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ABSTRACT

We propose a new algorithm to detect the presence and the
localization of aliasing in a single digital image.Considering
the image in Fourier domain, the fact that two frequencies
in aliasing relation contribute to similar parts of the image
domain is a suspicuous coincidence, that we detect with an
a-contrario model. This leads to a localization of the alias-
ing phenomenon in both spatial and spectral domains, with a
detection algorithm that keeps control of the number of false
alarms. Experiments on several images show that this new
method favorably compares to the state of the art, and opens
interesting perspectives in terms of image enhancement.

Index Terms— Sampling, aliasing, Fourier transform, a-
contrario detection.

1. INTRODUCTION

In theory, signal or image sampling is a simple operation,
well understood thanks to Shannon’s Sampling Theorem.
In practice however, the required ideal low-pass filter (sinc
convolution) is physically unreachable, and the required pre-
sampling filter has to reach a compromise between aliasing
(due to the fact that frequencies above the Nyquist limit are
only attenuated) and blur (caused by the attenuation of fre-
quencies under the Nyquist limit), as proposed in [9] for
example. Thus, aliasing is a necessary evil, and understand-
ing better the possibilities to detect and correct it could play
an important role in the global optimization of image acqui-
sition processes, yielding better quality reconstruted images
while keeping the sampling rate unchanged. The aliasing phe-
nomenon has three main visual effects: an effect on textures
(a high-frequency texture may be transformed into a totally
different low-frequency one), an effect on thin structures (a
continuous line may be transformed into a dotted one), and
an effect on edges (that generally present a staircase aspect
after aliasing). From a more quantitative point of view, the
main loss caused by aliasing is the ability to reach a good
sub-pixel precision using image interpolation (ideally, sinc
interpolation).

Aliasing detection can be considered at two different lev-
els: at a global scale, the issue is to decide whether a given
image has been well sampled or not (well sampled meaning

here “sampled without aliasing”); at a local scale, one is in-
terested in the localization of this aliasing phenomenon, both
in the space and in the spectral domains.

Aliasing detection and correction may play an important
role in all applications concerned with sub-pixel precision,
in particular satellite imaging (photo-interpretation), disparity
estimation (and other correlation based techniques), local ori-
entation estimation, etc. Moreover, a general-purpose method
to detect aliased images (in a no-reference framework) is use-
ful for generic image-processing tools (e.g. integrated soft-
wares or on-line image processing demos) that have to deal
with all sort of images whose origin may not be known pre-
cisely. Last, the present work may be useful for image qual-
ity assessment, though we do not restrict ourselves tovisible
aliasing here.

The issue of aliasing detection in a single image has not
been considered much in the litterature. The problem we con-
sider here is similar to the one adressed by Reibman et al.
[8], except that we focus on the issue of aliasing detection
itself rather than on the construction of an image quality met-
ric. Other contributions exist on aliasing detection in different
frameworks, in particular in the case of multiple images.

In this paper, we propose to detect aliasing using the fact
that many image structures contribute to the image spectrum
in related locations (leading, typically, to a main localized
contribution around a givenfundamentalfrequency and sev-
eral secondary condributions aroundharmonics, that is, fre-
quencies that are multiple of the fundamental frequency). If
an harmonic is aliased but the fundamental frequency is not,
then the fact that these two frequencies contribute two the
same image parts may be detected as a suspicuous coinci-
dence. In Section 2, we describe how to measure the relative
impact of a given frequency zone on the image domain us-
ing a non-symmetric bandpass filter. This enables us to build
an aliasing detection algorithm (Section 3), based on an a-
contrario formulation [3] and a post-processing step that guar-
antees that no detection will be found in random data. The
generic algorithm we obtain, that has a single parameter (the
expected number of false alarms), is evaluated on several im-
ages in Section 4 and compared to [8], before we conclude by
showing interesting perspectives in terms of aliasing removal
and resolution improvement.



2. LOCALIZATION OF FOURIER COEFFICIENTS

Let u : Ω → R be a discrete grey-level image, whereΩ =
{0, ..., n − 1}2 is the image domain (we assume thatΩ is a
square to simplify notations) andu(x) represents the inten-
sity of a pixel x ∈ Ω. The Discrete Fourier Transform of
u is the complex imagêu : R → C defined byû(µ) =∑

x∈Ω u(x) e
−2iπ

n <x|µ> whereR = Z2 ∩
[
−n

2 , n
2

)2
is the

spectral domain. If we want to measure the contribution of
frequencies aroundξ ∈ R to the reconstruction ofu, we can
choose a symmetric localization functiong : Z2 → R and
consider the band-pass filtered image

Fg
ξ (u)(x) =

1
n2

∑
µ∈R

(
g(µ + ξ) + g(µ− ξ)

)
û(µ)e

2iπ
n <x|µ>,

where we assume that the support ofg is small enough to
ensure thatξ belongs to the set

Sg = {ξ ∈ R,∀µ ∈ R, g(µ− ξ) · g(µ + ξ) = 0} .

