
This is a preprint version. The original publication is available at www.springerlink.com

A-contrario detectability of spots

in textured backgrounds

Bénédicte Grosjean Lionel Moisan

GE Healthcare Université Paris Descartes
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Abstract

Using the a-contrario framework recently introduced in the modeling of human visual
perception, we build a statistical model to predict the detectability of a spot on a textured
background. Contrary to classical formalisms (ideal observer and its extensions), which
assume a known probability distribution for the signal to be detected, the a-contrario observer
we build only relies on gestalt-driven measurements and on an approximate representation of
the background texture. It extends the scope of previous a-contrario detectors by using a non-
i.i.d. naive model and a notion of local context. The models we propose are first validated
theoretically in the case of powerlaw textures, which are, in particular, classical models for
mammograms. Then, going to more general microtextures (colored noise processes), we
compute the relationship between the size of a spot and the minimum contrast required to
reach a given detectability threshold according to the a-contrario observer. Three main types
of microtextures pop out from this characterization, and in particular low-frequency textures
for which curiously enough, the contrast being given, the most salient spots are the smallest
ones. Last, we illustrate the interest of the a-contrario observer for two real applications: the
detectability of opacities in mammograms and the perception of stains on pieces of clothing.

keywords: a-contrario, detection, texture, colored noise process, powerlaw, fractional Brow-
nian motion, mammography.

1 Introduction

In this paper, we address the following issue: how to detect a “spot” on a grey-level texture
image? By spot, we mean some local suspicious deviation of the intensity values, either a local
overshoot (light spot) or a local undershoot (dark spot). We shall not assume a particular shape
or pattern for the spot, and we shall consider that the spot does not mask the texture, but
rather makes it look locally lighter or darker. As well, we shall not assume that the spot has
a well-defined boundary (edges). Two examples of real images with such spots are shown on
Figure 1. The initial motivation of this work was to measure the detectability of a mass in a
X-ray mammographic image (see Figure 1 (left) or Figure 9(a) in the “Application examples”
Section), but the problem is more general and we shall present another application, the detection
of defects (or stains) in manufactured clothes (see Figure 14, left).
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(a) (b)

Figure 1: Spot examples in microtexture images: an abnormal sign in a real mammogram (approximately
in the center of image (a)) and a dark stain on a wallpaper (in the upper-left corner of image (b)).

This spot detection issue is addressed in the context of human vision, that is, we aim at
understanding the ability of the human eye to detect such spots. Thus, we shall be more
concerned by proposing a detection model inspired from human vision than to search for the
“best” detection model. This is consistent with the two applications we mention in this paper.
For mammographic images, human observers are still considered as the best experts, even if
Computer-Aided Diagnosis (CAD) is frequently used as a second reader. Hence, it is important
to understand the human ability to detect masses, in order to improve and optimize the way
mammographic images are displayed to the radiologist. As concerns the detection of defects in
manufactured clothes, once again the important criterion in most applications (quality control
for example) is to relate the detection to visual perception (in a way, a stain that nobody can
see is not a stain). This is the reason why we focus on detectability rather than on detection,
even if it is clear that these two notions involve some common issues.

It is difficult to define precisely what a texture is. Intuitively, it refers to an image where
a “pattern” (in the most general sense) is repeated in a stochastic or deterministic way. If the
randomness occurs down to the smallest scales (a few pixels), then the image is generally refered
as a microtexture (e.g., a cloudy sky). If, on the contrary, the predictibility of the image is high
below a certain scale, we rather have a macrotexture (e.g., a brick wall). Hence, the notion of
microtexture is deeply related to scale: a grass field may be considered as a macrotexture or as a
microtexture, depending at which scale (resolution) it is observed. Mathematically speaking, we
shall restrict ourselves to textures modeled by colored noise processes. This class of textures is
wide, and yields a good approximation of most microtextures without structured “edge” content
(that is, contours). We shall pay special attention to the subclass of powerlaw textures (that is,
white noise textures filtered with some powerlaw kernel), since they happen to model quite well
numbers of natural textures, while their simple description enables deeper theoretical results.
An important example is the power spectrum of breast tissue in mammographic images, that is
known to decrease like the power −3 of the spatial frequency (see [5, 16]).

The detectability of spots in microtextures reveals a surprising property. In a white noise
texture image, a spot with given contrast (that is, let us say, a given difference between the
spot and the background average intensities) is, as one could expect, all the more visible than
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it is large. However, in some textured images, this logical order can be reversed, that is small
spots can be more visible than large ones (the contrast being fixed). This strange phenomenon,
illustrated on Figure 2, occurs in particular in the case of powerlaw textures. It has been noticed
by Kotre [20] and Burgess [6, 7] in the case of mammographic images, and explained for fixed
template matching in 1/f3 noise textures. In this work, we shall provide another explanation
of this in the case of powerlaw textures by using a general a-contrario model not involving the
precise knowledge of the spot pattern.

Classical approaches concerned with decision-making in the presence of options are described
by the signal detection theory (SDT) [27]. In binary hypothesis testing, the task is to decide
whether a target is present or not in a given realization [18]: we decide H0 — the null hypoth-
esis — if we find the target is absent in the considered realization, and H1 — the alternative
hypothesis — otherwise. To make the decision, two main strategies can be followed according
to the criterion to be optimized. First, Neyman-Pearson Lemma tells how to maximize the test
power for a given probability of a false alarm. Another approach, based on Bayesian statistical
decision theory, consists in making a trade-off between the probability of a false alarm and the
probability of a miss. This is achieved by minimizing the Bayes risk, which assigns a cost to
each possible decision. For a particular case of this cost, this strategy leads to minimizing the
probability of error. The approach is then called Maximum A Posteriori (MAP) approach. It
can be shown that each of these criteria give the same optimum test statistic. For a given image

R = 10 R = 30 R = 80

Figure 2: Examples of simulated spots with various sizes (R = 10, 30 and 80) but similar contrast, in a
white noise texture (top row) and in a colored noise texture (bottom row). In the white noise texture,
the saliency of the spot increases with its size. On the contrary, in the colored noise background, the
unexpected reverse phenomenon occurs: the larger the spot, the less visible it is.
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sample g, the test is equal to the likelihood ratio

L(g) =
p(g|H1)

p(g|H0)
. (1)

Both conditional probabilities for the two hypotheses H0 and H1 need to be known in order
the test statistic to be computed. Then the decision to detect the signal or not is made by
comparing this ratio to a threshold, determined according to the chosen strategy.

A mathematical observer, called the ideal observer, has been derived from this theory. It uses
the optimal strategy defined by the Bayesian approach. As required by this strategy, the ideal
observer makes use of all information available in the image, as well as any prior information
about the signal and the underlying processes involved in the image formation. Since it provides
optimal decision on a given task, it is an upper bound of the detection performance achievable
by any observer. The likelihood ratio is often highly non linear and difficult to determine, so
linear discriminants have been developed. Their associated test statistic is the scalar product of
the image with a given template. A particular case, the prewhitening matched filter (PW), uses
the template t = K−1p, where K is the covariance matrix of the image background and p is
the pattern to detect [2]. In correlated noise, the PW observer derives a template that amounts
to decorrelate the noise before the matched filtering process, so that detection issues can be
reformulated in the case of a white noise background. In the particular SKE/BKE case (signal
known exactly, background known exactly), when the image statistics are Gaussian, the ideal
observer is the PW observer.

The template matching formalism has also been extended to further observer models in order
to better match with human readers. Among them, the Eye-filtered Non-PreWithening observer
(NPWE) uses an eye filter E (that takes into account the property of the human visual system),
yielding a template t′ = Ep. Other observer models, like the Channelized Hotelling Observer
(CHO), first transform the image into channels, obtained by preprocessing the image with a set
of spatial-frequency-selective filters inherited from the human visual system. A review of these
mathematical observers can be found in [13].

All these observers share a common theoretical basis: the decision between two probabilistic
models, H0 and H1. In this paper, since we would like to measure the detectability of spots in
general, and not of a particular spot pattern, we cannot assume that we have a full knowledge
of data statistics (H1), as required by all these models. In fact, building probabilistic models of
the structures to be detected is known to be extremely difficult in Computer Vision, and even
apparently simple objects like spots raise severe issues. Indeed, building a complex model for
spots would necessarily involve several parameters that would be difficult to estimate. On the
contrary, if we try to build a simple probabilistic model for spots, then all results will be valid
for this simple model, which will not necessarily tell us much about real spots. Let us give a
simple example: for the ideal observer, two patterns p1 and p2 with same L2 norm yield the
same detection performances when superimposed to a Gaussian white noise. However, one can
easily build two such patterns with different detectability levels for human perception: take for
example a disc pattern for p1, and a very blurry pattern with a complicated shape for p2, while
maintaining ‖p1‖ = ‖p2‖. In this case, the gestalt processes involved in human vision [17] would
clearly favor the perception of p1.

In this study, we propose to use another statistical framework called a-contrario theory,
introduced for the detection of alignments in images in [8], and then extended to several other

4



B. Grosjean and L. Moisan, A-contrario Detectability of Spots in Textured Backgrounds, J. Math. Imaging Vision, vol 33:3, pp. 313-337, 2009

perceptual grouping laws (see [11]). Contrary to the observers described above, the a-contrario
observer does not require a model H0 for the background and a model H1 for the structure to
detect, but an approximate background model (still writtenH0) and one or several measurements
inspired from human perception. These ingredients are much more easy to deal with for the
detection tasks usually involved in human vision. Moreover, some a-contrario models have shown
promising similarities with human vision on simple detection tasks (see [10]). In this work, we
shall reformulate and extend a little bit the a-contrario detection framework to distinguish
principal and context measurements.

The plan of this paper is the following. We first develop in Section 2 the texture models (white
or colored noise) we will use as background models. In section 3, we present an introduction
to a-contrario detection, and then build three different spot detectors: one based on a single
intensity measurement, one based on a contrast measurement, and the last one based on two
measurements (a principal measurement and a context measurement). Then we study in Section
4 the detectability measures they provide for different kind of textures: white noise textures,
powerlaw textures, pattern-noise textures, and real-world textures. In Section 5, we consider
the two applications mentioned at the beginning of this paper: the detection/detectability of
opacities in mammographic images and of stains or defects on clothes.

2 Texture models

There are many ways to define texture models in image analysis, and, as we mentioned before,
the word “texture” itself refers more to the idea of the stochastic or deterministic repetition
of a pattern than to a precise type of images. In this paper, we consider specific models of
microtextures obtained as realizations of a colored noise.

2.1 Discrete white and colored noise

A discrete image is a function u : Ω → R, where Ω is a finite subset of Z2, typically the cartesian
product of two discrete intervals. The set Ω is the image domain, and for any (x, y) ∈ Ω, u(x, y)
represents the intensity (grey level1 of the pixel (x, y)). The size of Ω (number of image pixels)
will be denoted by |Ω|.

