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Abstract- There has been significant recent interest of 
particle filters for nonlinear state estimation. Particle 
filters evaluate a posterior probability distribution of 
the state variable based on observations in Monte Carlo 
simulation using so-called importance sampling. How- 
ever, degeneracy phenomena in the importance weights 
deteriorate the filter performance. By recognizing the 
similarities a n d  the difference of the processes between 
the particle filters and  Evolution Strategies. a new filter, 
Evolution Strategies Based Particle Filter, is proposed 
to circumvent this difficulty and  to improve the perfor- 
mance. The applicability of the proposed idea is illus- 
trated by numerical studies. 

1 Introduction 

One of the crucial problems in control system science is 
estimation of the state variables of dynamic systems using a 
sequence of their noisy observations. For discrete time state 
space formulation of dynamic systems, difference equations 
are used to model the evolution of the system with time. 
and observations are assumed to available at discrete time 
instants. The focus will be on the recursive state estimation 
approach, where the estimate of the state is updated as 
new observation comes in. This problem can be discussed 
within the Bayesian framework ([Sorenson 19851). In 
this approach, we first compute a posterior probability 
density function (pdf) of the.state hased on all availablc 
information, including the set of observations using 
Bayes’ law, and then we find an optimal (with respect to 
any criterion such as the mean squared errors) estimate 
of ihe state from the posterior pdf. The well-known 
Kalman filter ([Kalman and Bucy 19611) is derived by 
this approach as the minimum mean square error estimate 
based on the posterior pdf computed for linear state space 
model with Gaussian noise ([Anderson and Moore 19791, 
[Sorenson 19851, [Katayama 20001). However, it is gen- 
erally difficult to compute analytically the posterior pdf 
for nonlinearlnon-Gaussian models, and some approxirna- 
tions should be introduced. A number of approximation 
approaches have been devised. Historically, the first 
of these approaches was extended Kalman filter (EKF) 
([Jazwinski 19701, [Goodwin and Agiiero 20021). It uses 

the linear approximations of the nonlinear functions in 
system and observation equations around the estimate, and 
applies the Kalman filter to obtain estimates for the state. 
Then, the class of filters which approximate the posterior 
pdf by mixture distributions was developed. Gaussian 
sum filter ([Sorenson IYSS]) and interacting multiple 
model (IMM) filter ([Tupnait 19821) are belonging.to this 
class. Further general approach is grid-based filter, which 
evaluates the posterior pdf at a series of prescribed points 
in the sampled space based on deterministic numerical 
integration methods ([Sorenson 19881). Recent massive 
increase of the computational power allowed to the re- 
birth of Monte Carlo integration and its application of 
Bayesian filtering, or Monte Carlo filters ([Kitagawa 19871, 
[West 19931, [Tanizaki and Mariano 19941). We 
focus here on a class of Monte Carlo filters, 
known as “particle filters” ([Liu and Chen 19981, 
[Doucet 19981, [Doucet, de Freitas and Gordon 20011, 
[Arulampalam et al. 20021). It approximates the posterior 
pdf by swarms of points, called ‘particles,’ which evolves 
and adapts to incoming data. Each particle has an assigned 
weight and the posterior pdf can be approximated by a 
discrete distribution which has support on each of the 
particles. We can see some similarities between particle 
filters and grid-based filters; both produce a set of weighted 
points and use these as a basis for an approximation of the, 
posterior pdf. However, particles are generated randomly 
from the system equation and naturally follow the move- 
ment of the state. while the points of the grid-based filrers 
are chosen arbitrarily by the user and a new choice may 
have to he made at each time instants to follow, the niovine 
state. Further, since the particle filters use Monte Carlo 
integration while the grid-based filters evaluate the integrals 
in deterministic numerical methods, the computation cost 
in calculating the weights of particles for particle filters is 
considerably smaller than one in calculating the weights 
assigned to each grids for ihe grid-based filters especially 
for higher dimensional case. 
In application of the particle filters, a common problem is 
the degeneracy phenomenon, where almost all importance 
weights tend to zero after some iteration. It implies a 
large computational effort is devoted to update the particles 
with negligible weights. Some modifications such as 
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resampling particle filter have been proposed to resolve 
this difficulty. In this paper, we propose a novel particle 
filter, based on evolution strategies ([Schwefel 199511, one 
of the evolutionary computation approaches, and show its 
applicability. 

