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Optical flow using textures q
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Abstract

Motion estimation is a key problem in the analysis of image sequences. From a sequence of images we can only

estimate an approximation of the image motion field called optical flow. We propose to improve optical flow estimation

by including information from images of textural features. We compute the optical flow from intensity and textural

images from first-order derivatives, then combine estimates using the spatial gradient as confidence measure. Experi-

mental results with images for which the ground-truth optical flow is known show clearly that the estimate improves by

including estimates from textural images. Experiments with several underwater images also show a qualitative

improvement.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Motion estimation is a key problem in the

analysis of image sequences. The motion field is

the 2D vector field which is the perspective pro-

jection on the image plane of the 3D velocity field

of a moving scene. From the information available

from a sequence of images (the spatial and tem-

poral variation of the brightness pattern) it is only
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possible to derive an estimate of the motion field,

called optical flow (OF) (Horn and Schunck,
1981). Motion information can play different roles

in machine vision systems (e.g. scene motion

detection, object segmentation, tracking, mea-

surement of depth, 3D reconstruction) in different

domains (e.g. television, mobile robotics, military

applications, surveillance).

During the past two decades many methods for

the estimation of optical flow have been proposed
(Weber and Malik, 1995; Tsai et al., 1999; Ming

et al., 2002; Zhang and Lu, 2000; Fleet and Jepson,

1990; Bruno and Pellerin, 2000). These methods

can be classified in three groups:
• Differential techniques: Compute velocity from
spatiotemporal derivatives of image intensity
ed.
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or filtered versions of the image (Weber and

Malik, 1995; Tsai et al., 1999).

• Region-based matching: Define the velocity as

the shift that yields the best fit between image

regions at different times (Ming et al., 2002;
Zhang and Lu, 2000).

• Frequency-based methods: Use frequency and

phase information by means of tools like the

Fourier transform to estimate the velocity be-

tween frames (Fleet and Jepson, 1990; Bruno

and Pellerin, 2000).

We present a differential method that includes
optical flow estimates from images of textural

features to improve the overall flow estimate. The

rest of this article is organized as follows: Section

2 describes a method to estimate OF from first-

order derivatives, how we compute textures and

combine their information. In Section 3 we ex-

plain the error metrics we used. Some experi-

mental results are on Section 4, we justify our use
of the spatial gradient as a confidence measure

and exhibit the complementarity of information

that different textures can provide. The conclu-

sions are on Section 5.
2. Optical flow from first-order derivatives

Let Eðx; tÞ denote the usual, continuous space-

time intensity function, where x ¼ ðx; yÞ>. If the

intensity remains practically constant along a

motion trajectory, we have: dEðx;tÞ
dt ¼ 0, where x

varies by t according to the motion trajectory. This

is a total derivative expression and denotes the rate

of change of intensity along the motion trajectory.

Using the chain rule of differentiation, it can be
expressed as:

oEðx; tÞ
ox

uðx; tÞ þ oEðx; tÞ
oy

vðx; tÞ þ oEðx; tÞ
ot

¼ 0 ð1Þ

where uðx; tÞ ¼ dx=dt and vðx; tÞ ¼ dy=dt denote

the components of the image velocity vector in
terms of the continuous image coordinates, and

the partial spatial derivatives of the image bright-

ness are the components of the spatial gradient

rE. Expression (1) can be rewritten as the image

brightness constancy equation:
ðrEÞ>vþ Et ¼ 0 ð2Þ

where Et denotes partial differentiation with re-

spect to time. Eq. (2) provides one linear equation

for two unknown components of the velocity

vector (this is known as the aperture problem);

hence, further constraints are necessary to solve

for v. Perhaps the simplest constraint is to assume

that the motion is the same on a small spatial

neighborhood: the optical flow can be estimated
(Lucas and Kanade, 1981) within a patch Q (of

size N � N ) as the vector, v, that minimizes:

W½v	 ¼
X
pi2Q

½ðrEÞ>vþ Et	2 ð3Þ

The solution to this least squares problem is:

v ¼ ðA>AÞ�1A>b ð4Þ
where the ith row of the N 2 � 2 matrix A is the
spatial image gradient evaluated at point pi, b is

the N 2-dimensional vector of the partial temporal

derivatives of the image brightness evaluated at

p1; p2; . . . ; pN2 , after a sign change, and v is the

optical flow at the center of patch Q.