In the following, the functionsg we shall use will be indica-
tor functions of squares, centered in0, but smoother func-
tions could be used as well. The problem with the image
Fg

ξ (u) is that by construction, it locally oscillates and cannot
be used directly to measure the importance of the contribu-
tion in each pixel. To get rid of this phenomenon, we propose
to use the notion ofanalytic part, originally introduced for
one-dimensional signals by Gabor [4], and then generalized
in several ways to 2D images (e.g. [5]). In the case we con-
sider, this leads to the following

Definition 1. The analytic part of an imageu associated to a
window(ξ, g) is

ug
ξ(x) =

1
n2

∑
µ∈R

g(µ + ξ) û(µ) e
2iπ
n <x|µ>.

The interest of considering the analytic partug
ξ is that its

real part is exactly the band-pass filtering (Fg
ξ (u) = Re(ug

ξ)),
but its modulus|ug

ξ | measures theamplitudeof the oscilla-
tions, that bounds|Fg

ξ (u)| from above everywhere. The dif-
ference is illustrated on Fig. 1. Notice by the way that the
square modulus of the analytic part is expected to be very
smooth, becauseg has a small support. Indeed, ifsupp (g) ⊂
[−k, k − 1]2, then

∀ξ ∈ Sg, supp |̂ug
ξ |2 ⊂ [−2k, 2k − 1]2.

3. DETECTING SUSPICIOUS COLOCALIZATIONS

In this section, we build an aliasing detection algorithm that
consists in two steps. To simplify the analysis, we consider
the simplest case of aliasing, with a subsampling factor of 2,

Fig. 1. Analytic part . Imagesa andb have the same Fourier
modulus (represented inc), but imageb has random phases.
Imaged corresponds to imagea after a passband filter whose
spectral support is localized in squares1 and 1′. Imagee
(resp. f ) is the modulus of the analytic part ofa (resp. b),
corresponding to square1 alone. All Fourier visualizations in
this article are treated by the periodic plus smooth decompo-
sition to avoid periodization artifacts [7].

but hypotheses on the initial spectral domain corresponding to
Quincunx sampling [6] as in SPOT 5 sattelite. In this config-
uration, the aliasing phenomenon has the property that each
Fourier coefficient of the sampled image can be written

û(ξ) = v̂(ξ) + v̂(H(ξ/2)),

wherev is the original image (before sampling) andH is the
one-to-one function that associates to an observed frequency
ξ ∈ R the unique alias of2ξ in R moduloR (see Fig. 2).

Fig. 2. Thequincunx hypothesisconsists in assuming that
the original image spectrum is null in the darkest region
above. After a subsampling by a factor2, each frequency
of the final spectral domain (in white) is corrupted by a single
aliased frequency coming from the “aliasing source” domain.

The first step of aliasing detection consists in finding
frequenciesξ for which the energy of the maps|ug

ξ |2 and
|ug

H(ξ)|
2 are localized spatially in similar domains. To that

aim, we use the following



Definition 2. Given a 2D shift vectorη ∈ Z2, We define the
analytic correlation map associated to a frequency window
(g, ξ) as the function

η ∈ Z2 7→ Cg,ξ(η) =
∑
x∈Ω

∣∣∣ug
ξ(x) · ug

H(ξ)(x− η)
∣∣∣2 ,

with the convention that all analytic parts areΩ-periodic.

Now considerig the smallest shift(s)η0 (for the|·|∞ norm)
for which theΩ-periodic functionη 7→ Cg(ξ, η) attains its
maximum value, we definer(ξ) = |η0|∞, and propose to use
an a-contrario model [3] to detect small values ofr(ξ) against
the null hypothesis (H0) that all possiblen2 locations ofη
are equally likely. In this framework, we detect aliasing as a
contradiction ofH0, with the statistical testNFA(w) ≤ ε,
where

NFA(w) = |W | · r(ξ)2

n2
,

w = (ξ, g) is a frequency window (associated to a central
frequencyξ and a localization functiong), andW the set of
all such windows we test (we shall comment on the choice of
W later). This definition ensures thatNFA is a number of
false alarms, in the following sense:

Proposition 1. If u is a random image such that the probabi-
lity of any considered analytic correlation map is invariant
under periodic translation, then the expectation of the number
of windowsw ∈ W such thatNFA(w) ≤ ε is less thanε.

Note that the hypothesis we make in Proposition 1 applies
in particular to the case whenU is a random phase image, that
is, an image whose Fourier transform has a known modulus
and random uniform independent phases (up to the symmetry
constraint).