2 Particle Filter 

Consider the following nonlinear state space model. 

Zk+1 = f ( Z k > % U k )  (1) 

Yk = Y ( X k ; W k )  ( 2 )  

where z k , u k , y k  are the state variable, input and observa- 
tion, respectively, f; g are known possibly nonlinear func- 
tions, and wk: WI are independently identically distributed 
(i.i.d.) system noise and observation noise sequences, re- 
spectively. We assume ui. and w i  are mutually indepen- 
dent. Problem to he considered here is to find the best es- 
timate of the state variable xk in some sense based on the 
all available data of observations y1:k = {yl ,  y2;. . . ,yk}. 
We can solve the problem by calculating the posterior prob- 
ability density function (pdf) of the state variable xk of time 
instant k based on all the available data of observation se- 
quence yl:k..For examples, using the posterior pdf, we can 
obtain the minimum mean squared error estimate (MMSE) 
and the maximum a posterior probability (MAP) estimate 
as follows ([Goodwin and Agiiero 20021). 

(4) 

tk = E[zklY1:kl = z k P ( z n l Y 1 : k ) d z k  (3) J 
ti; = argmaxp(q/yl:k) 

Ti 

The posterior pdfp(xklyl:k) of xk based on the observa- 
tion sequence y l lk  is evaluated recursively from a priori pdf 
p(z0lyo) = p ( z 0 )  of the initial state variable zo as follows. 
Time evolution (Chapman-Kolmogorov equation) 

P b k I Y 1 : k - 1 )  = P(~rl~a-l)~(~k-l/Yl:k-l)~~k-l ( 5 )  s 
Observation update (Bayes' rule) 

where normalizing constant 

p(?lklYl:k- l )  = P ( Y k I ~ k ) P ( ~ k l Y l : k - l ) ~ ~ k  (7) J 
depends on the likelihoodp(ykIzr;), which is determined by 
the observation equation (2) and the known statistics of wk. 
While, in (3, p ( z k l z k - 1 )  is defined by the system equation 

( I )  and the known statistics of u ~ - ~ .  
In most cases, i t  is difficult to evaluate the integrals in (5) 
and (6) except the case where f and g are linear and i i k  

and wk are zero-mean Gaussian with covariances Q and R ,  

respectively, such that 

z k + l  = A z k +  B u ~ + u ~  
y k  = C X k + W k  (8) 

where we can obtain a Gaussian conditional density for the 
state, i.e., 

p(zkIY1:k-l) - N ( ? k l k - l , P k l k - l )  

P (ZkIY1:k)  - W k I k > P k l k )  (9) 

where 

i k l k - 1  = A 3 k - l l k - l  + B u ~  
P k l k - 1  = A P k - l l k - l A T  + Q 

t , j k  = i k l k - 1  + h'k(Yk - C?klk-l) ( I O )  
P k / k  = ( I  - K k C ) P k l k _ ,  

Kk = P k l k - l C T ( C P k l k - l C T  +R) - '  

This is the well-known Kalman filter. 
In such cases, some approximations should be introduced 
as explained'in Section 1. Another approach is to approxi- 
mate the integrals with the following weighted sum on the 
discrete grids. 

" 
p ( z k l y 1 : k )  % c " p 6 ( z k  - 2 ; ) )  ( 1  1 )  

i = l  

where 6(z) is Dirac's delta function (6(z) = 1 for z = 0 
and 6(z) = 0 otherwise), and tu;) is the weight for the 
discrete grid zr) with 2 0, E:=, w t '  = 1. By this 
approximation, MMSE (3) and MAP estimate (4) are given 
by 

n 

(12) 

MAP 2 ,  = x k  (13) 

(i) (i) MMSE i k  = c w k  xk 
i = l  

argmax; U';' 

In particle filters, dil, (i = I > .  . . ,n) are generated ran- 
domly. 

2.1 Importance Sampling 

First, we briefly review the idea of "importance sampling." 
Consider the case where an approximation for the pdf p(x) 
is the following function with discrete grids. 

