maintaining accuracy. 337 

Similar to CDT and CaTDet, recent approaches for detection and tracking of objects in video 338 
involve rather complex multistage components. In [76], a framework using a ConvNet architecture 339 
was deployed in a simple but effective way by performing tracking and detection simultaneously. 340 
More specifically, first R-FCN [19] was employed to extract the feature maps shared between  341 
detection and tracking. Then, proposals in each frame were obtained by using RPN based on anchors 342 
[15]. RoI pooling [15] was utilized for the final detection. In particular, a regressor was introduced to 343 
extend the architecture. Position-sensitive regression maps from both frames were used together with 344 
correlation maps as the input to an RoI tracking module, in which the box relationship between the 345 
two frames was outputted. For video object detection, the framework in [76] was evaluated on the 346 
ImageNet VID dataset achieving an accuracy of 82.0% mAP. 347 

Similarly, inspired by the observation that object tracking is more efficient than object detection, 348 
a framework (D or T) was covered in [75] , see Figure 7, which includes a scheduler network to 349 
determine the operation (detecting or tracking) on a certain frame. Compared with the baseline frame 350 
skipping (detecting on fixed interval frames and tracking on intermediate frames), the scheduler 351 
network with light weights and a simple structure was found to be more effective on the ImageNet 352 
VID dataset. Also, the adaptive mechanism in [26] (TRACKING ASSISTED) was used to select key 353 
frames. Detection on key frames involved the utilization of an accurate detection network and 354 
detection on non-key frames was assisted by the tracking module. 355 

 356 

Figure 7. D or T framework [75]. 357 

3.5. Other Methods 358 

Apart from the frameworks described above, some methods are presented that are based on a 359 
combination of multiple methods described above [24, 108, 109]. The method in [24] is based on the 360 
optical flow and tracking methods. The methods in [108] (Attentional LSTM) and [109] (TSSD)are 361 
based on the attention and LSTM methods.  362 

In addition, these other methods appear in the literature [36, 78-85]. The methods in [78] and [82] 363 
discuss ways to align and enhance feature maps. While the method in [85] studied the effect of the 364 
input image size by selecting a size to achieve a better speed-accuracy trade-off. The method in [78] 365 
named STSN is shown in Figure 8. This method aligns feature maps between adjacent frames. Similar 366 
to the FGFA method in [22], it relies on the idea that detection on a single frame would have 367 
difficulties dealing with noise sources such as motion blur and video defocus. Multiple frames are 368 
thus utilized for feature enhancement to achieve better performance. Unlike FGFA which uses the 369 
optical flow method to align feature maps, deformable convolution is employed for feature alignment 370 
in [78]. First, a sharing feature extraction network is applied to extract feature maps on a current 371 
frame and adjacent frames. Then, the two feature maps are concatenated per channel and a 372 
deformable convolution is performed. The result of the deformable convolution is used as the offset 373 
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for the second deformable convolution operation to align the feature maps. Furthermore, augmented 374 
feature maps are obtained by aggregating the features in the same way as FGFA. Compared with 375 
FGFA, STSN uses deformable convolution to align the features of two adjacent frames implicitly. 376 
Although it is not as intuitive as the optical flow method, it is also found to be effective. According 377 
to the experimental results reported, STSN still achieved a higher mAP than FGFA (78.9% vs 78.8%) 378 
without relying on the optical flow information. In addition, without the assistant of the temporal 379 
post-processing, STSN obtained a better performance than the D&T baseline [76], 78.9% vs. 75.8%. 380 

 381 

Figure 8. STSN framework [78]. 382 

Different from [78] by using the deformable convolution to propagate the temporal information, 383 
the Spatial-Temporal Memory Network (STMN) was considered in [82], which involved a RNN 384 
architecture with Spatial-Temporal Memory module (STMM) to incorporate the long-term temporal 385 
information. The Spatial-Temporal Memory Network (STMN) operates in an end-to-end manner to 386 
model the long-term information and align the motion dynamics for video object detection. STMM is 387 
the core module in STMN, a convolutional recurrent computation unit which fully utilizes the 388 
pretrained weights learned from static image datasets such as ImageNet [86]. This design is essential 389 
to address the practical difficulties of learning from video datasets, which largely lack the diversity 390 
of objects within the same category. STMM receives the feature maps of a current frame at time step 391 
t and the spatial-temporal memory 𝑀𝑡−1

→  with the information of all the previous frames. Then, the 392 
spatial-temporal memory 𝑀𝑡