A discrete white noise image is simply a realization of a discrete 2-dimensional stochastic
process defined by |Ω| independent and identically distributed random variables N(x, y), where
(x, y) ∈ Ω. The distribution of the random variables N(x, y) is generally chosen Gaussian, but
other distributions are also possible. In the normalized Gaussian case, it is easy to show that
the process N is characterized by the following property.

Proposition 1 If N is a normalized discrete Gaussian white noise process (that is, all N(x, y)
are normal and i.i.d.), then for any n and any discrete functions f1, f2, . . . fn ∈ R

Ω, the ran-
dom vector (〈N, fi〉)1≤i≤n is a Gaussian random vector with zero mean and covariance matrix
((〈fi, fj〉))1≤i,j≤n.

1Strictly speaking, the grey levels of a digital image are restricted to a finite set, but it will be more convenient
in the following to work in the continuous domain, assuming real-valued images. This approximation is justified
as long as the quantization step is small enough compared to the dynamics of image intensities.
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Here we used the usual discrete inner product 〈f, g〉 =
∑

(x,y)∈Ω f(x, y)g(x, y), still well
defined when f or g is a stochastic process.

A discrete colored noise image is then obtained by convolving a white noise image N with a
discrete kernel k : Ω → R, that is

∀x, y ∈ Ω, U(x, y) = k ∗N(x, y) =
∑

(p,q)∈Ω

k(p, q)N(x⊖ p, y ⊖ q),

where ⊖ means the subtraction modulo Ω (that is, we assume that N is Ω-periodic). Sample
examples of a white gaussian noise and colored noise images appear on several figures in this
paper: Figure 2 (with a spot superimposed), 6 (b and d), 8 (middle column).

2.2 Continuous noise models

The notion of discrete Gaussian white noise can be transposed to a continuous domain, using
the Wiener integral. In the following, we shall use as a definition the continuous analog of
Proposition 1 given in the discrete case. This will be useful to establish theoretical results
involving a (continuous) scale parameter in the image domain.

Definition 1 (white noise) A normalized 2-dimensional Gaussian white noise is a stochastic
process N = Ḃ (formal “derivative” of the Brownian process B) such that for any n and any
functions f1, f2, . . . fn ∈ L2(R2), the random vector (〈N, fi〉)1≤i≤n is a Gaussian vector with zero
mean and covariance matrix ((

∫
fifj))1≤i,j≤n, where

〈N, f〉 =
∫

f(x, y) Ḃ(x, y) dxdy (2)

is the 2-dimensional Wiener integral.

In particular, if f, g ∈ L2(R2), then 〈N, f〉 ∼ N
(
0,
∫
f2
)
and the two random variables

〈N, f〉 and 〈N, g〉 are independent if and only if
∫
fg = 0. It is important to note that Ḃ is not a

stochastic process in the usual sense, and in particular that a realization of Ḃ is not a L2 function
that could give a classical sense to the Wiener integral (2). However, in the following we will
only use N through random variables like 〈N, f〉 (with f ∈ L2(R2)), completely characterized
by classical integrals.

The white noise process is not a good model for textures in general, since it assumes no
spatial correlation, even for short distances. A more interesting class of models, relevant for
microtextures, is given by colored noise processes.

Definition 2 (colored noise) Let k be a tempered distribution over R
2 such that its Fourier

Transform k̂ is bounded. A colored noise with kernel k is a stochastic process Nk such that for
any n and any functions f1, f2, . . . fn ∈ L2(R2), the random vector (〈Nk, fi〉)1≤i≤n is a Gaussian
vector with zero mean and covariance matrix

((
1

4π2

∫
|k̂|2 · f̂i · f̂∗

j

))

1≤i,j≤n

,

where f̂∗
j stands for the complex conjugate of the Fourier transform of fj.
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Formally, Nk is obtained by the convolution a Gaussian white noise process N with k. In the
case of a single function f ∈ L2(R2), Definition 2 implies that 〈Nk, f〉 is a Gaussian random
variable with zero mean and variance ‖k ∗ f‖2. Notice also that if k is the Dirac distribution,
then Nk is a Gaussian white noise.

Among colored noise processes, powerlaw textures play a special role since they achieve a
scale invariance often found in natural textures (see [1, 24]). As we mentioned before, mammo-
graphic background textures present interesting similarities with 1/f3 powerlaw textures2 (case
β = 3 below). A powerlaw texture can be defined rigorously from the fractional Brownian sheet,
but it can also be viewed formally as a colored noise associated to a kernel k whose Fourier
Transform is

k̂(ξ) =
1

|ξ|β/2 , ξ ∈ R
2 \ {0} (3)

for some β ∈ R (the β parameter arises naturally, without the 1/2 factor, in the power spectrum
of k, that is |k̂|2). Since the function k̂ is unbounded around ξ = 0, we shall consider a powerlaw
texture as the limit when ε → 0 of colored noises associated to the truncated kernels (kε) defined
below, which converge pointwise to k. We will show that we can take the limit in the considered
models.

Definition 3 (powerlaw truncated kernel) Let β ≥ 0 and ε > 0. We define kε as the
unique tempered distribution whose Fourier Transform is defined by

∀ξ ∈ R
2, k̂ε(ξ) =

{
0 if |ξ| ≤ ε,

|ξ|−β/2 if |ξ| > ε.
(4)

3 A-contrario detection

3.1 Introduction

The a-contrario3 detection theory has been primarily developed by Desolneux, Moisan and
Morel in [8, 9], then developped by several other researchers (see, e.g. [12, 26, 28, 29]). A
complete overview can be found in [11]. The principle of this method is inspired from the human
perception of Gestalt Laws, that is, geometric grouping laws governing low-level human vision,
e.g. alignment, convexity, color constancy, closeness, parallelism, . . . (see [17]). This grouping
process can be described by Helmholtz principle: we see a structure in a group of objects when
their configuration, according to one or several Gestalt Laws, is unlikely to happen by chance
in a random situation. The mathematical setting developed in a-contrario models was first
intended for Gestalt grouping, but it rapidly appeared that it could be used for more general
detection tasks (see [21] for an example in stereo matching).

An a-contrario model basically requires two ingredients: a naive model, and a measurement
made on structures to be potentially detected. The naive model is a probabilistic model that

2Variations between about 2 and 4 in the exponent values between breasts images and inside one breast image
seem to be due to variations in breast composition.

3The term a-contrario, which comes from Latin and means “by contradiction”, refers to the fact that structures
are detected as contradictions of a naive model. We shall write a-contrario instead of a contrario for better
readability.
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describes typical configurations where no structure is present. If, for example, we see some dots
on a sheet of paper, we naturally assume a priori that these dots have been drawn uniformly and
independently on the sheet area. This corresponds to a Bernoulli model (or a Poisson model if
the number of dots is not fixed) for the distribution of the dots. Then, our visual system will
see a structure (e.g. an alignment) if the observed configuration is, from the point of view of
this structure, very unlikely in the naive model, hence very surprising (see Figure 3).

To weigh this amount of surprise, we need a measurement, let us say a number x ∈ R.
If the structure is more pregnant when x takes high values, then we may weigh the amount
of surprise by the probability P(X ≥ x), where x is the observed measurement and X is the
random variable corresponding to the distribution of x in the naive model. Of course in general
there will be several measurements (xi)i∈I , one for each group to be potentially detected (the
index i may simultaneously encode the position, the size, the type, etc. of the structure to be
detected, provided that all these parameters have been quantized on a finite set). In the classical
a-contrario framework, the amount of surprise is measured by a number of false alarms, defined
by

NFA(i, xi) = |I| · P(Xi ≥ xi),

and the i-th group is said to be ε-meaningful if it satisfies NFA(i, xi) ≤ ε (ε being a positive
real number). This setting ensures a fundamental property of a-contrario detection: the average
number of ε-meaningful groups detected by chance in the naive model is less than ε. In other
words, ε controls the expected number of false alarms.

Figure 3: Why can’t we help seeing an alignment of dots on the left image? According to Helmholtz
principle, we a priori assume that the dots should have been drawn uniformly and independently as in
the right image, and we see a structure (here a group of aligned dots) because such an alignment is very
unlikely to happen by chance. Alignments of four dots can be found in the right image but they do not
pop out, because they are likely to happen by chance in such an image. The formalization of this principle
is realized in a-contrario detection models.

3.2 A general formalization of a-contrario detection

In this section, we propose a general definition of a number of false alarms (NFA), which includes
previous constructions made in [11].

Definition 4 (Number of false alarms) Let (Xi)1≤i≤N be a set of random variables. A
function F (i, x) is a NFA (number of false alarms) for the random variables (Xi) if

∀ε > 0, E

(∣∣∣{i, F (i,Xi) ≤ ε}
∣∣∣
)
≤ ε. (5)
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Let us comment this definition. Suppose that the joint distribution of the Xi’s is given by
some null hypothesis H0. If the function F satisfies (5), then the family of tests F (i,Xi) ≤ ε
ensures that the average number of false alarms (that is, the expected number of successful tests
under H0) is less than ε. Thus, a number of false alarms allows us to control globally the number
of false detections associated to a family of random variables (type I error).

Proposition 2 Let (Xi)1≤i≤N be a set of random variables and (ni)1≤i≤N a set of positive real
numbers. Then the function

NFA(i, xi) = ni · P(Xi ≥ xi)

is a NFA as soon as
N∑

i=1

1

ni
≤ 1 (6)

and in particular if ni = N for all i.

Proof: The proof essentially relies on the sub-uniform distribution of p-values, precised in
Lemma 1 (see appendix). Let Fi(t) = P(Xi ≥ t), we have NFA(i, xi) = ni · Fi(xi). Hence for
any ε > 0,

E

(∣∣∣{i, NFA(i,Xi) ≤ ε}
∣∣∣
)

= E

(
N∑

i=1

1NFA(i,Xi)≤ε

)
=

N∑

i=1

E
(
1NFA(i,Xi)≤ε

)

=
N∑

i=1

P(NFA(i,Xi) ≤ ε) =
N∑

i=1

P

(
Fi(Xi) ≤

ε

ni

)
.

We conclude thanks to Lemma 1, since

N∑

i=1

P

(
Fi(Xi) ≤

ε

ni

)
≤

N∑

i=1

ε

ni
≤ ε. �

Let us interpret Proposition 2. It basically says that the multiple test NFA(i,Xi) ≤ ε,
1 ≤ i ≤ N is controlled by ε, in the sense that under H0 (naive model) there is no more than
ε false detections in average. It can be related to Bonferroni strategy for multiple tests in the
following way. Since each test NFA(i,Xi) ≤ ε has a confidence level αi = ε/ni (as a consequence
of Lemma 1), the probability of having at least one false alarm is

α = P(∃i, NFA(i,Xi) ≤ ε) ≤
N∑

i=1

P(NFA(i,Xi) ≤ ε) ≤
N∑

i=1

αi ≤ ε.