Although the gradient equation was originally

applied to the brightness function, we can apply

the equation to other functions, assuming that Eq.
(2) holds true at all or most pixels. Mitiche

et al. (1987) identified other sources of such func-

tions:

(1) Multispectral images: A signal recorded in sev-

eral bands of the electromagnetic spectrum.

For example, Markandey and Flinchbaugh

(1990) and Barron and Klette (2002) estimated
optical flow from color images.

(2) Operators: Spatial operators are applied to

the original image to obtain new images

(Bruno and Pellerin, 2000; Weber and Malik,

1995). The operators may compute proper-

ties such as local variance, contrast, entropy,

etc.

(3) Constraints on image motion: Constraints are
introduced on the kind of motion that causes

the temporal changes. For example, the optical

flow is smooth, meaning that neighboring

points have similar velocities (Horn and

Schunck, 1981; Arredondo et al., 2003).
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We propose an approach that includes infor-

mation from textural images to improve optical

flow estimates. The textural images that we use are

estimated using matrices that are designed to act as

matched filters for certain types of quasiperiodic

variations commonly found in textured images
(Hsiao and Sawchuk, 1989). Hence, they contain

information of the motion of prominent features.

We would expect two advantages of estimating the

optical flow on textural images: first, texture

properties may vary less with illumination chan-

ges. If there is a strong illumination change, the

optical flow equation does not hold for intensity.

However, as the textures extract prominent fea-
tures from the image, we would expect these fea-

tures to remain present even after an illumination

change, 1 and therefore Expression (2) remains

true. The second advantage of applying the optical

flow equation to textural images is that, by esti-

mating the motion of a pixel from several images,

we address the aperture problem as we can build

an overconstrained system to solve for the two
unknowns. Our motivation is to estimate accurate

OF from underwater images, where illumination

changes can be abrupt.

Previous researchers have used Gabor-energy

filters (Bruno and Pellerin, 2000) and spatiotem-

poral filters based on derivatives of normalized

Gaussian functions (Weber and Malik, 1995) as

operators to obtain new images and estimate more
accurate OF. In this article we use nine filters

constructed from three basic vectors: ½1; 2; 1	>,
½�1; 0; 1	>, ½�1; 2;�1	> as suggested by Laws

(1980) (see Theodoridis and Koutroumbas, 1998):
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1 Assuming that the illumination change is homogeneous at

least in the region where the textural feature is estimated. This is

a valid assumption, as the matrices to estimate the textural

features are of size 3 · 3 pixels.
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We generate the textural images by convolving

the intensity image with the constructed filters and

then estimating the standard deviation on local

patches of the convolved images (Theodoridis and

Koutroumbas, 1998). We have chosen to use this

method to estimate the textural images because its

computational simplicity and because, as we will
see in Section 4.2, the information they provide is

complementary.

To include information from the textures we

estimate the optical flow in the intensity and tex-

tural images independently; if we estimate all nine

textures we obtain vi ¼ ðui; viÞ where i ¼ 1; 2; . . . ;
10. Then we add these estimates, weighting each

one according to the strength of the gradient
rIi ¼ ½Gx;i Gy;i 	> in the neighborhood Q used to

estimate the flow:

û ¼
X

i¼1...10

Gx;iP
n¼1...10 Gx;n

ui ð5Þ

v̂ ¼
X

i¼1...10

Gy;iP
n¼1...10 Gy;n

vi ð6Þ
3. Evaluation protocol

We compared the results of estimating the

optical flow using images only and using images

and textural images.

