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ABSTRACT 
We introduce a novel data mining technique for the analysis of 
gene expression. Gene expression is the effective production of 
the protein that a gene encodes. We focus on the characterization 
of the expression patterns of genes based on their promoter 
regions. The promoter region of a gene contains short sequences 
called motifs to which gene regulatory proteins may bind, thereby 
controlling when and in which cell types the gene is expressed. 
Our approach addresses two important aspects of gene expression 
analysis: (1) Binding of proteins at more than one motif is usually 
required, and several different types of proteins may need to bind 
several different types of motifs in order to confer transcriptional 
specificity. (2) Since proteins controlling transcription may need 
to interact physically, we know that the order and spacing in 
which motifs occur can affect expression. 

We use association rules to address the combinatorial aspect. The 
association rules we employ have the ability to involve multiple 
motifs and to predict expression in multiple cell types. To address 
the second aspect, we enhance association rules with information 
about the distances among the motifs, or items, that are present in 
the rule. Rules of interest are those whose set of motifs deviates 
properly, i.e. set of motifs whose pair-wise distances are highly 
conserved in the promoter regions where these motifs occur. We 
describe the design, implementation, and evaluation of our 
Distance-based Association Rule Mining algorithm (DARM) to 
mine those rules. We show that these distance-based rules achieve 
higher classification performance than standard association rules 
over two real datasets.   

Keywords 
gene expression analysis, distance-based association rule mining. 

1. INTRODUCTION 
1.1 Context and Problem Definition 
Control of gene expression remains one of the fundamental 
unsolved problems of biology.  The basic problem is deceptively 
simple.  The primary sequences that control most gene expression 
(defined here as transcription of DNA into RNA) are known to be 
located in the non-coding DNA upstream from the coding region.  
If several genes are expressed in the same temporal and spatial 
pattern in an organism, then it seems there must be DNA 
sequences in common among the non-coding regions of these 
genes that control the timing and location of expression.  
Although the complete genome sequence for many organisms is 
now available, most sequences known to be involved in control of 
transcription have been identified by painstaking molecular and 
genetic analyses rather than through computational analysis 
comparing DNA sequences.  

* Corresponding author. 

 There are many reasons for the difficulty in translating 
knowledge of DNA sequence into understanding of transcriptional 
control.  Molecular analysis has shown that the DNA sequences or 
motifs that control transcription act by allowing the binding of 
protein transcription factors to non-coding DNA. See  

Figure 1. For a review, see [19].  

 

Figure 1. Gene expression.  Transcription factors TF1, 
TF2, and TF3 bind to motifs M1, M2, and M3, respectively, 

and allow transcription of Gene X to occur.  Numbers in ovals 
represent distances between motifs in base pairs. 

 

Motifs tend to be fairly short, and are not always completely 
conserved among instances.  For example, the so-called ‘GATA’  
transcription factors bind the motif (A or T) GATA (A or G).  
Every occurrence of such short sequences cannot be functional on 
its own; instead, control of transcription is often combinatorial.  
Binding of proteins at more than one motif is usually required, 
and several different types of proteins may need to bind several 
different types of motifs in order to confer transcriptional 
specificity.  In addition, since proteins controlling transcription 
may need to interact physically, we know that the order and 
spacing in which motifs occur can affect expression.  So far, 
however, most software packages that elicit putative motifs 
involved in the control of transcription identify motifs 
individually and are not able to consider relationships among 
motifs (for a review, see [13]). 

