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Chapter 1

Formation and representation of
digital images

1.1 The pinhole camera model

1.1.1 Perspective projection

The first principle that governs the formation of an image in an optical device is geometry.
In the classic pinhole camera model, the light rays coming from a point (X,Y, Z) of the
scene are constrained to pass through the optical center O = (0, 0, 0) and to hit the focal plane
Z = −f at point (−fX/Z,−fY/Z,−f), producing in this plane an inverted image of the scene.
In practice, it is more convenient (and geometrically equivalent) to assume that a non-inverted
image is produced by the intersection of the light rays with the pseudo-focal plane Z = f (see
Figure 1.1).

x

y

O

Y

X

Z

pseudo−focal plane

(Z=f)

scene

P(x,y)

M(X,Y,Z)

simplified geometry

x=fX/Z

fZ

X

pseudo−focal plane focal plane

O −f

Figure 1.1: The pinhole camera model
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Definition 1 The perspective projection of focal length f is the application

R2 × R∗ → R2

(X,Y, Z) 7→
(
f
X

Z
, f
Y

Z

)
.

The number f is called the focal length of the optics, and we shall call geometrical image
the image u(x, y) formed on the pseudo-focal plane, where u(x, y) represent the density of energy
received by the point (x, y, f) of this plane. Notice that u is assumed to be a monochromatic
image here : to describe a color image, we should look of the distribution of this energy with
respect to the wavelength and obtain color channels (typically, red-green-blue) by appropriate
weightings of this distribution. We recall that the visible spectrum corresponds to wavelengths
between 0.4µm (blue) and 0.8µm (red).

An important characteristic of the geometrical image formation process is that it is con-
strained by occlusion : when objects mask themselves each other, only the nearest is visible
in a given direction. This has several consequences ; among them is the formation of edges
(discontinuities) along the occlusion boundaries.

The pinhole camera model is an ideal model. In practice, some geometric distortions occur
and physical 3D lines are not exactly projected into perfect 2D lines but are slightly curved,
especially on the borders of the image. These distortions can be corrected by an appropriate
post-processing of the image.

1.1.2 Projection of a plane

Consider a plane P of R3, endowed with an affine (or Euclidean) referential (M0, U, V ). We
write M0 = (X0, Y0, Z0), U = (UX , UY , UZ), V = (VX , VY , VZ) and we assume that Z0 > 0. Any
point M(X,Y, Z) ∈ P can be written M =M0 + xU + yV , that is





X = xUX + y VX +X0

Y = xUY + y VY + Y0
Z = xUZ + y VZ + Z0

If Z 6= 0, the perspective projection of this point is (x′, y′), with

x′ = f
xUX + yVX +X0

xUZ + yVZ + Z0
, y′ = f

xUY + yVY + Y0
xUZ + yVZ + Z0

. (1.1)

By dividing by Z0, this transform can be put under the general form below.

Proposition 1 The perspective projection of a plane yields an homography, that is a plane
transform that can be written

x′ =
ax+ by + c

dx+ ey + 1
, y′ =

a′x+ b′y + c′

dx+ ey + 1
, (1.2)

in affine or Euclidean referentials. Such a transform is defined by 8 parameters, or equivalently
by the image of 4 points in generic position (3 of them are not aligned).

A special case is obtained when one assumes that the observed plane is “at infinity”, that
is when Z0 = +∞ (in practice, the approximation is correct when the variations of Z are small
compared to Z0 in the subdomain of P observed). Taking the limit Z0 = +∞ in (1.1), we obtain
the affine mapping

(
x′

y′

)
=

f

Z0

(
UX VX
UY VY

)(
x
y

)
+

f

Z0

(
X0

Y0

)
. (1.3)
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Such a plane transform depends on 6 parameters, and can be defined by the image of 3 non-
aligned points. Notice also that any smooth plane transform T can be approximated locally at
first order by an affine mapping, since a Taylor expansion yields

T (X) = T (X0) +DT (X0).(X −X0) + O
X→X0

(X −X0),

where DT is the differential of T . For these reasons, affine mappings play an important role in
image comparison and registration.

1.2 Point Spread Function

Aside from the geometric distortions mentioned above, there are another reasons why the image
v formed on the focal plane differs from u. One of them is the fact that the image of a point
source (a Dirac distribution of energy) will not yield a point, but a certain distribution of energy
called the Point Spread Function (PSF), that is the impulse response of the optical device.
The PSF arises from several phenomena that we are going to examine now. To this aim, we
first need to recall some elements of Fourier theory.

1.2.1 Fourier Transform

In this section, we keep some generality by assuming that f is a real-valued function defined on
Rd (d = 2 for images). As usual, L1 is the space of functions f such that

∫
Rd |f | < ∞. The

Fourier Transform of a function f ∈ L1 is a continuous function defined by

f̂(ξ) =

∫

Rd

e−i≺ξ,x≻f(x) dx. (1.4)

where ≺ ξ,x ≻=
∑d

i=1 ξixi is the usual inner product. The function f̂ is continuous and

f̂(x) → 0 as |x| → ∞. When f̂ ∈ L1, the initial function f can be reconstructed from f̂ using
the inverse Fourier transform

f(x) =
1

(2π)d

∫

Rd

ei≺ξ,x≻f̂(ξ) dξ. (1.5)

Note that this equation has to be taken in the L1 sense, which means that f is almost everywhere
equal to the continuous function defined by the right hand term.

Let us now assume that f belongs to the Schwartz Space S, defined as the functions f ∈ C∞

such that xα∂βf(x) → 0 as |x| → ∞ for any multi-indices α, β ∈ Nd. Then, it can be shown
that f̂ also belongs to S, so that (1.5) still holds. The operator F : f 7→ f̂ is an isomorphism of
S, and can be continuously extended into an isomorphism of L2.

One great interest of the Fourier Transform is that it transforms convolutions in products
and vice-versa. If f and g belong to S, one has

f̂ ⋆ g = f̂ · ĝ and f̂ · g =
1

(2π)d
f̂ ⋆ ĝ. (1.6)

1.2.2 Diffraction

Since the aperture of the optical device is limited, it introduces diffraction. Its effect can be
modeled by a convolution. In the following, we consider monochromatic incoherent light passing
through a plane aperture. We assume that the aperture shape has a central symmetry and that
the irradiation is constant on the aperture.

9
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Theorem 1 (Fraunhofer Diffraction) The physical image formed through a symmetric plane
aperture is given by

v = Kdiffraction ⋆ u,

where u is the (ideal) geometrical image, λ the wavelength, f the focal length and

Kdiffraction(x) =
1

2f2

∣∣∣∣
∫ ∫

aperture
exp

(
2iπ < x, ξ >

λf

)
dξ

∣∣∣∣
2

. (1.7)

In order to compute the diffraction kernel associated to a circular aperture (a disc with
diameter D), we need to introduce the Bessel function of first kind and order m ∈ Z, defined by

Jm(t) =
1

π

∫ π

0
cos(mθ − t sin θ) dθ, (1.8)

and to recall the recurrence relation

d

dt
(tmJm(t)) = tmJm−1(t). (1.9)

Proposition 2 (circular aperture) For a circular aperture with diameter D, the point spread
function is

Kdiffraction(x) = C ·
(
2J1(r)

r

)2

, with r =
πD|x|
λf

and C =
π2D4

32f2
. (1.10)

Proof :
We apply (1.7) to the aperture domain {ξ ∈ R2, |ξ| 6 D/2}. Since < Rx, Rξ >=< x, ξ > for

any rotation R, the PSF is radial, so that K(x) only depends on |x|. Writing ξ = (ρ cos θ, ρ sin θ)
and x = (x, y), we obtain

K(x, y) =
1

2f2

∣∣∣∣∣

∫ D/2

0

∫ 2π

0
exp

(
2iπρ(x cos θ + y sin θ)

λf

)
ρdθdρ

∣∣∣∣∣

2

,

and the previous symmetry remark leads us to

K(x) = K(0, |x|) = 1

2f2

∣∣∣∣∣2
∫ D/2

0

∫ π

0
cos

(
2πρ|x| sin θ

λf

)
ρdθdρ

∣∣∣∣∣

2

.

Using the reduced variable r defined in (1.10), we then have, with ρ′ = 2rρ/D,

K(x) =
1

2f2

∣∣∣∣
2D2

4r2

∫ r

0

∫ π

0
cos(ρ′ sin θ)ρ′dθdρ′

∣∣∣∣
2

=
π2D4

8f2

∣∣∣∣
1

r2

∫ r

0
J0(ρ

′)ρ′dρ′
∣∣∣∣
2

.

We conclude by noticing that
∫ r
0 J0(ρ

′)ρ′dρ′ = rJ1(r) thanks to (1.9). �

The image v = Kdiffraction, obtained for a point source, is called an Airy pattern, and is
made of central bright spot surrounded by rings (see Figure 1.2). Since the first positive zero of
J1(t) is located at t ≃ 3.83 ≃ 1.22π, the radius of the spot (Airy disc) is

ra ≃ 1.22
λf

D
, (1.11)

which gives an idea of the size of the smallest details that can be reproduced by an ideal optical
device.

Example : let us compute an order of magnitude of the Airy spot. For a classical camera
(f/D = 5) and in visible light (λ = 0.6µm), we obtain ra ≃ 3.6µm, which is 1.5 · 10−4 times the
height of a full frame captor (24 mm).
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Figure 1.2: (a) The diffraction kernel produced by a circular aperture (Airy pattern). The

central disc receives 84% of the energy. (b) Its normalized radial profile, r 7→
(
2J1(r)

r

)2
.

1.2.3 Out of focus

For an optical device with non-zero aperture (the ideal pinhole camera model has zero aperture),
the image of a point (X,Y, Z) is not formed in the plane Z = f but on the plane Z = t > f ,
with t defined by Gauss’ Formula

1

t
=

1

f
− 1

Z
. (1.12)

In general, the depth of the scene objects is not constant, so that it is impossible to obtain a
perfect focus for all scene objects. The focusing operation consists in adjusting the position of
the image plane in order to obtain a compromise. When an object with constant depth Z is
de-focused in the plane Z = t± δ, its image is blurred by a convolution with a PSF equal to the
characteristic function of the aperture, scaled by a factor δ/f and normalized. In the general
case, the image focused at Z = t is

ut(x) =
1

S

∫ ∫

aperture
u

(
x− |δ(x)|

f
y

)
dy,

where
1

t+ δ(x)
=

1

f
− 1

Z(x)
,

S is the area of the aperture and Z(x) is the depth of the point projected in x in the image
plane. This transform is not a convolution in general. However, if all points of a scene should
be ideally focused in Z > t0, then for a circular aperture with diameter D one has

ut0−δ = Kdefocus ⋆ ut0 ,

where

Kdefocus(x) =
4f2

πδ2D2
·





1 if |x| 6 δ

f
· D
2
,

0 else.
(1.13)

Example : let us compute the defocus δ needed to produce a defocus kernel with the same
radius as the Airy disc. According to (1.11) and (1.13), we have

1.22
λf

D
=
δD

2f
,

11
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that is

δ = 2.44λ

(
f

D

)2

≃ 36µm

for λ = 0.6µm (visible light) and f/D = 5. We can compare this number to the displacement
of the focal plane required between focus at infinity and focus at, say, Z = 1m for a focal of
f = 50mm. We obtain, according to (1.12),

δ =
1

1
f − 1

Z

− f =
f2

Z − f
≃ 2600µm.

Thus, the precision required for focusing is, in this case, about 1% of the course of the focal
plane.

1.3 Other distortions

In addition to the unavoidable diffraction, optical devices generally suffer from aberrations,
mainly due to the fact that all light rays coming from a physical point do not converge in one
point of the image plane. These aberrations are of several kinds

• chromatic aberrations. The focal f often depends on the wavelength, so that all color
channels have not exactly the same focal plane, and for a given focus some channels
will be slightly out of focus. This can be attenuated by using an achromatic doublet (a
combination of two lenses that ensures the same focus for two given wavelengths) or by
an appropriate post-processing of the image.

• astigmatism and coma. Some aberrations are non-uniform, in the sense that they
depend on the image point. They result from the fact that all light rays coming from
a given point of the scene do not converge to the same point of the image plane. These
aberrations cannot be modeled with convolutions. Among them are astigmatism (different
focal points for sagittal and tangential rays) and coma (different focal points for paraxial
and marginal rays), which are responsible for non-isotropic impulse responses and for
broader impulse responses on the borders of the image.

• vignetting. The density of light focused on the image plane is maximal on the center of
the image plane (intersection with the optical axis), and slightly decreases as the distance
from the center increases. This may cause an effect of “dark corners” on the resulting
image, which is called vignetting.

Last, let us mention that long-focal devices (say f > 1m) suffer from atmospheric tur-
bulence. In particular, ground-based astronomical observations are strongly limited by this
phenomenon, and the order of magnitude of the maximum resolution allowed by atmospheric
turbulence is about 1 arc second. To eliminate it, two solutions have been found in astronomy :
spatial telescopes (e.g. Hubble) and adaptative optics (real-time physical deformation of the
optical device).

1.4 Digitization

The image formed on the focal plane has to be recorded, either by a chemical or by an electronic
device. Since we are interested in digital images, we shall only consider the second case. The
digitization process is realized by a matrix of captors (in general, a CCD1) that covers the

1charge coupled device
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focal plane. Each captor is an integrator : it counts the number of photons that hit the captor
area during a fixed period. Ideally, the captors should cover completely the focal plane, and in
practice this is often almost the case, at least for monochromatic images. The digitization of
color images with only one focal plane is more challenging but we shall not go too far into these
details here.

If C is the plane domain covered by a captor and δ the step of the grid, the recorded matrix
is

Ikl =

∫∫

C
u(kδ + x, lδ + y) dxdy.

Again, this can be modeled by a convolution : by using the PSF

Kcaptor = 1C : x 7→
{

1 if x ∈ C,
0 else,

we obtain
Ikl = (Kcaptor ⋆ u)(kδ, lδ).

As before, this model is ideal and will suffer in practice from several distortions :

• non-linearity. The captor response is not exactly linear, especially for low and high
energies. This means that instead of observing the matrix Ikl, we observe g(Ikl) for some
non-linear increasing function g. A typical (normalized) function g is plotted on Figure
1.3.
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Figure 1.3: The captor response is mostly linear except for extreme intensities.

• noise. Due to the random nature of the photo-electric effect (among other causes), fluc-
tuations appear and the recorded image will be corrupted with (generally additive) noise.

• quantization. The recorded intensities have to be quantized on a finite number of levels,
which produces a “quantization noise”.

To sum up, a simple model for the image formation process is given by

Ikl = v(kδ, lδ), v = K ⋆ u+ n,

where
K = Kcaptor ⋆ Kdiffraction ⋆ Kdefocus

and n(x) are random variables (generally i.i.d Gaussian). Notice that some other terms may
have to be taken into account in the definition of K for low-quality optics. This model clearly
shows two steps in the formation of digital images : the formation of v, defined on a continuous
domain, and the sampling of v into the matrix Ikl. We are now going to study more precisely
this sampling step.

13
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1.5 Ideal sampling

The sampling process is usually described with Shannon Sampling Theorem, which says that a
band-limited function can be exactly reconstructed from discrete samples taken on an appropri-
ate grid. In the following, we shall need the Fourier Transform of a square window,

F
(
1[−π,π]2

)
(α, β) = 4π2 sinc(α) sinc(β), (1.14)

with sinc(t) = sin(πt)
πt for t 6= 0, and sinc(0) = 1 by continuous extension. We also recall that if

Hλ is the rescaling operator defined by

Hλf(x, y) = f(λx, λy),

then one has

F ◦Hλ =
1

λ2
H1/λ ◦ F .

1.5.1 Shannon Sampling Theorem

We first give a version of Shannon Sampling Theorem in the regular case (f ∈ S) and for a
critical sampling. We recall that supp(f̂) is the complement of the largest open set on which
f̂ = 0.

Theorem 2 (Shannon) Let f ∈ S and δ > 0. If supp(f̂) ⊂ [−π
δ ,

π
δ ]

2, then

∀(x, y) ∈ R2, f(x, y) =
∑

(k,l)∈Z2

f(kδ, lδ) sinc
(x
δ
− k
)
sinc

(y
δ
− l
)
. (1.15)

Proof :
1) We first prove the theorem for δ = 1. Since supp(f̂) ⊂ [π, π]2, the Fourier inversion

formula writes

f(x, y) =
1

(2π)2

∫

[−π,π]2
ei(αx+βy)f̂(α, β) dαdβ. (1.16)

Let F be the 2π-periodized of f̂ (along both coordinates). Since f̂ is C∞ on R2, all its derivatives
vanish on the boundary of [−π, π]2, which proves that F is C∞ too. Consequently, the Fourier
series of F converge normally and we have

F (α, β) =
∑

(k,l)∈Z2

ck,l e
i(αk+βl),

with

ck,l =
1

(2π)2

∫

[−π,π]2
e−i(sk+tl) f̂(s, t) dsdt = f(−k,−l)

thanks to (1.16). We conclude with Fubini Theorem that

f(x, y) =
1

(2π)2

∫

[−π,π]2
ei(αx+βy)F (α, β) dαdβ

=
∑

(k,l)∈Z2

f(k, l)
1

(2π)2

∫

[−π,π]2
ei(αx+βy)+i(−αk−βl)dαdβ

=
∑

(k,l)∈Z2

f(k, l)
1

(2π)2
· F
(
1[−π,π]2

)
(k − x, l − y)

=
∑

(k,l)∈Z2

f(k, l) sinc(k − x)sinc(l − y)

14
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thanks to (1.14).

2) Now we come to the general case (δ > 0). If we assume that supp(f̂) ⊂ [−π
δ ,

π
δ ]

2, then
the rescaled function g = Hδf satisfies supp(ĝ) ⊂ [−π, π]2, so that we have

∀(x, y) ∈ R2, g(x, y) =
∑

(k,l)∈Z2

g(k, l) sinc(x− k)sinc(y − l),

or equivalently

∀(x, y) ∈ R2, f(δx, δy) =
∑

(k,l)∈Z2

f(kδ, lδ) sinc(x− k)sinc(y − l),

from which (1.15) follows after replacing (x, y) by (x/δ, y/δ). �

The proof above can be summarized very nicely using the theory of distributions. We first
introduce the Dirac distribution δx,y ∈ S ′, defined by < δx,y , ϕ >= ϕ(x, y) for any test function
ϕ ∈ S. Note that

(δx,y ⋆ ϕ)(s, t) = ϕ(s− x, t− y).

Now we need to know that the Fourier Transform of the Dirac comb

Πs =
∑

(k,l)∈Z2

δ(ks,ls) is Π̂s =

(
2π

s

)2

Π 2π
s
. (1.17)

It is beyond the scope of this chapter to justify this precisely (we would have to define properly
the Fourier transform of a periodic distribution), but let us mention that (1.17) follows directly
from Poisson summation formula. Now the condition supp(f̂) ⊂ [−π

δ ,
π
δ ]

2, which is still true for
the inverse Fourier transform of f , can be written

F−1(f) = (F−1(f) ⋆Π2π/δ) · Fδ, with Fδ = 1[−π
δ
,π
δ
]2 . (1.18)

Taking Fourier Transform on both sides yields, according to (1.6),

f =
1

(2π)2
(f · Π̂2π/δ) ⋆ F̂δ,

which boils down to

f = (f ·Πδ) ⋆ S1/δ with S1/δ(α, β) = sinc
(α
δ

)
sinc

(
β

δ

)
. (1.19)

Let us interpret Shannon Theorem. It basically says that a band-limited function can be
reconstructed exactly from a discrete (but infinite) set of samples. The band-limited assumption
is reasonable for most physical systems, that strongly attenuate frequencies outside a certain
frequency domain. However, we could argue that the theorem does not tell us what happens
when the energy is small (but non-zero) outside the frequency domain [−π

δ ,
π
δ ]

2. Moreover,
the band-limited assumption is more questionable than in the case of signals (speech signals
for example), since it is in contradiction with the fact that images have discontinuities at the
boundaries of occluding objects.