The a-contrario model above detects suspicious colocal-
ization between Fourier zones in aliasing relation (in the sense
that they contradict theH0 hypothesis), but the detection of
some windows may be caused by something else than aliasing
(for example textured zones with a rich and isotropic spectral
content). In order to get rid of these undesired detections, we
hence propose a post-processing step. It consists in selecting,
among the windows detected in the first step, only those for
which the maximum value of the analytic correlation map in
the domain[−r(ξ), r(ξ)]2 does not increase when consider-
ing other central frequenciesξ′ that could be in aliasing rela-
tion with H(ξ) for a different sampling rate. It is not difficult
to see that the corresponding frequencies all belong to a ver-
tical (or horizontal) line passing throughξ.

In the end, the two-steps aliasing detection algorithm we
just presented yields, if the image is detected as aliased, a cer-
tain number of square windows in Fourier domain. Let us call
aliasing zoneany connected component of the union of these
windows. For each aliasing zone, we define a normalized cor-
relation image (with maximum value equal to 1), that can be
used as a mask in spatial domain, both to evaluate the aliased

part of the image domain, and to try to reverse the aliasing
process, as shown in Section 4.

The algorithm we implemented uses windows defined by
indicator functions of squares whose sidelength are of the
kind 13 + 6k, k = 0..5. For each window size, we chose
window locations in order to ensure an overlap of half a win-
dow for adjacent windows. The detection threshold on the
NFA function was, as usually done, set to 1.

4. PERFORMANCE RESULTS

We tested the proposed algorithm on several images, in two
different situations. On the one hand, we produced “well-
sampled” images by reducing the original512 × 512 images
to 256 × 256 with a perfect low-pass filter (hard frequency
cut-off). On the other hand, we cleared the highest frequen-
cies (dark zone in Fig. 2) of the original512×512 images, and
sampled them by a factor two to produce “quincunx-aliased”
images. These two series of images were then analyzed sep-
arately, both with the SAM method [8] and ours. The results
are reported in Table 1.

image well-sampled aliased
nd SAM nd % S % F SAM

pipe 0 25.3 3 16.2 2.9 23.0
barbara 1 19.2 10 1.6 5.4 18.4
lena 0 16.6 2 7.2 1.3 16.4
harbor [8] 0 18.1 8 1.5 5.5 16.1
bridge [8] 0 17.1 5 11.2 1.6 15.2
boat 0 15.5 7 4.3 10.4 15.1
butokai 0 20.5 34 7.1 12.8 14.7

Table 1. Results of aliasing detection.The algorithm we
propose is compared to [8] on several images, in the case of
well-sampled images and in the case of aliased images gener-
ated by subsampling. For the method we propose, “nd” cor-
responds to the number of detected aliased windows, “%S”
is the relative area of the aliased spatial domain, and “%F ” is
the relative area of the aliased spectral domain.

These results call for several comments. First, as ex-
pected, we did not detect aliasing for well-sampled images
except for the barbara image that present a very special tex-
ture made of two fundamental frequencies in aliasing relation.
Moreover, all aliased images we considered were systemat-
ically detected as such. However, considering the small
number of detections for some of them (in particular pipe
and lena), one could probably select parts of these images for
which no aliasing would be detected. The method we propose
offers several advantages compared to [8]. First, if tries to
answer to the question “Does this image contains aliasing?”,
while Reibman et al. give an aliasing metric that is difficult
to interpret on an absolute scale (though, as can be noticed in
Table 1, their metric systematically decreases when aliasing
is introduced). Another advantage of the method we propose



is that it also permits to localize aliasing both in the frequency
domain (Fig. 3) and in the spatial domain (Fig. 4).

As another validation test, we also tested the present al-
gorithm on thecapsimage from the LIVE database [10]. We
detected aliasing on several places, and in particular on the
right border of the up-left cap, exactly in the zone found by a
completely different method [1].

In Fig. 5, we used the normalized correlation image de-
fined at the end of Section 3 to enhance two aliased images,
by reversing (with a spectral translation) the aliasing process
on the analytic parts that were detected as aliased. This image
enhancement algorithm is only a preliminary work that is not
able to remove aliasing completely (even in the zone where
aliasing is detected), but it open interesting perspectives for
possible continuations of this work.

Fig. 3. Spectral aliasing detection.Fourier spectrum of the
well-sampled version (left) and the aliased version (right) of
thebutokaiimage, superimposed with the detected aliased do-
mains (“A” zone).

Fig. 4. Thebutokaiimage (left) and the spatial localization of
the detected aliasing (in black on the right).

5. CONCLUSION

We presented a new generic algorithm to detect aliasing in a
digital image without access to a reference image. The pro-
posed method achieves good detection results on artificially
aliased images, while generally avoiding false detection on
well sampled ones. It also permits to localize the aliasing
phenomenon, both in the spatial and in the spectral domains.
The new theoretical approach we introduced to detect suspic-
uous co-localization of Fourier coefficients brings interesting

Fig. 5. Aliasing correction. First row: parts of two aliased
images, theNimesCNES image (left) and thebutokai im-
age. Second row: image obtained after detecting aliasing and
translating back aliased frequency components in their esti-
mated original places.

perspectives in terms of aliasing removal and resolution en-
hancement.
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