Hence the 1/ni coefficients can be viewed as a way to distribute the overall risk ε on the multiple
tests. This is a reformulation of Bonferroni strategy, which says that an overall confidence level
of α is obtained for a group of N tests as soon as each test is realized with a confidence level α/N .
The definition of NFA is slightly different because it focus the control of the risk on the average
number of false alarms (ε) instead of the probability of at least one false alarm (α). Contrary to
Bonferroni strategy which does not make sense any more when ε ≥ 1, testing a NFA with ε ≥ 1
is not absurd at all. If you detect 1000 events with ε = 10 for example, then you know that
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about 10 are false detections but that the remaining events (990 or so) are meaningful. Thus,
the a-contrario multiple test strategy simply consists in replacing the notion of p-value (whose
interpretation depends on the number of tests) by the notion of NFA, whose value yields an
absolute decision criterion that does not depend any more on the number of tests. It would be
interesting to study whether the simple multiple test strategy used in the NFA framework could
be refined by using more advanced criteria like the area under the LROC curve (see [19, 25]) or
the false detection rate (FDR, see [3]), but as far we know it is still an open question.

3.3 Naive model (H0)

As we said above, a-contrario detection models are based on the contradiction of a naive model.
In other terms, a-contrario detections reveal structures of a certain kind (depending on the
chosen measurements) that should not occur in the naive model. Hence this naive model is not
necessarily supposed to be a very realistic model of the observed images, but rather a simple
probabilistic model of images in which we will guarantee that no detection will happen. This is
the reason why white noises are often chosen as naive models, since it is generally acknowledged
that no special structure should be detected in white noise. In the following, we go a little
further and assume that the naive model (written H0 in reference to the classical statistical
setting) is a random image U defined by

(H0) : U = µ+ σNk, (7)

where µ and σ are given real parameters (known or unknown), and Nk a colored noise model
as described in Definition 2. We shall first give general detection thresholds for an arbitrary
noise kernel k, and then consider more explicitly special kernels corresponding to white noise
and powerlaw textures.

3.4 Measurements definition

Now we have defined the kind of naive model we are going to consider, we need to precise the
measurements that will be made on the image to detect structures. The idea of a-contrario
models is to specify, instead of a template of the “average” pattern to be found, one (or several)
intuitive measurements supposedly responsible for the visual saliency of the structure looked for.
Indeed, we do not want to specify a template because in general, the structures to be looked
for are only vaguely known; here, it would be complicated to define the distribution of shape of
what we mean by a “spot”. Since we want to focus on spot detection, that is the detection of
local suspicious deviation of intensity values, it seems reasonable to use as a measurement the
local average intensity in a round-shaped domain, say a disc for example. More generally, we
shall consider linear local measurements defined by

m(x, y) =

∫

R2

u(x− p, y − q)s(p, q) dpdq = (u ∗ s)(x, y), (8)

where s is a given measurement kernel. The average intensity in a disc is obtained when s is
the indicator function of a disc, but the above formula allows more general measurements, that
could take into account some psychovisual constraints for example. We shall only impose the
following normalization, symmetry and regularity requirements.
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Definition 5 (measurement kernel) A measurement kernel is a function s ∈ L1(R2)∩L2(R2)
such that

(i) s is even: s(x, y) = s(−x,−y) almost everywhere;

(ii) the Fourier transform of s (noted ŝ) is a C2 function;

(iii) s is normalized by
∫
R2 s = 1 (or equivalently by ŝ(0, 0) = 1).

In practice, s will be positive and bounded with a compact support, but these assumptions
are not required in the computations to come. Notice the fundamental difference between the
measurement kernel s (connected to the vision process, and independent of the naive model)
and the classical notion of template (leading to different optimal statistics depending on the
naive model).

3.5 Canonical formulation

Consider the naive model given by (7) and a measurement kernel s. Then the measurement at
point (0, 0) is a random variable M(0, 0) defined by

M(0, 0) = (U ∗ s)(0, 0) = ((µ+ σNk) ∗ s)(0, 0) = µ+ σ 〈Nk, s〉 ,

because s is normalized and even. Since the model distribution is stationary and the measure-
ments are translation-invariant, the detection thresholds will be the same for each point (x, y),
so that we will consider the typical point (0, 0) and shorten the notation M(0, 0) into

M = µ+ σ 〈Nk, s〉 . (9)

This can be put in a more general form. Let us define ϕ = s ∗ k. This is a L2 function, and
its Fourier transform is ŝ · k̂, with ŝ ∈ L2 and k̂ bounded. Now from Definition 2, we know that
there exists a white noise N such that 〈Nk, s〉 and 〈N,ϕ〉 follow exactly the same distribution
for any measurement kernel s, that is 〈N,ϕ〉 ∼ N(0, ‖ϕ‖2), with

‖ϕ‖2 =
∫

R2

ϕ2 =
1

4π2

∫

R2

|ϕ̂|2 = 1

4π2

∫

R2

|ŝ|2 · |k̂|2.

Hence, we can write M under the canonical form

M = µ+ σ 〈N,ϕ〉 , with ϕ = s ∗ k, (10)

and remember that this random variable follows a Gaussian distribution

M ∼ N (µ, σ2‖ϕ‖2). (11)

3.6 Model 1: no context

Let us begin with the simplest possible detection model. We want to perform some statistical
tests on given locations of the image plane to detect “spots”. Let us write T this set of tested
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locations: in general, T will be the whole image grid, or an appropriate subgrid. At each point
(x, y) ∈ T , we make one measurement m(x, y), defined from a measurement kernel s using (8).
As we mentioned before, a typical choice for m(x, y) is the average intensity in a disc centered
at (x, y). Then we detect a bright spot if this measure m(x, y) is above a certain threshold. As
usual in a-contrario models, this threshold will be set in order to control the expected number
of false alarms (NFA).

Proposition 3 (Number of false alarms for the model without context) Let s be a mea-
surement kernel. A number of false alarms associated to the measurements m(x, y) = (u ∗s)(x, y)
for the naive model (7) is given by

NFA1((x, y),m(x, y)) = |T | · Φc

(
m(x, y)− µ

σ ‖ϕ‖

)
.

where ϕ = s ∗ k, |T | is the size of T (that is the number of tested locations) and

Φc(x) =
1√
2π

∫ +∞

x
e−t2/2 dt = P

(
X ≥ x|X ∼ N (0, 1)

)
(12)

is the tail of the Normal distribution.

Proof: From (11), we know that the random variable M(x,y)−µ
σ‖ϕ‖ is normal, so that NFA1 is a

NFA thanks to Proposition 2. �

Let us change a little bit the notations. Since the test is the same for any point (x, y) ∈ T ,
we can drop the reference to (x, y) in the definition of NFA1. Conversely, we add a reference
to σ and µ to recall that they are necessary parameters. Hence we shall write

NFA1(σ, µ,m) = |T | · Φc

(
m− µ

σ ‖ϕ‖

)
. (13)

As usual, we shall say that the point (x, y) ∈ T is ε−meaningful if NFA1(σ, µ,m(x, y)) ≤ ε.
This corresponds to a point where a bright spot is detected in the sense that no more than ε
such detections should occur in average in a realization of the naive model. Dark spots could be
detected similarly (by changing formally u into −u) using the test NFA1(σ,−µ,−m(x, y)) ≤ ε.

This observer does not have a null response at the null frequency, so it is not invariant
with respect to grey-level translations, and more generally it is very sensitive to low-frequency
image variations. Such models without context are nonetheless efficient in images containing
white noise (or high frequency colored noise) background, provided that the image average (µ)
is known.

3.7 Model 2: contrast related to the context

To bypass the sensitivity of the previous observer to low frequencies, we introduce another model,
which takes into account a local context in its detection task. Since textured backgrounds can
have large and slow variations (that is, strong low-frequency components), the local context
allows us to have a reasonable local model of the background. It thus incorporates the prior as-
sumption that the spots are in some way isolated from each other. This context area corresponds
to the local neighborhood of the potentially detectable target, as represented in Figure 4.

12
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Figure 4: The observer with conditional context performs two measurements at each test location (x, y),
typically the average intensity m1(x, y) in a domain centered at (x, y) (here a disc), and a context measure
m2(x, y) in a larger domain (here the average intensity in a ring around the first disc). The two associated
domains may overlap or not.

In this model, two measurements are made at each potential spot location (x, y) ∈ T .
Typically, one (principal) measurement (m1) will be the average intensity in a disc centered
at (x, y), and the second (context) measurement (m2) will be the average intensity in a ring
surrounding the previous disc. In a general setting, we consider two measurement kernels s1 and
s2, that define through (8) two measurements m1 and m2. The corresponding random variables
M1 and M2 are defined accordingly with (9). Now we can detect suspiciously high values of
M1 − M2, that is a high contrast between the principal and the context measure. This yields
the following a-contrario detection model.

Proposition 4 (Number of false alarms for the model with contrast to the context)
Let s1 and s2 be two measurement kernels. A number of false alarms associated to the measure-
ments mi(x, y) = (u ∗ si)(x, y) (i = 1, 2, (x, y) ∈ T ) for the naive model (7) is given by

NFA2(σ,m1,m2) = NFA1(σ,m1 −m2) = |T | · Φc

(
m1 −m2

σ‖ϕ1 − ϕ2‖

)
, (14)

provided that ϕ1 = s1 ∗ k and ϕ2 = s2 ∗ k differ (in the L2 sense).

Proof: Since property (iii) of Definition (5) is not used in the proof of Proposition 3, the proof
remains the same with m = m1 −m2, s = s1 − s2 and ϕ = ϕ1 − ϕ2. �

This measure of contrast m1 − m2 has two advantages: first, it allows us to cancel the
low-frequency components of the single measure m1, and second it yields detection thresholds
independent of µ, which is valuable when the precise value of µ is not known. In a sense, since
the term m− µ in (13) is now replaced with m1 −m2, one could say that m2 simply yields an
estimate of µ. In fact, it does more than that in complex (i.e. non-white-noise) textures since
it provides a local estimate of the texture average, which can be significantly different from µ in
low-frequency textures.

3.7.1 Remark on the choice of the context

The choice of the measurement function associated with the context is wide, since the only
requirement for s2 is to satisfy the assumptions of Definition 5. We here highlight a particular
property of the context measure: the detection levels remain exactly the same when the context
area includes the area used for the principal measure (or, more generally, when the principal
measure itself is used as a part of the context measure).

13
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Proposition 5 Let α ∈ R \ {−1}. Then for the model with contrast to the context (Model 2),
the measurements (s1, s2) and (s1, s

′
2) with

s′2 =
1

1 + α
(s2 + αs1)

yield the same detection levels (same NFA2 functions).