The second objection to Shannon Theorem is that it requires an infinite set of samples to
reconstruct the signal, whereas in practice only a finite number of them is available. This is
quite disturbing since the sinc function, used for interpolation, has a slow decay, so that a lack of
coefficients should yield an important error on the interpolation. We shall investigate this issue
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in the next chapter, but let us mention that the slow decay of the sinc function can be avoided,
provided that the image is oversampled. If supp(f̂) ⊂ [− π

δ′ ,
π
δ′ ]

2 with δ′ > δ, the function 1[−π
δ
,π
δ
]2

in (1.18) can be replaced by a smooth (C∞) function h such that

h(α, β) = 0 if (α, β) 6∈ [−π
δ ,

π
δ ]

2,
h(α, β) = 1 if (α, β) ∈ [− π

δ′ ,
π
δ′ ]

2,
0 < h(α, β) < 1 else.

Then, (1.19) becomes

f = (f ·Πδ) ⋆

(
δ

2π

)2

ĥ,

and since h is smooth (h ∈ S), its Fourier Transform will vanish faster at infinity than the sinc
function (ĥ ∈ S).

1.6 Aliasing

1.6.1 Spectrum periodization

A consequence of (1.17) is that sampling and periodization are dual operations with respect to
Fourier Transform. Indeed, one has

f ·Πδ (spatial sampling)
F−→ 1

δ2
· f̂ ⋆Π2π/δ (spectrum periodization)

which means that sampling an image is exactly equivalent to periodizing its spectrum. Now we
can understand what happens if the condition supp(f̂) ⊂ [−π

δ ,
π
δ ]

2 is not satisfied. The function

g(x, y) =
∑

(k,l)∈Z2

f(kδ, lδ) sinc
(x
δ
− k
)
sinc

(y
δ
− l
)

will still be equal to f for integer values of x/δ and y/δ, but will in general differ from f at other
points. Precisely, the Fourier transform of g is obtained by adding to f̂ its aliases obtained by
the 2π

δ -periodization :

∀(α, β) ∈ [−π
δ
,
π

δ
]2, ĝ(α, β) =

∑

k,l∈Z
f̂(α+ 2kπ/δ, β + 2lπ/δ).

This creates a phenomenon called aliasing : the spectrum of f will interfere with itself and
some high-frequency components will be aliased to low frequencies (see Figure 1.4).

1.6.2 Case of a sine wave

To understand some effects of the aliasing on images, let us consider the particular case of a
pure sine wave,

u(x) = sin ≺ k,x ≻ .

One easily checks that the Fourier Transform of u is

û =
4π2

2i

(
δk − δ−k

)
.

Hence, u will be properly sampled on a grid with step δ as soon as k ∈] − π
δ ,

π
δ [

2. Let us now
suppose that

k =
2π

δ
n+ k′,
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aliasing

alias

spectral

support

aliased image (undersampled)well sampled image

Figure 1.4: The aliasing process

with n ∈ Z2 and k′ ∈]− π
δ ,

π
δ [

2. Then the frequency k will be “aliased” into k′, so that the image
reconstructed from the discrete samples would be

ũ(x) = sin ≺ k′,x ≻ .

This can create artificial patterns, especially for textures, when a high frequency k is aliased
into a low frequency k′.

This phenomenon can be very confusing in the case of movies, because the motion of such
a texture will be distorted and amplified. The previous pattern moving (orthogonally to the
stripes) at speed p,

u(x, t) = sin
(
≺ k,x ≻ −tp|k|

)
,

will be aliased into
ũ(x, t) = sin

(
≺ k′,x ≻ −tp|k|

)

which is a sine wave moving at a speed

p′ = p · |k||k′|
that can be much larger than p.

1.7 Ringing

Shannon Theorem tells us how to avoid aliasing : ideally we should perform a perfect frequency
cutoff, by transforming the geometrical image u into an image v such that

v̂ = û · 1[−π
δ
,π
δ
]2 . (1.20)

Not only this perfect low-pass filter is impossible to realize physically in practice, but even if it
was it would not be a good idea. Indeed, taking the inverse Fourier Transform of (1.20) yields

v = u ⋆ R, with R(x, y) = C · sinc
(x
δ

)
sinc

(y
δ

)

for some constant C. This means that the hard frequency cutoff is equivalent in spatial domain
to a convolution with a sinc function. Now, for a natural image containing edges, this will create
a phenomenon called ringing : the edges will be replicated into vanishing parallel edges spaced
by 2δ.
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1.8 Realistic sampling

To avoid aliasing without creating too much ringing, a solution is to realize a smooth frequency
cutoff, that is to sample the image

v̂ = û · ĥ, (1.21)

where h is a smooth function such that ĥ ≃ 0 outside [−π
δ ,

π
δ ]

2, and ĥ ≃ 1 inside. Since this
process should occur before the digitization, it is quite difficult to design such a function h
because of the physical constraints. As we saw before, for a perfect optical device we have

v̂ = û · K̂,
where

K̂ = K̂captor · K̂diffraction · K̂defocus.

Does this function satisfy the properties we expect ?

1.8.1 The diffraction term

For a circular aperture with diameter D, the diffraction term can be obtained by taking the
Fourier Transform of (1.10), which gives

K̂diffraction(ξ) =
λ2D2

4

(
arccos(ρ)− ρ

√
1− ρ2

)
with ρ = |ξ| · λf

2πD
.

This function is plotted on Figure 1.5. The cutoff frequency ρc =
2πD
λf corresponds to a sampling
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Figure 1.5: The normalized K̂diffraction term

step equal to δc = π/ρc =
λf
2D , which is 0.41 (1/2.44) times the radius of the Airy spot,

ra ≃ 1.22
λf

D
.

Let us compute some practical estimates.

• For a classical digital camera, the typical minimum aperture (largest f/D) is f/D = 8,
which gives δc = 2.4µ for visible light (λ ≃ 0.6µ). A matrix of R = 4N × 3N square
pixels with side δc will have a diagonal of 5Nδc. For a 1/3 inch (8.5mm diagonal) CCD
captor, the diffraction limit corresponds to the sampling limit when the resolution of the
CCD is approximately R = 6 megapixels (N = 8500

5×2.4 ≃ 700, 12N2 ≃ 6.106), which is the
order of magnitude of digital cameras nowadays (note: this resolution should be roughly
divided by 3 for color CCD, made of red, green and blue captors). A color digital camera
with a larger resolution needs a 2/3 inch CCD captor to avoid oversampling at minimum
aperture.
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• For a 24×36 (non-digital) camera, the maximum diffraction allowed (f/D = 22) yields an
Airy spot with diameter 32µm on the 24mm×36mm film, which corresponds to a diameter
of 1.6mm on a giant 1.8m×1.2m (×50) poster. Hence, it will be difficult to observe the
Airy spot, even with a very good film.

• For a telescope with diameterD = 150mm, the maximum angular resolution (arctan(ra/f))
allowed by diffraction is about 1 second of arc (tan(1′′) ≃ 1.22 · 0.0006

150 ), which is approxi-
mately the maximal resolution allowed by atmospheric turbulence in average conditions.

1.8.2 The captor term

If the captor domain is a square with side c (notice that we necessarily have c 6 δ), the captor
term is, up to a multiplicative constant,

K̂captor(α, β) = sinc
(cα
2π

)
sinc

(
cβ

2π

)
.

The modulation brought by Kcaptor is represented on Figure 1.6. The cutoff frequency (first
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Figure 1.6: The normalized |K̂captor| term along each axis (|sinc| function)

zero) along each axis is 2π/c.

How does this cutoff frequency compare to the Shannon limit π/δ ? To attain the critical
value π/δ, we would like to have c = 2δ, but this is physically impossible : we have at most
c = δ, since the captors cannot overlap. A nice solution (called hypomode) has been proposed
by a CNES researcher named Bernard Rougé. It consists in simulating c = 2δ from c = δ
by averaging the measured values on 2 × 2 pixels squares. The resulting digital image is more
blurred but less aliased, so that a deconvolution algorithm may be able to restore more efficiently
the true spectrum.
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Chapter 2

Interpolation and geometric
transforms

In this chapter, we investigate the problem of image interpolation : how a finite set of samples
u(k, l) should be interpreted to define a continuous image v(x, y) ? This is the inverse of the
sampling problem that we investigated in the previous chapter, and it has strong connexions
with it.

Image interpolation has several applications : it is required for resolution changes (image
enlargement) and for geometric transforms (non-integer translations, rotations, etc.). Image
reduction, though not exactly a problem of interpolation, can be investigated using the same
kind of tools. In this chapter, we shall only consider interpolations methods that are exact
(v(k, l) = u(k, l) for integer k, l), linear and translation-invariant. Such an interpolation is
necessarily a convolution : if u(k, l) is the initial discrete image, extended to Z2 in some way,
then v can be written

v(x, y) =
∑

(k,l)∈Z2

u(k, l)φ(x− k, y − l),

with φ(0, 0) = 1 and φ(k, l) = 0 for (k, l) ∈ Z2 \ {(0, 0)}. Unless otherwise specified, we shall
only consider in the following separable symmetric interpolations, where the function φ can
be written

φ(x, y) = ϕ(x)ϕ(y).

For that reason, we shall deal with one-dimensional signals (instead of two-dimensional images)
in the following. We shall make use the 1D Dirac Comb,

Πs =
∑

k∈Z
δks,

whose Fourier Transform is

Π̂s =
2π

s
Π 2π

s
.

2.1 The Fourier Model

The Fourier interpolation relies on the assumption that the discrete signal u(k), k = 0..N − 1 is
the sampling of a band-limited signal satisfying Shannon condition. If we want to apply Shannon
Theorem, we need to “guess” a value for the unknown samples u(k) for k 6∈ {0..N − 1}, and
expect that it will not influence too much the interpolation v(x) for x inside [0, N − 1]. To each
guess corresponds an interpolation method.
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2.1.1 Sinc interpolation

The simplest possibility consists in setting the unknown values to 0. In this case, we get the
continuous interpolation formula

∀x ∈ R, v(x) =
N−1∑

k=0

u(k) sinc(x− k) (2.1)

However, the “null” assumption is often not satisfactory, because it gives a particular meaning
to the value 0, which is not always relevant. In particular, it has a major drawback : it does not
reproduce constant signals : for example, the signal 1, 1, 1, ...1 will be interpolated with (2.1) by
an oscillating function.

2.1.2 Discrete sinc interpolation

Another possibility, which is commonly used, is to assume that the signal u is N -periodic, that
is u(k +N) = u(k) for all k ∈ Z. This model has the advantage that it can be described with
an elegant formalism : the Discrete Fourier Transform.

Definition 2 The Discrete Fourier Transform (DFT) of the discrete signal u(k), k = 0..N − 1
is the discrete signal defined by

∀p ∈ Z, û(p) =

N−1∑

k=0

e−
2iπpk

N u(k). (2.2)

Fourier Transform is one of the fundamental tools of signal and image processing. It has the
following properties :

• it is N -periodic (û(p+N) = û(p));

• it is conjugate-symmetric (û(−p) = û(p)∗) because u is real-valued (z∗ means the complex
conjugate of z).

• it is, up to a scale factor, an isometry of l2(RN ), that is ‖û‖2 =
√
N‖u‖2 ; the Inverse

Discrete Fourier Transform of û is

u(k) =
1

N

N−1∑

p=0

e
2iπpk

N û(p).

• if we define the discrete convolution of two N -periodic signals u and v by

u ⋆ v(l) =
N−1∑

k=0

u(k)v(l − k),

then one checks easily that

û ⋆ v = û · v̂ and û · v =
1

N
û ⋆ v̂.

What is the meaning of these numbers û(p) ? We saw that Shannon Theorem comes from
the fact that the sampling process is equivalent to a periodization in Fourier domain : hence a
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discrete signal may describe exactly the spectrum of a band-limited continuous signal. Here we
have a discrete periodized signal

U =
N−1∑

k=0

u(k)
∑

n∈Z
δk+nN

whose Fourier spectrum is

Û(ξ) =
N−1∑

k=0

u(k)

∫

R

∑

n∈Z
δk+nN (x)e−ixξ dx

=
N−1∑

k=0

u(k)

∫

R

∑

n∈Z
δnN (x− k)e−ixξ dx

=

N−1∑

k=0

u(k)e−ikξ

∫

R

∑

n∈Z
δnN (x)e−ixξ dx

=
N−1∑

k=0

u(k)e−ikξ · Π̂N (ξ)

=
N−1∑

k=0

u(k)e−ikξ · 2π
N

Π2π/N (ξ)

=
∑

p∈Z
û(p) · 2π

N
δ2πp/N (ξ).

Note that these are equalities between distributions and not between numbers. It proves that
the Fourier Transform of U is, like U , a discrete and N -periodic signal, that can be written as
a sum of Dirac masses weighted by the coefficients of the Discrete Fourier Transform of u.

Now we would like to recover the original signal v(x) from which U have been sampled. Since

U = v ·Π1 ⇒ Û = v̂ ⋆Π2π,

we can suppose that no aliasing occurred during the sampling process and recover the Fourier
transform of v as a period of the Fourier transform of U . Let us suppose that v̂ is supported by
the interval

Ia =
2π

N
· {a, a+ 1, ..., a+N − 1}

for some a ∈ Z. Using the Inverse Fourier Transform, we obtain that U has been sampled from

va(x) =
1

2π

∫

R

a+N−1∑

p=a

û(p) · 2π
N
δ2πp/N (ξ)eixξ dξ =

1

N

a+N−1∑

p=a

û(p)e2iπpx/N . (2.3)

If x ∈ Z, we recognize the Inverse Discrete Fourier Transform of û (that does not depend on
a), and we check that va(x) = u(x). Now if x 6∈ Z, we can rewrite (2.3) as

va(x) =
1

N

a+N−1∑

p=a

N−1∑

k=0

u(k) e
2iπp(x−k)

N

=
1

N

N−1∑

k=0

u(k) e
2iπa(x−k)

N · 1− e2iπ(x−k)

1− e
2iπ(x−k)

N

=
N−1∑

k=0

u(k) e
2iπ
N

(x−k)[a+N−1
2

] · sinπ(x− k)

N sin π
N (x− k)

.
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In order va(x) to be real, we should have a = −N−1
2 .

• If N is odd, this is possible, and everything goes well. The Shannon condition is satisfied
since supp(v̂a) = {−N−1

2 ..N−1
2 } ⊂]− N

2 ,
N
2 [, so that the periodization of the spectrum will

introduce no aliasing, and we get the reconstruction formula

v(x) =
N−1∑

k=0

u(k)
sinπ(x− k)

N sin π
N (x− k)

.

• If N is even, we have got a problem, since N−1
2 is not an integer. Indeed, we cannot decide

if the value û(N2 ) should be attached to frequency N
2 or −N

2 . This ambiguous situation
is demonstrated, for example, in the fact that the two functions x 7→ cos(πx + φ) and
x 7→ cos(φ) cos(πx) have the same samples. Hence, it is necessary that the discrete signal
satisfies û(N2 ) = 0, and then the reconstruction is obtained (among other possibilities,
since û(N2 ) = 0 introduces dependencies) by averaging the a = −N/2 and a = −(N − 2)/2
choices, yielding

v(x) =
N−1∑

k=0

u(k)
sinπ(x− k)

N tan π
N (x− k)

.

Let us summarize the discussion above. If a signal has been sampled according to Shannon
Theorem, then the sampled signal must belong to the space SN defined below.

Definition 3 We call SN the space of discrete signals u(k), k = 0..N − 1 such that either N is
odd or û(N/2) = 0.

When N is even, the condition û(N/2) = 0 also writes

N−1∑

k=0

(−1)ku(k) = 0, (2.4)

since the left term is nothing but û(N/2). The dimension of SN is N − 1, and the orthogonal
projection from RN to SN is defined by

PN : RN → SN

u 7→
(
k 7→ u(k)− (−1)k

N
û

(
N

2

))
.

Now, under the assumption that the initial signal is N -periodic, the Shannon reconstruction
is, as we saw above, given by a discrete version of the sinc function.

Proposition 3 The Shannon N -periodic interpolation of a discrete signal u ∈ SN is equal to

v(x) =
N−1∑

k=0

u(k) sincdN (x− k), (2.5)

where the discrete cardinal sine of order N is the N -periodic function defined by

∀t ∈ R \NZ, sincdN (t) =





sinπt

N sin π
N t

if N is odd,

sinπt

N tan π
N t

if N is even,
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and sincdN (kN) = 1 for k ∈ Z. It is equivalent to define v by

v(x) =
1

N

a+N−1∑

p=a

e
2iπpx

N û(p) (2.6)

with a = −N−1
2 (N odd) or a = −N

2 (N even).

Remark : we have shown that in order to interpret the spectrum of a discrete signal as the
periodization of the finitely supported spectrum of a band-limited signal, a possibility consists
in selecting the only period of the spectrum that is symmetric with respect to 0. If the selected
frequency domain has to be connected (as a subset of Z), this is the only choice that yields real
values for the interpolate. In two dimensions, the choice may be broader if we do not impose
the isotropy of the coordinates : any symmetric connected domain that defines a tiling of Z2 by
periodization along both coordinates is valid. This possibility has been recently used in satellite
imaging, in a situation where the two coordinates were not equivalent (because of the proper
motion of the satellite).

2.1.3 Symmetrization and the Cosine Transform

Since the periodization of a signal may introduce a jump in the discrete values, and consequently
oscillations in the interpolate, it is often interesting to perform a symmetrization of the discrete
signal u(k), k = 0..N − 1. The result is a new signal ũ(k), k = 0..2N − 1 obtained by setting
ũ(2N − 1 − k) = ũ(k) = u(k) for 0 6 k 6 N − 1. Note that ũ necessarily belongs to SN , since
it clearly satisfies (2.4). Its Fourier Transform is

ˆ̃u(p) =
2N−1∑

k=0

e
−2iπpk

2N ũ(k)

=
N−1∑

k=0

(
e

−2iπpk

2N + e
−2iπp(2N−1−k)

2N

)
ũ(k)

= 2eiπp/2N
N−1∑

k=0

cos

(
πp

N
(k +

1

2
)

)
u(k).

Hence, if we define the Discrete Cosine Transform (DCT) of u by

∀p ∈ Z, Cu(p) =
N−1∑

k=0

cos

(
πp

N
(k +

1

2
)

)
u(k), (2.7)

then one simply has
ˆ̃u(p) = 2eiπp/2N · Cu(p). (2.8)

Note that this implies that |ˆ̃u| is, like Cu, even.

Exercise : show that a signal u can be recovered from Cu using the inverse DCT, that is

u(k) =
1

N


Cu(0) + 2

N−1∑

p=1

cos

(
πp

N
(k +

1

2
)

)
Cu(p)


 .
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2.1.4 The Fast Fourier Transform (FFT)

Before we apply Fourier interpolation to geometric transforms, let us highlight a very interesting
property of the Discrete Fourier Transform : there exists a fast algorithm to compute it.

The Discrete Fourier Transform consists in N terms defined each by a sum of N terms, so
that its complexity is a priori O(N2). However, we know since Cooley and Tukey (1965) that
the DFT can be computed recursively more quickly, especially when N is a power of two. This
is the Fast Fourier Transform (FFT) algorithm.

Suppose that N = 2n. We want to compute the values P (wp), with w = e−2iπ/N and
p = 0..N − 1, and P being a polynomial with degree N − 1, precisely

P (X) =

N−1∑

k=0

u(k)Xk.

Let us call C(N) the number of operations required (additions plus multiplications). We can
write

P (wp) = P0(w
2p) + wpP1(w

2p), (2.9)

where

P0(X) =

N/2−1∑

k=0

u(2k)Xk and P1(X) =

N/2−1∑

k=0

u(2k + 1)Xk.