We have used association rules as a computational tool towards 
combinatorial analysis of motifs involved in transcriptional 
control [17].  As a test database, we have used genes from the 
simplest multi-cellular animal with a sequenced genome, C. 
elegans, and its close relative, C. briggsae.  In many cases, the 
expression patterns of C. elegans genes are known to be conferred 
by relatively short promoter regions (typically 2-4 kb) directly 
upstream of the protein coding region of the gene. We used an 
existing software package, MEME [3], to elicit putative motifs 
from these promoter regions.   We then built association rules 
based on these motifs to try to identify combinations of motifs 
important in controlling transcriptional specificity.   
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1.2 Contributions of this Paper 
In this work, we take a first step toward including the distances 
between motifs in the formulation of association rules and 
introduce an algorithm to mine distance-based association rules 
efficiently. The values that we use to measure the quality of the 
rules are the support, the confidence, and the coefficient of 
variation of distances.  This last value is introduced to capture the 
clustering significance of all pairwise distances of motif members 
of a rule.  Although it is possible for DNA to form loops that 
allow distant motifs and their associated transcription factors to 
come into close contact, we have so far considered only linear 
base pair distances between motifs.  Even so, these distance-
enhanced models show an improvement in predictive capabilities 
over models that do not consider distance. 

2. DISTANCE-BASED ASSOCIATION 
RULES 
Association rules were introduced in [1].  Association rules follow 
the form X => Y, where X and Y are disjoint sets of items (or 
itemsets). X is called the antecedent, and Y the consequent of the 
rule. The intended meaning of such a rule is that data instances 
that contain X are likely to contain Y as well. The extent to which 
the rule applies to a given dataset can be measured using various 
metrics, including support and confidence. The support of the rule 
is the probability of X and Y occurring together in an instance, 
Pr(X and Y). The confidence of the rule is the conditional 
probability of Y given X, Pr(Y|X). Here, probability is taken to be 
the observed frequency in the underlying dataset. 

In our prior research [17] we have used association rules to 
describe groups of motifs that when present in the promoter 
region of a gene make the gene likely to be expressed in the cell 
type of interest. The following example illustrates what these 
association rules look like and also points out the need to extend 
these association rules with distance information among the 
motifs. 

2.1 Motivating Example 
Consider the sample dataset shown in Figure 2. This sample 
consists of 9 data sequences related to 9 different gene promoter 
regions (PR1-PR9). Each data instance consists of the distinct 
motifs that are found present in the respective gene promoter 
region, and the cell type(s) where this gene is expressed (Neural 
or Muscle). Pairwise distances among the motifs (in DNA base 
pairs) are also shown in Figure 2.  

Let us assume that we want association rules that have three 
motifs in the antecedent and one type of cell in the consequent. If 
the support threshold is (2/9)*100%=22.2% and the confidence 
threshold is 100%, applying the standard Apriori algorithm [2] to 
this dataset will generate the rules presented in Figure 3. 

Rules R2 and R3 in Figure 3 have the same values for support and 
confidence. Based on these measures, no distinction can be made 
between R2 and R3.  However, visual examination of the 
promoters supporting these rules suggests that there is an 
important difference.   Motifs M1, M4, and M5 are very similarly 
clustered in promoters PR1 and PR2, which provide the support 
for rule R2.  In contrast, motifs M2, M4, and M5 are in a different 
order, and are further apart, in promoter PR1 than in PR8, which 
together provide the support for rule R3. Thus, rule R2 is more 
likely to be biologically significant than R3.  In order to generate 
rules resembling rule R2, we introduce a new parameter that we 

call the coefficient of variation of distances (cvd). This coefficient 
will enable the generation of distance-based association rules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Motifs and expression paterns of a hypothetical 
data sample. PRx, promoter region of gene x.  Mi, motif i.  

Numbers in ovals are distances from the start of one motif to 
the start of the next motif.  Not drawn to scale. 

