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Abstract. Segmentation of cellular images presents a challenging task
for computer vision, especially when the cells of irregular shapes clump
together. Level set methods can segment cells with irregular shapes when
signal-to-noise ratio is low, however they could not effectively segment
cells that are clumping together. We perform topological analysis on the
zero level sets to enable effective segmentation of clumped cells. Geomet-
rical shapes and intensities are important information for segmentation
of cells. We assimilated them in our approach and hence we are able to
gain from the advantages of level sets while circumventing its shortcom-
ing. Validation on a data set of 4916 neural cells shows that our method
is 93.3 ± 0.6% accurate.

1 Introduction and Background

Biological science is in the midst of remarkable growth. Accompanying this
growth is the transformation of biology from qualitative observations into a quan-
titative science. This transformation is driving the development of bio-imaging
informatics. Computer vision techniques in bio-imaging informatics have already
made significant impacts in many studies [1,2]. Cellular microscopy is an impor-
tant aspect of bio-imaging informatics. It have its unique traits and bring new
challenges to the field of computer vision. Advances in digital microscopy and
robotic techniques in cell cultures have enabled thousands of cellular images to
be captured through High Throughput Screening and High Content Screening.
Manual measurement and analysis of those images are subjective, labor intensive
and inaccurate. In this paper, we developed an efficient algorithm for the seg-
mentation of cells in highly cluttered environment, which is a ubiquitous problem
in the analysis of cellular images.

Accurate segmentation of the cellular images is vital to obtain qualitative in-
formation on a cell-by-cell basis. Cellular images are usually captured by multi-
channel fluorescent microscopes, in which one channel detects the nuclei. Since
nuclei contain important information, they generally serve as references for cellu-
lar image segmentation. During the past 15 years, many efforts have been made
on automatic segmentation of nuclei from fluorescent cellular images, such as
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simple thresholding [3], watershed algorithm [4]∼[5], boundary based segmen-
tation [6], flexible contour model for the segmentation of the overlapping and
closely packed nucleus [7]. Other related works on the automatic analysis of
cellular images can be found in [8,9].

Deformable models, also known as active contour, are popular and powerful
tools for cell segmentation tasks. Among all the active contour models, level set
formalism has its superior properties, such as ease of implementation, region-
based, robust to noise and no self-intersection, etc. Two concepts of level set
approach were discussed in O. Stanley’s original paper [10]. First, a level set func-
tion in a higher dimensional space is defined to represent the regions, which pro-
vided us with a non-parameterized model for segmentation. Second, the curves
are evolved according to their mean curvature. Thereafter, D. Mumford and J.
Shah proposed their functional variation formulation to optimize the segmenta-
tion of piecewise smooth images in [12]. Then Chan-Vese enhanced the level set
approach for region based image segmentation [13]. A comprehensive review of
level set approach for image processing are available in [14] and [15].

One long-claimed merit of level set methods is its ability to automatically
handle topological changes. However, this merit becomes a liability in many
cellular image segmentations, because non-dividing cells can only contain one
nucleus. In a highly clustered image, as shown in Fig. 1, level set segmentation of
the cells (green channel) will results in many segments with multiple nuclei. The
contours of the snake model and geodesic active contours model can in principle
generate one cell segment per nucleus, but they need to be parameterized and the
node points may not be uniformly distributed along the length of the contours.
Thus they cannot capture the subtle details of irregular cell outlines. In this work,
we prefer the level set formulation since it is non-parameterized. We develop a
method to enforce the condition that one cell segment contains only one nucleus.

Watershed approach was first proposed in [16] and widely applied for cell
segmentation. Watershed approach was combined with the level set formulation
to segment cellular images and preserve the known topology based on sought
seeds in [17]. Similar seeds-based segmentation approach in [18] uses one level
set function for each individual corresponding cell to prevent the merging of
different cells. Simple point concept is applied to prevent the merging of the cell
segments during the evolution of level set function in [19]. However, a well-known
problem of watershed approach is over-segmentation. Other methods have been
proposed to overcome this problem, such as rule-based merging [21] and marker-
controlled watershed correction based on Voronoi diagrams [20].