We have translated the task of order N (evaluation of P for the N -th roots of unity) into
two similar tasks of order N/2 (evaluation of P0 and P1 for the N/2-th roots of unity), plus
N multiplications and N additions (we suppose that the value of wp has been computed in
advance). The consequence is that

C(N) = 2C

(
N

2

)
+ 2N.

Since C(1) = 0, we easily deduce that C(N) = 2N log2(N). Hence, the recursive algorithm sug-
gested above computes the Fourier transform of a discrete signal with size N in O(N logN) oper-
ations. For a two-dimensional image with size N ×N , the separability implies that O(N2 logN)
(instead of N4) are enough.

What happens if N is not a power of two ? Following the same idea as (2.9), we get, when
N = qr,

P (wp) = P0(w
qp) + wpP1(w

qp) + . . .+ w(q−1)pPq−1(w
qp),

where the Pi’s have degree r − 1. Hence,

C(qr) = 2qr(q − 1) + qC(r),

so that if the prime factor decomposition of N is N = Πipi, then the Fourier Transform of N
can be computed in

C(N) = 2N
∑

i

(pi − 1)

operations. Consequently, the algorithm is more efficient when N does not contain large prime
factors.

In most cases, we are not dealing in practice with periodic signals or images, but we periodize
them in order to use the convenient Discrete Fourier representation. For that reason, the signal
or image dimensions may often be extended or reduced in order to match a power of two, or at
least an integer with small prime factors.
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2.1.5 Zoom (zero-padding)

Fourier interpolation can be easily applied to signal (and image) enlargement (zoom). According
to Shannon Theorem, oversampling a signal by a factor λ =M/N could be realized with (2.5).
However, this is not a good idea : first, because we saw that formulations in Fourier domain
generally yield more efficient algorithms based on FFT, secondly because in this case the Fourier
formulation is very simple. Indeed, according to (2.6) the magnified signal should be defined in
Fourier domain by

∀p ∈ Z, |p| < M/2, ûλ(p) =

{
û(p) if |p| < N/2
0 else.

This is why this method is called zero-padding. When N and M are power of two, it can be
realized in O(M logM) operations.

2.1.6 Non-integer translation

We saw that Fourier interpolation may be viewed as a direct consequence of Shannon Sampling
Theorem. But it may be justified in a completely different way : this is the optimal way to
perform non-integer translations without loosing information, as stated by the following theorem.

Theorem 3 There exists a unique family of linear operators (Tz)z∈R : SN → SN such that :

(i) z 7→ Tz is continuous,

(ii) ∀k, z ∈ Z, Tzu(k) = u(k − z),

(iii) ∀w, z ∈ R, Tw+z = Tw ◦ Tz,

(iv) lim
z→0

|z|−1‖Tz − id‖2 is minimal.

It is defined by

Tzu(k) =
N−1∑

n=0

u(n) sincdN (k − z − n) (2.10)

or equivalently, by

T̂zu(p) = e
−2iπpz

N û(p)

(
−N

2
< p <

N

2

)
. (2.11)

Proof :

• Since each operator Tz is linear and translation-invariant, it is a convolution, as we are
going to show now. If N is odd, we can define

∀k ∈ Z, ∀n ∈ {0..N − 1}, en(k) =

{
1 if k = n mod N
0 else.

and set

αz(k, n) =
(
Tzen

)
(k).

Using (ii) and (iii), we get, for all (k, n) ∈ Z× {0..N − 2},

αz(k, n) =
(
Tzen

)
(k) =

(
T−1TzT1en

)
(k) =

(
T−1Tzen+1

)
(k) =

(
Tzen+1

)
(k+1) = αz(k+1, n+1).
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It follows that αz(k, n) = αz(k − n, 0), so that

(Tzu)(k) =

(
Tz

N−1∑

n=0

u(n)en

)
(k) =

N−1∑

n=0

u(n)(Tzen)(k) =
N−1∑

n=0

u(n)βz(k − n)

with βz(n) = αz(n, 0). If N is even, we can define

∀k ∈ Z, ∀n ∈ {0..N − 1}, fn(k) = en(k) +
(−1)n−k+1

N
.

We have

N−1∑

k=0

(−1)kfn(k) =
N−1∑

k=0

(−1)ken(k) +
1

N

N−1∑

k=0

(−1)n+1 = (−1)n + (−1)n+1 = 0,

which proves that fn belongs to SN . Since T1fn = fn+1, we can set

α′
z(k, n) =

(
Tzfn

)
(k)

and show as above that α′
z(k, n) = α′

z(k − n, 0). Now, since for u ∈ SN we have

(
N−1∑

n=0

u(n)fn

)
(k) =

N−1∑

n=0

u(n)en(k) +
1

N

N−1∑

n=0

u(n)(−1)n−k+1 = u(k) +
(−1)1−k

N
û(N/2) = u(k),

we deduce that

(Tzu)(k) =

(
Tz

N−1∑

n=0

u(n)fn

)
(k) =

N−1∑

n=0

u(n)(Tzfn)(k) =

N−1∑

n=0

u(n)βz(k − n)

with βz(n) = α′
z(n, 0).

• Since Tz is a convolution, it is diagonalized by the Discrete Fourier Transform, that is

T̂zu(p) = β̂z(p)û(p). (2.12)

Notice that βz is N -periodic, so we can assume βz ∈ SN without loss of generality, since for even
N the value of β̂z(N/2) has no influence on Tz (û(N/2) = 0).

• Now, property (iii) yields

∀z, w ∈ R, β̂z+w(p) = β̂z(p)β̂w(p),

and by continuity of z 7→ β̂z(p) (property (i)) we get that

βz(p) = eγ(p)z, −N
2
< p <

N

2

for some γ(p) ∈ C. Since β̂1(p) = e
−2iπp

N , we have

γ(p) = −2iπ
( p
N

+ k(p)
)
,

where k(p) ∈ Z and k(−p) = −k(p) (the fact that Tzu is real-valued implies that βz(−p) =
βz(p)

∗).
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• Last, we compute

‖Tz − id‖22 = sup
u∈SN ,‖u‖2=1

‖Tzu− u‖22

=
1

N
sup

u∈SN ,‖u‖2=1
‖T̂zu− û‖22

=
1

N
sup

u∈SN ,‖û‖22=N

N−1∑

p=0

|e−2iπ( p

N
+k(p))z − 1|2 · |û(p)|2

= 4 max
−N

2
<p<N

2

sin2
(
π
( p
N

+ k(p)
)
z
)

= 4π2z2 max
−N

2
<p<N

2

( p
N

+ k(p)
)2

+ o
z→0

(z2).

Hence,

lim
z→0

|z|−1‖Tz − id‖2 = 2π max
−N

2
<p<N

2

∣∣∣ p
N

+ k(p)
∣∣∣

is minimal if and only if k(p) = 0 for all p. We conclude that

βz(p) = e−2iπpz/N , −N
2
< p <

N

2

as announced. Inversely, one easily checks that the operators (Tz) defined by (2.10) satisfy the
required properties (i), (ii), (iii) and (iv). �

We just proved that the only minimal continuous semi-group extending the integer trans-
lations is given by the Fourier model. Its main interest is that non-integer translations are
realized, like integer translation, without any loss of information : Tz is an isometry of SN for
all z. Notice that like for the zoom, it is computationally more efficient to realize the translation
using the Fourier formulation (2.11). It yields an algorithm with complexity O(N logN) when
N is a power of two.

2.1.7 Rotation

The rotation of an image is a priori incompatible with the discrete Fourier model, because if
an image is periodized along a system of coordinates, in general the rotated image will not be
periodic along the same system (except if the rotation angle is a multiple of π/2, which is a
trivial case). However, it is possible to use the Fourier model to perform very accurate rotations.

The first solution is to use the interpolation formula (2.5) — or, to avoid periodization
artifacts, (2.1) — and to sample the new image

v(k, l) = u(k cos θ − l sin θ + α, k sin θ + l cos θ + β)

(the translation term (α, β) indirectly defines the rotation center). However, since there is no
way to separate the variables, this would require O(N4) operations, which is generally too much.

Fortunately, there exists an efficient and elegant solution, that has been found independently
by several authors in the 80’s. The idea is to decompose the rotation into the product of three
“shears”,

(
cos θ − sin θ
sin θ cos θ

)
=

(
1 − tan θ

2
0 1

)(
1 0

sin θ 1

)(
1 − tan θ

2
0 1

)
, (2.13)
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and to use the Fourier model to implement the shears as “variable translations”. Let u be an

image with size N ×N . For s ∈ R, the typical shear

(
1 s
0 1

)
, applied to u, yields the image

v(k, l) = u(k + sl, l). (2.14)

If we set ul(k) = u(k, l) and vl(k) = v(k, l), then (2.14) can be viewed as a translation and
computed by (2.11), that is

v̂l(p) = e2iπslp/N ûl(p), −N
2
< p <

N

2
.

Hence, if N is a power of two, the rotation of an image using (2.13) can be performed in
O(N2 logN) operations. The only drawback of this method is that some parts of the original
image are “scrambled” during this operation. However, this only affects the borders of the
images, so that an appropriate pre-processing (for example, enlarging the domain of u with a
spatial zero-padding) can solve this problem.

2.2 Other interpolation methods

The Fourier model is an interesting theoretical tool but it suffers from not being local, in the
sense that the interpolate of an image around a point depend on all the image samples. This
may be questionable from a physical point of view, and has the drawback that in all situations
where the Fast Fourier Transform cannot be used (e.g. to apply an homography to an image),
Fourier interpolation requires heavy computations. Another reason why the Fourier model is
not completely adequate is that it relies on the strong hypothesis that the considered image was
made band-limited before it was sampled. If this is not the case, which happens in practice, the
Fourier interpolate will present unwanted ringing artifacts.

In this section, we shall present some other interpolations methods, that can be viewed as
local approximations of the Fourier model. Our main concerns will be the locality of the inter-
polation (we shall impose that only a few values are used to define the image in the continuous
neighborhood of a point) and, of course, the accuracy of the interpolate compared to the sinc
interpolation.

2.2.1 Characterization

As we saw at the beginning of this chapter, a linear translation-invariant interpolation can be
written

v(x) =
∑

k∈Z
u(k)ϕ(x− k). (2.15)

Here we suppose that u is defined on Z. All that follows could be presented in a periodic
framework, as we did for the discrete Fourier model.

As we mentioned above, for computational reasons it is interesting to impose that the in-
terpolating function (above, ϕ) has a small support (say included in [−10, 10]). This yields a
distinction between direct and indirect local interpolations :

• a direct local interpolation is given by (2.15), where ϕ has a small support;

• an indirect local interpolation writes

v(x) =
∑

k∈Z
c(k)ψ(x− k), (2.16)
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where ψ has a small support. Since the interpolation is supposed to be exact — that is,
v(k) = u(k) for any k ∈ Z —, we must have

u = c ⋆ ψd, (2.17)

where ψd is the discrete signal associated to ψ (i.e. ψd(k) = ψ(k) for any k ∈ Z). If we
consider discrete signals as sums of Dirac masses, taking the Fourier Transform of (2.17)
yields

û(ξ) = ĉ(ξ) · ψ̂d(ξ),

so that one must have

∀ξ ∈ R, ψ̂d(ξ) :=
∑

k∈Z
ψd(k)e

−ikξ 6= 0.

In that case, the function ϕ in (2.15) will be defined by

ϕ(x) =
∑

k∈Z
(ψd)

−1(k)ψ(x− k), (2.18)

with

(̂ψd)−1(ξ) = (ψ̂d(ξ))
−1.

Hence, an initial pre-processing (the computation of c = (ψd)
−1 ⋆ u) has to be realized

before the interpolation formula (2.16) can be applied. Note that in general ϕ will not
have, like ψ, a small support.

Let us now define the order of interpolation.

Definition 4 The interpolation method is said to be of order1 n ∈ N if for any signal U ∈ L2(R)
of class C∞, one has

‖U − Uh‖2 = o
h→0

(hn),

where Uh is the signal interpolated from the discrete samples U(kh), k ∈ Z.

The interpolation order gives an idea of the accuracy of the method : the larger the order,
the more accurate the interpolate.

We shall also define the support w, which is the length of the smaller interval containing
supp(ϕ). It can be shown that w > n+ 1, where n is the order of interpolation.

Last, one can be interested in the regularity of ϕ (ϕ can be Cp, C0, or even discontinuous),
since this will be the regularity of v as well. Notice that regularity is concerned as long as we
have to compute derivatives of the interpolate : since derivatives with order larger than 2 or 3
are barely used for images, aiming at a high order of regularity is not a real issue.

1Some authors define the approximation order of the method and use the convention that the order is n+1 in
this case, by reference to the order of a numerical scheme. However, this is sometimes confusing, and we prefer
to define an interpolation order in agreement with the definition of the order of a Taylor expansion. In particular,
as we shall see later, our definition ensures that the order of a spline is equal to its interpolation order.

31



L. Moisan

2.2.2 Direct interpolations

• The simplest interpolation is called the nearest neighbor interpolation. It is a direct
interpolation associated to

ϕ(t) = β0(t) =

{
1 if −1

2 6 t < 1
2 ,

0 else.

It has order 0, support 1, and no regularity (β0 is discontinuous). Its effect is very simple : the
continuous signal is obtained as a piecewise constant signal defined from the discrete samples.
In two dimensions, it yields images that are constant on adjacent squares.

• A slightly more complex method is given by the (bi)linear interpolation, associated to

ϕ(t) = β1(t) = β0 ⋆ β0(t) =

{
1− |t| if −1 6 t 6 1,
0 else.

It has order 1, support 2, and regularity C0. The interpolated signal is piecewise linear.
In two dimensions, the bilinear interpolation is defined in the square [k, k+1]× [l, l+1] from

the four values u(k, l), u(k + 1, l), u(k, l + 1) and u(k + 1, l + 1). Indeed, one has

∀(x, y) ∈ [k, k+1]× [l, l+1], (2.19)

ũ(x, y) = (l + 1− y)
(
(k + 1− x)u(k, l) + (x− k)u(k + 1, l)

)

+ (y − l)
(
(k + 1− x)u(k, l + 1) + (x− k)u(k + 1, l + 1)

)
.

Like the nearest neighbor interpolation, the bilinear interpolation is monotone : if u and u′

are two discrete signals such that u(k) > u′(k) for any k ∈ Z, then the corresponding interpolates
satisfy v(x) > v′(x) for any x ∈ R. This property is a consequence of the fact that ϕ > 0 for
both methods.

• If we look for a more accurate interpolation, then we may consider the so-called bicubic
interpolation, associated to Keys’ function (see Figure 2.1)

ϕa(t) =





(a+ 2)|t|3 − (a+ 3)t2 + 1 if 0 6 |t| < 1,
a|t|3 − 5at2 + 8a|t| − 4a if 1 6 |t| < 2,
0 if 2 6 |t|.

This method depends on a parameter a ∈ [−1, 0]. Its order is 1 in general, and 2 when a = −1/2.
Its regularity is C1, and its support is w = 4. It is very popular, probably because it is very
simple to implement (this is a direct interpolation). However, we shall see that the cubic spline,
an indirect interpolation function which has the same support (w = 4), is more accurate (order
3) and more regular (C2). Thus, cubic spline interpolation should be preferred to Keys’ bicubic
interpolation in general.

2.2.3 Spline interpolation

The generalization of the nearest neighbor (β0) and bilinear (β1) interpolation can be realized
with the theory of B-splines.

Definition 5 The B-spline of order n, βn, is defined recursively by

β0 = 1[− 1
2
, 1
2
[ and βn = β0 ⋆ βn−1.

32



Modeling and Image Processing

-0.2

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

Figure 2.1: Keys function for a = −1/2.

An important point to notice is that for n > 2, the interpolation associated to βn is indirect,
since we do not have any more βn(k) = 0 for all k ∈ Z∗. It is no longer monotone either. The
regularity of βn is Cn−1, and its support is minimal (w = n+ 1). The function βn can also be
defined by

βn(t) =
n+1∑

k=0

(−1)k(n+ 1)

k!(n+ 1− k)!
·max

(
0,
n+ 1

2
+ t− k

)n

.

The Fourier Transform of β0 is simply

β̂0(ξ) =

∫

R

β0(x)e−ixξ dx =

∫ 1/2

−1/2
e−ixξ dx =

sin(ξ/2)

ξ/2
.

Since βn = β0 ⋆ βn−1, this implies that

∀n ∈ N, β̂n(ξ) =

(
sin(ξ/2)

ξ/2

)n+1

. (2.20)

Since we are considering an indirect interpolation method (associated to ψ = βn), we have
to prove that it is well defined, i.e. that the convolution by ψd is invertible. This is the purpose
of

Lemma 1 Let bn =
∑

k∈Z β
n(k)δk. Then, one has

∀ξ ∈ R, b̂n(ξ) 6= 0.

Proof :
Taking the Fourier Transform of bn = βn ·Π1 yields b̂n = β̂n ⋆Π2π, that is, thanks to (2.20),

∀ξ ∈ R, b̂n(ξ) =
∑

p∈Z

(
sin(πp+ ξ/2)

πp+ ξ/2

)n+1

=
∑

p∈Z
(−1)p(n+1)

(
sin(ξ/2)

πp+ ξ/2

)n+1

.

If n is odd, all the terms of the sum are nonnegative. If ξ ∈ [0, 2π[, the term corresponding to
p = 0 is positive, so that by periodicity b̂n(ξ) > 0 for all ξ ∈ R. The case “n even” is left as an
exercise to the reader (indication : group the term p and −p in the sum above). �

Corollary 1 The direct interpolating function ϕ associated to ψ = βn is called the cardinal
spline of order n, written βncard. It is defined by

βncard(x) =
∑

k∈Z
(bn)−1(k)βn(x− k), (2.21)
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or equivalently by its Fourier Transform,

β̂ncard(ξ) =
β̂n(ξ)

b̂n(ξ)
=

(
sin(ξ/2)

ξ/2

)n+1

∑
p∈Z

(
sin(πp+ξ/2)

πp+ξ/2

)n+1 . (2.22)

Now, a natural question is : what happens when n → ∞ ? One can prove easily that when
conveniently rescaled, βn tends to a Gaussian function (we shall see in a further chapter that this
is a consequence of the Central Limit Theorem). More interesting is the fact that the cardinal
spline of order n tends to the cardinal sine (in L2). Hence, spline interpolation is, for infinite n,
equivalent to Shannon reconstruction formula.

Theorem 4 In the L2 sense,
βncard −→

n→∞
sinc.

Proof :
We assume in the following that n is odd (the case “n even” is left as an exercise to the

reader). By Parseval’s Theorem, we may as well prove the announced result by showing that

β̂ncard −→
n→∞

1[−π,π]

in L2(R). To do this, we notice that for ξ 6∈ πZ, the numerator of (2.22) does not vanish, so
that we can write

β̂ncard(ξ) =
1

1 + Un(ξ)

with

Un(ξ) =
∞∑

p=1

[(
2πp

ξ
+ 1

)−n−1

+

(
2πp

ξ
− 1

)−n−1
]
. (2.23)

• If ξ ∈]0, π[, then t := 2π/ξ > 2 and

Un(ξ) 6 2
∞∑

p=1

(
2πp

ξ
− p

)−n−1

6 2

(
2π

ξ
− 1

)−n−1 ∞∑

p=1

p−n−1
6 4 (t− 1)−n−1

using the fact that 2
∑

p>1 p
−n−1 6 π2/3 6 4. Hence,

∫ π

0

(
1

1 + Un(ξ)
− 1

)2

dξ 6

∫ π

0
(Un(ξ))2 dξ 6

∫ +∞

2

(
4 (t− 1)−n−1 · 2π

t2
dt

)2

= O
n→∞

(
1

n

)
.