 

 

 

 

 

 

 

Figure 3. Rules obtained from the dataset shown in Figure 2 
using the standard Apriori algorithm 

2.2 Coefficient of Variation of Distances 
We would expect variability of the distances among motifs to 
depend upon of the actual sizes of the distances. That is, larger 
distances would have bigger standard deviations than smaller 
distances. Thus, to determine whether distances represent similar 
clustering among promoters we use the coefficient of variation of 
distances (cvd) [23]. The cvd of a pair of motifs with respect to a 
collection (or itemset) I of motifs is the ratio between the 
standard deviation and the mean of the distances between the 
motifs in those promoter regions that contain all the motifs in I. 
As an illustration, consider R1 from Figure 3. The collection of 
motifs present in this rule is IR1= { M1, M2, M5} . We augment 

R1: M1, M2, M5=>Neural   (sup=33%), (conf=100%)    
(M1, M2, M5 & Neural present in PR1, PR4, and PR7) 

R2: M1, M4, M5=>Neural   (sup =22%), (conf=100%)   
(M1, M4, M5 & Neural present in PR1, PR2)  

R3: M2, M4, M5=>Neural   (sup =22%), (conf=100%)   
(M2, M4, M5 & Neural present in PR1, PR8)  
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the statistical information reported for this rule with the cvd’ s of 

each pair of motifs present in the rule: 1IRcvd (M1,M2),    

1IRcvd  (M1,M5) and 1IRcvd  (M2,M5). To calculate the cvd for 

the pair M1,M2 with respect to IR1, we note that the distances 
between M1 and M2 in the promoter regions that contain IR1, 
namely PR1, PR4, and PR7, are respectively 340, 100, and 210 
basepairs.  Thus, 
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In the same manner, we calculate the other two cvd’ s for R1. 
Figure 4 depicts the enhanced versions of rules R1, R2, and R3 
from Figure 3. 

R1: M1, M2, M5=>Neural (sup=33%, conf=100%)    

 M2 M5 

cvd 0.554 0.076 

mean 216.6 462.0 

M1 

sdev 120.1 35.0 

cvd  0.433 

mean  237.0 

M2 

sdev  103.0 

 

R2: M1, M4, M5=>Neural (sup=22%, conf=100%) 

 M4 M5 

cvd 0.056 0.036 

mean 250.0 488.0 

M1 

sdev 14.0 18.0 

cvd  0.136 

mean  233.0 

M4 

sdev  31.68 

 

R2: M1, M4, M5=>Neural (sup=22%, conf=100%) 

 M4 M5 

cvd 0.056 0.036 

mean 250.0 488.0 

M1 

sdev 14.0 18.0 

cvd  0.136 

mean  233.0 

M4 

sdev  31.68 

 

Figure 4. Distance-Based Association Rules obtained from the 
Association Rules in Figure 3 

In addition to the support and the confidence values, an enhanced 
association rule contains distance information for each pair of 
motifs present in the rule. This distance information is given by 
the cvd, the mean, and the standard deviation of the distances 
between the two motifs of the pair in the set of promoter regions 
that provides support for the rule. We call such an enhanced rule a 
Distance-based Association Rule (DAR). Note that it would be 
enough to provide just two out of these three values (as the cvd is 
defined from the mean and the standard deviation) but for clarity 
we provide the three distance-related values. 

Now we can illustrate what we want from the system: rules that 
satisfy the min support and min confidence thresholds, but also 
such that items in a rule preserve their distances in the dataset 
instances that support the rule; i.e. their cvd’ s are below some 
maximal allowed max-cvd threshold. The max-cvd is a user 
specified threshold. cvd’ s for each pair of items in the rule should 
be less than the max-cvd. So, for the rules given in Figure 4, if the 
user of the system sets max-cvd threshold to be maximum 0.15, 
rules 1 and 3 will be removed, while rule 2 will remain, since only 
for rule 2 are all pairwise cvd’ s below the given max-cvd=0.15. 

3. MINING ALGORITHM 
3.1 Mining Task 
The mining task can be specified as follows: Given a dataset of 
instances D, a minimum support min-supp, a minimum confidence 
min-conf, and a maximum coefficient of variation of distances 
max-cdv; Find all distance-based association rules from D whose 
support and confidence are greater than or equal to the min-supp 
and min-conf thresholds and such that the cvd’s of all the pairs of 
items in the rule are less than or equal to the maximum cvd 
threshold. 