Generally, the cellular images are acquired by multi-channel fluorescent mi-
croscopes and nuclei are captured by one of the channels. Fig. 1 shows a few
examples of the cellular images captured by two channel fluorescent microscopy.
As shown in Fig. 1, each cell consists of one nucleus and cells of irregular shapes
are crowded and touch each other. In this work, we first segment the nuclei,
since they are inside of the cell membrane and generally well separated. The
found nuclei serve as seeds for cell segmentation. We present a novel cell seg-
mentation approach based on the concept of topological dependence, which will
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(a) (b)

(c) (d)

Fig. 1. Captured cellular images with detected nuclei. Detected seeds are outlined in
blue and the geometric centers are marked by red dots.

be introduced shortly. In our approach, the level set curves propagate faster in
the regions of brighter image intensities. Hence the dynamics of the level set
curves incorporate essential information for cell segmentation. The utilization of
such dynamics in our approach is presented for the first time in literature. The
watershed lines are evolved dynamically based on the topological dependence at
each time step to segment the crowded cells with irregular morphology.

The remainder of the paper is structured as follows. Section 2 will provide
the definition of topological dependence. The level set formulation for two phase
segmentation will be presented in the length of Section 3. The dynamic watershed
transformation and the topological dependence preservation will be discussed in
Section 4. In Section 5, we will present our experimental results. The conclusion
in Section 6 will finalize this paper.

2 Topological Dependence

In this paper, we use the images of two channels to illustrate our approach.
Generalization of our approach to the images of more than two channels is trivial
as long as we use one channel as reference. The nucleus is stained in blue and cell
cytoplasm is stained in green. We define the images on a finite subset in the two
dimensional Euclidean space Ω ⊂ R

2. fn(x, y) : Ω → R and f c(x, y) : Ω → R

represent the intensities of nucleus and cytoplasm at (x, y) respectively. We call
fn(x, y) and f c(x, y) Nucleus Image and Cell Image. The superscripts ‘n’ and
‘c’ represent ‘nucleus’ and ‘cell’. Both of the functions are normalized to [0, 1].
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The segments of nucleus and cell images form connected regions in Ω. Due to
the limitation of space, we give a brief statement to define the connected region:

Connected region: A set of points π ⊆ Ω form a connected region if
for any two different points (x1, y1) ∈ π and (x2, y2) ∈ π, there exists a
path Γ connecting (x1, y1) and (x2, y2) such that Γ ⊆ π.

The segmentation of nucleus is relatively easy, since they are better separated.
After the segmentation of nuclei, we obtain a set of connected regions, e.g. seg-
ments of nuclei, denoted by ωn

i ,where i = 1, 2, ...L. The topology of the nuclei is
then determined. Each cell segment should contain exactly one nucleus segment.
In order to describe this constraint in a rigorous mathematical framework, we
introduce the concept of topological dependence:

Topological dependence: a set of connected regions πi, i = 1, 2, ...L
is said to be topologically dependent with another set of connected regions
θi, i = 1, 2, ...L if:

θi ⊆ πi i = 1, 2, ...L (1)

Note that our definition of topological dependence is different from
homeomorphism[11]. Topological dependence is more relaxed. Due to the limi-
tation of space, we will not discuss in details here.

3 Level Set Segmentation

Mumford-Shah model of level set formalism is applied to obtain the segmentation
of nucleus images and the cell images, which is given by [12]:

E(φ, c1, c2) =μ · length{φ = 0} + ν · area{φ ≥ 0}

+ λ1

∫
φ≥0

|u(x, y) − c1(φ)|2dxdy

+ λ2

∫
φ<0

|u(x, y) − c2(φ)|2dxdy

(2)

where u(x, y) is the image intensity. μ, ν, λ1 and λ2 are parameters to regularize
the contour length, area, foreground and background respectively. c1 and c2 are
constants to be determined through the optimization. They are determined by

c1 =
�

φ≥0 u(x,y)dxdy
�

φ≥0 dxdy
and c2 =

�
φ<0 u(x,y)dxdy
�

φ<0 dxdy
. In our work, the length and area

parameters μ and ν are set to zero in order to allow irregular contours and varying
sizes of nuclei and cells. In general, we may set the parameters accordingly when
a priori knowledge on the length and area are available.