• If ξ ∈]π,+∞[\πZ, then we deduce from (2.23) that

Un(ξ) > max
p>1

ξn+1

(2πp− ξ)n+1
>

(
ξ

π

)n+1

.

Thus, ∫ +∞

π

(
1

1 + Un(ξ)

)2

dξ 6

∫ +∞

π

(
1

1 + (ξ/π)n+1

)2

dξ = O
n→∞

(
1

n

)
.

From the 2 cases investigated above and the fact that β̂ncard is even, we deduce that
∫

R

(
β̂ncard − 1[−π,π]

)2
−→
n→∞

0,

which proves the announced result. �
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2.3 Reduction

Signal or image reduction (zoom out) cannot be formalized as a problem of exact interpolation,
since a loss of information is necessary. We can compare different approaches.

• A direct subsampling of the original signal is probably the worst method, since it will in
general introduce severe aliasing.

• A hard frequency cutoff (Equation 1.20), that is a projection on Shannon condition, may
be realized as a direct application of the Fourier model. This corresponds to the projection
on band-limited signals with a given resolution. However, we saw in the previous chapter
that such a hard frequency cutoff has an important drawback : since it corresponds to a
sinc convolution in spatial domain, it produces ringing around edges.

• A more reasonable solution is to perform a smooth frequency cutoff, using a preliminary
convolution of the signal before sampling. This convolution may be done with the Gauss
function

Gσ(x) =
1

σ
√
2π
e−

x2

2σ2 .

or with a prolate function, both kernels being optimal in a certain sense. The Gauss kernel
optimizes the spatial/spectral concentration according to Heisenberg inequality :

Theorem 5 (Heisenberg inequality) If f ∈ L2(R), then

∫

R

t2f2(t) dt ·
∫

R

ξ2|f̂(ξ)|2 dξ > π

2
·
(∫

R

f2(t)

)2

,

with equality if and only if f(t) = αe−βt2 for some α ∈ R and β > 0.

A prolate function is a function with a given (small) spatial support, that maximizes the
concentration of its energy in a given spectral support. It yields in general better result
than the Gauss kernel.

Such a convolution-based approach has a major drawback : it is not a projection, so that
even a very smooth signal which could be directly subsampled (for example because it has
been obtained by enlarging another signal) will be smoothed a little more.

• Last, as an approximation of the projection on Shannon condition, a L2 projection into
the space of B-splines with order n may be used. This method is probably the best : like
the hard frequency cutoff, it is a projection (hence, it will not produce a systematic blur),
but for small n it avoids ringing artifacts.

Definition 6 The space of B-splines with order n and sampling step δ is

Sn
δ =

{
x 7→

∑

k∈Z
ck β

n
(x
δ
− k
)
, (ck) ∈ l2(Z)

}
. (2.24)

The orthogonal projection on Sn
δ can be evaluated using

Theorem 6 The orthogonal (L2) projection of a signal u ∈ L2(R) on Sn
δ is

ũ(x) =
1

δ

∑

k∈Z
≺ u,

◦
βn
( ·
δ
− k
)
≻ βncard

(x
δ
− k
)
,
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where the dual spline of order n is defined by

◦
βn (x) =

∑

k∈Z
(b2n+1)−1(k)βn(x− k). (2.25)

Notice the similarity between (2.25) and (2.21).
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Chapter 3

The morphological model

3.1 Morphological invariance

Human vision is quite insensitive to absolute light intensity : wearing sunglasses, for example,
does not change our perception of the world and our ability to identify objects or people (see
Figure 3.1). Indeed, this ability is mostly based on the analysis of relative contrast : we es-
sentially notice the relative gradient of intensity between two regions, provided that they are
adjacent. As remarked by Kanizsa [17] and other gestaltists, our perception of intensities is so
much based on local contrast that in some situations, the effect of the local background can lead
us to a wrong perception of the relative contrast between two distant regions (see Figure 3.2).

Figure 3.1: Our ability to understand images is quite insensitive to their absolute distribution of
intensity, provided that enough contrast is available : these two images, which have been taken
from the same viewpoint but with different camera settings, would be described in the same way.

This suggests that image analysis should be performed independently of any reasonable grey-
level rescaling. This sound principle has been used extensively in Mathematical Morphology
[20, 29, 21, 15], and is for that reason sometimes called morphological invariance.

3.2 Contrast change and histogram

Let us represent a grey-level1 image by a function u : Ω → R, where Ω is a subset of R2 and u(x)
measures the intensity (grey level) at point x. In this part, we shall investigate the numerical
point of view and Ω will be a finite set (typically, a rectangular grid), whose cardinality will be

1we shall not consider color images here, but what follows could be applied to the intensity channel of a color
image in an appropriate color space [12].
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Figure 3.2: Our perception of intensities is based on local contrast : though the central square
on the left is lighter than the one on the right, we cannot help seeing that it is darker because of
the strong influence of the local background (experiment from Kanizsa [17]).

written |Ω|. A contrast change is a nondecreasing function g : R → R, that transforms an image
u into the image g ◦ u, also written g(u). We shall note M the set of all contrast changes, and
M0 the set of increasing ones. If g ∈ M0, then changing u into g(u) is an invertible operation,
which means that we can define a relation of equivalence with

u ∼ v ⇔ ∃g ∈ M0, v = g(u).

If we have v = g(u) with g ∈ M \M0, then there may be a loss of information between u and
v and we shall write v ∈ C(u).

Definition 7 (repartition function) Let u ∈ RΩ. The repartition function of u is the non-
decreasing function

Hu(t) =
|{x ∈ Ω;u(x) 6 t}|

|Ω| ,

naturally extended to R̄ = [−∞,+∞] by Hu(−∞) = 0 and Hu(+∞) = 1. If we define as well

H−
u (t) =

|{x ∈ Ω;u(x) < t}|
|Ω| ,

then the average repartition function of u is

H̄u(t) =
1

2

(
Hu(t) +H−

u (t)
)
.

Definition 8 (histogram) The histogram of an image u ∈ RΩ is the distributional derivative
of its repartition function, that is,

H ′
u =

n∑

i=1

hu(λi)δλi
,

where λ1 < λ2 < . . . < λn is the set of values taken by u, δt the Dirac mass in t, and

hu(t) =
|{x ∈ Ω, u(x) = t}|

|Ω| .

For numerical grey-level images coded on 8 bits, the possible values of u belong to {0..255},
so that the histogram of u is often defined as the function hu : {0..255} → N.

Notice that the images Hu ◦ u and H−
u ◦ u measure the rank of u : if u is one-to-one (which

means that n = |Ω|), then

u(x) = λk ⇔ Hu ◦ u(x) = k

|Ω| ⇔ H−
u ◦ u(x) = k − 1

|Ω| .
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3.3 Histogram change

Can we prescribe the histogram (or equivalently, the repartition function) of a given image by
applying a contrast change ? If we change an image u into v = g◦u with g ∈ M0, the repartition
function becomes Hv = Hu ◦ g−1. Since Hu is a piecewise constant function, it is not possible
in general to ensure that we would have Hv = L for some g, even if L satisfies the properties
of a repartition function (that is, |Ω|L is an integer-valued nondecreasing function such that
lim−∞ L = 0 and lim+∞ L = 1). However, the following theorem tells us how we should choose
g in order to have Hv ≃ L, and that this optimal choice is the same for various measures of the
“error” between Hv and L.

Theorem 7 Let F : R+ → R+ be an increasing function such that F (0) = 0 (cost function) and
L : R̄ → [0, 1] a nondecreasing function (the ideal repartition function), such that L : [a, b] →
[0, 1] is one-to-one and onto. For any u ∈ RΩ, the unique v ∈ C(u) that minimizes the cost
integral ∫

R

F
(
|Hv(t)− L(t)|

)
dt (3.1)

is independent of F and given by v = L−1 ◦ H̄u ◦ u.

Proof :
Let us write λ1 < λ2 < . . . < λn the set of ordered values taken by u on Ω. If v = g(u) with

g ∈ M, then gk = g(λk) is a nondecreasing sequence. In all the following, we use the convenient
notations λ0 = g0 = −∞ and λn+1 = gn+1 = +∞. Since

∀k ∈ {0..n}, ∀t ∈ [gk, gk+1[, Hv(t) = Hu(λk),

we have to minimize

E((gk)) =
n∑

k=0

∫ gk+1

gk

F
(
|Hu(λk)− L(t)|

)
dt (3.2)

over all non-decreasing sequences (gk)16k6n (g0 and gn+1 being set as specified above).

1. We first minimize E((gk)) over all (nondecreasing or not) sequences (gk) ∈ Rn. If (gk) is
such a sequence, we can define

hk =





a if gk < a,
gk if a 6 gk 6 b,
b if b 6 gk.

Since F is increasing, we have E((hk)) 6 E((gk)), and the inequality is strict if the sequences (gk)
and (hk) differ. Hence, the minimizers of E can be sought among the sequences (gk) ∈ [a, b]n.
Since this set is compact, E has at least one global minimizer. Let (gk) be such a minimizer.
Since E is differentiable on Rn, (gk) is a critical point of E and we have, deriving (3.2),

∀k ∈ {1..n}, ∂E

∂gk
= 0 = F

(
|Hu(λk−1)− L(gk)|

)
− F

(
|Hu(λk)− L(gk)|

)
.

As F is injective, this yields

∀k ∈ {1..n}, Hu(λk−1) = Hu(λk) or Hu(λk−1)− L(gk) = −Hu(λk) + L(gk),

and the first equation is impossible. Thus, we necessarily have for all k

gk = L−1

(
Hu(λk) +Hu(λk−1)

2

)
, (3.3)
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which proves that E has a unique minimizer over Rn. Notice that this minimizer, given by (3.3),
is a non-decreasing sequence.

2. Now let us come back to our original task : we want to minimize E over the set S of
all non-decreasing sequences. As the unique global minimizer of E over Rn is a nondecreasing
sequence, it is as well the unique minimizer of E over S. Hence, there exists a unique v ∈ C(u)
that minimizes (3.1), and it is given by v(x) = gk(x), where k(x) is the unique index such that
u(x) = λk(x). One easily checks that such a v belongs to C(u) (any non-decreasing sequence
can be extended into a non-decreasing function), and that v = L−1 ◦ H̄u ◦ u is an equivalent
definition of v. �

3.4 Histogram equalization

A classical way to analyze an image u independently of its contrast is the so-called histogram
equalization. It consists in applying a special contrast change that flattens the histogram, or
equivalently, forces the repartition function to be as linear as possible. This amounts to the
particular case L : t ∈ [0, 1] 7→ t of Theorem 7. Hence, we know that histogram equalization is
performed by setting

v = H̄u ◦ u,

and that this choice minimizes in particular all Lp norms (1 6 p <∞) ofHv−L. It is not difficult
to prove that this optimality property remains true for the L∞ norm, except that v = H̄u ◦ u is
not the unique minimizer of ‖Hv − L‖∞ in general. We leave it as an exercise to the reader to
determine the set of functions v such that ‖Hv − L‖∞ is minimal.

An example of histogram equalization is shown on Figure 3.3. On Figure 3.4, we can check the
effect of this transform on the repartition function, which becomes linear up to the unavoidable
quantization effects. The influence on the histogram is much less clear, but by convolving it with
a test function (typically a unit mass positive smooth function with little support), we could see
that it is essentially constant in the sense of distributions.

Figure 3.3: Left : original image. Right : the same image after histogram equalization.

Histogram equalization is not an appropriate solution for contrast-invariant image analysis.
The first reason is that it is completely global : the result of histogram equalization may be
strongly influenced by a small dark or bright region of the image. This is not perceptually
relevant, since we know that we observe scenes by quickly focusing our attention on different
parts, which means that we are in some way insensitive to local contrast changes. We shall see
later what the main local contrast-invariant features of a grey level image are. Another reason
why histogram equalization is sometimes questionable is that it may strongly magnify the noise
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Figure 3.4: Repartition functions (up) and histograms (down) before (left column) and after
(right) histogram equalization.

amplitude in poorly contrasted regions, and thus produce undesirable noise textures. Since
histogram equalization does not allow (at least in the formulation we presented) a control of the
noise amplification, it seems dangerous to try to use it as the input of an image analysis device.
Last, we can see on Figure 3.4 that in the case of quantized images, histogram equalization results
in a loss of information, because some initially different grey levels may have to be transformed
into the same grey tone in order to keep the initial (finite) set of possible grey values. This can
hardly be avoided since the number of quantization levels for the grey tones is always smaller
than |Ω|.

3.5 How to estimate a contrast change ?

Applying a contrast change to an image allows to match approximately (in the sense of Theorem
7) its histogram with any preset one. Now we could ask the opposite question : when two images
u and v are supposed to differ only by a contrast change, how can we find it ? This problem
arises in particular in the context of image comparison, image fusion and mosaicking, and may
be used for equalization purposes in video for example.

3.5.1 Comparison of two histograms

The simplest way to estimate a contrast change is to notice that if v = g(u), then Hv ◦ g = Hu,
so that a contrast change g0 between u and v could be estimated by composing a pseudo-inverse
of Hv with Hu (notice that g0 would be nondecreasing by construction). However, this direct
method is not satisfactory since it does not guarantee that in the end g0 ◦ u will be similar to v
in some sense, especially if the initial assumption v = g(u) was not exactly true, which is to be
expected in real situations. Indeed, the bihistogram of u and v, defined in the discrete case by

hu,v(i, j) =
|{x ∈ Ω, (u(x), v(x)) = (i, j)}|

|Ω| ,
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is more likely to be concentrated around a certain curve j = g(i) (see Figure 3.5), so that the
assumption v = g(u) has to be weakened.

Figure 3.5: Left : the bihistogram h(i, j) of the two images of Figure 3.1. Right : the conditional
bihistogram h(i, j)/

∑
k h(i, k). The concentration of the mass in a “thick curve” shows that up

to some unavoidable error, the two images are essentially related to each other by a contrast
change.

3.5.2 Least Squares Minimization

As we noticed, it seems more relevant to base the estimation of g on the simultaneous distribution
(bihistogram) of u and v rather than on the marginal distributions (classical histograms) of u
and v. Since we need to allow some noise, error, etc. in the correspondence between u and v,
we shall rather minimize the L2 square difference ‖v − g ◦ u‖22 =

∑
x∈Ω

(
v(x)− g ◦ u(x)

)2
than

impose exactly v = g ◦ u.

Proposition 4 Given two images u : Ω → R and v : Ω → R, there exists a unique discrete
function g : u(Ω) → R that minimizes ‖v−g ◦u‖2. If λ1, λ2, . . . , λN are the distinct values taken
by u and Ωk = {x;u(x) = λk}, then one has

g(λk) = v̄k :=
1

|Ωk|
∑

x∈Ωk

v(x).

Proof :

42



Modeling and Image Processing

Let us write gk = g(λk). We need to minimize

E((gk)) =
∑

x∈Ω
(v(x)− g ◦ u(x))2

=
∑

x∈Ω
v(x)2 +

N∑

k=1

∑

x∈Ωk

(g ◦ u(x))2 − 2v(x)g ◦ u(x)

=
∑

x∈Ω
v(x)2 +

N∑

k=1


|Ωk|g2k − 2gk

∑

x∈Ωk

v(x)




=
∑

x∈Ω
v(x)2 +

N∑

k=1

|Ωk|
(
g2k − 2gkv̄k

)

=
∑

x∈Ω
v(x)2 −

N∑

k=1

|Ωk|v̄2k +
N∑

k=1

|Ωk| · (gk − v̄k)
2,

and the unique minimum of E((gk)) is attained for gk = v̄k. �

3.5.3 Monotone projection

The function g defined in Proposition 4 is very easy to compute but it is not a contrast change
in the sense we defined previously, since we did not impose g to be nondecreasing. If we add
this constraint to the minimization of ‖v − g ◦ u‖2, we obtain the following

Definition 9 (monotone projection) Let u, v ∈ RΩ. We call monotone projection of u on v
(written Mv(u)) the unique u′ ∈ C(u) that minimizes ‖v − u′‖2.

Proposition 5 Let λ1 < λ2 < . . . < λN be the ordered values taken by u, and Ωk and v̄k defined
as in Proposition 4. Then u(x) = λk ⇔Mv(u)(x) = gk, where (gk) is the unique nondecreasing
minimizer of

n∑

k=1

|Ωk| · (gk − v̄k)
2. (3.4)

The proof is an immediate consequence of Proposition 4. Notice that the sequence (gk) is
unique because it is the minimizer of a strictly convex function on the convex set of nondecreasing
sequences.

Finding the unique nondecreasing (gk) that minimizes (3.4) is a problem called isotonic
regression, and the solution can be easily computed in linear time. Indeed, the sequence (gk)
can be obtained from v̄k by successive merging of the “pool adjacent violators” (PAV) [3]. It
can be shown that such a merging process converges to the optimal (gk), no matter what order
is used to combine the constant parts [25]. Hence we can use the following algorithm :
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k = 1
for i = 1..N do

σk = |Ωi|v̄i
wk = |Ωi|
nk = 1

while
(
k > 1 and

σk−1

wk−1
>
σk
wk

)
do

σk−1 = σk−1 + σk
wk−1 = wk−1 + wk

nk−1 = nk−1 + nk
k = k − 1

end
k = k + 1

end

return (gk), defined by gk =
σi
wi

⇔
i−1∑

j=1

nj < k 6

i∑

j=1

nj

On Figure 3.6 are shown three estimates of the contrast change involved between the two
images of Figure 3.1. Apart from having a precise variational definition, the estimate of g
yielded by the monotone projection is more robust to the differences that may arise between u
and v, which may be caused by moving objects, occlusions, quantization, noise, saturation, etc.
This can be explained by the fact that the monotone projection, contrary to the direct method
presented in Section 3.5.1, is based on the joint distribution of u and v, so that no preliminary
assumption on the correspondence between u and v has to be made.
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Figure 3.6: Estimated contrast changes between the two images of Figure 3.1. Left : direct
match of the histograms. Middle : unconstrained L2 minimization. Right : monotone projection.
Notice the similarity with the joint distribution of the two images, represented on Figure 3.5.
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3.6 The level-set decomposition

Since the histogram of an image is precisely what is modified when a contrast change is applied,
what is the remaining invariant part of images ? The answer lies in geometry : the equivalence
classes of

u ∼ v ⇔ ∃g ∈ M0, v = g(u)

can be described with the level-set decomposition [14]. In order to introduce geometry more
easily, we shall now use a continuous model for images. In the following, an image will be
a function u from R2 to R. Numerically, this function will be obtained by interpolating the
discrete image. We shall investigate later the theoretical and numerical issues related to this
interpolation process.

Definition 10 (level sets) The (upper) level sets of an image u : R2 → R are the sets

χλ(u) = {x ∈ R2; u(x) > λ},

where λ is any real number.

For any g ∈ M0, the level sets of u and g ◦ u are the same, and more precisely one has

χλ(u) = χg(λ)(g ◦ u).

Hence, the level sets do not depend on the absolute image contrast. They also contain all the
image information, as shown below and on Figure 3.7.

Proposition 6 Without any regularity assumption on the image u : R2 → R, one has

∀x ∈ R2, u(x) = sup{λ ∈ R; x ∈ χλ(u)}.

Proof :

(immediate)

sup{λ ∈ R; x ∈ χλ(u)} = sup{λ ∈ R; λ 6 u(x)} = u(x). �

Level sets clearly follow a nesting property :

∀λ, µ, λ > µ ⇒ χλ(u) ⊂ χµ(u). (3.5)

Let us suppose that u is upper semi-continuous, which means that all its upper level sets are
closed, which allows to define their connected components. Equation 3.5 implies that the con-
nected components of the level sets of u form a tree structure. This structure is inherited by
the level lines defined below.

Definition 11 (level lines) Let u : R2 → R be an upper-semicontinuous image. The level
lines of u are the topological boundaries of the connected components of its level sets.