→ of the current time step is updated. In order to capture the information 393 
of both later frames and previous frames at the same time, two STMMs are used for bidirectional 394 
feature aggregation to produce the memory M which is employed for both classification and 395 
bounding box regression. Therefore, the feature maps are propagated and aggregated by combining 396 
the information across multiple video frames. Evaluated on the ImageNet VID dataset, STMN has 397 
achieved the current start-of-the-art accuracy.  398 

All the algorithms described above start from how to propagate and aggregate feature maps. In 399 
[85], video object detection was examined from another point of view. Similar to [110], the effect of 400 
input image size on the performance of video object detection was studied in [85]. Furthermore, it 401 
was found that down sampling images can obtain better accuracy sometime. From this point of view, 402 
a framework named AdaScale was proposed to adaptively select the input image size. AdaScale 403 
predicts the best scale or size of a next frame according to the information of a current frame. One of 404 
the reasons for the improvement is that the number of false positives is reduced. And the other reason 405 
is that the number of true positives is increased by resizing the too large objects to a suitable size for 406 
the detector. 407 

In [85], the optimal scale (pixels of the shortest side) of a given image is defined with a predefined 408 
finite set of scales S ( S = {600, 480, 360, 240} in [85] ). Furthermore, a loss function consisting of the 409 
classification and regression loss is employed as the evaluation metric to compare the results across 410 
different scales. The regression loss for background is expected to be zero. Hence, if the loss function 411 
is utilized directly to evaluate the results across different scales, the image scale which contains fewer 412 
foreground bounding boxes is supported. In order to deal with this issue, a new metric (the loss 413 
function which focuses on the same number of foreground bounding boxes chosen on different scales) 414 
is employed to compare across different scales. More specifically, the number of bounding boxes 415 
involved to compute the loss is determined by the minimum number (m) on all the scales. For each 416 
scale, the loss of predicted foreground bounding boxes on the image is sorted in ascending order and 417 
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the first m bounding boxes are chosen. The scale m with the minimum loss is defined as the best scale. 418 
Inspired by R-FCN[19] working on deep features for bounding boxes regression, the channels of the 419 
deep features are expected to contain the size information. Therefore, a scale regressor using deep 420 
features is built to predict the optimal scale. Evaluated on the ImageNet VID and mini YouTube-BB 421 
datasets, Adascale achieved 1.3% and 2.7% mAP improvements with 1.6 and 1.8 times speedup 422 
compared with a single-scale training and testing, respectively. Furthermore, combined with DFF 423 
[28], the speed was increased by 25% while maintaining mAP on the ImageNet VID dataset. 424 

4. Comparison of Video Object Detection Methods  425 

The great majority of video object detection approaches use the ImageNet VID dataset [5] for 426 
performance evaluation. In this section, the timeline of video object detection methods in recent years 427 
is shown in Figure 9 together with a group listing of the methods in Figure 10. Then, a comparison is 428 
provided between the methods covered in the previous section. The comparison is presented in Table 429 
1 and Table 2 which correspond to with and without post-processing, respectively. The methods in 430 
Figure 9 belong to different groups but the same time whereas the methods in Figure 10 belong to 431 
different times but the same groups. As can be seen from Figures 9 and 10, the methods based on 432 
optical flow were proposed earlier. During the same period, video object detection methods were 433 
assisted by tracking due to the effectiveness of tracking in utilizing the temporal-spatial information. 434 
The optical flow-based methods needed a large number of parameters and they were only suitable 435 
for small motions. In recent years, the methods based on attention have achieved much success such 436 
as MEGA [25]. Using LSTM for feature propagation and aggregation is becoming a hot research topic 437 
and many new methods are being proposed such as STSN [78] using deformable convolution to align 438 
the feature maps. The latest research is mostly based on attention, LSTM or combination of methods 439 
such as Flow & LSTM [67]. 440 

 441 

Figure 9. Timeline of video object detection methods. 442 
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 443 

Figure 10. Video object detection methods sorted in different groups. 444 

Table 1. Comparison among the video object detection methods without post processing; note that 445 
the runtime is based on the GPU used in the references: K means K40, XP means Titan XP, X means 446 
Titan X, V means Titan V, 1060 means GeForce GTX 1060, 1080 Ti means GeForce GTX 1080 Ti, 2080 447 
Ti means GeForce GTX 2080 Ti. 448 

Type Framework Backbone mAP(%) Runtime(fps) 