2103 



with Dirac's delta functions 6( .) and ziii randomly sampled 
according to the pdf p ( z ) .  We can approximate the integral 

I *  I = g(z)p(z)dz X= - zg(z" ' )  (14) 
11 s ,=I 

When it is hard to sample z(') from a general pdf p ( z ) ,  we 
find a pdf q(z) ,  from which sampling is possible, then sam- 
ple z(?) from i t  and approximate the integral by 

where 

i = l  

and di): ( i  = 1,. . . ~ n)  are sampled from the pdf q(z). 
which is called the importance density and is chosen to be 
closer as possible to the pdfp(z) .  This sampling process is 
called "importance sampling." 

2.2 Sequential Importance Sampling Filter 

Applying the idea of the importance sampling, if the par- 
ticles zk ~ (i = 1, .  . . ~ a )  in ( I  I )  are sampled from the 
importance density q ( z k l y l : k ) ,  then the weights are given 
by 

( 7 )  

In sequential case. at each iteration, we have samples con- 
stituting an approximation to p ( ~ k - ~ I y ~ : k - ~ )  and want to 
approx in ia t ep (z~~y l :~ )  with a new set of samples yk .  When 
the importance density q(xklyl:k-l) is chosen to factorize 
such that 

q(zkIYl:k) = q ( ~ l / ~ ~ - 1 : ? / i : k ) q ( ~ D - i l ~ i : ~ - i )  (17) 

Then we can ohtain samples zi!) from the importance den- 
sity q(xr l ! / l : r . )  hy augmenting each of the existing samples 

sampled from the importance density q ( x k - l l y 1 : k - - 1 )  

with the new state zi:' sampled from q ( z k 1 z k - l :  Y I : ~ . )  
Noting that 

Summarizing these steps, we can obtain a particle filter 
shown in Fig. I .  This filter is called "Sequential Importance 
Sampling Particle Filter" (SIS). 

Procedure SIS 
For k = 0 

l i )  i = 1.. . . ~ 71. sample so - q(zoiyo) 
i = 1:. . . . 7 7 .  evaluate the weight 

Figure I :  Algorithm of SIS filter 

2.3 Sampling Importance Resampling Filter 

A common problem in the SIS filter is the degeneracy phe- 
nomenon, where almost all particles will he almost zero af- 
ter a few iterations. By this degeneracy. a large computa- 
tional effort is devoted to updating particles whose contri- 
hution to the approximation of the posterior pdf p ( ~ k l y ~ , ~ )  
is negligible. In order to prevent this phenomenon, we can 
introduce resampling process, where particles with smaller 
weiehts are eliminated and particles with relatively larger 
weights are resampled. The resampling process involves 
generating new particles z;.") (I = 1: . . . ~ 1 1 )  by resampling 
from the grid approximation ( I  I )  randomly with probahility 

(20) pr(z;") = .xL.J') = c!:!) 
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The weights are reset to 3 Evolution Strategies Based Particle Filter 

In this section, we propose a novel particle filter called 
“Evolution Strategies Based Particle Filter” (SIE) by rec- 
ognizing the similarities in some steps of the “Sampling 
Importance Resampling Particle Filter” (SIR) and evolution 
strategies. 

3.1 Evolutionary Computation 

Evolutionary computation approach is computational mod- 
els of natural evolutionary processes as key elements 
in the design and implementation of computer-based 
problem solving systems. A variety of evolution- 
ary computation approaches such as ‘Evolutionary Pro- 
gramming’ (EP) ([Fogel, Owens and Walsh 1965]), ‘Evo- 
lution Strategies’ (ES) ([Schwefel 1995]), ‘Genetic Al- 
gorithm’ (CA) ([Holland l992]), and ’Genetic Program- 
ming’ (GP) ([Koza 19921) have been proposed and 
studied. Extensive survey and comments are given 
in  ([Back and Schwefel 1993l,[Back 19961, [Fogel 19951). 
The common conceptual base is simulating the evolution of 
individuals (candidate solutions) via processes of selection 
and perturbation. These processes depend on the perceived 
performance (fitness) of the individuals as defined by the 
environments. 
Evolutionary computation approach maintains a population 
of structures that evolve according to rules of selection and 
other operators, such as recombination and mutation. Each 
individual is evaluated, receiving a measure of its fitness 
in the environment. Selection (reproduction) focuses atten- 
tion on high-fitness individuals, thus exploiting the avail- 
able fitness information. Recombination (also refer to as 
crossover) and mutation perturb those individuals, provid- 
ing general heuristics for exploration. Figure 3 outlines a 
basic evolutionary computation approach. 