If we make a stronger regularity assumption, we can prove that these level lines are curves :

Proposition 7 Let L be a non-empty bounded level line of a C1 image u : R2 → R. Then, u/L
is constant, and if Du does not vanish on L, L is a Jordan curve of class C1.
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Figure 3.7: Some upper level sets (in white) of the left image of Figure 3.1.

Proof :
By definition, L is a connected component of an upper level-set of u, say χλ(u). Since this

set is closed (u is C1 and consequently upper-semicontinuous), we have u(x) > λ for any x ∈ L.
Now for any x such that u(x) > λ we know by continuity of u that the inequality u(x) > λ is
still satisfied in a neighborhood of x, which means exactly that x cannot belong to L. Hence,
u/L = λ.

Now assume that Du does not vanish on L. For any x ∈ L, by implicit function Theorem
we know that the equation u(y) = λ defines a C1 graph in some neighborhood B of x, and each
point y of this graph belongs to ∂χλ(u). Since this graph is connected and contains x, it is
contained in L, which implies that it is equal to L ∩ B. We deduce that, as a connected closed
set of the plane that is locally a C1 graph everywhere, L is a C1 Jordan curve. �

Notice that the requirement thatDu does not vanish on L is not a strong assumption since we
know by Sard’s Theorem that if u is C1, then for almost every λ one has u(x) = λ⇒ Du(x) 6= 0.

3.7 Numerical computation of the level-lines tree

As we mentioned above, we need an interpolation model to build the tree of level lines of
an image. The simplest interpolation method we can use is the so-called nearest-neighbor
interpolation. If u(i, j) (i, j integers) represents the numerical image, then its interpolate is
simply defined by

∀(x, y) ∈
[
i− 1

2
, i+

1

2

[
×
[
j − 1

2
, j +

1

2

[
, ũ(x, y) = u(i, j).

In this model, the continuous image is constant on each 1 × 1 square patch centered at the
location of the known samples. The level lines of such an image are made of a concatenation of
horizontal and vertical unit length segments, and depend on a convention of connectedness (4
or 8-connectedness).

The piecewise constant model does not yield very precise estimate of the level lines of a
numerical image, and we can see on Figure 3.8 that much better results are obtained with the
bilinear interpolation, defined by

∀(x, y) ∈ [i, i+ 1]× [j, j + 1], (3.6)
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ũ(x, y) = (j + 1− y)
(
(i+ 1− x)u(i, j) + (x− i)u(i+ 1, j)

)

+ (y − j)
(
(i+ 1− x)u(i, j + 1) + (x− i)u(i+ 1, j + 1)

)
.

In each 1 × 1 square with integer coordinates of the image domain, ũ is a bilinear function,
and its level lines are hyperboles with horizontal and vertical axes. These pieces of hyperbole
connect together at the boundaries of the 1 × 1 squares, but in general with a discontinuity of
the tangent.

Figure 3.8: Some level lines of the left image of Figure 3.1. Left column : nearest neighbor inter-
polation. Right column : bilinear interpolation. The finest scales (down) reveal the superiority
of the bilinear interpolation over the zero order model. Another important improvement would
probably be realized with higher order splines.

The previous models correspond to spline interpolation of order 0 and 1 respectively. For the
spline interpolation of order n (see [33] for example), we know that level lines along which Du
does not vanish would be of class Cn−1. This suggests that we should use larger values of n, for
example n = 3, which corresponds to cubic splines. Values above 3 are risky in that they may
introduce undesirable ringing in the interpolated image, since the spline interpolation converges
to sinc interpolation as n tends to infinity.

To compute at the same time all the level lines of an image (for a given set of thresholds
λ), Pascal Monasse and Frederic Guichard have proposed a fast algorithm called the Fast Level
Set Transform. We shall not describe this algorithm here, but the reader may refer to [24]
for further details. The last version of this algorithm is available in the current release of the
public software MegaWave2 (http://www.cmla.ens-cachan.fr/~megawave). It can deal with
nearest-neighbor or bilinear interpolation.

The bilinear model has an evident computational interest : the level lines are computed
explicitly as graphs in each 1× 1 square and no new grey level can be created inside the square.
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Like nearest-neighbor interpolation, bilinear interpolation is monotone, in the sense that all local
strict extrema of the interpolated image belong to the set of initial samples. This property has
some importance when all level lines of an image have to be computed at the same time. As far
as we know, no algorithm exists at this time to compute the tree of the level lines of a numerical
image in the context of cubic spline interpolation. This remains an interesting challenge, since
such an algorithm could significantly improve the precision of the level-set decomposition of an
image.

3.8 Scalar contrast-invariant local features

Let u : R2 → R be C∞. We would like to find local features of u that are invariant under contrast
changes. We can do this by looking for differential operators T such that T.u(x) = T.g ◦ u(x)
for any smoothly increasing g. If the order of T is 1, then T is a function of Du, and since
D(g ◦ u)(x) = g′ ◦ u(x) ·Du(x), we can see that Tu is necessarily a function of the orientation
of u, defined when Du(x) 6= 0 by

orientation(u)(x) =
Du(x)

|Du(x)| .

Moreover, one can check that orientation(u)(x) is nothing but the normal to the level line of u
that passes through x.

Let us now consider the second order case. We shall write (p,q) ∈ R2 ×R2 7→ D2u(p,q) for
the bilinear form associated to D2u, the 2× 2 symmetric matrix representing the second order
derivative of u. If T is a second order differential operator, then Tu depends only on Du and
D2u. If we consider this representation in the local orthogonal basis (Du,Du⊥) given by the
gradient (we assume that Du(x) 6= 0), then we obtain three terms (all functions evaluated at
point x) :

• the curvature of u, defined by

curv(u) =
1

|Du|3D
2u(Du⊥, Du⊥).

This corresponds to the curvature of the level line of u that passes through x. If we note
div = ∂

∂x + ∂
∂y , then an equivalent definition is

curv(u) = div

(
Du

|Du|

)
.

• the anticurvature of u, defined by

anticurv(u) =
1

|Du|3D
2u(Du,Du⊥).

This is the curvature of the gradient line of u that passes through x (contrary to level
lines, which are orthogonal the gradient everywhere, gradient lines are parallel to it).

• the Canny operator

canny(u) =
1

|Du|3D
2u(Du,Du).

|Du|canny(u) is nothing but the second derivative of u along gradient lines, that is to say in
the direction where it varies the most quickly. Canny operator has been first studied in the
context of edge detection [4], since it vanishes at the point where a contour profile reaches
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an inflexion point (hence, solving D2u(Du,Du) = 0 yields in principle a good localization
of edges in images). It is also involved in the differential characterization of Absolutely
Minimizing Lipschitz Extensions (AMLE) [2, 16], that can be used to interpolate strongly
quantized images [6].

Thanks to the 1/|Du|3 normalization term, those three terms are invariant under the transform
u 7→ λu. However, only the curvature and the anticurvature are invariant under contrast changes.
This comes from the fact that

D2(g ◦ u)(p,q) = (g′ ◦ u) ·D2u(p,q) + (g′′ ◦ u)· ≺ Du,p ≻≺ Du,q ≻ .

Hence, every second-order contrast-invariant differential operator can be written as a function
of the orientation, curv and anticurv operators.
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Chapter 4

Local operators

4.1 Discretization of differential operators

How to translate a differential operator u 7→ F (u,Du,D2u, . . .) on a digital image u : Z2 → R ?
One possibility is to consider v, the Shannon interpolate of u, and to transpose F onto an
operator Tu = F (v,Dv,D2v, . . .). For example, the partial derivative F (u,Du) = ∂u

∂x would be
translated that way into

Tu(i, j) =
∑

(k,l)∈Z2

u(k, l)sinc′(i− k)sinc(j − l)

=
∑

k∈Z∗

u(k, j)
(−1)i−k

i− k
.

Such a definition is not satisfactory because it yields a strongly non local definition of a local
operator. Apart from this major drawback, we also know that Shannon interpolation may suffer
from ringing phenomena that will be magnified by the derivation process. At this stage, we have
two possibilities : either we use a spline interpolation model instead of Shannon reconstruction,
or we address the problem from the other side, by trying to understand local discrete operators
as approximate differential operators. The latter solution is now considered.

We shall focus on translation-invariant operators, also called filters. Thus, a discrete filter
is simply a map T : RZ2 → RZ2

such that

∀(α, β) ∈ Z2, T ◦ τα,β = τα,β ◦ T,

where τα,β is the translation operator defined by

∀u ∈ RZ2
, ∀(k, l) ∈ Z2,

(
τα,βu

)
(k, l) = u(k − α, k − β).

4.1.1 Consistency of a discrete operator

We first define the consistency of a discrete operator with a differential operator.

Definition 12 Let F (u,Du, . . . , Dpu) be a differential operator of order p ∈ N (F 6= 0). We
shall say that a discrete operator T : RZ2 → RZ2

is consistent with F if and only if there exists
some α > 0 such that

∀u : R2 → R, u ∈ C∞, ∀(x, y) ∈ R2, lim
h>0,h→0,kh→x,lh→y

h−αTuh(k, l) = F (u,Du, . . . , Dpu)(x, y),

where uh(k, l) = u(kh, lh).
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Let us give some examples. The simplest local discrete operator consistent with u 7→ ∂u
∂x is

Tu(k, l) = u(k + 1, l)− u(k, l).

If more symmetry is required, one may use the centered finite difference scheme

T ′u(k, l) =
u(k + 1, l)− u(k − 1, l)

2
,

which is nothing but the convolution of T with the averaging horizontal kernel

[
0

1

2

1

2

]
.

In many applications, the operator F (u,Du) = |Du| needs to be translated numerically.
There are several possibilities, even when the support is fixed. For a 2× 2 support, one may use

Tu(k, l) =

√
(b− a+ d− c)2 + (c− a+ d− b)2

4
, (4.1)

with the convention that

a = u(k, l), b = u(k + 1, l), c = u(k, l + 1), d = u(k + 1, l + 1). (4.2)

The estimation of |Du| given by (4.1) satisfies

Tu(k, l) = |Dub|
(
k +

1

2
, l +

1

2

)
,

where ub is the bilinear interpolate of u. Note that Dub is also related to the best L2 local
approximation of u by a linear form. However, the operator T defined in (4.1) does not char-
acterize well constant images, since one may have ∀k, l, Tu(k, l) = 0 even for a non-constant
image u (exercise : find all solutions). This cannot happen with

T ′u(k, l) =

√
(a− b)2 + (d− c)2 + (c− a)2 + (d− b)2

2
, (4.3)

which is also consistent with |Du|. The latter estimate will be preferred in variational frameworks
where

∫
|Du| has to be minimized, since (4.1) will produce artifacts in general.

4.1.2 Consistency of a family of continuous operators

In a continuous framework, we can as well define the consistency of an operator T : RR2 → RR2
,

provided that a scaling parameter h has been introduced in the definition of T , yielding a family
of operators (Th)h>0.

Definition 13 The family of operators (Th)h>0 is consistent with F if and only if there exists
some α > 0 such that

∀u : R2 → R, u ∈ C∞, ∀(x, y) ∈ R2, lim
h→0

h−αTh(u)(x, y) = F (u,Du, . . . , Dpu)(x, y).

Example. Let us investigate the asymptotic behavior of the continuous sup operator

Shu(x) = sup
|y|6h

u(x+ y).

If u is C1, then one has

∀ε > 0, ∃h > 0, |y| 6 h⇒ u(x)+ ≺ Du(x),y ≻ −εh 6 u(x+ y) 6 u(x)+ ≺ Du(x),y ≻ +εh.
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Taking the supremum for |y| 6 h on all sides, we obtain

u(x) + h|Du(x)| − εh 6 Shu(x) 6 u(x) + h|Du(x)|+ εh,

that is
Shu(x) = u(x) + h|Du(x)|+ o(h).

Hence, the family (Sh − id)h>0 is consistent with the differential operator u 7→ |Du|.

4.1.3 Rank filters

Among discrete local operators, there is one class that has been extensively used in mathematical
morphology : the rank filters.

Definition 14 Let B be a finite subset of Z2. A discrete operator TB is a rank filter if and only
if there exists some function f : R|B| → R such that

∀u ∈ RZ2
, ∀x ∈ Z2, TBu(x) = f(sort(u(x+ y),y ∈ B)),

where
sort(tσ(1), tσ(2), . . . tσ(n)) = (t1, t2, . . . tn)

for any nondecreasing sequence (ti)i=1..n and any permutation σ of {1..n}.

Intuitively, a rank filter is a discrete operator that does not refer explicitly in its definition
to the position of the image samples. In a sense, it is a “non-geometric” operator, though we
shall see later that some of them may be consistent with geometric operators.

Notice that contrast-invariant filters are not necessarily rank filters, as shown by the contrast-
invariant operator

Tu(x, y) = u(x− α, y).

Conversely, rank filters are not necessarily contrast invariant, as shown by the discrete averaging
operator

MBu(x) =
1

|B|
∑

y∈B
u(x+ y). (4.4)

Among examples of rank filters that are contrast-invariant, let us mention the inf and sup
operators,

IBu(x) = inf
y∈B

u(x+ y) (4.5)

SBu(x) = sup
y∈B

u(x+ y), (4.6)

and the median operator that we shall define later in Section 4.3.

4.2 Isotropic positive linear filters

4.2.1 Asymptotics of an isotropic positive linear filter (continuous case)

By Riesz Theorem, a linear filter can be represented by a convolution, that is Tu = ϕ ⋆ u. If
ϕ > 0, the filter T is said to be positive. In the following, we shall mainly consider compactly
supported filters, that is such that supp(ϕ) is bounded. In this section, we shall see that any
normalized isotropic positive compactly supported filter yields at second order the Laplacian
operator.
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Definition 15 A linear filter Tu = ϕ ⋆ u is isotropic (up to order 2) if ϕ satisfies

∫

R2

xϕ(x, y) dxdy =

∫

R2

yϕ(x, y) dxdy =

∫

R2

xyϕ(x, y) dxdy = 0 (4.7)

∫

R2

x2ϕ(x, y) dxdy =

∫

R2

y2ϕ(x, y) dxdy. (4.8)

Moreover we shall say that T is normalized if
∫

R2

ϕ(x, y) dxdy = 1, (4.9)

Proposition 8 Let Tu = ϕ ⋆ u be a normalized isotropic positive compactly supported linear
filter, and consider the rescaled filter

Thu = ϕh ⋆ u, with ϕh(x) = h−1ϕ(h−1/2x).

Then (Th − id)h>0 is consistent with u 7→ σ∆u, where

σ =
1

4

∫

R2

|x|2ϕ(x) dx. (4.10)

Proof :
First, we notice that ϕh satisfies (4.7), (4.8), (4.9), and that

σh :=
1

4

∫

R2

|x|2ϕh(x) dx =
1

4

∫

R2

h|y|2ϕh(h
1/2y)h dy = hσ.

Moreover, if r is chosen such that supp(ϕ) ⊂ B(0, r), then supp(ϕh) ⊂ B(0, r
√
h). Now, if u is

C2, then a Taylor expansion gives

∀ε > 0, ∃h > 0, |y| 6 r
√
h ⇒ −εh 6 u(x− y)− u(x)+ ≺ Du(x),y ≻ −1

2
[D2u(x)](y,y) 6 εh.

(4.11)
From (4.7), (4.8), and (4.9) we know that

Th

(
(x, y) 7→ a+ bx+ cy + dx2 + exy + fy2

)
= a+ 2(d+ f)σh.

Hence, mutiplying each term of (4.11) by ϕh(y) and integrating on y ∈ B(0, r
√
h) yields

∀ε > 0, ∃h > 0, −εh 6 Thu(x)− u(x)− σh∆u(x) 6 εh,

which can be rewritten into

Thu(x) = u(x) + σh∆u(x) + o(h). (4.12)

This means exactly that the family (Th − id)h>0 is consistent (α = 1) with the differential
operator u 7→ σ∆u. �

Examples. Among simple examples of normalized isotropic positive compactly supported linear
filters is the averaging operator

Mru(x) =
1

πr2

∫

|y|6r
u(x+ y) dy. (4.13)
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Let us take T = Mr and investigate the asymptotics of Th = Mr
√
h. The operator T satisfies

(4.7), (4.8), (4.9), so that we only have to compute

σ =
1

4πr2

∫

|y|6r
|x|2 dx =

1

2r2

∫ r

0
ρ2 ρdρ =

r2

8
.

Thus, from Proposition (8) we deduce that the family (Th− id)h>0 is consistent with u 7→ r2

8 ∆u.

Another example, that we shall use later, is given by the Gauss kernel ϕ = Gt, where

Gt(x) =
1

4πt
e−|x|2/4t. (4.14)

It is easy to show that Gt satisfies (4.7), (4.8), (4.9), and that the associated σ is equal to t.
Even if this kernel is not compactly supported, the proof given above for Proposition 8 can be
adapted with appropriate assumptions on u (for example u periodic, or D3u bounded).

4.2.2 Asymptotics of an isotropic positive linear filter (discrete case)

Proposition 8 has a discrete counterpart, which is obtained by considering a distribution ϕ
supported by Z2. Hence we can translate the definition and proposition above in the case of
a discrete linear filter Tu = A ⋆ u, where A : Z2 → R is a finitely supported isotropic positive
kernel.

Definition 16 A discrete linear filter Tu = A ⋆ u is isotropic (up to order 2) if A satisfies

∑

(k,l)∈Z2

kA(k, l) =
∑

(k,l)∈Z2

lA(k, l) =
∑

(k,l)∈Z2

klA(k, l) = 0 (4.15)

∑

(k,l)∈Z2

k2A(k, l) =
∑

(k,l)∈Z2

l2A(k, l) (4.16)

Moreover we shall say that T is normalized if

∑

(k,l)∈Z2

A(k, l) = 1, (4.17)

Proposition 9 Let Tu = A ⋆ u be a discrete normalized isotropic positive finitely supported
linear filter. Then, T − id is consistent with u 7→ σ∆u, where

σ =
1

4

∑

(k,l)∈Z2

(k2 + l2)A(k, l). (4.18)

Now we may study the consistency of the discrete averaging operator MB defined in (4.4).
If B is the discrete disc with radius r, that is B = {(k, l) ∈ Z2, k2 + l2 6 r2}, then MB − id is
consistent with σ∆u, where

σ =
1

2|B|
∑

(k,l)∈B
k2.

For example, if B = {(−1, 0), (1, 0), (0, 0), (0, 1), (0,−1)} then MB − id is consistent with 1
5∆u.
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4.2.3 Deblurring with Gabor filter (sharpen)

Any isotropic linear kernel is, at first order, equivalent to a Gauss kernel, since they both have the
same asymptotic expansion when conveniently rescaled. This yields an interesting application to
image deblurring. As we shall see in Chapter 6, image deblurring can be formulated as follows :
given an observed blurry and noisy image u0, recover the physical image u that generated u0,
knowing that

u0 = k ⋆ u+ n,

where k is the blur kernel (Point Spread Function) and n a noise term.

Suppose that the noise term is negligible (which is not always true !). If k is unknown, but
positive and isotropic, it can be put under the form k = Cϕh, where ϕ is isotropic, normalized,
and σ(ϕ) = 1. Now if h is reasonably small, we can write, according to (4.12),

ϕh ⋆ u = u+ h∆u+ o(h),

which yields

u = ϕh ⋆ u− h∆u+ o(h) =
1

C
u0 − h∆u+ o(h),

and

∆u0 = C∆(ϕh ⋆ u) = Cϕh ⋆∆u = C∆u+ o(1),

so that in the end,

Cu = u0 − h∆u0 + o(h).

Now, applying (4.12) to the Gauss kernel Gt, we get

Gt ⋆ u0 = u0 + t∆u0 + o(t),

so that we can approximate the ideal image Cu with

u0 −
h

t
(Gt ⋆ u0 − u0).