3.2 Mining Distance-based Association Rules 
Our algorithm to mine distance-based association rules from a 
dataset of instances extends the Apriori algorithm. The Apriori 
algorithm [2] accepts as inputs two thresholds, min-supp and min-
conf, and mines (finds) all association rules having support and 
confidence greater than or equal to those thresholds. Apriori 
mines association rules using a two stage process. The first stage 
generates all the sets of items that satisfy the min-supp constraint, 
called frequent itemsets. The second stage constructs all the 
association rules that satisfy the min-conf constraint from those 
frequent itemsets. 

In order to obtain distance-based association rules, one could use 
the Apriori algorithm to mine all association rules whose supports 
and confidences satisfy the thresholds, and then annotate those 
rules with the cvd’ s of all the pair of items present in the rule, 
keeping as the end result of the algorithm, only those rules whose 
cvd’ s satisfy the max-cvd threshold. We call this algorithm to 
mine distance-based association rules, Naïve distance-Apriori. 

This naïve algorithm produces the desired association rules, but it 
is not particularly efficient in doing so, as it unnecessarily keep 
frequent itemsets during the first stage of the process that neither 
them nor their supersets satisfy the max-cvd constraint. The 
Distance-based Association Rule Mining (DARM) algorithm that 
we introduce in this paper prunes from consideration those 
unnecessary frequent itemsets, making the mining process more 
efficient. Section 5 presents experimental results that show the 
time savings of DARM over the naïve algorithm. 
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3.3 The DARM Algorithm 
This algorithm follows Apriori’s two stage process: It first 
generates all the frequent itemsets that satisfy the max-cvd 
constraint (we call them cvd-frequent itemsets), and then 
generates all association rules with the required confidence from 
those itemsets. 

3.3.1 Generating cvd-Frequent Itemsets 
The Apriori algorithm generates frequent itemsets level by level, 
first listing the collection L1 of all the frequent itemsets of 
cardinality one, then the collection L2 of all the frequent itemsets 
of cardinality two, and so on. It uses the fact that support 
monotonically decreases when the cardinality increases. This 
implies that, if an itemset is infrequent (i.e. its support is below 
the min-supp threshold), then all its supersets are also infrequent. 
This fact is known as the Apriori Principle. Hence, if an itemset is 
infrequent, it and all of its supersets can be pruned from 
consideration. In particular, candidate itemsets for Lk+1 can be 
generated by joining together itemsets in Lk that differ in only one 
item. 

In contrast with support satisfaction, the max-cvd constraint is a 
non-monotonic property. An itemset that does not satisfy this 
constraint may have supersets that do. As an illustration, assume 
that we want to mine association rules from the dataset in Figure 2 
with min-supp=2/9*100% and max-cvd=0.15. Consider the 
itemset of motifs I={ M1,M4} . This itemset is present in PR1, 
PR2, PR3, and PR5. The distance between the two motifs in those 
promoter regions are 240, 260, 360, and 190 respectively, and 
their cvd over those 4 promoter regions is cvdI(M1,M4)=0.27.  
Hence this itemset I does not satisfy the max-cvd condition. 
However, for the superset J={ M1,M4,M5}  of I,  
cvdJ(M1,M4)=0.0564. Note that this superset J is supported by 
(i.e. contained in) promoter regions PR1 and PR2. This reduction 
in the set of promoters that supports the itemset makes it possible 
for the mean and the standard deviation of the distances of a pair 
of motifs to increase or to decrease, and consequently the cvd 
value either to increase or to decrease.   

