
•An agent  is anything that can be viewed as 
perceiving  its environment  through sensors  and 
acting upon that environment through actuators

•Human agent: 

eyes, ears, and other organs for sensors; 

hands, legs, mouth, and other body parts for 
actuators

•Robotic agent: 

cameras and infrared range finders for sensors;

various motors for actuators

 Artificial Intelligence -> Intelligent Agents
aima.cs.berkeley.edu
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Environment/Agent

•The agent function maps from percept histories to 
actions:

[f: P*  A]

•The agent program runs on the physical architecture 
to produce f

•agent = architecture + program
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•Percepts: location and contents, e.g., 
[A,Dirty];

•Actions: Left, Right, Suck, NoOp;

•Table of Percepts-> Actions

•Which Action Considering a Percept ?

Vacuum-cleaner world
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• Rational Agent: For each possible percept 
sequence, a rational agent should select an 
action that is expected to maximize its 
performance measure, given the evidence 
provided by the percept sequence and whatever 
built-in knowledge the agent has.

Rational agent
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• PEAS: Performance measure, Environment, Actuators, 
Sensors

• Must first specify the setting for intelligent agent 
design;

• Consider, e.g., the task of designing an automated taxi 
driver:
– Performance measure: Safe, fast, legal, comfortable trip, 

maximize profits;
– Environment: Roads, other traffic, pedestrians, customers;
– Actuators: Steering wheel, accelerator, brake, signal, horn;
– Sensors: Cameras, sonar, speedometer, GPS, odometer, 

engine sensors, keyboard;

PEAS
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• An agent is completely specified by the agent 
function mapping percept sequences to 
actions

• One agent function is rational;
• Aim: find a way to implement the rational 

agent function concisely;
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Simple reflex agent Reflex +state agent

Goal-based agent Learning agent
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Quelle est la vraie fougère et la fougère fractale en 3D? 

http://www.mathcurve.com/fractals/fougere/fougere.shtml
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http://math.com/students/wonders/life/life.html
Le jeu de la vie
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Searching Agent

Different kinds of agent we deal with :
•Searching Agent
•Problem-solving agent
•Logical/Knowledge-based agent -> Probabilistic Agent
•Learning agent
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• states? integer dirt and robot location 
• actions? Left, Right, Suck
• goal test? no dirt at all locations
• path cost? 1 per action

Tree-search and Vacuum world state space graph 
Problem-solving Agent
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• states?: real-valued coordinates of robot joint angles parts 
of the object to be assembled

• actions?: continuous motions of robot joints
• goal test?: complete assembly
• path cost?: time to execute

Robotic assembly
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A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search 
tree includes state, parent node, action, path cost g(x), 
depth

The Expand function creates new nodes, filling in the 
various fields and using the SuccessorFn of the 
problem to create the corresponding states.
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A search strategy is defined by picking the order of node 
expansion
Strategies are evaluated along the following dimensions:

completeness: does it always find a solution if one exists?
time complexity: number of nodes generated
space complexity: maximum number of nodes in memory
optimality: does it always find a least-cost solution?

Time and space complexity are measured in terms of 
b: maximum branching factor of the search tree
d: depth of the least-cost solution
m: maximum depth of the state space (may be ∞)
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• Complete? Yes (if b is finite);
• Time? 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1);
• Space? O(bd+1) (keeps every node in memory);
• Optimal? Yes (if cost = 1 per step);

• Space is the bigger problem (more than time);

Breadth-first search

• Complete? No: fails in infinite-depth spaces, spaces with loops
– Modify to avoid repeated states along path;

 complete in finite spaces

• Time? O(bm): terrible if m is much larger than d
–  but if solutions are dense, may be much faster than breadth-first;

• Space? O(bm), i.e., linear space!
• Optimal? No.

Depth-first search
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Planning  Agent
Google :
STRIPS language, graphplan
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• In many optimization problems, the path to the goal is 
irrelevant; the goal state itself is the solution;

• State space = set of "complete" configurations
• Find configuration satisfying constraints, e.g., n-queens

• In such cases, we can use local search algorithms
• keep a single "current" state, try to improve it;

Local search algorithms
/ Metaheuristics Optimisation
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Example: n-queens

• Put n queens on an n × n board with no two 
queens on the same row, column, or diagonal
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•CSP (linear programming)
Example: Map-Coloring

• Solutions are complete and consistent assignments, e.g., 
WA = red, NT = green,Q = red,NSW = green,V = red,SA 
= blue,T = green
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•Hill-climbing search

Problem: depending on initial state, can get stuck 
in local maxima
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Hill-climbing search: 8-queens problem

• h = number of pairs of queens that are attacking each other, either directly or 
indirectly 

• h = 17 for the above state
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Hill-climbing search: 8-queens problem

• A local minimum with h = 1
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•Simulated annealing search
• Idea: escape local maxima by allowing some "bad" 

moves but gradually decrease their frequency
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Properties of simulated annealing 
search

• One can prove: If T decreases slowly enough, then 
simulated annealing search will find a global optimum 
with probability approaching 1

• Widely used in VLSI layout, airline scheduling, etc

•Local beam search
•Genetic algorithms
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Genetic algorithms

• Fitness function: number of non-attacking pairs of queens (min 
= 0, max = 8 × 7/2 = 28)

• 24/(24+23+20+11) = 31%
• 23/(24+23+20+11) = 29% etc
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Genetic algorithms
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Adversarial search Agent/ Games
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• Complete? Yes (if tree is finite)
• Optimal? Yes (against an optimal opponent)
• Time complexity? O(bm)
• Space complexity? O(bm) (depth-first exploration)