This is the Gabor (or sharpen) filter,

u0 7→ u0 + λ(u0 −Gt ⋆ u0). (4.19)

It has a simple interpretation : since Gt ⋆ u0 is a blurred version of u0, the image u0 − Gt ⋆ u0
contains the “details” of u0, so that we increase the sharpness of u0 by adding them (with a
weight λ) to u0. An example of deblurring with Gabor filter is shown on Figure 4.1

4.3 The median filter

4.3.1 Definition

Let us now focus on one of the most popular filter of mathematical morphology, the median
filter. Its definition is the same in the continuous and in the discrete case, but the hypotheses
to be made are different. In the following, an image is a function u : Ω → R and a structuring
element is a bounded set B ⊂ Ω. In the continuous case, Ω = R2, B is compact, and u is
assumed to be measurable. In the discrete case we simply have Ω = Z2. In both situations, the
measure associated to Ω (Lebesgue measure or counting measure) is written | · |.
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Figure 4.1: Deblurring with Gabor filter. Left : original image. Right : processed image.

Definition 17 Let u be an image and B a structuring element. For x ∈ Ω and λ ∈ R, we define

Iλ(x) = {y ∈ B, u(x+ y) < λ} and Sλ(x) = {y ∈ B, u(x+ y) > λ}.

Then, the median of u with respect to B is the (set) function

medB u : x 7→
{
λ ∈ R, |Iλ(x)| 6

|B|
2

and |Sλ(x)| 6
|B|
2

}
.

Since λ 7→ |Iλ(x)| is nondecreasing and λ 7→ |Sλ(x)| is nonincreasing, the set medB u(x) is a
closed interval, that can be written

medB u(x) = [med−B u(x),med+B u(x)].

If the function u is continuous on Ω = R2, then med−Bu(x) = med+B u(x) and medB u(x) is
(improperly but conveniently) considered as a function from R2 to R. The same situation
occurs (med−B u = med+B u) when Ω = Z2 and |B| is odd. In the following we shall assume that
either u is continuous or |B| is odd to simplify, so that medBu will be considered as a real-valued
function.

4.3.2 Properties

Proposition 10 The median is a monotone contrast-invariant operator, that is

∀u, v, u 6 v ⇒ medB u 6 medB v,

and ∀u, ∀g ∈ M0, medB g(u) = g(medB u).

Equivalently, the median filter can be viewed as a “stack filter”, since it commutes with
thresholdings. If we define the operator Tλ by

Tλu(x) =

{
1 if u(x) > λ,
0 else,

then we have

Tλ(medBu) = medB(Tλu).

Being contrast-invariant, the median filter is also a rank filter, like the mean, the inf and the
sup operators mentioned above.
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4.3.3 Consistency

Now we raise the natural question of the consistency of the median filter when B is a disc.

Theorem 8 ([14]) Let u : R2 → R be C3. Then, at any point x where Du(x) 6= 0, one has

medB(0,r) u(x) = u(x) +
r2

6
|Du(x)| curv(u)(x) + o

r→0
(r2). (4.20)

This theorem proves that the family (medB(0,rh) − id)h>0 is consistent with

F (u,Du,D2u) =
r2

6
|Du| curv(u).

4.4 Inf, sup, and the Canny operator

In this section, we study the infinitesimal behavior of the inf and sup operators defined by

Ihu(x) = inf
|y|6h

u(x+ y) (4.21)

Shu(x) = sup
|y|6h

u(x+ y) (4.22)

As we saw in Section 4.1.2, the family (Sh − id)h>0 is consistent with u 7→ |Du|. By changing u
into −u, we can see as well that (Ih− id)h>0 is consistent with u 7→ −|Du|. Now we refine these
estimates to understand the limit behavior of Ih+Sh

2 − id.

Proposition 11 Let us define

mhu(x) =
Ihu(x) + Shu(x)

2
.

The family (mh − id)h>0 is consistent (for Du 6= 0) with

F (u,Du,D2u) =
1

2
|Du| canny(u), where canny(u) =

1

|Du|3D
2u(Du,Du).

Proof :
We only need to prove that if u is C2, and Du(x) 6= 0, then

Shu(x) = u(x) + h|Du(x)|+ h2

2
[D2u(x)]

(
Du(x)

|Du(x)| ,
Du(x)

|Du(x)|

)
+ o(h2). (4.23)

By changing u into −u, it will prove that

Ihu(x) = u(x)− h|Du(x)|+ h2

2
[D2u(x)]

(
Du(x)

|Du(x)| ,
Du(x)

|Du(x)|

)
+ o(h2)

and the announced result will follow immediately. One has

∀ε > 0, ∃h > 0, |y| 6 1 ⇒ u(x) +Ah(y)− εh2 6 u(x+ hy) 6 u(x) +Ah(y) + εh2,

where

Ah(y) = h ≺ Du(x),y ≻ +
h2

2
[D2u(x)](y,y).
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Taking the supremum for |y| 6 1 on all sides yields

u(x) + sup
|y|61

Ah(y)− εh2 6 Shu(x) 6 u(x) + sup
|y|61

Ah(y) + εh2,

that is
Shu(x) = u(x) + sup

|y|61
Ah(y) + o(h2).

On one hand, we have

sup
|y|61

Ah(y) > Ah(y0), where y0 =
Du(x)

|Du(x)| . (4.24)

On the other hand, for |y| 6 1 and some constant C > 0,

Ah(y) 6 Ah(y0) + h ≺ Du(x),y − y0 ≻ +Ch2|y − y0|,

since the function y 7→ [D2u(x)](y,y) is locally Lipschitz. Notice that ≺ Du(x),y − y0 ≻6 0.

• If ≺ Du(x),y − y0 ≻6 −
√
h, then

Ah(y) 6 Ah(y0)− h
√
h+O(h2) 6 Ah(y0) + o(h2).

• If on the contrary ≺ Du(x),y − y0 ≻> −
√
h, then

|y − y0|2 = ≺ y + y0,y − y0 ≻ −2 ≺ y0,y − y0 ≻
= |y|2 − |y0|2 − 2 ≺ y0,y − y0 ≻
6 −2 ≺ y0,y − y0 ≻
< 2

√
h/|Du(x)|,

so that for C ′ = C(2/|Du(x)|)1/2,

Ah(y) < Ah(y0) + C ′h2h1/4 6 Ah(y0) + o(h2).

In both cases, we have Ah(y) 6 Ah(y0) + o(h2), which proves with (4.24) that

Ah(y) = Ah(y0) + o(h2),

from which (4.23) and Proposition 11 follows. �

Exercise : study the consistency of 8Mh − 2mh − 6id, where Mh is the continuous averaging
operator defined in (4.13).

Solution. We know that Mh − id is consistent with u 7→ 1
8∆u. Since

∆u = trace(D2u) = |Du|(canny(u) + curv(u)),

we deduce that 8Mh − 2mh − 6id is consistent (for Du 6= 0) with

F (u,Du,D2u) = ∆u− |Du| canny(u) = |Du| curv(u).
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Chapter 5

The iterative model

The differential operators (gradient, orientation, curvature, etc.) we mentioned in the previous
chapters are not so easy to estimate, and finite differences schemes yield poor results in general :
as noticed by Marr [22], edges would be found everywhere when characterized by local differential
operators in numerical images. As any physical data, images present some random fluctuations
(noise) that may corrupt the true signal, but this explanation is not satisfactory since the
problem still persists for high quality images with a large signal-to-noise ratio. The main reason
why local estimates cannot be used directly is probably to be sought in the multiscale nature of
images. Indeed, most images contain details with various sizes, which cannot all be handled by
a single local operator. Thus, a finite differences scheme will be essentially driven by the little
amount of highest resolution details, and will poorly capture the information it is supposed to.

If images follow a multiscale structure, then one could think that image analysis should too.
Behind this idea is the notion of scale-space, introduced by Witkin [36]. In this framework, a
raw image u0(x) is to be seen as a collection of images u(x, t), where t is a non-negative scale
factor. For t = 0, we impose that u(x, 0) = u0(x), while the image x 7→ u(x, t) is simplified
as the scale increases. This smoothing process allows to compute derivatives, as in the case of
distributions for example, in the sense that it selects an appropriate scale of details that will
drive the estimate of the derivatives. Then, differential local features like gradient, orientation,
curvature, etc. are now depending on the location variable, x, but also on the scale variable t.

5.1 The heat equation

5.1.1 Iterated isotropic positive linear filters

In Proposition 8, we saw a consistency result for isotropic positive filters. We now consider the
iteration of such filters, and show that the asymptotic behavior of this process leads to the heat
equation.

Theorem 9 (Iterated convolutions) Let ϕ be a normalized isotropic positive kernel, and
consider the rescaled kernel

ϕh(x) = h−1ϕ(h−1/2x).

Then, as n→ ∞, h→ 0, while keeping nhσ = t, one has

ϕ⋆n
h := ϕh ⋆ ϕh ⋆ . . . ⋆ ϕh −→ Gt,

where Gt is the Gauss kernel defined in (4.14) and σ is defined in (4.10).

This theorem is a direct consequence of the Central Limit Theorem below. As we shall see
in the next section, it implies that the iteration of any positive isotropic linear kernel leads, up
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to a rescaling, to the heat equation

∂u

∂t
= ∆u. (5.1)

This is to be related to the consistency of (Th − id)h>0 with u 7→ σ∆u, where Thu = ϕh ⋆ u.

Theorem 10 (Central Limit) Let (Xi) be a sequence of i.i.d (independent and identically
distributed) random variables such that E[Xi] = 0 and E[X2

i ] = σ2. Then, as n → ∞, the law
of the random variable

Yn =
1√
n

n∑

i=1

Xi

tends to the normal law N (0, σ), given by

P [Y > t] =
1

σ
√
2π

∫ +∞

t
e−u2/2σ2

du.

The generalization to random vectors is immediate : if (Xi) is a sequence of i.i.d random
vectors of Rd with mean E[Xi] = 0 and covariance matrix E[XT

i Xi] = C (with C invertible),
then as n→ ∞ the density of Yn tends to

x 7→ 1√
detC · (

√
2π)d

e−
1
2
xT C−1 x.

Proof of Theorem 9 :

Let Xi be i.i.d random vectors of R2 with density ϕ. Since

E[Xi] = 0 and C = E[XT
i Xi] = 2σ

(
1 0
0 1

)
,

we know by Central Limit Theorem that

Yn =
1√
n

n∑

i=1

Xi

converges in law to the Normal Distribution with density

1

2π
√
detC

e−
1
2
xT C−1 x = Gσ(x).

Let δ = σ/t. Since nh = δ−1 we can rewrite

Yn =
√
δ

n∑

i=1

√
hXi,

which proves that the density of Yn is x 7→ δ−1ψn(δ
−1/2x), with ψn(x) = ϕ⋆n

h (x). Thus, we
obtain as expected

ϕ⋆n
h (x) −→

n→∞
δGσ(δ

1/2x) = Gt(x). �
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5.1.2 Solutions of the heat equation

In what follows, C denotes a rectangular domain of R2, and the lattice associated to C defines
the notion of C-periodic functions. Let us consider the following problem : given u0 ∈ L1(C),
C-periodic, find u(x, t) : R2 × R+ → R, C-periodic with respect to x, such that

• for all t > 0, u is C2 and bounded on R2 × [t,+∞[,

• ∂u

∂t
= ∆u on R2×]0,+∞[

•
∫
C |u(x, t)− u0(x)| dx → 0 when t→ 0.

This linear evolution problem is well-posed in Hadamard’s sense :

1. we have existence of a solution u for any initial datum u0;

2. we have uniqueness of such a solution for any initial datum;

3. we have stability with respect to initial conditions : the application that associates to u0
the solution at time t (i.e. u(·, t)) is Lipschitz for all t.

With the assumptions we made on the domain (rectangular) and on the boundary conditions
(periodicity), the solution is given explicitly by

u(x, t) = (Gt ⋆ u0)(x). (5.2)

which comes from the fact that ∂Gt

∂t = ∆Gt and that Gt → δ0 as t → 0. However, this formula
is generally no longer valid if we replace the condition “u C-periodic” by a condition taken on
the boundary of a domain Ω ⊂ R2, typically

• a Dirichlet condition :
∀x ∈ ∂Ω, ∀t, u(x, t) = u0(x);

• or a Neumann condition :

∀x ∈ ∂Ω, ∀t, ∂u

∂ν
(x, t) = 0,

where ∂u
∂ν means the derivative of u along the normal to the boundary of Ω.

This justifies the need for a numerical scheme to compute the solution in the general case.

5.1.3 An explicit numerical scheme

Numerically, we have the following discrete problem :

1. we measure u0 in some points of a discrete grid;

2. we compute the evolution of these values according to a numerical algorithm;

3. we hope that the values obtained approximate well the corresponding measures that would
be obtained for the theoretical solution u associated to u0.

Let us consider the following scheme : given a discrete image u0(i, j), we define iteratively
the sequence un(i, j) by

un+1(i, j) = un(i, j) + s
(
un(i+ 1, j) + un(i− 1, j) + un(i, j + 1) + un(i, j − 1)− 4un(i, j)

)
,

(5.3)
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where s is a real positive parameter. For s = 1/5, this amounts to the particular case of the
averaging filter mentioned in Section 4.2.2.

The discrete function un+1 is obtained from un by a convolution, that we shall write

un+1 = un +A ⋆ un, with A =




0 s 0
s −4s s
0 s 0


 .

Be careful : this representation of A as an array is not a matrix representation, but the repre-
sentation of a discrete 3× 3 image defined on the domain {−1, 0, 1}2.

5.1.4 Consistency

The first condition that the numerical scheme should satisfy is consistency. It indicates that the
scheme is a discretization of the PDE (5.1). To check the consistency, we need to view un(i, j)
as the discretization of a continuous image flow. If we call h the corresponding space step and
∆t the time step, we have

un(i, j) = u(ih, jh, n∆t). (5.4)

Now we investigate the consistency by using Taylor expansions that will allow us to interpret
the finite differences in (5.3) as partial derivatives. If u is C3 we have

un(i+ 1, j) = u(ih+ h, jh, n∆t) =

(
u+ h

∂u

∂x
+
h2

2

∂2u

∂x2

)
(ih, jh, n∆t) +O(h3).

Performing the same operation with the other terms yields

(A ⋆ un)(i, j) = sh2∆u(ih, jh, n∆t) +O(h3).

Notice that we proved here exactly that the discrete operator A is consistent with the Laplacian
operator, u 7→ ∆u. Since we also have

un+1(i, j)− un(i, j) = ∆t
∂u

∂t
(ih, jh, n∆t) +O(∆t2),

we can see that if we set
∆t = sh2, (5.5)

then (5.3) implies
∂u

∂t
= ∆u+O(∆t),

which means that the scheme is consistent with the PDE (5.1), at order 1 in time since the
remaining term is O(∆t1).

5.1.5 Stability

The second condition we may require from a numerical scheme is stability. An evolution scheme
is stable if for any initial datum (here, u0(i, j)), the numerical solution (un(i, j)) remains bounded
on any finite time interval, independently of the discretization steps. In the case of evolution
equations defined by an elliptic operator (here, the Laplacian), we have a

• sufficient condition : the comparison principle (for a scheme that preserves constants).

Definition 18 An operator T satisfies the comparison principle if u 6 v ⇒ Tu 6 Tv
for all u and v.
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This principle guarantees the stability, since writing a 6 u0 6 b (where a and b are two
real numbers) yields Ta 6 Tu0 6 Tb, that is a 6 u1 6 b since T preserves constants. We
conclude as well for un by recurrence.

In the case of a linear operator, the comparison principle can be formulated more simply :
it is equivalent to say that u > 0 implies Tu > 0. Note that this property is satisfied by
the heat equation : if a function is nonnegative, it remains so when it evolves according
to (5.1). As concerns the scheme (5.3), we have

un+1 = ϕ ⋆ un with ϕ =




0 s 0
s 1− 4s s
0 s 0


 ,

so that this scheme satisfies the comparison principle if and only if 0 6 s 6 1/4.

For linear schemes with constant coefficients and no boundary condition, we also have a

• necessary condition : Von Neumann criterion. It requires that the amplification of any
pure wave by an iteration of the scheme has a modulus at most 1. This is clearly a Fourier
condition : if we rewrite un+1 = ϕ ⋆ un in the Fourier domain, we obtain ûn+1 = ϕ̂ · ûn,
and Von Neumann criterion writes |ϕ̂(ξ)| 6 1 for all ξ. In the case of (5.3), we have

ϕ̂(p, q) = 1− 4s+ s
(
eip + e−ip + eiq + e−iq

)
= 1 + 2s

(
cos(p) + cos(q)− 2

)
,

and 1− 8s 6 ϕ̂(p, q) 6 1 (this inequality is optimal). Thus, we can see that the condition
0 6 s 6 1/4 previously obtained is both necessary and sufficient.

What happens if Von Neumann criterion is not satisfied ? Since the solution after n
iterations is

ûn = (ϕ̂)n · û0,
we see that the coefficients of the frequencies ξ such that |ϕ̂(ξ)| > 1 will blow up, and the
dominant behavior of un will be driven by the eigenvectors x 7→ ei≺x,ξ≻ corresponding to
the eigenvalues ϕ̂(ξ) with highest modulus.

5.1.6 Convergence

The convergence of a numerical scheme means that the function u defined from (5.4) converges
to the solution of the continuous problem when the discretization steps (h and ∆t) go to 0.
This notion may be the most important of all, but it is generally not studied directly for linear
problems, since it is a consequence of consistency and stability :

Theorem 11 (Lax-Richtmyer) For a well-posed linear evolution problem, any consistent fi-
nite difference scheme is convergent if and only if it is stable.

5.1.7 Other numerical schemes

The numerical scheme we presented is the most simple one. It has the important property that
it is explicit, which means that un+1 is defined by a function of un, typically

un+1 = un + F (un),
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where F is consistent with the differential operator involved in the PDE, in our example the
Laplacian. There exists another kind of schemes, the implicit schemes, for which un+1 is defined
implicitly from un, typically

un+1 = un + F (un+1).

Implicit scheme are more difficult to implement (because one has to solve an implicit equation,
typically to invert a linear system), but they are generally more stable.

The implicit version of the previous scheme for the heat equation is

un+1 − un = un+1 ⋆




0 s 0
s −4s s
0 s 0


 .

More generally, it is clear that for 0 6 θ 6 1,

un+1 − un = [θun+1 + (1− θ)un] ⋆




0 s 0
s −4s s
0 s 0




is also consistent with (5.1), and we have the following cases :

θ = 0 : explicit scheme
θ = 1

2 : Crank-Nicolson scheme (order 2)
θ = 1 : implicit scheme

It can be shown that these schemes are always stable for 1/2 6 θ 6 1 (no condition on s is
required). We leave it as an exercise to the reader to find the stability condition for 0 < θ < 1/2.

5.2 Curvature-driven motions

The linear scale-space representation given by the heat equation has a strong drawback : it is
not contrast invariant. This means that two perceptually equivalent images u and g ◦ u will
not be represented in the same way across scales. Hence, we had rather span a scale-space by
iterating a contrast-invariant operator (like the median) than a convolution. This leads us to
morphological scale-spaces, described by curvature-driven motions.

In Section 4.3.3, we saw that (medB(0,h))h>0 is consistent with u 7→ 1
6 |Du| curv(u). This

proves that the iterated median is consistent with the Mean Curvature Motion

∂u

∂t
= |Du| curv(u). (5.6)

The theory of viscosity solutions1, which we shall not present here, allows to define weak solutions
(only continuous) of this equation, and to guarantee the existence and uniqueness of the solution
of the Cauchy problem u(x, 0) = u0(x). Please refer to [7] for a historical account, and [8] for a
recent and concise presentation. In this part, we shall consider only regular solutions, for which
(5.6) holds in the classical (C2) sense.