This example shows the non-monotonic behavior of the cvd 
values as the cardinality of the itemsets increases. Hence, one 
cannot remove from consideration an itemset that does not satisfy 
the max-cvd condition. Nevertheless, one can prune an itemset 
from consideration if it and all of its supersets violate the max-cvd 
condition. Generating all the supersets of an itemset to check this 
condition is very expensive in terms of computational time. We 
instead introduce a procedure that keeps under consideration only 
frequent itemsets that deviate properly. 

Definition (Proper Deviation). Let n be the number of promoter 
regions (instances) in the dataset. Let I be a frequent itemset, and 
let S be the set of promoter regions that contain I. We say that I 
deviates properly if either: 

1. I is cvd-frequent. That is, the cvd over S of each pair of 
motifs in I is less than or equal to the max-cvd threshold, or 

2. For each pair of motifs P in I, there is a subset S’  of S with 
cardinality greater than or equal to 

�
min-supp*n�  such that 

the cvd over S’  of P is less than or equal to the max-cvd 
threshold. 

The k-level of itemsets kept by the DARM algorithm is the 
collection of frequent itemsets of cardinality k that deviate 
properly. Those itemsets are used to generate the (k+1)-level. If a 
frequent itemset does not deviate properly, it means that no matter 
what items are added to the itemset in higher levels of the Apriori 

itemset generation, the resulting superset either will fail to have 
the min-supp required or will contain a pair of items whose cvd is 
above the max-cvd allowed. Hence no rules can be generated from 
this itemset (or any of its supersets) and so the itemset can be 
removed from consideration.  

Note that we do not require that there is one subset S’  of S that 
works for all the pairs of motifs in I. This allows for easier parallel 
search for the appropriate subsets of S. We further speed up the 
search for an appropriate subset of S for a pair of motifs in I by 
sorting S according to the distance between of the pair of motifs in 
the promoter regions in S and considering only subsets of S 
formed by contiguous elements on that list. For example, for 
I={ M2,M5}  in Figure 2, the sorted version of S (annotated with 
the distance between the 2 motifs) is { PR8 (d=39), PR1 (d=150), 
PR7 (d=210), PR4 (d=350)} . One can prove that for each non-
contiguous subset of S there is a contiguous subset of S over 
which the cvd value of the pair of motifs is smaller.  

3.3.2 Generating Rules from cvd-Frequent Itemsets 
Once that all the frequent itemsets that deviate properly have been 
generated, distance-based association rules are constructed from 
those itemsets that satisfy the max-cvd constraint. As is the case 
with the Apriori algorithm, each possible split of such an itemset 
into two parts, one for the antecedent and one for the consequent 
of the rule, is considered. If the rule so formed satisfies the min-
conf constraint, then the rule is added to the output.  

3.4 Implementation 
We have implemented our DARM algorithm in Java within the 
Weka environment [20]. This implementation is based on the 
work reported in [15].  

 

4. PREDICTING GENE EXPRESSION  
In addition to using our distance based association rules to 
describe combinations of motifs that regulate gene expression, we 
also employ them to make predictions. For that purpose, we use 
our DARM algorithm constraining the antecedents of the rules to 
contain only motifs and the consequents to contain only cell types 
(see Figure 4). We call those rules class distance-based 
association rules (or class rules for short). Once those rules have 
been mined, we select a subset of them to form part of a predictive 
(or classification) model as explain below.  