Proof: We simply need to notice that since s1 − s′2 =
1

1 + α
(s1 − s2), we have

‖ϕ1 − ϕ′
2‖ := ‖k ∗ (s1 − s′2)‖ =

1

1 + α
‖ϕ1 − ϕ2‖ and m1 −m′

2 =
1

1 + α
(m1 −m2),

so that
m1 −m′

2

σ‖ϕ1 − ϕ′
2‖

=
m1 −m2

σ‖ϕ1 − ϕ2‖
and the conclusion follows from (14). �

In particular, if s1 defines an average over some compact set D1, that is s1 = 1D1
/|D1|,

then it is equivalent to define the context by the average over either some compact set D2, or
D2 ∪D1, or D2 \D1. In particular, if D1 is a disc, then it is equivalent to define the context by
an average on a larger disc or on the ring delimited by the two discs.

3.8 Model 3: conditional context

Since we are now performing two measurements m1 and m2 at each point (x, y) ∈ T , a natural
question arises: is the contrast measure m1 − m2 the only way to combine the principal (m1)
and the context (m2) information? Knowing the local context measure m2(x, y), a more subtle
way to detect suspicious high values of m1(x, y) is to consider the probability of a high enough
value of M1(x, y) conditionally to the observed value of M2. This yields the following a-contrario
detection model.

Proposition 6 (Number of false alarms for the model with conditional context) Let s1
and s2 be two measurement kernels such that ϕ1 = s1∗k and ϕ2 = s2∗k are linearly independent.
A number of false alarms associated to the measurements mi(x, y) = (u ∗ si)(x, y) (i = 1, 2,
(x, y) ∈ T ) for the naive model (7) is given by

NFA3(σ, µ,m1,m2) = |T | · P(M1 ≥ m1 |M2 = m2). (15)

Proof: We need to prove that the NFA property

∀ε > 0, Eε := E

(∣∣∣{(x, y) ∈ T , NFA2(σ, µ,M1(x, y),M2(x, y)) ≤ ε}
∣∣∣
)

≤ ε (16)

still holds with this kind of conditional measurement. Applying Lemma 2 (see appendix) to

F (m1,m2) = P(M1 ≥ m1 |M2 = m2),

we get

P

(
F (M1,M2) ≤

ε

|T |

)
≤ ε

|T |

14
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(note that we shall prove in the next Proposition that since ϕ1 and ϕ2 are linearly independent,
F satisfies the hypotheses of Lemma 2). Hence, for any ε > 0 we have as in Proposition 2

Eε =
∑

(x,y)∈T

P

(
NFA2(σ, µ,M1(x, y),M2(x, y)) ≤ ε

)

hence Eε =
∑

(x,y)∈T

P

(
F (M1(x, y),M2(x, y)) ≤

ε

|T |

)
≤

∑

(x,y)∈T

ε

|T | ≤ ε. �

We now give an explicit form of NFA3(σ, µ,m1,m2).

Proposition 7 With the hypotheses made in Proposition 6, one has

NFA3(σ, µ,m1,m2) = |T | · Φc

(
(m1 − µ)− γ(m2 − µ)

σ ‖ϕ1 − γϕ2‖

)
, with γ =

〈ϕ1, ϕ2〉
‖ϕ2‖2

. (17)

Proof: Since ϕ1 and ϕ2 are linearly independent, ‖ϕ2‖ 6= 0 so that Lemma 3 applies (see
appendix) and we have

(
M1 |M2 = m2

)
=

(
µ+ σ 〈N,ϕ1〉 | 〈N,ϕ2〉 =

m2 − µ

σ

)

∼ N
(
µ+ σγ

m2 − µ

σ
, σ2‖ϕ1 − γϕ2‖2

)

which implies (17). �

Note that if ϕ1 and ϕ2 are not linearly independent, either ϕ2 = 0 and we are back to Model
1 (no context), or ϕ2 6= 0 and M1 is completely determined by M2, so that there can be no
detection (no surprise arises from the observation of m1).

It is important to notice the difference between the measurement “M1 conditionally to M2”
and the joint measurement (M1,M2). In both models, the detection domain goes from {m1 ≥ λ}
(Model 1) to a more interesting geometry {F (m1,m2) ≥ λ′}, but in the conditional framework,
the role of the m2 measurement is simply to adjust the threshold on m1 to improve the detection
performance, yielding a probability of false detection independent of m2. On the contrary, for
the “joint measure” model a spot could be detected only because the context is “rare”, since the
measures m1 and m2 play a symmetric role. This is why we chose a conditional measurement
rather than a joint measurement for Model 3.

3.9 Comparison of the two context-related models

As we shall see now, Model 3 is the only NFA model that can be built from a principal measure
m1 and a context measure m2 without introducing a biais with respect to the context value.

When γ = 1, Model 3 boils down to Model 2. This happens in particular in white noise
textures when s1 and s2 are defined as the average over some compact domains D1 and D2 such
that D1 ⊂ D2, since in that case

γ =
|D2|2

|D1| · |D2|
· 〈1D1

,1D2
〉

‖1D2
‖2 =

|D2|
|D1|

· |D1|
|D2|

= 1. (18)
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As we shall see later, we still have γ = 1 for low-frequency powerlaw textures, but in the
continuous setting only.

In general, the property γ = 1 is not satisfied and the measure m1−m2 of Model 2 becomes
m1 − γm2. In that case, Model 3 is equivalent to Model 1 with s = (s1 − γs2)/(1− γ), so that
this coefficient γ can be viewed as the optimal way to combine the two measurements m1 and
m2 in a single measurement m. This value of γ yields a fair distribution of the false alarms
with respect to the context: the ratio of ε-meaningful spots expected under H0 among locations
sharing a particular value m2 of the context is independent of m2. As a consequence, under H0

the distribution of the context values of ε-meaningful spots is exactly the distribution of context
values in general (in the present case, a Gaussian distribution). If another detection model is
built with a different value γ′ of γ (Model 1 if γ′ 6= 1, Model 2 if γ′ = 1), then some context
values will be favored (in the sense that the corresponding detection thresholds will decrease),
but the price to pay to maintain the average NFA property will be a more strict NFA control
for other context values, that is a raise of the other detection thresholds. Since

(m1 − µ)− γ′(m2 − µ) = (m1 − µ)− γ(m2 − µ) − (γ′ − γ)(m2 − µ),

if γ′ > γ (e.g.), the detection will be more difficult for high values of the context (m2 − µ > 0)
and less difficult for small values (m2 − µ < 0).

Hence, the value of γ given in (17) is the only combination of m1 and m2 that ensures an
unbiased detection with respect to the context value. Since the context measurement is not
supposed to be affected by the object to be detected, Model 3 is the most adequate of the two
context-sensitive models we proposed. However, Model 2 remains interesting because it does
not require the knowledge of µ, which can be very valuable in some situations. Furthermore,
the values of γ, numerically measured in the experiments we made, were always close to 1 for
low-frequency powerlaw textures, so that it is likely that the detection bias introduced by Model
2 when γ 6= 1 remains very small in these cases. Thus, in a way Model 2 can be viewed as a
practical way to “force” γ = 1 (and hence eliminate µ) in Model 3.

In the following we study both Model 2 and 3 from a theoretical point of view, but in
the applications we shall avoid the dependency on the (unknown) value of µ by systematically
considering Model 2.

4 A contrario models: special cases

In this section, we explore further the behavior of the three previous a-contrario detection
models, in particular in the case of white noise and powerlaw textures. Since we would like
to understand the link between the size of a spot and its detectability (and in particular the
contrast/size reversal shown in introduction), we introduce a scaling factor R (typically the
radius of the disc defining the principal measurement kernel s1) and change a little bit the
notations as follows. The functions si (i = 1, 2) become

si,R(x, y) =
1

R2
si

( x
R
,
y

R

)
, (19)

which can be rewritten in Fourier domain ŝi,R(ξ) = ŝi(Rξ) for all ξ ∈ R
2. These new functions

si,R still are measurement kernels, since they satisfy the three conditions of Definition 5. The

16



B. Grosjean and L. Moisan, A-contrario Detectability of Spots in Textured Backgrounds, J. Math. Imaging Vision, vol 33:3, pp. 313-337, 2009

measures mi (and the associated random variables Mi) are defined as before by

mi = u ∗ si,R and Mi = µ+ σ 〈Nk, si,R〉 , (20)

and so implicitly depend on R.

4.1 White noise textures

4.1.1 Model without context

Let us consider the case when the principal measurement is an averaging of u on a disc with
radius R, that is

s1,R =
1

πR2
1B(0,R) with 1B(0,R)(x, y) =

{
1 if x2 + y2 ≤ R2

0 else.

Since ‖ϕ1,R‖2 = ‖s1,R‖2 = 1
πR2 , from (13) we get (with s = s1,R)

NFA1(σ, µ,m,R) = |Ω| · Φc

(√
πR

m− µ

σ

)
. (21)

This model yields a simple relation between the typical size of the principal measurement
(R) and the contrast c = m1 − µ required to ensure a given NFA, namely

log
c

σ
= − logR+ constant. (22)

In other words, to keep the same control on false detections, one should keep the contrast
threshold c (or more precisely, the contrast-to-noise ratio c/σ) inversely proportional to R. This
is coherent with the fact that in a white noise texture, a spot with given contrast is more visible
when it is larger (notice that strictly speaking, Equation 22 links the contrast to the detector
size R, and not to the unknwon real spot size). This -1 slope of the log-log contrast-detail curve
has been noticed for a long time as a characteristic performance of human vision in white noise
(see [23]). The ideal observer theory also yields the same slope (see [7] for example).

4.1.2 Model with contrast to the context

We now consider as a context measurement an averaging in a ring with outer radius αR (α > 1)
and inner radius R (that is, a ring with thickness (α− 1)R surrounding the principal measure-
ment), defined by

s2,R =
1

(α2 − 1)πR2

(
1B(0,αR) − 1B(0,R)

)
.

Then, since

‖ϕ1,R − ϕ2,R‖2 =
1

πR2
+

1

(α2 − 1)πR2
=

1

πR2
· 1

1− 1
α2

,

we obtain

NFA2(σ, µ,m1,m2, R) = |Ω| · Φc

(
√
π

√
1− 1

α2
R
m1 −m2

σ

)
. (23)
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As we noticed at the end of Section 3.7.1, we would obtain the same detection model by
considering a context measurement defined by the averaging over the whole disc B(0, αR), that
is

s′2,R =
1

α2πR2
1B(0,αR).

The contrast-detail relation (22) is still satisfied for this model, but now with the relative
contrast c = m1 −m2. In fact, since the texture is a white noise, M1 and M2 are independent
and the role of the measurement m2 is to give an estimate of µ. This explains why the detection
becomes more efficient (NFA2 smaller) when α grows: the estimate is simply better because
the average is done on a larger support. When α → ∞, the estimate is asymptotically exact
and (23) tends to (21). Of course, in practice it is generally not interesting to take a very large
support for m2, since such a global estimate of µmay be polluted by other spots or low-frequency
variations.