• For chess, b ≈ 35, m ≈100 for "reasonable" games
 exact solution completely infeasible

Properties of minimax

• With "perfect ordering," time complexity = O(bm/2)

Properties of α-β
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Resource limits
Suppose we have 100 secs, explore 104 nodes/sec

 106 nodes per move;

Standard approach:
• cutoff test: 

e.g., depth limit (perhaps add quiescence search);
• evaluation function 

= estimated desirability of position;

•For chess, typically linear weighted sum of features

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

•e.g., w1 = 9 with 

f1(s) = (number of white queens) –  (number of black queens), etc.
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• Cutting off search
MinimaxCutoff is almost  identical to MinimaxValue

Does it work in practice?
bm = 106, b=35  m=4;

4-ply lookahead is a hopeless chess player!
– 4-ply ≈ human novice
– 8-ply ≈ typical PC, human master
– 12-ply ≈ Deep Blue, Kasparov
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Deterministic games in practice
• Checkers: Chinook ended 40-year-reign of human world champion 

Marion Tinsley in 1994. Used a precomputed endgame database defining 
perfect play for all positions involving 8 or fewer pieces on the board, a 
total of 444 billion positions.

• Chess: Deep Blue defeated human world champion Garry Kasparov in a 
six-game match in 1997. Deep Blue searches 200 million positions per 
second, uses very sophisticated evaluation, and undisclosed methods for 
extending some lines of search up to 40 ply.

• Othello: human champions refuse to compete against computers, who are 
too good.

• Go: human champions refuse to compete against computers, who are too 
bad. In go, b > 300, so most programs use pattern knowledge bases to 
suggest plausible moves.



35

Logical Agent / Knowledge-based Agent

• Knowledge base = set of sentences in a formal language
• Declarative approach to build an agent (or other system):

– Tell it what it needs to know
• Then it can Ask itself what to do - answers should follow from the KB
• Agents can be viewed at the knowledge level

i.e., what they know, regardless of how implemented
• Or at the implementation level

– i.e., data structures in KB and algorithms that manipulate them

•The agent must be able to:
–Represent states, actions, etc. 
–Incorporate new percepts
–Update internal representations of the world
–Deduce hidden properties of the world
–Deduce appropriate actions

Google :
CLASSIC, CLIPS, PROLOG
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Syntaxe, Sémantique, Modèles d'interprétation du monde 

« Rio est la capitale de Suisse », Vrai , Faux ?
«  La Suisse est en Europe »
Rio est en Europe ? 

Sémantique d'un langage : vérité de toutes phrases par rapport à 
tout monde possible.
1 monde possible = 1 modèle
En logique standard, tout phrase doit être ou Vraie ou Fausse
En arithmétique, les modèles de la phrase « x+y=4 » sont 
(x=1,y=3), (x=2,y=2)....

Table de vérité
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Model checking method.
KB|=alpha1 ? Conclusion logique
Par exemple, alpha1=non P1,2

KB :
R1: non P11
R2 : B11<=> P12 ou P21
R3 : B21 <=>P11 ou P22 ou P31
R4 : non B11
R5 : B21
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Existe-t-il un algorithme capable de dériver alpha1 à partir de KB :
KB |-- alpha1 ? Si oui, plus rapide qu'énumérer les modèles.
On est sur que si KB et non alpha1 débouche sur une contradiction alors
KB  |-- alpha1et KB |= alpha1 : syntaxe et sémantique s'accordent en logique 
des prédicats du premier ordre, et complétude par la méthode de résolution 
par réfutation
alors que essayer  KB  |-- alpha1 directement pas complet -> PROLOG
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Inference-based agents in the 
wumpus world : order 0

A wumpus-world agent using propositional logic:
¬P1,1 
¬W1,1 
Bx,y ⇔ (Px,y+1 ∨ Px,y-1 ∨ Px+1,y ∨ Px-1,y) 
Sx,y ⇔ (Wx,y+1 ∨ Wx,y-1 ∨ Wx+1,y ∨ Wx-1,y)
W1,1 ∨ W1,2 ∨ … ∨ W4,4 
¬W1,1 ∨ ¬W1,2 
¬W1,1 ∨ ¬W1,3 
…

⇒ 64 distinct proposition symbols, 155 sentences
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Knowledge base for the wumpus 
world : order 1

• Perception :∀t,s,b Percept([s,b,Glitter],t) ⇒ Glitter(t)
• Reflex : ∀t Glitter(t) ⇒ BestAction(Grab,t)

∀x,y,a,b Adjacent([x,y],[a,b]) ⇔ 
[a,b] ∈ {[x+1,y], [x-1,y],[x,y+1],[x,y-1]} 

Properties of squares:

∀s,t At(Agent,s,t) ∧ Breeze(t) ⇒ Breezy(t)

Squares are breezy near a pit:
– Diagnostic rule---infer cause from effect

∀s Breezy(s) ⇒∃ r Adjacent(r,s) ∧ Pit(r)
– Causal rule---infer effect from cause

∀r Pit(r) ⇒ [∀s Adjacent(r,s) ⇒ Breezy(s)] 
...
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Knowledge engineering in FOL
1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and 

constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get 

answers
7. Debug the knowledge base

Ontology
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Probabilistic Agent
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Learning Agent

• Inductive learning or supervised
• Pattern Recognition
• Data Mining