Since curv(u) = |Du|−3[D2u](Du⊥, Du⊥), we can rewrite (5.6) under the form

∂u

∂t
= [D2u](ξ, ξ), with ξ =

Du⊥

|Du| . (5.7)

1the term “viscosity” comes from a relaxation technique that was used to define weak solutions of this kind
of PDE’s before a direct formulation was found. The original name has been kept, although no “viscous term” is
now explicitly involved in the theory of viscosity solutions.
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This means that (5.6) performs an anisotropic diffusion along the local direction of the level
lines. To illustrate this, we could prove that a local averaging along the segment [x− rξ,x+ rξ]
would yield a consistent iterative scheme for (5.6). This is to be compared to the isotropic diffu-
sion performed by the heat equation, that can be approximated by iterated isotropic averaging.
This explains why the mean curvature motion tends to produce sharper images compared to the
heat equation : since no diffusion occurs across edges (that is, level lines), the image is smoothed
without getting blurry (see Figure 5.1).

Figure 5.1: Comparison of the heat equation (middle) and the mean curvature motion (right)
computed at scale t = 3 for the same original image (left). The anisotropic diffusion caused by
the mean curvature motion produces much less blur than the isotropic diffusion realized by the
heat equation.

5.2.1 Geometric interpretation

More generally, curvature-driven motions can be written under the form

∂u

∂t
= |Du|F

(
curv(u)

)
, (5.8)

where F is odd, continuous and nondecreasing. The theory of viscosity solutions remains valid
for (5.8), which holds in the classical sense when u is C2. Notice that if u(x, t) is solution of
(5.8), then so is g(u(x, t)) for any g ∈ M. This explains why the evolution of u0 performed by
(5.8) can be, as a contrast-invariant process, translated into an evolution of the level lines of u0.

Proposition 12 Let I be an open interval of R, and u(x, t) : R2×I → R a smooth (C2) solution
of (5.8) such that for some real λ, one has

∀t ∈ I, ∀x ∈ C(t) = {x, u(x, t) = λ}, Du(x, t) 6= 0

Then, C(t) (parameterized by C(·, t)) evolves according to the pointwise equation

∂C

∂t
= F (κ)N, (5.9)

where N = − Du(C,t)
|Du(C,t)| is the normal vector to C and κ = curv(u)(C, t) its curvature.

Proof :

We first note that C(t) is a disjoint union of C2 Jordan curves, that are level-lines of u(·, t).
Let us assume that C(t) is made of a single curve (the case of multiple components is similar).
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We can parameterize C(t) by (p, t) 7→ C(p, t) with (p, t) ∈ S1× I. Now, by definition of C(t), we
have

∀(p, t) ∈ S1 × I, u
(
C(p, t), t

)
= λ,

and taking the derivative with respect to t yields

≺ ∂C

∂t
,Du ≻ +

∂u

∂t
= 0.

Since a curve evolution is defined up to any tangential velocity (which has an influence on the
parameterization of the curve, but not on its geometry), we can assume that ∂C

∂t is supported
by the normal N, which is itself equal to −Du/|Du| so that

∂C

∂t
=

1

|Du|
∂u

∂t
N = F (curv(u))N = F (κ)N. �

In particular, Proposition 12 shows that (5.6) is a geometric evolution : its effect is that all
level lines of the initial image evolve independently according to the equation

∂C

∂t
= κN. (5.10)

This is why (5.10) and, by extension, (5.6), is called the mean curvature motion. The term
“mean curvature” comes from the fact that the generalization of (5.10) in higher dimensions is
a normal evolution of a hypersurface at a speed proportional to its mean curvature (that is, the
average of all principal curvatures).

5.2.2 Iteration of morphological filters

As proven by (4.20), the median operator is consistent with the mean curvature motion (5.6).
In fact, Guichard and Morel [14] proved that the iterated continuous median actually converges
to the semi-group given by (5.6). More precisely, if u0 : R

2 → R is Lipschitz, then

mednB(0,r)u(x) → u(x, t) as r → 0, n→ ∞ and
nr2

6
→ t,

and the limit u(x, t) satisfies (5.6) in the viscosity sense.

However, iterating the median operator is not a good way to solve (5.6), because the median
generally blocks after several iterations. This is a general property of local contrast-invariant
operators : since they only rely on the level lines of a discrete function in a small neighborhood,
they have many fixed points. Another way to understand this is to think in terms of curve
evolution : a level line on a discrete grid is constrained to move by at least one pixel or to
remain still. In the case of curvature-driven motions, this constraint forces small curvatures
(corresponding to small motions) to be viewed as zero curvature. For the discrete median filter,
one can see for example that a discrete disc with radius at least

√
5 is invariant under a 3 × 3

median (see Figure 5.2).

Figure 5.2: The 3 × 3 median shrinks a discrete disc with radius 2, but has no effect on a disc
with radius

√
5.
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Although the motion of the level lines induced by the median operator can be theoretically
(that is, asymptotically) interpreted as the PDE evolution

∂C

∂t
= F (κ)N

with F (κ) = κ, numerically one rather observes a similar motion with F (κ) = 0 for κ < κ0 and
F (κ) = κ for κ > κ0, since, as we mentioned previously, handling the smallest curvatures would
require an arbitrary large neighborhood B.

5.2.3 The affine scale-space and its geometric implementation

The median filter led us to the mean curvature motion, which is a special case of curvature-
driven motions (5.8). Now, among all these possible curvature-driven motions, formulated either
in a scalar (5.8) or in a geometrical (5.9) way, there is a very interesting special case, given by
F (κ) = κ1/3 (with the convention that (−|s|)1/3 = −|s|1/3).

Proposition 13 The affine scale-space, defined by

∂u

∂t
= |Du| curv(u)1/3, (5.11)

is affine invariant : if u is a solution of (5.11) then so is (x, t) 7→ u(Ax, t) for any A ∈ SL(R2).

Proof :

Let us write v(x, t) = u(Ax, t). We shall assume that u is C2 for simplicity, but the proof
is essentially the same in the viscosity sense : the computation below has simply to be applied
to smooth test functions. In the following, we shall denote partial derivatives with indices, and
write x = (x, y). Since vt(x, t) = ut(Ax, t), we may forget the time variable and we just have to
prove that for any A ∈ SL(R2), the operator Hu = |Du| curv(u)1/3 satisfies

∀x, Hv(x) = Hu(Ax). (5.12)

Since

curv(u) =
u2yuxx − 2uxuyuxy + u2xuyy

(u2x + u2y)
3/2

,

this operator can be written

Hu =
(
u2yuxx − 2uxuyuxy + u2xuyy

)1/3
.

Now, as H is rotation-invariant (because so are u 7→ |Du| and u 7→ curv(u)), we can rotate if

necessary the axes in order to have A =

(
a 0
b 1

a

)
. Then,

vx = aux ◦A,
vy = bux ◦A+

1

a
uy ◦A,

vxx = a2uxx ◦A,
vxy = abuxx ◦A+ uxy,

vyy = b2uxx ◦A+ 2
b

a
uxy ◦A+

1

a2
uyy ◦A,
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and finally,

(Hv)3 = (a2v2y−2abvxvy+b
2v2x)uxx◦A+(−2vxvy+2

b

a
v2x)uxy◦A+

1

a2
v2xuyy◦A = (Hu◦A)3. �

The affine invariance is an important property for shape analysis. Indeed, when a planar
object located at infinity (in practice at a distance much larger than the focal length of the
optical device) is observed from two different viewpoints, we saw in Chapter 1 that the two
images are related by an affine transform. This property will then be preserved in their scale-
space representations, which may be interesting for shape recognition tasks.

How to compute numerically the solutions of (5.11) ? The affine and the morphological
invariance are difficult to handle properly in a scalar formulation, so that we should compute all
level lines of u and make them evolve according to the geometric counterpart of (5.11), that is

∂C

∂t
= κ1/3N. (5.13)

Hopefully, there exists a simple scheme [23] to do this. It is based on the following property.

Theorem 12 Let s 7→ C(s) be a closed convex curve of class C2, parameterized with arclength,
and σ > 0. To each point of C(s), we associate Cσ(s), defined as the middle point of the chord
(C(s− δ),C(s+ δ)), where δ > 0 is chosen in order that the area of the region enclosed by this
chord and the piece of curve C/[s−δ,s+δ] be equal to σ (cf. Figure 5.3). Then, one has

Cσ(s) = C(s) + ωσ
2
3 · κ(s) 1

3 N(s) + o
σ→0

(σ
2
3 ), (5.14)

where N(s) is the interior normal of the curve, κ(s) its curvature, and ω = 1
2

(
3
2

) 2
3 .

C(s−  )δ

δ

C(s)

σC  (s)

C(s+  )

σ

N

Figure 5.3: The affine erosion of a convex curve is the envelop (or, equivalently, the set of the
middle-points) of the σ-chords of the curve, that is the chords that enclose together with the
curve a region with area σ.

Proof :
We use the fact that if s 7→ Γ(s) is a Jordan curve, then its (signed) area is given by Green’s

formula,
1

2

∮ [
Γ(s),Γ′(s)

]
ds

(we write [u, v] for the determinant of two vectors u and v). In the case we consider, we have

σ =
1

2
F (s, δ(s, σ)), where
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F (s, t) =

∫ s+t

s−t

[
C(h),C′(h)

]
dh + [C(s+ t),C(s− t)−C(s+ t)]

Taking the derivative with respect to t yields

∂F

∂t
(s, t) =

[
C(s+ t),C′(s+ t)

]
+
[
C(s− t),C′(s− t)

]

+
[
C′(s+ t),C(s− t)

]
−
[
C(s+ t),C′(s− t)

]

=
[
C(s+ t)−C(s− t),C′(s+ t)−C′(s− t)

]
.

A Taylor expansion in t = 0 then gives

∂F

∂t
(s, t) =

[
2tC′(s) + o(t), 2tC′′(s) + o(t)

]
= 4t2κ(s) + o(t2),

which can be integrated to obtain

2σ =
4

3
δ3κ(s) + o(δ3).

Thus, whenever κ(s) 6= 0 we have

δ(s, σ) =

(
3σ

2κ(s)

) 1
3

+ o(σ
1
3 ),

and finally

Cσ(s) =
1

2
[C(s− δ) +C(s+ δ)]

= C(s) +
δ2

2
C′′(s) + o(δ2)

= C(s) +
1

2

(
3

2

) 2
3

σ
2
3 · κ 1

3 (s)N(s) + o(σ
2
3 ).

The case κ(s) = 0 is left as an exercise to the reader. �

Theorem 12 allows to build a simple iterative scheme to solve (5.13) with a polygonal curve.
It consists in the iteration of the following three-steps process :

• decomposing a curve into convex parts;

• replace each component by the sequence of the middle point of each σ-chord such that one
endpoint is a vertex of the polygonal curve;

• recompose the curve from the new convex parts.

This scheme is able to smooth all the level lines of an image (that is, several thousands of curves)
in a couple of seconds. An example is given on Figure 5.4.
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Figure 5.4: The level lines of Figure 3.8, after some affine smoothing (Equation 5.13). Overall
computation time : 1.5 second.
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Chapter 6

The variational model

6.1 Classical operators as minimizers

In the variational framework, problems are characterized by a functional (generally measuring
some kind of reconstruction error), and solutions are defined as minimizers of this functional.
We already used this paradigm to define optimal histogram changes in Theorem 7 by minimizing
(3.1). Indeed, variational characterizations are everywhere and they generally allow interesting
interpretations. The averaging operator,

MB u(x) =
1

|B|
∑

y∈B
u(x+ y),

for example, has a variational interpretation : MB u(x) is the unique minimizer of

t 7→
∑

y∈B

(
u(x+ y)− t

)2
.

This is still true in the continuous case (u : R2 → R measurable and B compact subset of R2) :

MB u(x) =
1

|B|

∫

B
u(x+ y)dy,

is the unique minimizer of

t 7→
∫

B

(
u(x+ y)− t

)2
dy.

The median operator can be defined in a similar way : medBu(x) is exactly the set of minimizers1

of
t 7→

∑

y∈B

∣∣∣u(x+ y)− t
∣∣∣

in the discrete case (u : Z2 → R and B finite subset of Z2), and of

t 7→
∫

B

∣∣∣u(x+ y)− t
∣∣∣ dy

in the continuous case. Like the averaging operator, the median filter is a particular case of
M -filters, for which TB u(x) minimizes

t 7→
∑

y∈B
ψ
(
u(x+ y)− t

)

1As we noticed previously, this set is made of a unique element as soon as |B| is odd (discrete case) or u is
continuous (continuous case).
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for some given function ψ (see [18]).

Some of the PDE’s we encountered in the previous chapter can also be interpreted in a
variational framework. The heat equation (5.1), for example, is the Euler equation (gradient
descent) associated to the minimization of

E(u) =
1

2

∫
|Du|2.

Let us quickly justify this. If u and v belong to H1(R2) =W 1,2(R2) and λ ∈ R, we have

d

dλ

(
E(u+ λv)

)
λ=0

=
d

dλ

(
1

2

∫
Du2 + λ

∫
≺ Du,Dv ≻ +

1

2
λ2Dv2

)

λ=0

=

∫
≺ Du,Dv ≻,

Now if we assume for example that u is compactly supported (note that a periodicity condition
would do as well), we can integrate by parts and obtain

DE(u).v = −
∫
v · div(Du) = −

∫
v ·∆u,

that is, ∇E(u) = −∆u. Hence, (5.1) is exactly the gradient descent of E.

Some PDE’s, however, cannot be directly interpreted as the Euler equation of a minimization
problem. The mean curvature motion (5.6), for example, cannot be put in divergence form.
However, it can be shown that its geometric counterpart, (5.10), is the Euler equation associated
to the minimization of the Euclidean perimeter of a curve.

6.2 Image Restoration

6.2.1 The Ku+ n model

The variational model is often used in the context of image restoration. A typical aim is to try
to remove the blur and the noise of an observed image u0 : R2 → R. This can be modeled by
the equation

u0 = Ku+ n, (6.1)

where u is the “original” image to be recovered. The term Ku = k ⋆ u means the convolution
of u with the kernel k, which models a shift-invariant blur (diffraction, out of focus, etc.). We
shall assume that k is known in the following. The last term n represents all fluctuations (noise,
error) that may cause u0 to be different from Ku. They can be due to the measure of intensities
(thermal noise), to the quantization of grey levels, to the sampling process, etc. We have chosen
an additive model, but other choices are possible (e.g. multiplicative noise, as studied by Osher
and Rudin).

This unavoidable noise term explains why even if K is invertible (that is, k̂ does not vanish),
which is false in general, the restoration of u by a brute force deconvolution (u = K−1u0) cannot
be efficient. Indeed, we can write in Fourier domain

K̂−1u0 = û+
n̂

k̂
,

and the second term may become very large at points where k̂ is very small, which produces
oscillations that may dominate by far the true part of the reconstructed image.
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6.2.2 Regularization

A solution to this kind of ill-posed problem is the so called Tikhonov regularization [32]. It
consists in choosing, among all functions u such that

‖u0 −Ku‖ 6 σ (6.2)

(σ being the prior variance of the noise), the smoothest one. Typically, the restored image u
may be defined as the unique minimum of

∫
|Du|2 (6.3)

under the constraint (6.2). Using Lagrange multipliers, one can see that this is equivalent to
minimizing

E(u) =

∫
|Du|2 + λ

∫
(u0 −Ku)2 (6.4)

for some λ. In that precise case, the solution can be written explicitly in Fourier domain : the
restoration process boils down to a particular case of Wiener filtering, defined by

∀ξ ∈ R2, û(ξ) =
k̂∗(ξ)

|k̂(ξ)|2 + |ξ|2
λ

· û0(ξ)

(z∗ is the conjugate complex of z).

6.2.3 Total Variation

The regularity term (6.3) does not provide a good model for images, because it favors too much
smooth images. In particular, no discontinuous image is allowed by (6.3), which is not very
realistic if we recall that the image formation process is driven by occlusions. In 1992, Rudin,
Osher and Fatemi [26] proposed to use the L1 norm of the gradient (instead of the L2 norm) for
the regularity term. Then, (6.3) is replaced by

∫
|Du|, (6.5)

and the natural space for u is no longer the Sobolev space H1 but the space BV of L1 functions
with bounded variation, that is for which |Du| (in the sense of distributions) is a measure with
finite total mass [13, 37]. The energy (6.4) now becomes

E(u) =

∫
|Du|+ λ

∫
(u0 −Ku)2, (6.6)

and since no explicit solution exists in that case, an iterative scheme is required. We shall
investigate this point later.

6.2.4 Link with the Bayesian framework

The variational formulations (6.4), (6.6), and in fact all energies that can be written as the sum
of a fidelity term and of a regularity term, have an interesting interpretation in the Bayesian
framework. The Maximum A Posteriori (MAP) permits to formalize image restoration as a
statistical problem, where the posterior probability P (u|u0) has to be maximized with respect
to u : we want to find the best estimate of u knowing the observed image u0. The Bayesian
rule, written

P (u|u0) =
P (u0|u)P (u)

P (u0)
, (6.7)
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reduces this maximization to the maximization of P (u0|u)P (u), since P (u0) is merely a normal-
ization constant once u0 is given. The first term, P (u0|u), is the likelihood for u0 being generated
by a given “ideal” image u, while P (u) is the prior probability of u, that is its probability before
u0 was observed. Now, by taking the logarithm, we can see that we have to minimize

E(u) = − logP (u)− logP (u0|u),

and as in (6.4) and (6.6), the energy is a combination of a regularity term (− logP (u)) and of
a fidelity term (− logP (u0|u)). Conversely, the Total Variation model (6.6) can be interpreted
in the Bayesian framework as a Maximum A Posteriori associated to the prior

P (u) =
1

Z
exp

(
−
∫

|Du|
)

and to a Gaussian noise model

P (u0|u) =
1

Z ′ exp

(
−λ
∫
(u0 −Ku)2

)

(Z and Z ′ are normalization constants here).

6.2.5 Links with the PDE model

As we mentioned above, finding the minimizer of (6.6) requires an iterative scheme, typically a
gradient descent.

Proposition 14 The gradient descent of (6.6) is given by

∂u

∂t
= div

(
Du

|Du|

)
+ 2λK∗(u0 −Ku). (6.8)

Proof :

We simply need to compute the gradient of E. We have

D

(
u 7→

∫
|Du|

)
.v =

d

dλ

(∫
|Du+ λDv|

)

λ=0

=
d

dλ

(∫ √
(Du+ λDv)2

)

λ=0

=

∫ ≺ Du,Dv ≻
|Du|

= −
∫
v · div

(
Du

|Du|

)
,

the last equality being obtained by integration by parts. Similarly, we have

D

(
u 7→

∫
(u0 −Ku)2

)
.v =

d

dλ

(∫
(u0 −Ku− λKv)2

)

λ=0

=

∫
2Kv · (u0 −Ku)

= −2

∫
v ·K∗(u0 −Ku),
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where K∗u = k∗ ⋆ u and k∗(x) = k(−x). The last equality comes from the fact that for
f ∈ L2(R2),

∫
(Kv)(x) · f(x) dx =

∫ (∫
k(x− y)v(y) dy

)
· f(x) dx

=

∫ ∫
k∗(y − x)v(y)f(x) dy dx

=

∫
v(y) · (K∗f)(y) dy.

Thus, the gradient of E writes

DE(u).v = −
∫
v ·
[
div

(
Du

|Du|

)
+ 2λK∗(u0 −Ku)

]
,

from which (6.8) follows. �

If λ is small, which means that the regularity term dominates the fidelity terms, we can
see that the beginning (t small) of the gradient descent (6.8) will be essentially driven by the
unconstrained evolution

∂u

∂t
= div

(
Du

|Du|

)
, (6.9)

which is a degenerate case of Perona-Malik model. The comparison between (6.8) and the PDE
model could stop here, since scale-spaces rather focus on the intermediate states of the PDE
evolution (that is, u(t,x) for all t), whereas only the asymptotic state (t = +∞) of (6.8) is
relevant in the variational framework.