4.1.3 Model with conditional context

Now what do we obtain with a conditional context? If the context measurement is an averaging
in a ring (measurement s2,R), then since M1 and M2 are independent (〈ϕ1,R, ϕ2,R〉 = 0), the
context measure is useless and NFA3(σ, µ,m1,m2, R) = NFA1(σ, µ,m1, R). The situation is
different if the context measurement is defined by an averaging on the whole disc B(0, αR)
(kernel s′2,R). Since s1 and s2 produce averages on two domains D1 and D2 with D1 ⊂ D2, one
has γ = 1 (see Equation 18), so that Models 2 and 3 are equivalent. Thus, we can see that
in the particular case of a white noise texture, the optimal model associated to a context boils
down to a contrast measurement (Model 2) or to a single measurement (Model 1).

4.2 Powerlaw textures

Now we come to the case of powerlaw textures, defined by the limit when ε → 0 of the colored
noise Nkε , where k

ε has been defined in (4) and β is a fixed real number satisfying 0 ≤ β < 6 (the
upper bound is for convergence purposes). Note that there is no link between the ε used here
for the approximation kε of the ideal powerlaw kernel and the ε used elsewhere as a threshold to
NFA for ε-meaningful spots (we maintain the usual notations since they are hardly ambiguous).

4.2.1 Model without context

As we said before, the detection model without context is adapted only to high-frequency tex-
tures, since it does not have a null response at the zero frequency. In the following theorem we
can see that for powerlaw textures, the limit between low-frequency and high-frequency textures
is β = 2: for β < 2, the texture energy is unbounded at infinity (

∫
|ξ|−β dξ diverges at infinity)

but bounded on a neighborhood of ξ = 0, so that a limit model without context can exist.
For β ≥ 2, the texture energy is unbounded on a neighborhood of ξ = 0, and the limit model
collapses.

Theorem 1 Let s1 be a measurement kernel and s1,R its rescaled version by (19). For any
ε > 0, we write NFA1(σ, µ, k

ε,m1, R) the number of false alarms proposed in Section 3.6,
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associated to the measurement kernel s1,R and to the naive model defined by (7) with µ, σ and
k = kε. Then one has

NFA1(σ, µ, k
ε,m1, R) −→

ε→0

{
NFA(σ,m1 − µ, s1, R) if 0 ≤ β < 2,
1
2 |T | if 2 ≤ β < 6,

(24)

with

NFA(σ,m, s,R) = |T | · Φc




1

R
β−2
2

m

σ

2π

√∫

R2

|ŝ(ξ)|2 |ξ|−β dξ




. (25)

Proof: From Proposition 3 we know that

NFA1(σ, µ, k
ε,m1, R) = |T | · Φc

(
m1

σ‖ϕε
1,R‖

)
, with

4π2‖ϕε
1,R‖2 =

∫

R2

|k̂ε|2|ŝ1,R|2 =
∫

|ξ|≥ε
|ŝ1(Rξ)|2 |ξ|−β dξ = Rβ−2

∫

|ζ|≥Rε
|ŝ1(ζ)|2 |ζ|−βdζ. (26)

Since ŝ1(0) = 1, the term under the last integral is equivalent to |ζ|−β when ζ → 0, so that if

β ≥ 2, the integral over R2 diverges to +∞ and NFA1(σ, µ, k
ε,m1, R) tends to |T | ·Φc(0) =

|T |
2

as ε → 0. If β < 2, the integral over R
2 is finite and by Lebegue’s monotone convergence

Theorem we get the desired limit NFA(σ,m1, s1, R) since Φc is continuous. �

4.2.2 Models with context

Contrary to the model without context (NFA1), the two models involving a context measure
(NFA2 and NFA3) admit a non-trivial limit when ε → 0 even for β ≥ 2, as shown below.

Theorem 2 Let s1, s2 be two measurement kernels and s1,R, s2,R their rescaled versions by
(19). For any ε > 0, we write NFAi(σ, µ, k

ε,m1,m2, R) (i = 2, 3) the number of false alarms
proposed respectively in Section 3.7 and 3.8, associated to the measurement kernels s1,R, s2,R
and to a naive model defined by (7) with µ, σ and k = kε. Then one has

∀i ∈ {2, 3}, NFAi(σ, µ, k
ε,m1,m2, R) −→

ε→0
NFA(σ,m1 − γm2, s1 − γs2, R), (27)

with γ =





1 if i = 2,
1 if i = 3 and 2 ≤ β < 6,
γ̄ if i = 3 and 0 < β < 2,

and γ̄ =

∫

R2

ŝ1(ξ)ŝ2(ξ) |ξ|−β dξ
∫

R2

|ŝ2(ξ)|2 |ξ|−β dξ

. (28)

Let us first check that the announced limit NFA(σ,m1 − γm2, s1 − γs2, R) makes sense,
since it involves the integral

I =

∫

R2

|ŝ1(ξ)− γŝ2(ξ)|2 |ξ|−β dξ
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that must be finite. If γ 6= 1, necessarily β < 2 and the same analysis as before shows that I is
finite (|ŝ1(ξ) − γŝ2(ξ)|2 is bounded around 0, and |ξ|−β is integrable around 0). If γ = 1, then
since s1 and s2 are real and even, so are ŝ1 and ŝ2 and a Taylor expansion of order 2 gives

|ŝ1(ξ)− ŝ2(ξ)|2 |ξ|−β = O
ξ→0

(
|ξ|4−β

)
, (29)

which is integrable around ξ = 0 as soon as β < 6.

4.2.3 Proof of Theorem 2

Let us begin with the case i = 2, which is quite easy. From Proposition 4 we know that

NFA2(σ, µ, k
ε,m1,m2, R) = |T | · Φc

(
m1 −m2

σ‖ϕε
1,R − ϕε

2,R‖

)
,

and as in (26),

4π2‖ϕε
1,R − ϕε

2,R‖2 = Rβ−2

∫

|ζ|≥Rε
|ŝ1(ζ)− ŝ2(ζ)|2 |ζ|−β dζ, (30)

and since the integral over R
2 (written I above) is finite, once again by Lebesgue’s monotone

convergence Theorem we get that

‖ϕε
1,R − ϕε

2,R‖ −→
ε→0

1

2π
R

β−2
2

√
I, (31)

which leads to the expected limit for NFA2.

Now let us come to the case i = 3. From Proposition 7 we have

NFA3(σ, µ, k
ε,m1,m2, R) = |T | · Φc

(
m1 − γεm2

σ‖ϕε
1,R − γεϕε

2,R‖

)
with γε =

〈
ϕε
1,R, ϕ

ε
2,R

〉

‖ϕε
2,R‖2

. (32)

Since γε has a finite limit (written γ) when ε → 0 (see Lemma 4 in appendix), ε 7→ |γε| is
bounded (say by C1 > 0) on some nonempty interval (0, ε0). Moreover, the numerator of the
argument of Φc in (32) converges to m1 − γm2 when ε → 0, and since

4π2‖ϕε
1,R − γεϕε

2,R‖2 = Rβ−2

∫

|ζ|≥Rε
|ŝ1(ζ)− γεŝ2(ζ)|2 |ζ|−β dζ

as in (26), the convergence of the denominator will be shown as soon as we establish that

∫

|ξ|≥Rε
|ŝ1(ξ)− γεŝ2(ξ)|2 |ξ|−β dξ −→

ε→0

∫

R2

|ŝ1(ξ)− γŝ2(ξ)|2 |ξ|−β dξ. (33)

We use Lebesgue’s dominated convergence Theorem to prove this convergence. The identity
(a+ b)2 ≤ 2(a2 + b2) implies that

|ŝ1 − γεŝ2|2|k̂ε|2 ≤ 2(g1 + g2), (34)

20



B. Grosjean and L. Moisan, A-contrario Detectability of Spots in Textured Backgrounds, J. Math. Imaging Vision, vol 33:3, pp. 313-337, 2009

where g1 = |ŝ1 − ŝ2|2|k̂ε|2 belongs to L1(R2) as we already shown (Equation 31), and

g2 = (1− γε)2|ŝ2|2|k̂ε|2.

Since ŝ2(0) = 1, we have |ŝ2(ξ)| ≤ 2 on some non-empty neighborhood |ξ| ≤ α1 of 0 (note that
we can impose α1 < Rε0), so that

∫

R2

g2 =

∫

|ξ|≥α1

g2(ξ) dξ +

∫

|ξ|<α1

g2(ξ) dξ ≤ C2 + 4 sup
0<ε<α1

(
(γε − 1)2

∫

Rε<|ξ|<α1

|ξ|−β dξ

)

where C2 = (1 + C1)
2 · ‖ŝ2‖2 · α−β

1 is a finite constant independent of ε. Now we consider the
different possibilities for the asymptotics of γε (see Lemma 4 in appendix), and show that

∫
g2

can be bounded independently of ε (for ε > 0 small enough) in each case:

• case 0 ≤ β < 2: since |ξ|−β is integrable around ξ = 0,

∫
g2 ≤ C2 + 4(1 + C1)

2

∫

|ξ|≤α1

|ξ|−β dξ < ∞.

• case β = 2: we have
∫
Rε<|ξ|<α1

|ξ|−β dξ = O
ε→0

(log ε), so that

∫
g2 ≤ C2 + 4 sup

0<ε<α1

(
O

ε→0

(
1

(log ε)2

)
· O
ε→0

(log ε)

)
≤ C2 + o

ε→0
(1).

• case 2 < β < 6: we have
∫
Rε<|ξ|<α1

|ξ|−β dξ = O
ε→0

(
ε2−β

)
and once again

∫
g2 ≤ C2+ o

ε→0
(1)

since ε2β−4 · ε2−β → 0 (case 2 < β < 4), (log ε)2ε4ε−2 → 0 (case β = 4), and ε4ε2−β → 0
(case 4 < β < 6).

To sum up, we proved that g2 ∈ L1(R2), so that the left term of (34) is dominated by a L1

function independent of ε (for ε small enough) and (33) follows. This allows us to take the limit
in (32), and Theorem 2 is proven. �

4.2.4 Contrast versus size

The two previous theorems show that the three previous NFA models still make sense for power-
law textures, but not for all values of β. Model 1 remains valid only when β < 2 (high-frequency
textures), and Model 3 boils down to Model 2 when 2 ≤ β < 6 (low-frequency textures). In all
cases, the limit NFA model can be expressed as a function of NFA, which combines the contrast
c (c = m1 −µ or c = m1 −m2, depending on the considered model) and the typical size R so as
to yield the same given NFA when

log
c

σ
=

β − 2

2
logR+ constant. (35)

This generalization of (22) shows that in order to keep the same control on false detections,
the relation between contrast and size can be reversed depending on the texture: in a high-
frequency texture (0 ≤ β < 2, hence including white noise), a spot with given contrast is more
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visible when it is larger, whereas it is more visible when it is smaller in low-frequency textures
(2 < β < 6, hence including mammographic image models), because the slope (β − 2)/2 then
becomes positive. This explains the contrast reversal experiment shown on Figure 2.