3.1. Error measurement

For the images where the true optical flow is
known we use two different error metrics. We

follow other authors (Fleet and Jepson, 1990;

Barron et al., 1994) and measure the angular

deviation between the estimated velocity ve and

the correct one vc. Let the velocities v ¼ ðu; vÞ>
be represented as 3D direction vectors, v ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2þv2þ1

p ðu; v; 1Þ>. The angular error is defined as

wE ¼ arccosðvc  veÞ



Table 1

Angular error on synthetic images

Sinusoid2 Yosemite Translating tree

Average error Standard deviation Average error Standard deviation Average error Standard deviation

Image 6.42 2.83 24.17 26.01 4.48 4.83

Tex 1 2.18 2.64 18.95 21.39 5.45 8.21

Tex 2 85.45 36.65 29.02 28.23 7.21 11.85

Tex 3 69.01 37.75 35.07 29.31 16.33 23.10

Tex 4 74.10 38.22 26.28 28.82 4.57 6.52

Tex 5 81.38 36.20 34.88 32.10 7.82 11.45

Tex 6 77.68 36.13 50.58 33.62 15.44 20.15

Tex 7 81.20 36.89 34.51 33.72 7.55 10.66

Tex 8 82.14 35.01 51.28 37.99 11.02 16.17

Tex 9 79.67 37.80 67.57 39.19 18.79 23.48
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The second error metric is the absolute magnitude

of the differences between the components of the

estimated velocity ðue; veÞ and the correct one

ðuc; vcÞ.
Ex ¼ juc � uej ð7Þ

Ey ¼ jvc � vej ð8Þ
Table 2

Percentage of estimated points on each texture where the
3.2. The images

The images used for the experiments are from

the well known, ground-truthed, synthetic se-

quences: Sinusoid2, Yosemite, and Translating tree

used by several other authors (Weber and Malik,

1995; Fleet and Jepson, 1990; Barron et al., 1994)
to benchmark the performance of algorithms. 2 We

also used images from underwater sequences to test

the proposed approach on real images. Image

derivatives were estimated using the approach

proposed by Horn (1986), a Gaussian prefilter with

a standard deviation of 1.5 pixels was used.

velocity has a smaller angular error than their corresponding

estimate in the intensity image

Sinusoid2

(%)

Yosemite

(%)

Translating tree

(%)

Tex 1 91.2 70.6 46.1

Tex 2 0.3 55.0 38.5

Tex 3 1.3 37.3 18.5

Tex 4 1.2 57.2 55.4

Tex 5 0.2 41.9 37.3
4. Experimental study

4.1. Suitability of textures

We want to show that at some points textural

images can provide better OF estimates than those
2 The complete sequences can be obtained by anonymous

ftp from ftp.csd.uwo.ca in the directory /pub/vision.
computed from intensity images alone. We esti-
mated the OF on the intensity and textural images

and calculated the angular error for the sequences

where the true optical flow was known (see Table

1). The rather larger angular errors on some of the

textural images are because while the estimate of

one of the velocity components improves, the

estimate of the other component is not as good

because of low spatial gradient. Table 2 shows the
percentage of points on each textural image that

have a smaller angular error than their corre-

sponding estimate on the intensity image. As we

can see, textures can help us obtain better velocity

estimates. In some cases the number of points that

are better estimated on the textures is over 50% of

the number of points on the image.
Tex 6 0.2 27.2 16.3

Tex 7 0.3 34.0 39.3

Tex 8 0.3 28.0 27.9

Tex 9 0.3 19.3 12.1

ftp://ftp.csd.uwo.ca
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4.2. Complementarity of textures

The reason for using several textural images to

improve the OF estimate is because each texture

extracts different properties from the image. Thus,
each texture will provide best estimates for differ-

ent regions of the image. Fig. 1 exhibits this

complementarity by showing in which intensity or

textural image the optical flow is best estimated.

After estimating the OF on the intensity and tex-

tural images, we calculated the angular error of the

estimates at every point and determined on which

(intensity or textural) image the error was smallest.
On Fig. 1 white pixels show the intensity/textural

image where the optical flow was best estimated

for the Yosemite sequence. It is worth to note that

in the three sequences for which the true OF is
Fig. 1. On the top-left there is a frame from the Yosemite sequence. F

smallest on that intensity/textural image.
known, over 70% of the points are best estimated

in textures 1, 2 and 4.