In fact, the relevant parameter in the variational framework is not the time t involved in the
gradient descent, but the coefficient λ involved in the definition of the energy, as it is illustrated
on Figure 6.1. As we shall see now, the weight 1

2λ plays a similar role as the scale variable t in
a scale-space, since it rules the amount of simplification allowed in the restoration process. Let
us rewrite (6.6) with t = 1

2λ as

Et(u) = 2t

∫
|Du|+

∫
(u0 −Ku)2

and call u(t,x) the minimizer of Et. From (6.8), we know that u(t,x) satisfies the PDE

t · div
(
Du

|Du|

)
+K∗(u0 −Ku) = 0

with initial condition u(0,x) = u0(x). If we derive this equation with respect to t, we obtain

Hu+ t(Hu)t = K∗Kut with Hu = div

(
Du

|Du|

)
.

Hence, for small values of t (that is, λ large), we have

K∗Kut = div

(
Du

|Du|

)
+ O

t→0
(t).

In particular, in the pure denoising case (no blur, that is, Ku = u), we have

ut = div

(
Du

|Du|

)
+ O

t→0
(t)
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which is, at first order, the degenerate case (6.9) of the Perona-Malik model we mentioned
previously. We could do the same for the H1 variational model (6.4), and we would obtain in a
similar way

ut = ∆u+ O
t→0

(t),

which means that the heat equation achieves, at first order in t, the optimal denoising as for-
mulated by (6.4).

Figure 6.1: Image restoration (here, denoising) using the TV model. The relevant parameter
is the weight λ of the fidelity term of (6.6), t = 1

2λ playing a similar role as the scale variable
in scale-space representations. From left to right, then top to bottom : t = 0 (original image),
t = 5, t = 20 and t = 100.

6.3 Numerical issues

The computational minimization of (6.6) can be done either by using the gradient descent (6.8)
[27], or by solving directly the equilibrium equation

div

(
Du

|Du|

)
+ 2λK∗(u0 −Ku) = 0

using iterative methods [34]. In any case, the total variation has to be relaxed, in order to extend
the validity of the linearization process involved at each iteration : since the linearization of
x 7→ |x| is inefficient around 0, a direct use of the total variation would force the time steps to
remain very small and would prevent an actual convergence of the algorithm. This is why the
approximate norm

|Du|ε =
√
ε2 + |Du|2

(for some ε) is generally used for numerical purposes.
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Let us describe in detail the gradient descent method. In the following, u is a discrete image
defined on some rectangular domain Ω of Z2. Among the most simple estimates of |Du|ε is

|Du(k, l)|ε =
√√√√ε2 +

1

2

∑

(i,j)∈B

(
u(k + i, l + j)− u(k, l)

)2
,

the sum being extended to (i, j) ∈ B = {(0, 1), (0,−1), (1, 0), (−1, 0)} (4 nearest neighbors).
A mirror symmetry is applied along the boundary of Ω. Rather than looking for a numerical
scheme for (6.8), we write a discrete version of (6.6),

E(u) =
∑

k,l

|Du(k, l)|ε + λ(Ku− u0)
2(k, l), (6.10)

and compute its gradient with respect to each value u(k, l). We have

∂|Du(k, l)|ε
∂u(k, l)

= −
∑

(i,j)∈B

u(k + i, l + j)− u(k, l)

2|Du(k, l)|ε
,

while for (i, j) ∈ B,

∂|Du(k + i, l + j)|ε
∂u(k, l)

= −u(k + i, l + j)− u(k, l)

2|Du(k + i, l + j)|ε
,

so that
∂

∂u(k, l)

∑

k′,l′

|Du(k′, l′)|ε = −κε(u)(k, l)

with

κε(u)(k, l) =
∑

(i,j)∈B

u(k + i, l + j)− u(k, l)

2

(
1

|Du(k, l)|ε
+

1

|Du(k + i, l + j)|ε

)
.

Notice that κε(u) is a discrete approximation of the curvature of u, curv(u) = div
(

Du
|Du|

)
. Now,

the iterative gradient descent of (6.10) writes

un+1(k, l) = un(k, l) + δn · vn(k, l) with vn(k, l) = κε(u)(k, l) + 2λK∗(u0 −Ku)(k, l),

where the step δn is computed at each iteration in order to ensure that E(un) decreases. The
optimal step (that is, the value of δ that minimizes E(un+ δnvn) can be computed by Newton’s
method for example, but in practice the algorithm may converge more quickly when a more
simple strategy based on a progressive reduction of δn is applied. One can use the following
decision rule : set δn := δn−1 and while E(un+δnvn) > E(un) do δn := α·δn, where α ∈]0, 1[ has
been fixed in advance. We use the same strategy for ε. Since the limit case ε = 0 we are interested
in cannot be reached directly, we minimize (6.10) iteratively and decrease geometrically the value
of ε after each minimization, using the steady state obtained to initialize the new minimization
process.

Since convergence may be difficult to reach for functionals involving the total variation, it is
often very useful to visualize the evolution of the energy as a function of the number of iterations
performed.
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Chapter 7

Detection a contrario: an
introduction

7.1 Computer Vision and human vision

The aim of Computer Vision is to extract data related to the physical world from images. The
final step may or may not be the complete reconstruction and interpretation of the 3D-world
from a set of planar images, but in all cases the detection of basic geometric features (like
segments, corners, contours, etc.) is often required as a necessary preliminary step.

Human vision works in a similar way : as proven by the Gestaltists (Wertheimer [35], Kanizsa
[17]), our perception of images is, before any cognitive process may be involved, driven by a rea-
sonnable small set of principles called gestalts (alignment, color constancy, closedness, convexity,
parallelism, etc.). These gestalts work recursively at all scales, and generally cooperate. For
example, a black square on a white background is percieved as such thanks to the constant color,
to the local alignment (the sides are straight lines), to the parallelism of opposite sides, to the
convexity of the whole shape, etc.

Now, a main issue for automatic detection tasks is the setting of thresholds : if the detection
method depends on one or several parameters, a region containing all detectable events has to
be defined in the parameter space. If the model only involves one parameter, there is only a
threshold to set, but when the number of parameters grows to 2,3,4, etc. there is in general no
easy way to define the detection region. For example, the Hough Transform, The Mumford and
Shah segmentation, and the Maximum A Posteriori model all suffer from the problem of setting
parameters.

7.2 The a contrario model

The a contrario model has been developped a few years ago in the case of alignments. So far,
it has been applied to about a dozen of other detection tasks, some of them being gestalts
(contrasted edges and boundaries, similarity of a scalar quality with uniform or decreasing
distribution, alignment of isolated points, clusters, constant width, vanishing points, corners)
and some of them being more generic (mode of a histogram, detection of point matches in a
stereo pair). In the following, we introduce some bases of the a contrario model and discuss two
main cases ; the detection of segments (alignment of points sharing the same orientation) and
the detection of contrasted edges (closed or not). To present the a contrario model, we first refer
to a principle due to Helmholtz.
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7.2.1 Helmholtz Principle

One of the most striking fact about human vision is our ability to detect unlikely geometric
coincidences. If we draw many non-overlapping circles and one square on a sheet of paper, we
shall immediatly distinguish an isolated element (the square) on an homogeneous background
(the circles). Following Helmholtz, this may even be stated as a basic principle for human vision.

Helmholtz Principle. Human vision is based on the following mechanism : we assume a
priori that object qualities are randomly and independently distributed, and we organize objects
into groups when this assumption is not realized.

7.2.2 Meaningful events

Let us consider some abstract objects O1, O2, . . .OM , and suppose that for each object Oi we
can compute some measure µ(Oi). We want to set a threshold in order to detect high values of
µ.

First, we can apply Helmholtz Principle and assume a random independent distribution on
the parameters that define µ. In the following, we shall write Õi for the random object associated
to this distribution, and Oi its observed realization.

Then, we could choose the detection thresholds µ0(i) in order to ensure that

P
[
∃i, µ(Õi) > µ0(i)

]
6 ε. (7.1)

Here, ε controls the reliability of the test (the smaller ε, the more reliable the test). Such a
definition ensures that a false alarm occurs by chance with a probability smaller than ε.

However, the left term of (7.1) is in general very difficult to estimate, because the µ(Õi) have
no reason to be independent. This is why the following criterion will be preferred.

Definition 19 The number of false alarms associated to the object Oi is

NFA(Oi) =M · P
[
µ(Õi) > µ(Oi)

]
. (7.2)

The object Oi is said to be ε-meaningful if NFA(Oi) 6 ε.

This criterion raises, for each value of i, an optimal threshold µ0(i), which is the smallest value
of µ that satisfies

P
[
µ(Õi) > µ

]
6

ε

M
.

Such a definition ensures that the expected number of false alarms is smaller than ε. Indeed, if
we set

χi =

{
1 if NFA(Oi) 6 ε,
0 if NFA(Oi) > ε,

then the expected number of false alarms is

E

[∑

i

χ̃i

]
=
∑

i

E [χ̃i] =
∑

i

P
[
NFA(Õi) 6 ε

]
=
∑

i

P
[
µ(Õi) > µ0(i)

]
6
∑

i

ε

M
= ε.
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7.2.3 A toy example : birthday dates

The advantage of using expectations instead of probabilities can be illustrated by the following
example. Suppose that among a group of N persons, you observe that two of them have the
same birthday date (modulo the year). Is that a meaningful event, that is, could this have
happened by chance or is it likely that a cause has to be found (presence of twins for example) ?

According to Helmholtz principle, we should assume that all birthday dates have the same
probability 1/365 (we neglect leap years). Now, we have two possibilities.

1. Following (7.1), we compute the probability that at least 2 persons have the same birthday
date, which is

1− 1 ·
(
1− 1

365

)
·
(
1− 2

365

)
· · ·
(
1− N − 1

365

)
. (7.3)

Then, in order to determine when this probability is less than ε, we need a tabulation.
(e.g: ε = 1/2 gives N > 22).

2. Following rather (7.2), we write O1, O2, . . . OM all couples (k, l) with 1 6 k < l 6 N (hence
M = N(N − 1)/2), and set µ(Oi) = 1 if the two birthday dates corresponding to Oi are
equal, µ(Oi) = 0 else. Now, the event µ(Oi) = 1 is ε-meaningful if

NFA(Oi) :=
N(N − 1)

2
· 1

365
6 ε. (7.4)

This criterion is much simpler than (7.3), since it writes approximately N 6 27
√
ε.

7.3 Detection of alignments

7.3.1 Model

We now come to a real gestalt : the detection of segments in an image. Let u be a N × N
image. In each point x of the image plane, we compute the direction θ(x) ∈ S1 = R/2πZ of the
level line passing through x (that is, the direction of Du⊥). This requires the estimation of the
gradient of u, which we realize with a 2× 2 scheme. Notice that when the gradient is zero, θ is
not defined. In the following, we keep the convention that any test performed on θ fails in this
case.

Now we consider O1, O2, . . . OM all discrete segments of the image plane, defined by two
distinct points. Thus, we haveM = N2(N2−1) ≃ N4, and to each segment Oi we can associate
a direction θi ∈ S1. Now, let l be the maximum number of independent points of Oi, that is,
the maximum number points far enough from each others to ensure that no dependency occurs
in the estimation of the orientations. Amonf these l points, we may count the number k of such
points x for which

dist(θ(x), θi) 6 pπ, (7.5)

the distance being taken on the circle S1, and p being a fixed parameter (typically p = 1/16).
This way, we measure how many points have their orientation aligned (up to the precision p)
with the segment itself. Then, given k and l, we would like to decide when the segment is
meaningful (in the sense that k is unexpectedly large).

To that aim, we can apply Helmholtz Principle to the orientation field, and assume that θ(x)
are independent random variables, uniformly distributed in S1. We then have

P
[
dist(θ̃(x), θi) 6 pπ

]
= p,

so that since we measure µ(Oi) = k, we have the following result.
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Proposition 15 In a N × N image, the number of false alarms associated to a segment Oi

containing k aligned points (up to precision p) among l is

NFA(Oi) = N4
l∑

k′=k

(
n

k′

)
pk

′

(1− p)l−k′ . (7.6)

7.3.2 Thresholds

The tail of the Binomial law,

P (k, l) =
l∑

k′=k

(
n

k′

)
pk

′

(1− p)l−k′ , (7.7)

involved in (7.6), is not easy to handle mathematically. We now give a more practical estimate,
that yields a more simple formula for the thresholds k(l, p, ε) defining ε-meaningful segments
according to Proposition 15 and Definition 19.

Theorem 13 (Hoeffding’s inequality) Let k, l be integers with 0 6 k 6 l, and p a real
number such that 0 < p < 1, Then if r = k/l > p, we have the inequalities

P (k, l) 6 exp

(
lr ln

p

r
+ l(1− r) ln

1− p

1− r

)
6 exp(−l(r − p)2h(p)) 6 exp(−2l(r − p)2), (7.8)

where h is the function defined on ]0, 1[ by

h(p) =





1

1− 2p
ln

1− p

p
if 0 < p < 1

2 ,

1

2p(1− p)
if 1

2 6 p < 1.

(7.9)

Using this theorem, we deduce a sufficient condition for a segment to be meaningful.

Proposition 16 Assume that p < 1/2. In a N ×N image, a segment Oi containing k aligned
points (up to precision p) among l is ε-meaningful as soon as

k > pl +

√
4 lnN − ln ε

h(p)

√
l, (7.10)

where h(p) is given by (7.9).

Proof :
Assume that (7.10) is satisfied. If we set r = k/l, then r > p and

l(r − p)2 >
4 lnN − ln ε

h(p)
.

From (7.8) we deduce that

P (k, l) 6 exp(−l(r − p)2h(p)) 6 exp(−4 lnN + ln ε) =
ε

N4
,

which means, by definition, that the segment S is ε-meaningful. �
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7.3.3 Maximal alignments

When a segment Oi is meaningful, it generally raises several other meaningful segments, obtained
by extending or reducing a little bit the length of Oi. This phenomenon may be avoided by
limiting the search to maximal segments, that is segments whose associated number of false
alarms is minimal with respect to inclusion.

Definition 20 A segment Oi is maximal if

• it does not contain a strictly more meaningful segment :

∀j 6= i, Oj ⊂ Oi, NFA(Oj) > NFA(Oi);

• it is not contained in a more meaningful segment :

∀j 6= i, Oj ⊃ Oi, NFA(Oj) > NFA(Oi).

Now, an important question for maximal segments (and maximal structures in general) is
to know whether they can intersect or not. We shall see that even if no complete proof exists,
it seems very likely that two distinct maximal segments on the same line cannot meet.

Conjecture 1 ([9]) If (l, l′, l′′) ∈ {1..+∞}3 and (k, k′, k′′) ∈ {0..l} × {0..l′} × {0..l′′}, then

min
(
p, P (k, l), P (k + k′ + k′′, l + l′ + l′′)

)
< max

(
P (k + k′, l + l′), P (k + k′′, l + l′′)

)
. (7.11)

This conjecture passed many numerical tests [9], and an asymptotic proof (when l → +∞)
exists. Moreover, Conjecture 1 has been proved to be a consequence of the following conjecture :
the function

(k, l) 7→

∫ p

0
xk−1(1− x)l−kdx

∫ 1

0
xk−1(1− x)l−kdx

has negative curvature on the domain Dp = {(k, l) ∈ R2
+, p(l − 1) + 1 6 k 6 l}.

Theorem 14 Suppose that Conjecture 1 is true. Then, any two maximal meaningful segments
lying on the same straight line have no intersection.

Proof :

Suppose that one can find two maximal segments (k + k′, l + l′) and (k + k′′, l + l′′) that
have a non-empty intersection (k, l) (the couple (k, l) we attach to each segment represents the
number of aligned points (k) and the segment length (l)). Then, according to Conjecture 1 we
have

min
(
p, P (k, l), P (k + k′ + k′′, l + l′ + l′′)

)
< max

(
P (k + k′, l + l′), P (k + k′′, l + l′′)

)
.

If the left hand term is equal to p, then we have a contradiction since one of (k + k′, l + l′) or
(k + k′′, l + l′′) is strictly less meaningful than the segment (1, 1) it contains. If not, we have
another contradiction because one of (k + k′, l + l′) or (k + k′′, l + l′′) is strictly less meaningful
than one of (k, l) or (k + k′ + k′′, l + l′ + l′′). �
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7.4 Detection of contrasted edges

7.4.1 Model

Let us now consider a classical example in Computer Vision : the detection of contrasted edges.
More precisely, we would like to find out, among the level lines of a discrete image u : Ω → R,
the curves along which the image gradient remains large enough to be meaningful. Let us note
O1, O2, . . . OM the curves to be investigated. On each curve Oi, we compute

µ(Oi) = min
x∈Oi

|Du(x)|, (7.12)

where Du(x) is a local approximation of the image gradient at point x. Now, how to apply
Helmholtz Principle ? We could assume that the random variables |Du(x)|,x ∈ Ω are in-
dependent, but assuming a uniform distribution is questionable. Indeed, there is no uniform
distribution in R+ (so we would have to choose an arbitrary maximum value), and it is well
known that the distribution of |Du(x)| in a natural image is concentrated around small values.
Hence, it is more natural to use an a contrario model based only on the independence of the
values of |Du(x)|, while taking the empirical distribution of |Du(x)| as an a priori distribution.
If we define the repartition function of |Du| by

H(µ) =
|{x ∈ Ω, |Du(x)| > µ}|

|Ω| , (7.13)

our model will be that

P [|Dũ(x)| > µ] = H(µ).

Now, if l(Oi) is the maximum number of independent points on Oi, then we have

P
[
µ(Õi) > µ

]
= H(µ)l(Oi).

This yields the following result.

Proposition 17 The number of false alarms associated to the curve Oi with minimal contrast
µ(Oi) is

NFA(Oi) =M ·H
(
µ(Oi)

)l(Oi), (7.14)

where l(Oi) is the maximum number of independent points on Oi and H is the repartition
function of |Du| defined by (7.13).

7.4.2 Numerical issues

Numerically, the model above may be realized differently depending on the choice of the inter-
polation method.

• A first solution consists in using nearest neighbor interpolation for the computation of
the level lines, yielding discrete curves made of vertical and horizontal segments. In that
case, |Du| may be estimated by |u(x+ 1, y)− u(x, y)| for a vertical segment, by |u(x, y +
1)− u(x, y)| for an horizontal segment, and the number of independent points on a curve
is approximately half the number of vertical plus horizontal segments. A 2 × 2 finite
difference scheme may be used instead to estimate |Du| less locally. In this case, |Du|
will be estimated at the junctions between segments, and the length of the curve will be
smaller, since two successive points x,x′ ∈ Z2 must satisfy |x−x′| > 2 to be independent.
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• A more accurate solution consists in using bilinear interpolation, both for the computation
of the level lines and for the estimation of |Du|. The number of independent points on a
curve can then be approximated by l/3, where l is the Euclidean length of the curve (note
that this is rather an upper bound).

Now we have to precise which curves will be used for boundary detection. We have two
possibilities.

7.4.3 Meaningful boundaries (closed)

We may look only for closed curves, yielding what we shall call meaningful boundaries. In
practice, (Oi)i will be the set of λ-level lines of u, where λ belong to a fixed grid qZ. The
number of false alarms is given by (7.14), where M is the total number of qZ-level lines of u. A
notion of maximal meaningful boundaries may then be defined with respect with the inclusion
tree of level lines.

7.4.4 Meaningful edges

If we want to find non-closed curves (meaningful edges), we can choose for (Oi)i the set of all
pieces of level lines. In practice, on each level line we choose a maximal set x1,x2, . . .xn of
independent points and then consider only the n(n − 1)/2 sub-curves whose endpoints belong
to this set. The NFA computation is the same as for meaningful boundaries, except that the
number of objects (M) in (7.14) is much larger. If maximal edges are defined like in Definition
20, one can show easily that maximal edges are disjoint.
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