In [7], Burgess obtained the same (β− 2)/2 slope for the prewhitening observer on powerlaw
textures, as well as a good fit with the human observer in real mammography images (two-
alternative forced choice task). Regarding the a-contrario observer (model with contrast to the
context), one of the authors of the present paper recently showed a similar fit with the human
observer on simulated powerlaw textures (β = 0 and β = 3) for a search detection task [15].

4.3 Relative number of false alarms

4.3.1 Number of tests

In our analysis of the relation between c and R (Equation 35), we implicitly assumed that |T |
was independent of R. From a perceptual point of view, keeping the same number of tests for
each detector size may not be the optimal strategy, since redundant tests artificially increase |T |
without improving much the detection power (given the centers of two discs, the relative area
of their intersection increases with their radius R, and so does the redundancy of the associated
tests). Another strategy, more relevant in terms of visual system, consists in sampling the tests
on a grid whose step is proportional to the detector measurement size. This way, large structures
will be searched for and located with a worse precision than small ones. To take this into account
in the NFA definition, we shall sample the tests on a grid with step δ(R) = 0.3 · R in order to
maintain a fixed overlap ratio (around 80 % for discs) between adjacent principal measurements.
This constant 0.3 is arbitrary, but the order of magnitude seems relevant, and its precise value
has not a strong influence in practice. With this convention, we can define a relative NFA by

NFAr(σ, c, R) =
|Ω|

δ(R)2
· Φc

(
c

σ‖k ∗ (s1,R − s2,R)‖

)
. (36)

For powerlaw textures, we shall take the limit of the right term for truncated kernels tending to
the true powerlaw kernel (3). With this notion of relative NFAr (that we shall use in all the
following), the detectability of large structures is slightly increased and (35) becomes

log
c

σ
=

β − 2

2
logR+ logΦ−1

c

(
constant ·R2

)
. (37)

Compared to (35), this last relation yields (non-constant) slopes slightly smaller than (β− 2)/2,
which is in agreement with the slopes measured for human observers (see [7]).

To measure the detectability of a spot, we may assume that R is fixed. In a detection issue,
we need to test several values of R (say R1, R2, . . . Rk, in geometric progression) while keeping
the overall NFA property. This can be done with NFA′(σ, c, Ri) = n(Ri,Ω) · NFAr(σ, c, Ri),
which is a NFA provided that

k∑

i=1

|Ω|
δ(Ri)2 · n(Ri,Ω)

≤ 1

(see Proposition 2). If we assume that each value of R deserve the same overall control, then
we may take n(Ri,Ω) = k · |Ω|/δ(Ri)

2, but if we want to give the same weight to each possible
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detection, then we shall have n(Ri,Ω) = |Ω| · ∑k
i=1 δ(Ri)

−2. Both choices ensure the NFA
property, but correspond to different strategy and prior assumptions on the size of the spots to
be found (related to R, the measurement size).

4.3.2 Contrast-detail curves

The relation between contrast and size is usually represented by a curve c function of R, called
CD-curve (for “contrast-detail”). We transpose this representation below for the a-contrario
observer.

Definition 6 (contrast-detail curve) We call CD-curve with level ε the set of pairs (c, R)
for which NFAr(1, c, R) = ε for a contrast c = m1 −m2, a principal measurement s1,R defined
by an averaging over a centered disc with radius R, and a context measurement s2,R defined by
an averaging over a centered ring with inner radius R and outer radius R

√
2.

The equation of CD-curves is easily deduced from (36): for a given naive model defined by
a texture kernel k, the CD-curve with level ε is given by

c(R) = ‖k ∗ (s1,R − s2,R)‖ · Φ−1
c

(
ε

δ(R)2

)
. (38)

In practice, we shall choose ε = 1 to compute the CD-curve of a given real image. For a
theoretical CD-curve (with no special reference image), we shall take arbitrarily |Ω| = 106 to
get a reasonable order of magnitude on a typical 1000× 1000 image. Contrast-detail curves for
powerlaw textures are shown on Figure 5.

4.4 Pattern-noise textures

The CD-curves for powerlaw textures are monotone, yielding positive or negative dependency
between size and detectability. Some textures may present a more complex detectability profile,
with local extrema in the CD-curve. Such a situation arises when the texture kernel k is a
simple generating pattern image with a restricted support (we shall call this “pattern-noise”).
The corresponding texture generation process amounts to superimpose weighted copies of the
generating pattern image at each point of the texture image, with Gaussian i.i.d weights. Two
examples of pattern-noise are given on Figure 6. Since these textures are build by mixing
copies of a single shape, one may expect the typical size of the shape to play a particular role
in the associated CD-curve. This is indeed the case, as shown on Figure 7: the CD-curve
presents a bell-shape, with a maximal required contrast (that is, minimum detectability) when
the measurement size (R) approximately matches the shape size (say S). Since the texture
naturally presents structures with size S, the a-contrario observer requires more contrast to
detect a spot when R ≃ S than when R ≪ S or R ≫ S.

4.5 Real-world nonparametric textures

As a generalization of pattern-noise, a microtexture can also be created from a natural image
u by using the image itself as a texture kernel. This amounts to keep the modulus of the
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Figure 5: Theoretical contrast-detail (CD) curves (relation between the minimum contrast required for
a detection and the size of the associated measurement) obtained by the relative a-contrario observer
(NFAr) in the particular case of powerlaw textures, with ε = 1 and |Ω| = 106. Solid lines: CD-curves,
defined from NFAr with a variable number of tests (δ(R) = 0.3 · R, yielding a constant overlapping
ratio around 80% for adjacent detectors). Dashed lines: the same curves, but for a fixed number of tests
(δ(R) = 1, less realistic from a perceptual point of view). The contrast-reversal noticed in introduction
(Figure 2) appears here in the different slopes of the CD-curves: positive slope for β < 2 (detectability
increases with size) and negative slopes for β > 2 (detectability decreases with size).

(a) (b) (c) (d)

Figure 6: Pattern images (a,c) and samples of their corresponding pattern-noise textures (b,d).
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Figure 7: Contrast-detail (CD) curves with level ε = 1 for different pattern-noise textures. Generating
pattern images consist in discs with fixed (unit) average grey level and various radius S (in pixels). The
CD-curves have a “bell” shape, the maximum required contrast being reached when the measurement
size R has the same order of magnitude than the radius of the pattern.

Fourier transform of u (since k̂ = û and k̂ = |û| define the same colored noise), or equivalently
the autocorrelation of u by Wiener-Khintchine Theorem. Such a nonparametric texture model
is fairly efficient for a texture without contour or alignment structure, and may deliver quite
realistic sample images in that case. On Figure 8, we generated such texture samples for four
different images: two Brodatz textures (see [4]), a picture of the see and a region of interest
extracted from a mammogram. Their associated contrast-detail curves, also represented on this
figure, can be classified in three types. First, we can notice that the Brodatz textures are strongly
characterized by two different scales, respectively equal to about 3 and 10 pixels. For such
textures, the contrast-detail curves are bell-shaped curves, like the ones already observed for the
pattern-noise textures, meaning that the detection performance is degraded when the potential
spot size is close to a particular critical size. For the sea picture, the contrast-detail curve
appears to be monotone with a negative slope: the minimum measurement contrast decreases
as the measurement kernel size increases. Indeed, for a given measured contrast, since this
image is dominated by high frequencies, detection is all the more easy than the spot is large.
On the contrary, the mammography image being dominated by lower frequencies, the detection
performance globally falls down as the measurement kernel size increases, which means that
for a given measured contrast, the larger the spot, the worse the detection. In these two last
examples, we retrieve the same behavior as previously described for powerlaw textures, for which
the contrast-detail curves were linear in a log-log scale.

As we can see, contrast-detail curves provide an intuitive way to understand the content of
a texture in terms of relative contrast (grey levels) of structures with different sizes (pixels).
The information in the average radial power spectrum would be essentially the same, but the
CD-curve representation is much easier to interpret for pattern detection purposes.

25



B. Grosjean and L. Moisan, A-contrario Detectability of Spots in Textured Backgrounds, J. Math. Imaging Vision, vol 33:3, pp. 313-337, 2009

(a)
0

10

1

10

2

10

1

10

2

10

(b)
0

10

1

10

2

10

1

10

2

10

(c)
0

10

1

10

2

10

1

10

2

10

(d)
0

10

1

10

2

10

1

10

2

10

Minimum
contrast

Detector measurement size R [pixels]

Minimum
contrast

Detector measurement size R [pixels]

Minimum
contrast

Detector measurement size R [pixels]

Minimum
contrast

Detector measurement size R [pixels]

Figure 8: Left column: Real images of two Brodatz texture images (a,b), an image of the sea (c), and
a 5 cm2 region of interest extracted from a mammogram (d). Middle column: Samples of the associated
nonparametric texture models obtained from their full power spectrum (see Section 4.5). Right column:
CD-curves obtained by the a-contrario observer. For the textures with a strongly characteristic scale (a,b),
the CD-curve reaches a maximum when the measurement size is similar to the texture characteristic scale.
The sea texture (c) being dominated by higher frequencies, its CD-curve is monotone with a negative
slope. On the contrary, the predominance of low frequencies in the mammography texture leads to a
rather increasing CD-curve with a globally positive slope.
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5 Application examples

5.1 Discrete framework

The a-contrario detection models presented in this study have been developed in a continuous
framework, but all models and results of Section 3 remain valid in the discrete case, that is
when the integrals defining convolutions and inner products are replaced with discrete sums.
In particular, the γ constant involved in Proposition 7 still satisfies γ = 1 in the case of a
Gaussian white noise texture when s1 and s2 are discrete averages on domains D1 and D2 such
that D1 ⊂ D2 (Equation 18). However, the limit theorem 1 obtained for powerlaw textures
(Section 4.2) is specific to the continuous setting (because scale invariance cannot be formulated
on a discrete grid) and consequently discrete low-frequency powerlaw textures, as ordinary cases
of general textures, will in general lead to γ 6= 1 (but close to 1, though). Therefore, the model
with conditional context does not necessarily lead to a contrast measurement m1−m2 for these
textures. If, for a specific application, a rigorous contrast is required in the NFA expression, the
detection model with contrast related to the context (model 2) could rather be used.

5.2 Lesion detectability in mammography images

In mammography images, two important kinds of lesions (masses and microcacifications) typi-
cally appear as spot-like structures. Hence, measuring the detectability of such kind of structures
plays a key role in the optimization of the images devoted to human experts. The a-contrario
detection models proposed in this paper naturally offer such a detectability measure. In this
section, we propose to illustrate these models in two steps. First, we apply the NFA2 criterion
to detect spots in a real mammogram. As we said before, the goal of this study is not to build an
automated detector of breast lesions as computer aided detection algorithms (CAD) do, but we
may still want to check that the structures with a small NFA2 correspond to the ones naturally
catched by the human eye. Second, we synthesize several test images by putting artificial spots
in real mammograms, and compare the detectability predicted by the NFA2 criterion with our
perception of these images.

