
•An agent is anything that can be viewed as
perceiving its environment through sensors and
acting upon that environment through actuators

•Human agent:

eyes, ears, and other organs for sensors;

hands, legs, mouth, and other body parts for
actuators

•Robotic agent:

cameras and infrared range finders for sensors;

various motors for actuators

 Artificial Intelligence -> Intelligent Agents
aima.cs.berkeley.edu

2

Environment/Agent

•The agent function maps from percept histories to
actions:

[f: P* A]

•The agent program runs on the physical architecture
to produce f

•agent = architecture + program

3

•Percepts: location and contents, e.g.,
[A,Dirty];

•Actions: Left, Right, Suck, NoOp;

•Table of Percepts-> Actions

•Which Action Considering a Percept ?

Vacuum-cleaner world

4

• Rational Agent: For each possible percept
sequence, a rational agent should select an
action that is expected to maximize its
performance measure, given the evidence
provided by the percept sequence and whatever
built-in knowledge the agent has.

Rational agent

5

• PEAS: Performance measure, Environment, Actuators,
Sensors

• Must first specify the setting for intelligent agent
design;

• Consider, e.g., the task of designing an automated taxi
driver:
– Performance measure: Safe, fast, legal, comfortable trip,

maximize profits;
– Environment: Roads, other traffic, pedestrians, customers;
– Actuators: Steering wheel, accelerator, brake, signal, horn;
– Sensors: Cameras, sonar, speedometer, GPS, odometer,

engine sensors, keyboard;

PEAS

6

• An agent is completely specified by the agent
function mapping percept sequences to
actions

• One agent function is rational;
• Aim: find a way to implement the rational

agent function concisely;

7

8

Simple reflex agent Reflex +state agent

Goal-based agent Learning agent

9

Quelle est la vraie fougère et la fougère fractale en 3D?

http://www.mathcurve.com/fractals/fougere/fougere.shtml

10

http://math.com/students/wonders/life/life.html
Le jeu de la vie

11

12

Searching Agent

Different kinds of agent we deal with :
•Searching Agent
•Problem-solving agent
•Logical/Knowledge-based agent -> Probabilistic Agent
•Learning agent

13

• states? integer dirt and robot location
• actions? Left, Right, Suck
• goal test? no dirt at all locations
• path cost? 1 per action

Tree-search and Vacuum world state space graph
Problem-solving Agent

14

• states?: real-valued coordinates of robot joint angles parts
of the object to be assembled

• actions?: continuous motions of robot joints
• goal test?: complete assembly
• path cost?: time to execute

Robotic assembly

15

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search
tree includes state, parent node, action, path cost g(x),
depth

The Expand function creates new nodes, filling in the
various fields and using the SuccessorFn of the
problem to create the corresponding states.

16

A search strategy is defined by picking the order of node
expansion
Strategies are evaluated along the following dimensions:

completeness: does it always find a solution if one exists?
time complexity: number of nodes generated
space complexity: maximum number of nodes in memory
optimality: does it always find a least-cost solution?

Time and space complexity are measured in terms of
b: maximum branching factor of the search tree
d: depth of the least-cost solution
m: maximum depth of the state space (may be ∞)

17

• Complete? Yes (if b is finite);
• Time? 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1);
• Space? O(bd+1) (keeps every node in memory);
• Optimal? Yes (if cost = 1 per step);

• Space is the bigger problem (more than time);

Breadth-first search

• Complete? No: fails in infinite-depth spaces, spaces with loops
– Modify to avoid repeated states along path;

 complete in finite spaces

• Time? O(bm): terrible if m is much larger than d
– but if solutions are dense, may be much faster than breadth-first;

• Space? O(bm), i.e., linear space!
• Optimal? No.

Depth-first search

18

Planning Agent
Google :
STRIPS language, graphplan

19

• In many optimization problems, the path to the goal is
irrelevant; the goal state itself is the solution;

• State space = set of "complete" configurations
• Find configuration satisfying constraints, e.g., n-queens

• In such cases, we can use local search algorithms
• keep a single "current" state, try to improve it;

Local search algorithms
/ Metaheuristics Optimisation

20

21

Example: n-queens

• Put n queens on an n × n board with no two
queens on the same row, column, or diagonal

22

•CSP (linear programming)
Example: Map-Coloring

• Solutions are complete and consistent assignments, e.g.,
WA = red, NT = green,Q = red,NSW = green,V = red,SA
= blue,T = green

23

•Hill-climbing search

Problem: depending on initial state, can get stuck
in local maxima

24

Hill-climbing search: 8-queens problem

• h = number of pairs of queens that are attacking each other, either directly or
indirectly

• h = 17 for the above state

25

Hill-climbing search: 8-queens problem

• A local minimum with h = 1

26

•Simulated annealing search
• Idea: escape local maxima by allowing some "bad"

moves but gradually decrease their frequency

27

Properties of simulated annealing
search

• One can prove: If T decreases slowly enough, then
simulated annealing search will find a global optimum
with probability approaching 1

• Widely used in VLSI layout, airline scheduling, etc

•Local beam search
•Genetic algorithms

28

Genetic algorithms

• Fitness function: number of non-attacking pairs of queens (min
= 0, max = 8 × 7/2 = 28)

• 24/(24+23+20+11) = 31%
• 23/(24+23+20+11) = 29% etc

29

Genetic algorithms

30

Adversarial search Agent/ Games

31

• Complete? Yes (if tree is finite)
• Optimal? Yes (against an optimal opponent)
• Time complexity? O(bm)
• Space complexity? O(bm) (depth-first exploration)

• For chess, b ≈ 35, m ≈100 for "reasonable" games
 exact solution completely infeasible

Properties of minimax

• With "perfect ordering," time complexity = O(bm/2)

Properties of α-β

32

Resource limits
Suppose we have 100 secs, explore 104 nodes/sec

 106 nodes per move;

Standard approach:
• cutoff test:

e.g., depth limit (perhaps add quiescence search);
• evaluation function

= estimated desirability of position;

•For chess, typically linear weighted sum of features

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

•e.g., w1 = 9 with

f1(s) = (number of white queens) – (number of black queens), etc.