4.1 Model Construction 
One of the methods we have used to construct models follows the 
CBA model construction approach described in [10]. First, rules 
are sorted in decreasing order of their confidence, with rules 
having equal confidence sorted by support.  Rules are added to the 
model one at a time in the sorted order.  Only the rules that 
classify correctly at least one instance from the training data not 
classified by the rules already in the model are kept. The resulting 
classifier is tested on the training instances for the error rate (the 
ratio of incorrect predictions over the training data).This process 
is repeated until exhausting the association rules or exhausting the 
training instances. The subset of the rules with lowest error rate is 
the final CBA model. This CBA model contains a default rule that 
is applied to test instances for which one of the other rules in the 
model apply. The default class is the majority class of the 
unclassified training instances.  
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4.2 Model Deployment 
Given a novel gene (or instance), we apply to it the first rule (in 
the order in which rules are listed) in the model whose antecedent 
matches the instance. We say that the antecedent of a rule 
matches an instance if all the motifs present in the antecedent of 
the rule are contained in the instance, and for each pair of those 
motifs the distance between them in the instance lies in the 
interval given by the mean plus/minus one standard deviation 
specified in the rule for that pair of motifs. As an illustration, 
consider rule R2 from Figure 4. If the novel gene contains motifs 
M1, M4, and M5, and the distances between M1 and M4, M1 and 
M5, and M4 and M5 lie in the intervals 250± 14, 488± 18, and 
233± 32 respectively, we use the rule to predict that the gene is 
expressed in neural cells. Alternative criteria for rule application 
are certainly conceivable and worth experimenting with. The 
criterion described here yielded good experimental performance.  

5. EXPERIMENTAL EVALUATION 
5.1 Data Description 
As described in the Introduction, we used two datasets for our 
experiments. The C. briggsae dataset contains the promoter 
regions of 31 genes, and 5 cell types where the genes are assumed 
to be expressed in the same pattern as the homologous genes in C. 
elegans:   

1. PanNeural (17 out of the 31 genes (54%) are expressed 
in all neurons);  

2. ASENeuron (21 out of 31, 67%); 

3. ASKNeuron (24 out of 31, 77%);  

4. BodyWallMuscle (20 out of 31, 64%); and  

5. OLLNeuron (19 out of 31, 61%),  

The C. elegans dataset contains the promoter regions of 57 genes, 
and 1 cell type, PanNeural, where 17 out of the 57 genes (29%) 
are expressed.We obtained putative motifs for each cell type by 
running MEME [3] over the promoter regions associated with the 
genes expressed in the cell type. If there was more than one 
occurrence of a motif in a promoter region, we selected the 
occurrence of the motif with the lowest p-value. See [12] for 
details on this process and the dataset collection. 

5.2 Performance of Distance-based Models 
We constructed classification models for each cell type in the C. 
briggsae dataset and evaluated the models using several methods. 
See Figure 5, Figure 6, and Figure 7. The mining parameters for 
all these experiments are max-cvd = 0.5, min-supp =  20%, min-
conf = 20%. The classification accuracies reported in these 
Figures can be compared against the accuracy of the classifier that 
always predicts the most frequent value of the classification 
target.  For instance, such a classifier would achieve 54% 
accuracy for the PanNeural cell type in C. briggsae (see the 
percentages provided above in the data description section) which 
is considerably lower than those that we achieved for this cell 
type: 83% in Figure 5; 73% in Figure 6; and 80% in Figure 7. 

5.3 DARM Models vs. Regular Models 
We compared the classification accuracy of models constructed 
from distance-based rules and standard rules. We report here the 
results obtained for the PanNeural cell type for C. briggsae in 
Figure 8, and for C. elegans in Figure 9. In each case, 66% of the 
data was used for training and 33% for testing. In both cases, our 

distance-based association rules outperformed the standard 
association rules.  

 

 
Figure 5. Testing over Training Data   

 

 
Figure 6. 66% Training, 33% testing data 

 

 
Figure 7. 10-fold cross-validation 
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Figure 8. Apriori vs. DARM (C. briggsae) 

 
Figure 9. Apriori vs. DARM (C. Elegans) 

 

5.4  Deviating properly Pruning 
Finally, we compared our DARM algorithm against the Naïve 
distance-Apriori described in Section 3. As expected, the naïve 
approach considers many more unnecessary itemsets than our 
DARM algorithm does. Figure 10 summarizes the number of 
itemsets considered by both methods over the five C. briggsae 
datasets with mining parameters min-supp=65%, max-cvd=0.6. 
The decrease of the number of the frequent itemsets yields time 
savings during the mining process.  