Single Frame 
R-RCN[19] ResNet-101 

73.9  

70.3  

4.05 K 

12 XP 

Flow 

Based 

Impression Network[63] Modified ResNet-101 75.5 20 1060 

FGFA [22] ResNet-101 76.3 1.36 K 

DFF [28] ResNet-101 73.1 20.25 K 

THP [64] ResNet-101+DCN 78.6 13.0X/8.6K 

LSTM 

Based 

Looking Fast and Slow [65] Interleaved   61.4      23.5 Pixel 3 phone  

LSTM-SSD[66] MobilenetV2-SSDLite 53.5  - 

Flow&LSTM [67] ResNet-101 75.5 - 

Attention 

Based 

 

OGEMN[69] 
ResNet-101 

ResNet-101+DCN 

79.3 

80.0 

8.9 (1080Ti) 

- 

PSLA[71] 
ResNet-101 

ResNet-101+DCN 

77.1 

80.0 

30.8V\18.73X 

26.0V\13.34X 

SELSA[72] 
ResNet-101 

ResNeXt-101 

80.25 

83.11 

- 

RDN[70] 
ResNet-101 

ResNeXt-101 

81.8 

83.2 

10.6 V100 

- 

MEGA[25] 
ResNet-101 

ResNeXt-101 

82.9 

84.1 

8.73 2080Ti 

- 

Tracking Based D&T loss[76] ResNet-101 75.8 7.8X 

Track assisted[26] ResNet-101 70.0 30XP 

Others TCNN[24] GoogLeNet 73.8 - 

STSN [78] ResNet-101+DCN 78.9 - 

 449 

 450 
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Table 2. Comparison among the video object detection methods with post processing. 451 

Type Framework Backbone mAP(%) Runtime(fps) 

Flow 

Based FGFA [22] 
ResNet-101 

Inception-ResNet 

78.4 

80.1 

- 

LSTM 

Based Looking Fast and Slow[65] 

Interleaved  

+ Quantization  

+ Async  

59.3 

72.3 

Pixel 3 phone 

MobilenetV2-SSDLite + LSTM (α =

1.4)[66] 

MobilenetV2-

SSDLite 
64.1 

4.1 

Pixel 3 phone 

MobilenetV2-SSDLite + LSTM(α = 1.0) 

[66] 

MobilenetV2-

SSDLite 
59.1 

- 

MobilenetV2-SSDLite + LSTM(α = 0.5) 

[66] 

MobilenetV2-

SSDLite 
50.3 

- 

MobilenetV2-SSDLite + LSTM (α =

0.35) [66] 

MobilenetV2-

SSDLite 
45.1 

14.6 

Pixel 3 phone 

Attention 

Based 

 

OGEMN [69] 
ResNet-101 

ResNet-101+DCN 

80.8 

81.6 

- 

PSLA [71] 
ResNet-101 

ResNet-101+DCN 

78.6 

81.4 

5.7X 

6.31V\5.13X 

SELSA [72] ResNet-101 80.54 - 

RDN [70] 
ResNet-101 

ResNeXt-101 

83.8 

84.7 

- 

MEGA [25] 
ResNet-101 

ResNeXt-101 

84.5 

85.4 

- 

Tracking 

Based 

D&T (𝜏 = 10) [76] ResNet-101 78.6 - 

D&T (𝜏 = 1) [76] ResNet-101 79.8 5X 

D&T [76] Inception V4 82.0 - 

Others STSN [78] ResNet-101+DCN 80.4 - 

STMN [82] ResNet-101 80.5 - 

Table 1 provides the outcomes without post processing. In this table, the methods are divided 452 
into different groups according to the way temporal and spatial information are utilized. Flow-453 
guided group propagate and align the feature maps according to the flow field obtained by optical 454 
flow. Both accuracy and speed of various frameworks are reported in this table. For example, DFF 455 
provides high computational efficiency and achieves a runtime of 20.25 fps using a Titan K40 GPU. 456 
FGFA achieves a high accuracy producing 76.3% mAP with 1.36 fps. Obviously, DFF is faster than 457 
FGFA. Flow-guided methods are intuitive and well understood to propagate features. Optical flow 458 
is deemed suitable for small movement estimation. In addition, since optical flow reflects pixel level 459 
displacement, it has difficulties when it is applied to high-level feature maps. One pixel movement 460 
on feature maps may correspond to 10 to 20 pixels movement. 461 