The optimal solution of Mumford-Shah model is given by the Euler-Lagrange
equation, which is an iterative procedure:

φt+Δt = φt + Δt · δε[−λ1(u(x, y) − c1(φt))2 + λ2(u(x, y) − c2(φt))2] (3)
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t is the artificial time used for the evolution of the level set function and Δt is
the time step. δε is a regularized delta function defined in [13]. The selection of
the parameters is important to achieve a good segmentation. We will discuss the
parameter selection on λ1, λ2 and Δt in more details in Section 5.

In order to segment the nuclei, we initialize the level set function for nucleus
image as:

φn,t=0(x, y) = fn(x, y) −
∫
Ω fn(x, y)dxdy∫

Ω dxdy
(4)

Substitute u(x, y) by Nucleus Image fn(x, y) and then evolve the level set
function φn,t using Eq.(3). After the iterations converged, the set of points
{(x, y) ∈ Ω|φn,t(x, y) ≥ 0} form L connected regions that define the nucleus
segments ωn

i , where i = 1, 2, · · ·L. L is the number of detected nuclei. The pixels
belonging to ωn

i are labeled by the integer i. All remaining pixels are labeled by
0 to represent the background. The detected nuclei will serve as seeds for the
cell segmentation.

After the nuclei are segmented, we need to include the information of the nuclei
into the cell segmentation. The level set function for the cell image segmentation
is defined based on ωn

i :

φc,t=0 = f̂ c(x, y) − 1 (5)

where,

f̂ c(x, y) =

{
1 if (x, y) ∈

⋃L
i ωn

i

f c(x, y) otherwise
(6)

Since f c ∈ [0, 1], f̂ c(x, y) ∈ [0, 1]. Substitute u(x, y) by f̂ c(x, y), then the level set
function for the cell segmentation φc,t is evolved according to Eq.(3). Unlike the
works in [18] where each individual cell has one corresponding level set function,
we use only one level set function to segment all cells in order to achieve better
computational efficiency.

In order to utilize the image intensity variation for cell segmentation, we
initialize the level set function for cell segmentation according to Eq. (5) instead
of traditional distance function. In addition, such initialization also ensures that
the zero level sets start from the nuclei and evolve outwards with a speed related
with the image intensity, e.g. brighter regions will be segmented as foreground
earlier.

4 Preservation of Topological Dependence

The evolution of the level set function alone cannot ensure topological depen-
dence between the cell segments and the nucleus segments. Dynamic watershed
lines is applied to preserve such topological dependence. Let’s define the seg-
ments of cells at time t as ωc,t

i . At t = 0, ωc,t=0
i forms L connected regions.

According to the definition of φc,t=0, we know that ωc,t=0
i = ωn

i , i = 1, 2, · · ·L.
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This indicates ωc,t=0
i is topologically dependent with ωn

i . Under the condition
that ωc,t

i is topologically dependent with ωn
i at some time t, we may calculate

the watershed lines W t by:

W t ={(x, y) ∈ Ω : dmin[(x, y)|ωc,t
i ] = dmin[(x, y)|ωc,t

j ],

for some i �= j, where i, j = 1, 2, ...L, }
(7)

where:
dmin[(x, y)|ωc,ti ] = min

(x′,y′)∈ωc,t
i

√
(x − x′)2 + (y − y′)2 (8)

The obtained watershed line at time t will be used to preserve the topological
dependence between ωc,t

i and ωn
i at time t + Δt.

Preserving topological dependence and recovering the correct segmentation
consist of a series of re-labeling steps. Firstly, the connected regions that do not
contain any nucleus segment are removed at each iteration, as shown by the gray
region in Fig. 2(b). If the remaining connected regions is topologically dependent
with ωn

i , then these regions will take the labels of ωn
i and we denoted them as

the cell segments ωc,t+Δt
i .