Here we explain ES briefly. Evolution Strategies is de- 
veloped by Rechenberg and Schwefel ([Schwefel 19951) to 
solve hydrodynamic problems. It is applied to continuous 
function optimization in real-valued wdimensional space. 
Mutation is applied more often to the solution rather than 
crossover. The simplest method can he implemented as fol- 
lows: Let z ( k 1  = (zjk’,...z!,W) E R“, ( k  = I > . . .  , f i )  
he each individual in the population. 

3.1.1 Generation of initial population 

We generate an initial population of parent vectors 
{d’), (k = 1;. . . , p ) }  randomly from a feasible range in 
each dimension. 

The effective sample size defined by 

is used as a measure of degeneracy, where GL) ( is a 
normalized weight. Note that 1 5 fieff 5 n and 
that Neff = 1 occurs’when 6:’ = 1 for some j and 
C,:) = 0 for all i except j ,  and !Vef, = 7% holds when 
C;,” = tE:.” = . . . = Cl?). This implies smaller Ne,, im- 
plies severe degeneracy. Hence if !qeff < Aithres for some 
predetermined threshold value hTthresr resampling should 
he desirable. Particle filter with this resampling process is 
called “Sampling Importance Resampling Particle Filter” 
(SIR). (See Fig.2) 

rocedure SIK 
:or k = 0 

i = 1: . . . : n ,  sample zk’ - q(zolyo) 
i = 1.. . . .?t. evaluate the weight 

i =  1 , . . . .  i a , s a m p l e j . ~ ’ - q ( z i ~ z B - l r y l : B )  il l  

i = 1,. . . ,n, evaluate the weight 

xherwise 
For I = 1:. . . ;fi, sample an index j ( i )  distri- 
buted according to discrete distribution with n 
elements satisfying 

‘ ~ r ( j ( i )  = e )  = 6; for I = I , .  . . ,n 
For i  = 1,. . . ,n, xi; - x k  , = ; (2) - - j i t )  lii 1 

Figure 2: Algorithm of SIR filtei 
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start 7 
generation of initial population 

selection i 
mutation and crossover rn 
[end) 

Figure 3: Evolutionary computation approach 

3.1.2 Evolution operations 

I .  Crossover 

This process allows for mixing of parental informa- 
tion while passing it  to their descendants. A typical 

. crossover rule is 

z: = ZS,j + x. (ZTJ - .S.j) (23) 

where S and T denote two parent individuals selected 
at random from the population and x E [0,1] is a uni- 
form random or deterministic variable. The index j 
in 2: indicates j-th component of new individuals. 
This is a similar operator used in differential evolu- 
tion ([Storn and Price 19951) 

2. Mutation 

This process introduces innovation into the popula- 
tion. It is realized by following additive process, 

U;  = uj e x p ( r ' N ( 0 , l )  + TN~(O, 1)  

z; = z; +u;N3(0:1) (24) 

Here, N(O1 1) denotes a realization of normal ran- 
dom variable with mean and unit variance, Nj(0,l) 

denotes random variable sampled anew for counter 
3 of normal random variable with mean and unit 
variance and U ]  denote the mean step size. The 
factor r and r' are suggested to set as fol- 
lows ([Back and Schwefel 19931). 

The factors T and T' are chosen dependent on the size 
of population p. In this approach. small variations are 
much more frequent than larger variations, expressing 
the state of affairs on the phenotypic level in nature. 

3.  Selection 

This is the completely deterministic process choos- 
ing the individuals of higher fitness out of the union 
of parents and offspring or offspring only to form 
the next generation in order to evolve towards better 
search region. 

0 ( p  + A)-selection 

This creates X offspring from fi  parents and se- 
lected the fi best individuals out of the union of 
parents and offspring. 

w (fi: A)-selection 

This creates A offspring from fi parents and se- 
lected the fi hest individuals out of offspring 
2 F ) .  