5.2.1 Detection of real spots in mammography images

A 1500×2000 mammography image containing a low contrasted opacity with an approximately
round shape is presented on Figure 9(a). The associated nonparametric breast texture model
is defined as a colored noise matching the power spectrum of a region of interest (ROI) of the
mammography image, located inside the breast area (see Section 4.5). As explained in the
introduction, power spectra of mammography images approximately follow a powerlaw distri-
bution. Thus, we could also have modeled the texture by a powerlaw process, whose parameters
would be similarly estimated on a ROI inside the breast area. Note also that the model intends
to represent the non-structured texture of actual mammograms, but not the breast curvilinear
structures. This kind of highly structured details involve phase information that cannot be
taken into account in a colored noise model (modeling these structures and understanding their
influence on the detectability of spots is beyond the scope of this paper and would require a
separate study). As well, the stationarity of the inside breast texture is a reasonable, though
inexact, hypothesis.
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(a) Original image (b) ε = 1 (c) ε = 10

Figure 9: A-contrario detection of spots in a mammography image, for two values of the threshold ε
applied to the detection metric NFA2. The large opacity is well detected (its NFA2 is equal to 0.15).
Some clinically wrong detections also occur (small spots), mainly because the curvilinear breast structures
are not taken into account by the texture model (these are false alarms clinically speaking, but are not
with respect to the naive model used for the breast texture). The ε-dependency of the detection results
is low: only a small amount of detections are added when the threshold is increased from 1 to 10.

The a-contrario detection model with contrast related to the context was used to detect
spot-like lesions in the mammography image, with measurement kernel functions defined as nor-
malized indicator function of discs. Five measurements sizes (radius R equal to 5, 10, 25, 50 and
100 pixels) and two context factors (equal to

√
2 and 2) were used, and the tests were sampled

over a grid with step δ(R) = 0.3 ·R in order to ensure at least a 80% area overlapping of neigh-
boring supports. At each tested location, we derived the NFA2 associated to each combination
of the object and context measurement sizes. Then, we selected the NFA2 corresponding to
the more significant detection (minimal NFA2). The visible opacity is well detected, with a
NFA2 equal to 0.15. Smaller findings located along the breast curvilinear structures are found
with smaller NFA2 values. Indeed, since the breast curvilinear structures cannot be modeled
by a colored noise (this kind of highly structured details involve phase information), it was ex-
pected that they will contradict the naive texture model hypothesis. Therefore, their detection
is consistent with the detection model that intends to detect locally contrasted spots.

5.2.2 Detectability of simulated spots in real breast textures

We extracted from the mammogram represented in Figure 9(a) a 512× 512 ROI corresponding
to an area of homogeneous breast texture (this ROI is used on Figure 11). The contrast-detail
curve obtained by the a-contrario observer for the detection of spots in this image is shown
on Figure 10. The curve is found having (globally) a positive slope, meaning that larger spots
require higher contrast m1 −m2 to be detected.

To illustrate this perception law, we added three simulated spots to the considered breast
texture image with contrast and size values represented by points A, B and C of Figure 10.
As shown on Figure 11, the two smallest spots are immediately noticed by the human eye, but
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Figure 10: Contrast-detail curves with NFA2 levels 4 · 10−4, 8 · 10−2, 0.6 and 1 obtained for a 512× 512
ROI of the breast texture issued from the mammogram shown in Figure 9(a). The three points A, B
and C correspond to spots with radius equal respectively to 5, 10 and 50 pixels, leading to the same
contrast m1 −m2. At NFA2 level 1 for instance, the lowest curve indicates that the spots associated to
contrast-detail points A and B will be easily detected, whereas the one associated to C will be hard to
detect (the higher the point with respect to the curve, the higher the detectability).

the larger one is really ambiguous. Notice that that these perception experiments should be
realized on the electronic version of this paper (with the images displayed on a screen with
sufficient resolution); on printed versions of this paper, the smallest spots may be difficult to
see, especially on the non-zoomed images (top row). Notice also that the largest spot (right
column) can be identified by comparing with the other images, but this comparison is not the
visual task intended here (the task is absolute spot detection, not image comparison).

A similar experiment has been done in another breast texture image, extracted from the real
mammogram of Figure 12(a). This texture is characterized by a power spectrum more dominated
by lower frequencies than the previous one. Again, the contrast-detail curve is found having
a positive slope (see Figure 13) but increasing more rapidly than the one found in Figure 10.
Examples of images containing spots associated to the contrast-detail points A and B are shown
on Figure 12. As predicted by our model, the smaller spot is highly visible in the texture image.
On the contrary, the larger one is not easy to distinguish from the underlying breast structure.

These two experiments alone are not sufficient to prove that the proposedNFA2 model yields
a good prediction of the human ability to detect spots on mammographic backgrounds, but they
are consistent with the idea that human CD-curves have a positive slope on such backgrounds.
This property has been demonstrated by Burgess in [7] by evaluating human CD-curves from
several psychovisual experiments. On powerlaw texture backgrounds, a good fit between the
human observer and the a-contrario observer (NFA2 model) has been observed as well [15].
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(a) R=5 (NFA2=1 · 10−5) (b) R=10 (NFA2=1.9 · 10−3) (c) R=50 (NFA2=0.8)

(a’) R=5 (NFA2=2.6 · 10−6) (b’) R=10 (NFA2=4.6 · 10−4) (c’) R=50 (NFA2=0.2)

Figure 11: Examples of simulated spots added to a real breast texture. Bottom images are extracted
from top images (hence, the NFA2, like the number of tests, decreases). The considered spots are
characterized by various radius sizes (R equal to 5, 10 and 50 pixels) but give rise to the same contrast
m1 − m2 in the image. Whereas the two smaller spots can be detected, the larger one is less visible
due to the presence of the surrounding texture. It should be noted that when looking at these images,
the observer tends to detect spots by comparing the different images. To properly estimate the absolute
visibility of the spot, the observer should look at a single image at a time, without comparing the observed
image to the others.

[This area has been left blank for page layout purposes]
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(a) Original mammogram

(b) R=5 (NFA2= 6.8 · 10−38) (b’) R=5 (NFA2= 1.7 · 10−38)

(c) R=50 (NFA2=0.75) (c’) R=50 (NFA2=0.19)

Figure 12: Simulated spots are added to a breast texture image extracted from (a). The spots have
the same contrast, and a radius R equal to 5 (b,b’) or 50 pixels (c,c’). Images represented in (b’,c’) are
extracted from (b,c) respectively. Whereas the smaller spot is clearly visible, the larger one may not be
distinguished from the background texture.
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Figure 13: CD-curve with NFA2 level 1 corresponding to the ROI highlighted in image 12(a). Points
A and B correspond to the spots added on image 12 (b,b’,c,c’).
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5.3 Stain detectability in textile images

We now present a second example where the additive spot hypothesis makes sense, the detection
of stains (or manufacturing defects) in a piece of clothing. As for the mammography image, we
realize two experiments on a wool texture image: the detection of actual stains and the measure
of the detectability of an artificial spot superimposed to the original texture. In both cases, we
compare the NFA2 criterion with human perception.

5.3.1 Detection in textile images

We consider a 2048×2048 pixels image (shown in Figure 14(a)) extracted from a picture of wool
textile. Figure 14(b) represents an image sample of its associated colored noise process. Some
differences can be observed between the initial image and the image sample of the texture model,
due to the lack of phase information in the model. The image power spectrum, used to generate
the texture model, does not capture the global grid structure information. Furthermore, the
power spectrum approach implies a contrast symmetry u 7→ −u in the texture image sample,
which is not verified in the initial image (both white and black tiny spots can be distinguished
in the sample image, whereas the real image contains mostly black ones). However, as we shall
see later, the colored noise model seems to capture enough texture information to build a spot
detection criterion that mimics human vision.

Figure 14: Left: image extracted from a picture of wool textile. Right: a sample of its associated
texture model. Some aspects of the initial image are not represented in the texture model, such as the
deterministic grid effects, since the image power spectrum does not catch this information.

Images have been scored by the same a-contrario observer as in the mammography example,
but with larger potential stains sizes (see Figure 15). We tested both black stains and white
ones, but found no detection for white stains even for a NFA2 threshold equal to 10 (that is
why this case in not illustrated in Figure 15). This seems visually consistent with the fact that
we do not notice any particular white stain in this image. On the contrary, concerning black
stains, the more meaningful detection occurs unsurprisingly at the image center. As the NFA2

threshold is increased, new detected stains appear. They do not pop out as evidently as the
stain located near the image center, but are undoubtfully perceived when our eye focuses on
image subwindows. This focusing property is well modeled by a-contrario models, as noticed in
[9] in the case of edge detection. Here, when considering a given potential stain in a sub-region
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(a) ε = 0.1 (b) ε = 10 (c) ε = 100

Figure 15: A-contrario detection of spots in the textile image (Figure 14, left), with 5 measurements
sizes (radius R equal to 10, 25, 50, 100 and 200 pixels), 2 context factors (equal to

√
2 and 2), and a test

sampling on a grid with step δ(R) = 0.3 ·R (like in Figure 9). A black stain, actually visually suspicious,
is detected at the image center (a). When the NFA2 threshold is increased, more stains are highlighted
(b,c). These stains become visible if the eye focuses on a particular ROI of the image, and they would
be detected as well by the focused a-contrario model.

of the full image, the NFA2 derived by the a-contrario observer decreases because the number
of tests is decreased. A potential stain with a NFA2 equal to 100 in the full image would have a
NFA2 equal to 1 in a 0.1× 0.1 ROI of the initial image. Thus, the a-contrario observer models
the fact that human observers can focus their attention on a restricted ROI.

5.3.2 Detectability of simulated spots in textile images

The detectability of spots in textile textures is studied here in a 512×512 ROI of the whole piece
of clothing. As shown in Figure 16, the minimal contrast needed to make a detection reaches a
maximum for a measurement size equal to about 15 pixels. This critical size corresponds to the
size of a typical texton4 in the initial image: as structures with this scale naturally appear more
often in the image, the contrast needed to detect them is increased. Furthermore, the bell shape
of the detection curve indicates that the more the searched spot size departs from the texton
size, the easier the detection. We retrieve here a detectability behavior similar to the detection
of spots in the images of pattern noise associated to disc patterns.

Simulated spots with contrast and size values corresponding to points A, B, C and D of
Figure 16 have been added to the wool texture image, as shown in Figure 17. As predicted by
the contrast-detail curve, the spot with a 15-pixels radius is the less detectable one. Indeed, it
corresponds to the typical “texton” size of the texture image and thus can be hardly distinguished
from random spots due to normal texture. Conversely, the 100-pixels radius spot is the one which
pops out the most evidently.

4We call texton the smallest basic pattern that is repeated (with variations) to produce the texture, when it
exists.
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Figure 16: CD-curve with NFA2 level 1 obtained for the wool texture image. The minimum contrast
takes its highest value at a measurement scale of about 15 pixels, corresponding to the typical “texton”
size. Points A, B, C, and D correspond to the points added on Figure 17.