If the topological dependence is violated, relabel the connected regions as
“unknown” and the background as “0”. Then, obtain the intersection of the

(a) (b)

(c) (d)

Fig. 2. Illustration of dynamic watershed lines and preservation of the topological
dependence. Nucleus segments are black. Labels of different regions at different time
are indicated by random colors. The dotted line represents the watershed line W t.
The level set function evolves from t in (a) to t + Δt in (b). Thereafter re-labeling are
carried out in (c) and (d) to eliminate the residual regions and preserve the topological
dependence.
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connected regions and W t, which forms a set of common boundaries
{st+Δt

1 , st+Δt
2 , · · · }. Two of such common boundaries are illustrated by st+Δt

1
and st+Δt

2 in Fig. 2(b). Consider regions separated by the common boundaries
as different connected regions, then we obtain a new set of connected regions
βt+Δt

k , k = 1, 2, ...K. (Note that K ≥ L). If ωn
p ⊆ βt+Δt

q , for some p and q, we la-
bel βt+Δt

q with the labels of ωn
p . Not all βt+Δt

k can be re-labeled according to the
above condition. Unlabeled regions are known as residual regions. An iterative
procedure is given to find the correct labels of residual regions:

Re-labeling of the residual regions: Any residual region must be
created by some common boundaries. One side of those common bound-
aries must be adjacent to this given residual region and the other side
is adjacent to some other region that may or may not be successfully
re-labeled previously. A given unlabeled residual region will take the label
of the adjacent region that shares the longest common boundary, which
is denoted by st+Δt

l,max . If all regions adjacent to this given residual region
are unknown, then this residual region cannot be re-labeled in the cur-
rent iteration. Iterate this procedure until all unknown residual regions
are re-labeled.

We illustrate the preservation of topological dependence in Fig. 2, in which
the nucleus segments are indicated in black and the cell segments in red, blue
and green. The dotted line represents the watershed line. Fig. 2(a) shows three
cell segments that are topologically dependent with the nucleus segments at
time t. Fig. 2(b) shows that when the level set function evolves to time t + Δt,
the connected regions of the zero level set is no longer topologically dependent
with the nucleus segments. The gray region that does not contain any nucleus
is removed. In Fig. 2(c), the remaining connected regions are separated using
the watershed line W t calculated at the previous time step t. This produces
seven connected regions βt+Δt

1 , βt+Δt
2 , · · · βt+Δt

7 . βt+Δt
1 , βt+Δt

2 and βt+Δt
3 con-

tain nucleus segments and are re-labeled according to the corresponding nucleus
segments ωn

i . βt+Δt
4 , βt+Δt

5 , βt+Δt
6 and βt+Δt

7 are re-labeled using the procedure
described in Re-labeling of the residual regions. Note that βt+Δt

4 is re-
labeled with the same integer as βt+Δt

1 because the common boundary st+Δt
1 is

longer than st+Δt
2 . After the topological dependence is preserved, the watershed

lines are updated according to the new cell segments ωt+Δt
1 , ωt+Δt

2 and ωt+Δt
3

based on Eq. (7).

5 Experimental Results

We applied our segmentation approach to a neural cell study. In this study, we
want to automatically and quantitatively measure the length of the neurite. Ac-
curate segmentation of the neural cell is a prerequisite to measure the length of
neurites and extract quantitative information on a cell-by-cell basis. As shown
in Fig.1, neurites are thin long structures that growth radially outwards from
the cells. More than 6000 images are acquired from fixed neural cells with DAPI
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stain for nucleus and FITC stain for cell cytoplasm. Zeiss Axiovert 200M wide-
field fluorescent microscope of two channels with Motorized XY Stage is applied
to capture the cellular images. The original images are captured at 20X magnifi-
cation with 1366X1020 pixels of 12 bits accuracy. The camera is CoolSnap CCD
Camera and the resolution is 0.31 μm/pixel.

It is important to select the proper parameters for cell segmentation, such
as Δt in Eq.(3), λ1 and λ2 in Eq.(2). We choose a big time step Δt = 10 to
compromise accuracy and computation. To verify that using Δt = 10 does not
introduce significant numerical errors, we performed our segmentations on eight
randomly selected images with three different time steps Δt=1, 5 and 10. We use
Adjusted Rand Index [24] to compare the segmentations of Δt=1 and Δt=5 with
the segmentation of Δt=10. Adjusted Rand Index is 0.9944± 0.0025 for Δt=1
vs. Δt=10 and 0.9952±0.0024 for Δt=5 vs. Δt=10. Results show that using
a big time step does not introduce significant numerical errors. Regarding the
regularization parameters, we set λ1 = 1 and λ2 = 50 for the cell segmentation
such that we may preserve the continuity of weakly connected neurites.