33

• Cutting off search
MinimaxCutoff is almost identical to MinimaxValue

Does it work in practice?
bm = 106, b=35 m=4;

4-ply lookahead is a hopeless chess player!
– 4-ply ≈ human novice
– 8-ply ≈ typical PC, human master
– 12-ply ≈ Deep Blue, Kasparov

34

Deterministic games in practice
• Checkers: Chinook ended 40-year-reign of human world champion

Marion Tinsley in 1994. Used a precomputed endgame database defining
perfect play for all positions involving 8 or fewer pieces on the board, a
total of 444 billion positions.

• Chess: Deep Blue defeated human world champion Garry Kasparov in a
six-game match in 1997. Deep Blue searches 200 million positions per
second, uses very sophisticated evaluation, and undisclosed methods for
extending some lines of search up to 40 ply.

• Othello: human champions refuse to compete against computers, who are
too good.

• Go: human champions refuse to compete against computers, who are too
bad. In go, b > 300, so most programs use pattern knowledge bases to
suggest plausible moves.

35

Logical Agent / Knowledge-based Agent

• Knowledge base = set of sentences in a formal language
• Declarative approach to build an agent (or other system):

– Tell it what it needs to know
• Then it can Ask itself what to do - answers should follow from the KB
• Agents can be viewed at the knowledge level

i.e., what they know, regardless of how implemented
• Or at the implementation level

– i.e., data structures in KB and algorithms that manipulate them

•The agent must be able to:
–Represent states, actions, etc.
–Incorporate new percepts
–Update internal representations of the world
–Deduce hidden properties of the world
–Deduce appropriate actions

Google :
CLASSIC, CLIPS, PROLOG

36

Syntaxe, Sémantique, Modèles d'interprétation du monde

« Rio est la capitale de Suisse », Vrai , Faux ?
« La Suisse est en Europe »
Rio est en Europe ?

Sémantique d'un langage : vérité de toutes phrases par rapport à
tout monde possible.
1 monde possible = 1 modèle
En logique standard, tout phrase doit être ou Vraie ou Fausse
En arithmétique, les modèles de la phrase « x+y=4 » sont
(x=1,y=3), (x=2,y=2)....

Table de vérité

37

38

Model checking method.
KB|=alpha1 ? Conclusion logique
Par exemple, alpha1=non P1,2

KB :
R1: non P11
R2 : B11<=> P12 ou P21
R3 : B21 <=>P11 ou P22 ou P31
R4 : non B11
R5 : B21

39

Existe-t-il un algorithme capable de dériver alpha1 à partir de KB :
KB |-- alpha1 ? Si oui, plus rapide qu'énumérer les modèles.
On est sur que si KB et non alpha1 débouche sur une contradiction alors
KB |-- alpha1et KB |= alpha1 : syntaxe et sémantique s'accordent en logique
des prédicats du premier ordre, et complétude par la méthode de résolution
par réfutation
alors que essayer KB |-- alpha1 directement pas complet -> PROLOG

40

Inference-based agents in the
wumpus world : order 0

A wumpus-world agent using propositional logic:
¬P1,1
¬W1,1
Bx,y ⇔ (Px,y+1 ∨ Px,y-1 ∨ Px+1,y ∨ Px-1,y)
Sx,y ⇔ (Wx,y+1 ∨ Wx,y-1 ∨ Wx+1,y ∨ Wx-1,y)
W1,1 ∨ W1,2 ∨ … ∨ W4,4
¬W1,1 ∨ ¬W1,2
¬W1,1 ∨ ¬W1,3
…

⇒ 64 distinct proposition symbols, 155 sentences

41

Knowledge base for the wumpus
world : order 1

• Perception :∀t,s,b Percept([s,b,Glitter],t) ⇒ Glitter(t)
• Reflex : ∀t Glitter(t) ⇒ BestAction(Grab,t)

∀x,y,a,b Adjacent([x,y],[a,b]) ⇔
[a,b] ∈ {[x+1,y], [x-1,y],[x,y+1],[x,y-1]}

Properties of squares:

∀s,t At(Agent,s,t) ∧ Breeze(t) ⇒ Breezy(t)

Squares are breezy near a pit:
– Diagnostic rule---infer cause from effect

∀s Breezy(s) ⇒∃ r Adjacent(r,s) ∧ Pit(r)
– Causal rule---infer effect from cause

∀r Pit(r) ⇒ [∀s Adjacent(r,s) ⇒ Breezy(s)]
...

42

Knowledge engineering in FOL
1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and

constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get

answers
7. Debug the knowledge base

Ontology

43

Probabilistic Agent

44

Learning Agent

• Inductive learning or supervised
• Pattern Recognition
• Data Mining