3.2 Evolution Strategies Based Filter 

We will propose here a novel panicle filter based on Evolu- 
tion Strategies by recognizing the fact the importance sam- 
pling and resampling processes in  SIR filter are correspond- 
ing to mutation and selection processes in  ES. Resampling 
process in SIR filter selects offsprings with probability 

P(YhI.zg ( 1 )  (i) IZe-l)P(z;!llYl:k-l) ("1 

dZ:')IZ,-,. Y l : k ) d z g - l  IY1:k-l) 
( i l  ( a )  

k m  

and this corresponds to selection process in ES with fit- 
ness function wr'. On.the other hand, the importance sam- 
pling process in  SIR filter samples zf' according to the im- 
portance density q ( z ~ ' l ~ ~ ! ~ ~  yi:k). and this corresponds to 
mutation process in  ES from the viewpoint of generating 
offsprings zr' from the parents z;!l with extrapolation by 
~ ( z I - I )  and perturbation by ug. The main difference is re- 
sampling in SIR is carried out randomly and the weights 
are reset as l /n,  while the selection in ES is deterministic 
and the fitness function is never reset. Hence, by replacing 
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the resampling process in  SIR by the deterministic selection 
process in ES, we can derive a new particle filter as fol- 
lows. Based on the particles z:!~~ (i = 1:. . . :n) sampled 
from the importance density y ( ~ k - ~  Igl+1), we generates 

. ( j  = 1:. . . ~ C) sampled from the importance density 
function q(zk /zl .2t  ~ y l : ~ ) .  Corresponding weights wl!" are 
evaluated by 

. 4 j )  I;  

i = 1. . . . .  11, j = 1 ...., E (26) 

From the set of n p  particles and weights {z:!'): ( i  = 
1.. . . ~ 12:  j = 1.. . . . l ) } ,  we choose I I  sets with the larger 
weights, and set as z;', w i ' ( i  = 1:. . . ~ n).  This process 
corresponds to ( 7 1 :  id-selection in ES. We call this particle 
filter using (n. nk)-selection in ES as Evolution Strategies 
Based Particle Filter (SIE). The aleorithm is summarized in 

( '  

Procedure SIE 

i = 1:. . . ~ n, sample zo - y(x0)yo) 
i = 1:. . . ~ n, evaluate the weight 

i = 1:. . . : n a n d  j = 1:. . . :i, 
sample ~ y )  - q ( z I ; ~ z ~ - ~ .  (1) ~ 1 ~ 1 ; )  

i = 1:. . . , n and j = 1, . . . ~ e, 
evaluate the weixht ' 

j = 1 : .  . . ~ e ) }  hy the size of U;."' in descending 
order 
Take the first IL zf '  from the ordered set 

i = 1 ~ . . . , n, normalize the weight 

* ( P I  - t ( e )  
{ f k  : W k  }. 

Figure 4:  Algorithm for SIE filter 

4 Numerical Example 

Consider the following nonlinear state space model first 
proposed in ([Andre Netto, Gimeno and Mendes 19781) 
and discussed by several authors including 
([Kitagawa 19871). ' 

21; = fI;(x1;-1.k) f 2 ' k - l  (27) 

(28) ?4r = 2o + W k  
X: - 

where 

and V I ;  and wk are i i d .  zero-mean normal random vari- 
ates with variance Qk. = 10 and RI; = 1, respectively. or 
equivalently, 

The sample behaviors of the estimates by SIS (n = 400), 
SIR (n = 200,Neff = 200) and proposed SIE (n = 
20,8 = 20) filters are given in  FigS. Mean squared er- 
rors with one standard deviation confidential interval at time 
instant I; = 100 for 10 simulations is shown in Tahle4. 
Though the results indicate that SIE filter shows the inter- 
mediate performance between SIS and SIR filters, i t  can be 
carried out routinely since evaluation of the effective num- 
ber and comparison with the threshold value as in SIR are 
not necessary. The performance of course depends on the 
choices of design parameters 12 ,  I?i,ff and p and better 
choices of these parameters will he pursued. 

Table 1 : Mean square errors 
SIS 1 133.44 f 10.84 
SIR 1 48.87 i 6.96 
SIE 61.21 * 11.56 

5 Conclusions 

Recognizing the similarity and the difference between the 
importance sampling and resampling processes in SIR fil- 
ter and mutation and selection processes in ES, have de- 
rived a novel particle filter, SIE filter, by substituting ( f i ,  A)- 
selection in ES into resampling process in SIR. Application 
of other evolution operations such as crossover and modi- 
fication of mutation will have the potential to create high 
performance particle filters. 
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