We choose the image in Fig. 1(a) and show ωc,t
i at different time t in Fig. 3.

ωn
i are illustrated by the black regions and their geometrical centers indicated

by red dots. Different segments of the cells are shown by random colors. The
watershed line is illustrated by black solid lines. The segments of cells ωc,t

i start
from the nucleus segments ωn

i at t = 0 and evolve outwards with a speed related
with the variation of image intensity. The watershed lines W t also evolve with
time t dynamically based on the constraint of topological dependence. The final
segmentation results of the cellular images in Fig. 1 are shown in Fig. 4. Although
the cells are irregular and clumpy, our approach can successfully separate them.
89% of 6000 cellular images can be segmented by our approach within 1 minute
on a desktop with 2.0GHz CPU and 1Gb RAM.

In order to testify and validate our approach, we compared our approach with
CellProfiler [25] and MetaMorph. CellProfiler is one of the popular cellular image
analysis freeware developed by the Broad Institute of Harvard and MIT. Meta-
Morph is a commercial software specially developed for cellular image analysis
by MDS Inc. The parameters for CellProfiler are suggested by the software de-
velopers and the parameters for Metamorph are tuned by a service engineer from
MDS. 100 images containing a total of 4916 cells were randomly selected from our
database. They are segmented by CellProfiler, MetaMorph and our algorithm to
generate 300 segmented images. These segmentations were then divided into 15
sets of 20 images each. They were randomly shuffled. Two reviewers grade these
segmented images without knowing which algorithm was applied. They marked
how many cells are segmented incorrectly. After the blind evaluation, we count
the number of incorrectly segmented cells for each approach. The results are
shown in Table 1.

Our approach achieved the best performance, which is about 2.5% better
than CellProfiler and much higher than MetaMorph. CellProfiler tends to over-
segment the cells when the shapes of the nuclei and cells are irregular. Meta-
Morph seems could not detect fine structures of the neurites.
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(a) t = 0 (b) t = 120

(c) t = 180 (d) t = 200

Fig. 3. Dynamical evolution of segments and watershed lines at different time t. Nuclei
segments are shown in black and outlined by blue. Their geometric centers are illus-
trated by red dots. Watershed line are shown by the black line. Different cell segments
are indicated by random colors.

(a) (b)

(c) (d)

Fig. 4. Segmentation results of our approach. The morphology of the cells in the cap-
tured image is complicated. They are clumpy and touched with each other. Our ap-
proach can successfully segment them.
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Table 1. Comparison of Segmentation Results

Approach Accuracy

MetaMorph 74.16%±1.02%
CellProfiler 90.85% ±0.56%
Our Approach 93.25% ±0.57%

6 Conclusion

The cell segmentation is non-trivial. It still remains a challenging problem in
many bio-imaging informatics applications. Many segmentation algorithms could
not properly segment cells that are clumpy and touch each other, especially when
the intensity contrast at the boundaries is low and their geometrical shapes are
irregular. We proposed a novel segmentation approach for the cellular images
captured by two-channel microscope. The proposed approach combines the ad-
vantages of level set and watershed method in a novel way based on the concept
of topological dependence. Utilization of the dynamics of level set curves in our
method is presented for the first time in the literature. Another novelty of our
method is that the watershed lines evolve dynamically at each time step t based
on the topological dependence, which is essential to prevent merging of cell seg-
ments. This constraint also solved the over-segmentation problem of watershed
approach. We applied our approach on more 6000 cellular images of neural cells.
According to the validation of 100 randomly selected images including 4916
cells, our segmentation method achieved better performance than CellProfiler
and MetaMorph. We use only one level set function to segment all the cells in
an image, hence our algorithm is more efficient than the work in [18] where each
cell is associated with an individual level set function1.

Segmentation of the cells from the cellular images captured by multi-channel
microscope is a common and important problem in many bio-imaging applica-
tions. Our approach is developed based on the assumption that the images are
captured by two-channel microscope, however, it can be easily generalized and
applied to cellular images of multi-channel if the nuclei are captured by one of
the channels. Although our approach is not suitable to segment overlapped cells,
many biological assays seed and resuspend cells into monolayer such that the
cells do not overlap with each other. However, overlapped cells might happen in
some other applications and the problem itself is interesting and worth further
investigating.
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