Inspired by the LSTM based solutions in natural language processing, LSTM methods are used 462 
to incorporate the sequence information. In the LSTM group, Flow & LSTM [67] achieved the highest 463 
accuracy of 75.5%. Looking Fast and Slow [65] generated high speed but with low accuracy. LSTM 464 
captures the long term information with a simple implementation. Since the sigmoid activation of the 465 
input and forget gates are rarely completely saturated, a slow state decay and thus loss of long-term 466 
dependence is resulted. In other words, it is difficult to retain the complete previous state in the 467 
update. 468 

Attention based methods also show the ability to perform video object detection effectively. In 469 
the attention related group, MEGA [25] with ResNeXt-101 as backbone achieved the highest accuracy 470 
of 84.1% mAP. As described, it achieved a very high accuracy with a relatively fast speed. Attention 471 
based methods aggregate the features within proposals that are generated. This decreases the 472 
computation time. Because of only using the features within the proposals, the performance relies on 473 
the effect of RPN to a certain extent. Here, it is rather difficult to utilize more comprehensive 474 
information. 475 
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In the tracking based group, the methods are assisted by tracking. D&T loss [76] achieved 75.8% 476 
mAP. Tracking is an efficient method to employ the temporal information with a detector assisted by 477 
a tracker. However, it cannot solve the problems created by motion blur and video defocus directly. 478 
As the detection performance relies on the tracking performance, the detector part suffers from 479 
tracking errors. There are also other standalone methods including TCNN[24], STSN [78] and STMN 480 
[82]. 481 

In order to further improve the performance in terms of detection accuracy, post processing can 482 
be added to the above methods. The results with post processing are shown in Table 2. One can easily 483 
see that with post processing, the accuracy is noticeably improved. For example, the accuracy of 484 
MEGA is improved from 84.1% to 85.4% mAP. 485 

5. Future Trends 486 

Challenges still remain for further improving the accuracy and speed of the video object 487 
detection methods. This section presents the major challenges and possible future trends as related 488 
to video object detection.  489 

At present, there is a lack of a comprehensive benchmark dataset containing the labels of each 490 
frame. The most widely used dataset, that is ImageNet VID, does not include complex real-world 491 
conditions as compared to the static image dataset COCO. The number of objects in each frame in the 492 
ImageNet VID dataset is limited which is not the case under real-world conditions. In addition, in 493 
many real-world applications, videos include a large field of view and in some cases high resolution 494 
images. Lack of a well annotated dataset representing actual or real-world conditions remains a 495 
challenge for the purpose of advancing video object detection. Hence, the establishment of 496 
comprehensive benchmark dataset is considered a future trend of importance. 497 

Up to now, the most widely used evaluation metric in video object detection is mAP, which is 498 
derived from static image object detection. This metric does not fully reflect the temporal 499 
characteristics in video object detection. Although Average Delay (AD) is proposed to reflect the 500 
temporal characteristics, it is still not a fully developed metric. For example, the stability of detection 501 
in video is not reflected by it. Therefore, novel evaluation metrics which are more suitable for video 502 
object detection is considered another future trend of importance.  503 

Most of the methods covered in this review paper only utilize the local temporal information or 504 
global information separately. There are only a few methods such as MEGA, which have used the 505 
local and global temporal information at the same time and achieved a benchmark mAP of 85.4%. As 506 
demonstrated by MEGA, it is worth developing future frameworks which utilize both the local and 507 
global temporal information. Furthermore, for most of the existing video object detection algorithms, 508 
the number of frames used is too small to fully utilize the video information. Hence, as yet another 509 
future trend, it is of importance to develop methods that utilize the long-term video information. As 510 
can be observed from Tables 1 and 2, the attention-based frameworks achieved a relatively high 511 
accuracy. However, such methods pose difficulties for real-time applications demanding very 512 
powerful GPUs. Although the Looking Fast and Slow method [65] achieved 72.3 fps on Pixel 3 513 
phones, the accuracy is only 59.3% which poses challenging for actual deployment. Indeed, the trade-514 
off between accuracy and speed needs to be further investigated. 515 

6. Conclusion 516 

In recent years, after the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 517 
announced the video object detection task in 2015, many deep learning-based video object detection 518 
solutions have been developed. This paper has provided a review of the video object detection 519 
methods that have been developed so far. This review has covered the available datasets, evaluation 520 
metrics and an overview of different categories of deep learning-based methods for video object 521 
detection. A categorization of the video object detection methods has been made according to the 522 
way temporal and spatial information are used. These categories include flow based, LSTM based, 523 
attention based, tracking based, as well as other methods. The performance of various detectors with 524 
or without post-processing is summarized in two tables in terms of both detection accuracy and 525 
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computation speed. Several trends of importance in video object detection have also been stated for 526 
possible future works. 527 
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