(a) R=5 (NFA2=0.98) (b) R=15 (NFA2=145) (c) R=50 (NFA2=8.3 · 10−3)

(a’) R=5 (NFA2=0.1) (b’) R=15 (NFA2=14) (d) R=100 (NFA2=3.1 · 10−7)

Figure 17: Examples of spots added to a wool textile image. The spots have the same contrast, but a
different radius R. Images in (a’,b’) are zoomed from (a,b) respectively. The less visible spot has a radius
of 15 pixels (image (b)), which corresponds to the scale of the image textons.
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6 Conclusion

In classical statistical approaches of signal detection, both signal and background are described
by a probabilistic model, and inference is made by deciding which model explains better the
observed data. In the a-contrario framework, the approach is quite different. First, the structure
to detect is not described by a probabilistic model but through one or several measurement
functions generally inspired from Gestalt Theory. It relies on the idea that since the variability
of potential structures is tremendously large, a description in terms of Gestalt grouping laws is
more appropriate to mimic human vision than a complicated weighting of potentially observable
structures. Second, the background model plays a different role in the two frameworks, even if
it is described by a probability measure (generally written H0) in both cases. In signal detection
theory, the background model directly competes with a signal model (H1), which requires a
careful distinction between background and signal when the probabilistic models are established.
In the a-contrario framework, the choice of the “naive model” does not change fundamentally
the way structures are detected (the measurements above), but essentially drives two detection
issues: the way the measurements and the detection parameters are structurally combined to
form a single NFA measure, and the link between the detection threshold and the control of
false alarms. When the naive model is a simplistic description of observed backgrounds, the
corresponding NFA will generally yield an unprecise control of real false alarms, but may still
remain a usable detection criterion. This property is illustrated in the case of powerlaw textures
by the fact that γ = 1 independently of β (when 2 ≤ β < 6) for the model with conditional
context (limit of NFA2).

In this paper, we proposed a new way to model the human ability to detect “spots” in
textured images. This led us to generalize in some ways the a-contrario framework previously
developed in the literature: we gave a precise definition of a Number of False Alarms (NFA), and
provided an easy way to build such a NFA, leaving the possibility of using arbitrary weights on
the different tests (Proposition 2). We then developed three detection models dealing with the
unusual case of a non i.i.d naive model, and, for the last one, introduced the notion of conditional
context. This notion of context was proven to be essential for low-frequency textures, since the
model without context collapses for powerlaw textures with β ≥ 2 (Theorem 1). The same
critical exponent (β = 2), establishing a boundary between high-frequency powerlaw textures
(β < 2) and low-frequency ones (β ≥ 2), was found when exploring the other context-dependent
models. This corresponds exactly to the reversal of the contrast-size dependency for the human
perception of spots, noticed on Figure 2. More generally, for an arbitrary microtexture the
second a-contrario model we proposed (contrast to the context) allowed us to define a contrast-
detail curve (CD-curve) that links the size of a spot (or, to be more accurate, the detector
size) and its minimal perception contrast. From this point of view, real-world textures can
be roughly classified in three types (see Figure 8): high-frequency textures corresponding to a
decreasing CD-curve (e.g. white noise), low-frequency corresponding to an increasing CD-curve
(e.g. mammographic textures), and pattern noise corresponding to a bell-shaped CD-curve (e.g.
field of stones). More complicated CD-curves are also possible, though rarely encountered.

Concerning experiments, we illustrated the a-contrario models of spot detectability by pro-
viding a few examples of real or artificial spots on a mammographic image and on a wool texture
image. On these images, there seems to be a good agreement between our relative ability to
detect spots and the contrast-detail curves computed with the a-contrario model, even though
the background images are quite more complex than the colored noise processes used as naive
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models.

We believe that the a-contrario observer we proposed could provide a potential alternative to
classical signal detection approaches to model the human perception of spots. It could be used
in order to optimize the images devoted to human experts, as it is the case for mammography
images for example. More generally, the ability of such models to mimic human vision in
a framework compatible with gestalt principles could be useful to measure the detectability
of other kinds of structures in textured images, in particular geometrical grouping laws like
alignments or edges, already considered in white noise textures [8, 9]. A generalization of the
present work to non-stationnary textures could also reveal interesting connexions with Constant
False Alarm Rate techniques (CFAR, see [14, 22] for example) that have been popular for a long
time in radar imaging.
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7 Appendix

7.1 Lemma 1

Lemma 1 (distribution of p-values) Let X be a real-valued random variable. Define F (t) =
P(X ≥ t). Then

∀s ∈ [0, 1], P(F (X) ≤ s) ≤ s. (39)

Proof: First note that F is left-continuous and nonincreasing. Consider a real number y, and
define

z = inf{x, F (x) = F (y)} ∈ [−∞, y].

First assume that z 6= −∞. Two possibilities arise.

1) Either F (z) = F (y), then F (x) ≤ F (y) ⇐⇒ x ≥ z and

P(F (X) ≤ F (y)) = P(X ≥ z) = F (z) = F (y).

2) Or F (z) > F (y), and F (x) ≤ F (y) ⇐⇒ x > z, so that

P(F (X) ≤ F (y)) = P(X > z) = lim
ε→0+

P(X ≥ z + ε) = lim
ε→0+

F (z + ε) ≤ F (y).

Now if z = −∞, necessarily F (y) = 1 and as in case 1) we have P(F (X) ≤ F (y)) = F (y).
Hence, for real y ∈ R we have P(F (X) ≤ F (y)) ≤ F (y). Now if s ∈ [0, 1], we have, since F is
nonincreasing,

P(F (X) ≤ s) = sup
y, F (y)≤s

P(F (X) ≤ F (y)) = sup
y, F (y)≤s

F (y) ≤ s,

36



B. Grosjean and L. Moisan, A-contrario Detectability of Spots in Textured Backgrounds, J. Math. Imaging Vision, vol 33:3, pp. 313-337, 2009

which ends the proof. Note that if X admits a probability density function, then P(F (X) ≤
s) = s for all s. �

7.2 Lemma 2

Lemma 2 (distribution of conditional p-values) Let Y, Z be two real-valued random vari-
ables. Assume that there exists some set U ⊂ R with P(Z ∈ U) = 1 for which the function
F (t, u) = P(Y ≥ t|Z = u) is well-defined on R× U . Then

∀s ∈ [0, 1], P(F (Y, Z) ≤ s) ≤ s. (40)

Proof: For any u ∈ U , the random variable X = Y |(Z = u) is well-defined by its survival
function P(X ≥ t) = F (t, u). Hence, from Lemma 1 we get

∀ ∈ [0, 1], P

(
F (X,u) ≤ s

)
≤ s.

This implies that

G(u) := P(F (Y, Z) ≤ s|Z = u) = P(F (X,u) ≤ s) ≤ s,

and as a consequence
P(F (Y, Z) ≤ s) = EZG(Z) ≤ s,

which is the announced result.

7.3 Lemma 3

Lemma 3 Let ϕ1, ϕ2 ∈ L2(R2) such that ‖ϕ2‖ 6= 0, and N a normalized two-dimensional
Gaussian white noise. Then we have the following conditional distribution:

∀t ∈ R, 〈N,ϕ1〉 |
(
〈N,ϕ2〉 = t

)
∼ N

(
γt , ‖ϕ1 − γϕ2‖2

)
, with γ =

〈ϕ1, ϕ2〉
‖ϕ2‖2

.

Proof: Conditionally to 〈N,ϕ2〉 = t, we have

〈N,ϕ1〉 = 〈N,ϕ1〉 − γ 〈N,ϕ2〉+ γ 〈N,ϕ2〉 = 〈N,ϕ1 − γϕ2〉+ γ 〈N,ϕ2〉 .

Now since
〈ϕ1 − γϕ2, ϕ2〉 = γ‖ϕ2‖2 − γ‖ϕ2‖2 = 0,

the random variables 〈N,ϕ1 − γϕ2〉 and 〈N,ϕ2〉 are independent and we have

(
〈N,ϕ1〉 | 〈N,ϕ2〉 = t

)
= 〈N,ϕ1 − γϕ2〉+ γt ∼ N

(
γt, ‖ϕ1 − γϕ2‖2

)
.
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7.4 Lemma 4

Lemma 4 With the notations of Theorem 2, one has

γε :=

〈
ϕε
1,R, ϕ

ε
2,R

〉

‖ϕε
2,R‖2

=





γ̄ + o
ε→0

(1) if 0 ≤ β < 2,

1 + O
ε→0

(
1

log ε

)
if β = 2,

1 + O
ε→0

(
εβ−2

)
if 2 < β < 4,

1 + O
ε→0

(
ε2 · log ε

)
if β = 4,

1 + O
ε→0

(
ε2
)

if 4 < β.

Proof: As in (26), the scaling properties of ŝ1 and ŝ2 with respect to R lead to

γε =

〈
ϕε
1,R, ϕ

ε
2,R

〉

‖ϕε
2,R‖2

=
Aε

Bε

with Aε =

∫

|ξ|≥Rε
ŝ1(ξ) · ŝ2(ξ) |ξ|−β dξ and Bε =

∫

|ξ|≥Rε
|ŝ2(ξ)|2 |ξ|−β dξ

(note that in all the following we suppose that ε is small enough to ensure that Bε 6= 0).

• If 0 ≤ β < 2, both integrals A0 and B0 are finite, so that by Lebesgue’s monotone
convergence Theorem we have the existence of a limit (say γ̄) to γε when ε → 0, which ends the
proof for this case.

• Now we assume that β ≥ 2. Since ŝ2(0) = 1, we have |ŝ2(ξ)|2 |ξ|−β ∼
ξ→0

|ξ|−β, and since

the integral of |ξ|−β diverges around 0,

Bε ∼
ε→0

2π

∫ 1

Rε
t−β+1 dt ∼

ε→0

{
2πR2−β

β−2 ε2−β if β > 2,

2π log ε if β = 2.
(41)

Now since ŝ2 is real,

γε = 1 +
A′

ε

Bε
with A′

ε =

∫

|ξ|≥Rε

(
ŝ1(ξ)− ŝ2(ξ)

)
· ŝ2(ξ) |ξ|−β dξ, (42)

and since ŝ1 and ŝ2 are even functions taking the same value (1) in ξ = 0, a Taylor expansion
yields as in (29)

ŝ1(ξ)− ŝ2(ξ) = O
ξ→0

(
|ξ|2
)
, so that

A′
ε = O

ε→0

(∫

Rε≤|ξ|≤1
|ξ|2−β dξ

)
=





O
ε→0

(1) if β < 4

O
ε→0

(log ε) if β = 4

O
ε→0

(
ε4−β

)
if 4 < β

(43)

The remaining of the proof is obvious considering the combination of possibilities for Bε and A′
ε

(equations 41 and 43). �
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