Figure 10. DARM Savings. 

6. RELATED WORK 
6.1 Bioinformatics 
There has been some recent work on using association rule mining 
to analyze gene expression data. Chen et al. [6] mine association 
rules over gene expression data to obtain transcription factors. 
Creighton and Hanash [7] use standard association rules for global 
gene expression profiling. Berrar et al. [5] use the Apriori 
algorithm over gene expression data. Kotala et al. [9] introduce a 
new approach to mining association rules from micro-array gene 
expression data using Peano count trees. Tuzhilin and 
Adomavicius [18] propose post-processing operators to allow 
biologists to browse extensive collections of association rules 
mined from micro-array data.  Our work differs from the above 
approaches in that we focus on the combinatorial analysis of 
motifs involved in transcriptional control, and introduce a notion 
of association rules with distance information for this analysis.  

6.2 Spatial Association Rule Mining 
An approach to handle spatial information in association rules has 
been introduced by Koperski and Han [8]. Their association rules 
can contain spatial information including distance-related 
information (e.g. close_to, far_away) as well as topological 
relations and spatial orientation. They use a progressive 
refinement method to deal with the complexity of frequent 
itemsets generation. Our work differs from theirs in that we define 
a notion of being well-clustered: pairwise distances between the 
items (motifs) present in a rule are conserved in the genes 
supporting the rule. This notion is learned from the data. That is, 
our approach does not receive as input a global threshold distance 
used to determine when two items are close or are well-clustered, 
but instead learns from the dataset the appropriate distance 
thresholds for each pair of motifs in each association rule. Also, 
we use our deviates-properly pruning strategy to remove non-
distance conserving itemsets from consideration, thus addressing 
the complexity of the mining process. 
 
Miller and Yang [11] introduce a type of distance-based 
association rules. Their work concentrates on datasets that contain 
numeric attributes. The values of the attributes are discretized into 
different numbers of bins using clustering. After each numeric 
attribute is binned, association rules are mined from the 
transformed dataset. Our approach differs from theirs in that it 
does not require pre-processing of the data attributes and also it 
mines rules with distance information across attributes (motifs), 
not within the values of each attribute. 

6.2 Sequence Mining 
Some existing approaches in sequence mining also addressed the 
issue of distances between items in a sequence. For example the 
work by Srikant and Agrawal [16] and by Zaki [22] extend ideas 
from association rule mining to sequential data. They use 
minimum and maximum gap constraints on the items that appear 
in an association. Given a minimum and a maximum gap 
thresholds, min-gap and max-gap, their approaches constrain all 
pair of consecutive items in all associations mined to be no less 
than min-gap and no more than max-gap apart in the underlying 
data. In contrast, our approach discovers from the data the 
appropriate value of the distance (in terms of its mean and its 
standard deviation) between each pair of items in each of the 
association rules mined. Our approach is similar to theirs in that 
we also “push”  constraint checking into the frequent itemsets 
generation process. 
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Yang et al. [21] mine constrained association rules in which 
consecutive items in an ordered itemset should be at most a 
certain (user-specified) number of itemset positions apart. They 
introduce their approach in the context of web usage mining. 
Their constraint is somewhat similar to the notion of maximum 
gap in sequence mining, but their gaps between items are 
measured over the itemsets and not over the data sequences.  Our 
approach differs from theirs in the same way in which it differs 
from sequential mining with a max-gap constraint, as described 
above.   
 

7. CONCLUSIONS AND FUTURE WORK 
Our experimental results show that the distance-based association 
rules introduced in this paper achieved higher classification 
accuracy over gene expression data than standard association 
rules, and are better descriptors of this application domain. 
Further experimentation over larger datasets in this and other 
domains is planned. Also, an extension of the DARM algorithm 
that allows it to handle multiple occurrences of a motif in a 
promoter region is underway.  
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