Tiré de http://www.nist.gov/lispix/imlab/labs.html

Deblurring using FFT

(Deconvolution)

[image: image20.png]=lolx|

25656 picels, 8-bit, 54K

· Take the Fourier Transform: Process -> FFT -> FFT menu.

	[image: image1.png]<<FFT 2>

I used the Process -> Enhance contrast menu to make the pattern stand out a little more. This affects only the LUT - the following processing steps will not be affected.
	ImageJ
[image: image2.png]ot B4k

[image: image21.png]

This will be the 'point spread' function with which to blur the image, and then deblur it. This is not a realistic point spread function for microscopes, which might look more like a Gaussian shaped peak, and would be the image from a point source.

· Take the FFT of the dot. Process -> FFT -> FFT menu.

	[image: image3.png]

	ImageJ
[image: image4.png]L FFT of ntitled

ot B4k

The first image will now be blurred by convolving it with the second image. Although this could be done in the spatial domain by making a convolution kernel and using the Process -> Convolve menu with a convolution kernel (14x14 array with 1's to match the black pixels in the dot image), convolution by large kernels is done more quickly in the frequency domain (using the FFT). Deconvolution (deblurring) must be done in the frequency domain. [In ImageJ, frequence domain math such as this is available using Process / FFT / FD Math]
· Blur the face image with the dot image, by multiplying the two FFT images together and taking the inverse transform of the result.

· Process -> Image Math menu, with these settings:

	[image: image5.png]Image Calculator

P2 ~)

P4 ~)
% [1.0000
+[0.00

= [Resuit

[Real Result

	ImageJ
[image: image6.png]Image Calculator

Imaget: [FFT offacewramp tif v
Operation: [T —
Image2: [FFT of Untitled <

[V Create New Window
IV 3zbitResut

oK | cancel

· which gives FFT5 as a result:

	[image: image7.png]

	ImageJ
[image: image8.png]

[In ImageJ, the steps work up to this point. However, the resulting product image is not considered a frequency domain image by ImageJ, so we can go no further using these images. The process can be done more directly using Process / FFT / FD Math. - see the green sections below.]

· Take the inverse transform: Process -> FFT -> Inverse FFT menu then, Process -> FFT -> Swap Quadrants menu

[image: image22.png]<«Inverse FFT 5>

	The thin lines in the face have not disappeared.

· Show the face by enhancing the contrast

· Click on the square (a) to restore to normal contrast if necessary. The thin lines will now be visible.

· Move the top dot (b) to the left as shown to darken the face a bit more.
	 [image: image9.png]ald @

[image: image10.png]

[To make the blurred image in ImageJ, use Process / FFT / FD Math ...]
	[image: image11.png]FFT Math

Image1: | ERETRTTNIE -
Operation: [Comvove ~

Image2: [aot <

Result

[¥ Do Inverse Transform

oK | cancel

	[image: image12.png]=lolx|

2561255 pixels, 32-bi grayscale; 256K

o

To deblur the image, divide its FFT by the FFT4, the FFT of the point spread function.

· Make sure the above image is the top or active image.

· Take its transform: Process -> FFT -> FFT menu. (FFT5 above is restored.)

· Divide FFT5 by FFT4: Process Image Math menu, select these parameters:

[image: image13.png]Image Calculator

FFTS ~)

P4 ~)
% [1.0000
+[0.00

= [Resuit

[Real Result

 [image: image14.png]

· Then take the inverse transform, Process -. FFT -> Inverse FFT, to restore the image:

The image has been restored exactly, because the point spread function used for deblurring was identical to the point spread function used for blurring, and there was no noise.

Let's alter the point spread function by reducing the size of the dot slightly, and see the effect on the 'deblurred' image.

· Duplicate the original dot used for the blurring point spread function, zoom it several times with the eyeglass tool[image: image15.png]

. It will look like this: .

· Using the pencil tool, modify four pixels in the image so that it looks like this:

[image: image16.png]

.

· Take the FFT (Process -> FFT -> FFT) of the new dot.

· Divide the FFT of the original blurred image (FFT of original image X FFT of original dot) by the FFT of the new corrupted dot. (Process -> Image Math... menu. Make sure the operation is divide).

[image: image17.png]

 [image: image18.png]

· And, finally, take the inverse transform (Process -> FFT -> Inverse FFT menu.)

[image: image19.png]

Evidently, the point spread function must be known very accurately.