4.3. Relation between gradient and error

Verri and Poggio (1989) demonstrated that the
bigger the spatial image gradient the more reliable

the estimate of the motion will be. To verify this

experimentally in the sequences we considered, we

plotted spatial gradient against the error magni-

tude. Fig. 2 shows scatter plots of the spatial

gradient on the y direction against the error mag-

nitude for the Yosemite sequence. We can observe

how estimates with higher error correspond to
points with smaller spatial gradient. In the right

plot, note how by considering the spatial gradient

of a point over intensity and textural images the
or the other images, pixels are white if the angular error was the



Table 3

Error magnitude using only intensity images and using intensity

plus texture images

Intensity Int+Txtrs

Average

error

Standard

deviation

Average

error

Standard

deviation

Sinusoid2 Vx 0.15 0.12 0.10 0.09

Sinusoid2 Vy 0.14 0.11 0.09 0.07

Yosemite Vx 0.79 1.06 0.40 0.52

Yosemite Vy 1.26 2.25 0.47 0.72

Translating

tree Vx

0.23 0.21 0.20 0.24

Translating

tree Vy

0.13 0.22 0.11 0.20

Table 4

Angular error using only intensity images and using intensity

plus texture images

Intensity Int+Txtrs

Average

error

Standard

deviation

Average

error

Standard

deviation

Yosemite 24.17 26.01 12.87 15.87

Translating

tree

4.48 4.83 4.24 7.29

Sinusoid2 6.42 2.83 4.07 2.76

Fig. 2. (a) Scatter plot of spatial gradient in the y direction against error magnitude for the original images of the Yosemite sequence.

(b) Scatter plot of the highest gradient (y direction) of a point over intensity and textural images against error magnitude.
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range of error was reduced and how there are more

points with higher spatial gradient and small error.

The plots also show how in practice the relation
spatial gradient error does not always hold: we

have points with low gradient and small error

and points with high gradient and a considerable

error.

4.4. Optical flow results

After observing the improvement each texture
can bring, we estimated the optical flow including

information from textures 1, 2 and 4 (the filters

used to estimate these textures are equivalent to a

spot detector and the sobel operator). We chose to

combine the information from these textures be-

cause of the quantitative and qualitative results of

their optical flow estimates. In Table 3 we compare

the mean magnitude of the error estimates using
the intensity image only versus using intensity and

textural images. We can observe how by including

the information from the textures we obtain more

reliable estimates. In the case of the Yosemite se-

quence the mean error decreases considerably.

In Table 4 we compare the mean and standard

deviation of the angular error using only the

intensity image versus using intensity and textural
images. We can observe again how the error is
reduced by including information from textural
images.



Fig. 3. Results of estimating the optical flow on underwater images. Images on the top are from the original sequence; the contrast of

the top-left image has been modified to highlight the position of an octopus. In the bottom-right image, we can see how the direction of

the flow in the octopus� region is slightly different, as it is lifting its head.
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In our experiments our aim was to investigate if
the inclusion of information from textures would

improve the optical flow estimates. Further

reduction of the error can be achieved; for exam-

ple, authors like Weber and Malik (1995) reduce

the error at the cost of a high number of filters (30)

being used and a larger (10 frames) temporal

support (suitable for parallel implementations but

expensive otherwise) or obtaining a lower density
of estimates (Fleet and Jepson, 1990). Barron et al.

(1994) pointed that results for methods like Weber

and Malik (1995) and Fleet and Jepson (1990) are

expected to be good only when the input fre-

quencies match those in the pass-band to which

the filters are tuned.

Figs. 3 and 4 show the results of the proposed

approach over sequences of underwater images.
Since there is no ground-truth optical flow for

these sequences, we can only evaluate the results

qualitatively. On the results we can observe a

smoother OF with less outliers.
5. Conclusions

We have shown that optical flow estimates can

be improved by including information from tex-

tures. We have shown how OF is best estimated at

some points by applying the image brightness

constancy equation on textural images. In our

experiments, a high percentage of the points of the

images proved to be best estimated on textures.
Since each texture extracts different characteristics

from the image, the information they provide is

complementary; by combining estimates from dif-

ferent textures we can improve estimates over the

image. Using only three textures and two frames

from the sequences we obtained an improvement

on the overall OF without reducing the density of

estimates. Empirically we have verified that points
with high spatial image gradient are the locations

where optical flow estimates are more reliable; we

have used this property to combine OF estimates

from the image and textures.



Fig. 4. Results of estimating the optical flow on underwater images. Images on the top show how the scene is moving to the left.
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